Louisiana State University LSU Digital Commons

LSU Historical Dissertations and Theses

Graduate School

1984

The Relationship Between Photosynthesis and the Capacity for Nitrogen Fixation in Soybean.

Eddie Paul Millhollon Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation

Millhollon, Eddie Paul, "The Relationship Between Photosynthesis and the Capacity for Nitrogen Fixation in Soybean." (1984). *LSU Historical Dissertations and Theses*. 3986. https://digitalcommons.lsu.edu/gradschool_disstheses/3986

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

- 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
- 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
- 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
- 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
- 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University Microfilms International 300 N. Zeeb Road Ann Arbor, Mi 48106

...

8511757

Millhollon, Eddie Paul

.

THE RELATIONSHIP BETWEEN PHOTOSYNTHESIS AND THE CAPACITY FOR NITROGEN FIXATION IN SOYBEAN

The Louisiana State University and Agricultural and Mechanical Col. PH.D

Рн.D. 1984

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $_\sqrt{}$.

- 1. Glossy photographs or pages _____
- Colored illustrations, paper or print_____
- Photographs with dark background _____
- Illustrations are poor copy _____
- 5. Pages with black marks, not original copy_____
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Other_____

University Microfilms International

THE RELATIONSHIP BETWEEN PHOTOSYNTHESIS AND THE CAPACITY FOR NITROGEN FIXATION IN SOYBEAN

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Agronomy

by Eddie Paul Millhollon B.S., Nicholls State University, 1977 M.S., Louisiana State University, 1980 August 1984

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to the members of his examination committee; Dr. E. P. Dunigan, Dr. F. A. Martin, Dr. J. P. Jones, Dr. D. J. Longstreth, Dr. R. E. Tully and Dr. B. J. Hales.

A special debt of gratitude is due Dr. Larry E. Williams, now of the University of California, Davis, for his direction, aid and counsel through all phases of this endeavor. Special appreciation is also extended to Dr. E. P. Dunigan who graciously took over as advisor in Dr. Williams' absence.

The author expresses his sincere gratitude to his wife Beverly and his two daughters, Michelle and Linda, for their patience, understanding and support during the seemingly endless course of his studies. Special thanks also go to Dr. F. A. Martin and Dr. M. A. Cohn for helping the author find the strength to continue through some very trying periods.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTSii
LIST OF TABLESv
LIST OF FIGURESvi
ABSTRACTviii
LITERATURE REVIEW1
MANUSCRIPT 116
Abstract
Introduction19
Materials and Methods22
Results25
Discussion
Literature Cited
Figure Legends
MANUSCRIPT 242
Abstract
Introduction
Materials and Methods47
Results
Discussion
Literature Cited
Figure Legends
SUMMARY

TABLE OF CONTENTS (Continued).

LITERATURE	REVIEW	CITATIONS	• • • • • • •	• • • • • • •		• • • • • • • •	73
APPENDIX	• • • • • • • •		••••		• • • • • • • •		78
VITA							118

LIST OF TABLES

Table 1. Changes in plant dry weight and leaf area of soybeans grown in the greenhouse at low irradiance and supplied four levels of nitrate. Harvesting began 2. Changes in nitrogen accumulation and apparent No fixation of soybeans grown in the greenhouse at low irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed....60 3. Changes in nitrogen accumulation and apparent N₂ fixation of soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began Changes in nitrogen accumulation of non-nodulated

- 4. soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks
- 5. Changes in plant dry weight and leaf area of soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed......63
- 6. Changes in plant dry weight and leaf area of non-nodulated soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began

LIST OF FIGURES

Manuscript 1

Figure

Page

- 3. Response of apparent photosynthetic rates of plants represented in Figure 2 to irradiance. y=47.9(1-e^{-0.004x}); R²=0.96.....38
- 5. Response of apparent N₂ fixation and leaf carbohydrate partitioning to increased irradiance levels following a 40 hour extension of the normal dark period of plants represented in Figure 1. Each point represents the mean + SE of four plants......40

LIST OF FIGURES (continued).

Manuscript 2

Figure

Page

- 1. Estimated progress curves representing leaf area ratios (A), net assimilation rates (B), and relative growth rates (C) of soybeans_grown_under an average daily irradiance of 8.6 E m² day and completely dependent on nitrogen fixation (------), or supplemented with 2mM NO₃ (----), 6mM NO₃ (----). 66M

ABSTRACT

Diurnal trends in leaf carbohydrate partitioning and nodule activity in soybeans under natural conditions and the irradiance level required to allocate sufficient carbohydrate to obtain maximum rates of $N_2(C_2H_2)$ reduction were studied. Soybeans grown outdoors maintained constant levels of soluble carbohydrates in the leaves and constant rates of N_2 fixation and root + nodule respiration when root temperature was kept constant but shoot temperature varied. When plants were subjected to a 40-hour dark period, then exposed to 200 to 1000 μ E m⁻² sec⁻¹, 200 μ E m⁻² sec⁻¹ resulted in maximum leaf soluble carbohydrate and nodule activity. Results suggest that nodule activity is controlled by carbohydrate partitioning in the shoot and support the concept of an environment-mediated programming of carbohydrate distribution.

Carbon and nitrogen limitations to growth of symbiotically-grown soybean plants were assessed by examining growth characteristics of plants grown under low irradiance in a greenhouse and high irradiance outdoors and provided 0.0, 2.0, 6.0 or 12.0 mM NO₃. Under low irradiance, supplementing N₂ fixation with 2.0 mM NO₃ resulted in relative growth rates (RGR), leaf area ratios (LAR) and net assimilation rates (NAR) very similar to plants supplied 12.0 mM NO₃. As a result, total plant dry weight and leaf area of these two treatments were

viii

equivalent in 6-week-old plants despite a significantly lower N content in the 2.0 mM treatment.

Under high irradiance, plants supplied 6.0 or 12.0 mM NO_3 manifested greater relative growth rates and net assimilation rates during growth. Total plant dry weight and N content were also greater compared to the 0.0 and 2.0 mM treatments at six weeks. Leaf N content and area were equivalent in all treatments at this time. Results suggest that growth limitations to nodulated soybeans are primarily due to an inability to arrive at a functional balance between C and N accumulation prior to establishment of a fully functional N_2 fixation system. Once N_2 fixation is established, the increased input of N is used preferentially to increase both the photosynthetic efficiency and area of leaf tissue.

LITERATURE REVIEW

Nitrogen, the most abundant element in the earth's atmosphere, also is the single element which most commonly limits plant growth. This is because most plants are dependent upon the availability of small quantities of combined N in the soil. It is difficult to establish who was the first person to suggest that some plants may be capable of utilizing atmospheric $\mathrm{N}_2,$ but in 1836 Humphrey Davy wrote: "when glutinous and albuminous substances exist in plants, the azote they contain may be suspected to be derived from the atmosphere" (Stewart, 1966). From experiments conducted between 1886 and 1888, Hellriegel and Wilfarth demonstrated that only leguminous plants bearing nodules fix N_2 . This was done by growing peas with or without combined N in sterile sand, non-sterile sand, and sterile sand plus soil extract. Plants grown in sterile sand did not nodulate as did some plants grown in non-sterile sand and all plants grown in sterile sand plus soil extract. Only plants bearing nodules showed growth similar to plants given combined N. They therefore postulated that the nodules were sites of N₂ fixation and were formed by soil bacteria (Fred et al., 1932). In 1888, Beijerinck isolated a bacterium which caused nodule formation and named it Bacillus radicola which was later renamed Rhizobium leguminosarum . He was the first to suggest a symbiotic relationship between the bacteria and the host legume.

The simultaneous decrease in world food supplies and energy sources for industrial manufacture of N fertilizer has spurred a renewed interest in the Rhizobium /legume symbiosis. Besides having the unique ability to assimilate or fix atmospheric N_{2} , legumes, especially soybeans (Glycine max {L.} Merr.), have one of the highest seed protein contents known. Unfortunately, the average yield of soybeans (approximately 1610 Kg/ha) is relatively low compared to other agronomic crops. However, Boyer (1982) suggests that there is a large genetic potential for increased production since yields as high as 7,390 Kg/ha have been obtained. Yield differences between soybeans and other crops are largely due to the higher N requirement of the former (Sinclair and de Wit, 1976) and the large energy requirements of N_2 fixation (Ryle et al., 1979). Harper (1974) compared yields between soybeans completely dependent on N_2 fixation or supplied abundant combined N and found yields of the latter to be twice as great. It therefore appears that the N₂ fixing system is inadequate to meet the N demands for growth. This realization has resulted in recent attempts to increase the amount of N_2 fixed by improving the bacterial symbiont (Maier and Brill, 1978). Improvement in the efficiency of biological N_2 fixation requires a knowledge of all physiological and environmental factors that limit the N_2 fixing process under field conditions.

In 1926, Leonard wrote that if "the photosynthetic function is modified by lack of light, insufficient carbon dioxide, or a

deficiency in chlorophyll, it is reasonable to expect that N_2 fixation resulting from the activities of the nodule bacteria may be limited in a degree corresponding somewhat to the extent of the modification of the factors concerned" (Leonard, 1926). Thus, it was realized that there was a relationship between photosynthesis and N_2 fixation over half a century ago. This relationship has since been demonstrated to be an interdependence between the two processes; photosynthesis supplying energy for N_2 reduction and acceptor molecules for transport of reduced product and N_2 fixation supplying nitrogenous compounds necessary for photosynthesis (Bethlenfalvay <u>et al.</u>, 1978; Hardy and Havelka, 1976; Lawn <u>et al.</u>, 1974; Wilson, 1935).

Symbiotic N_2 fixation is an energy demanding process. The nitrogenase catalyzed reduction of N_2 requires two molecules of ATP for each electron transferred to N_2 or twelve ATP for complete reduction to NH_4 . The Δ G for the reaction is approximately -136 Kcal/mole of N_2 reduced (Schubert, 1982). The question of whether or not the energy requirement for assimilating N_2 is greater than for assimilating combined N has been the subject of recent investigations. Finke <u>et al.</u> (1982) found that the root system of N_2 fixing soybeans respired 25% of their daily C input while plants supplied nitrate respired 16%. This increased loss of C was not accompanied by increased photosynthetic rates because rates of both plants were similar. Ryle <u>et al.</u> (1979) compared rates of photosynthesis, shoot respiration and root respiration in soybean, cowpea (Vigna <u>unguiculata</u> {L.} Walp), and white clover (<u>Trifolium</u> repens L.) either completely dependent on fixation of N₂ or supplied with abundant NO₃-N. They found no effect on photosynthesis or shoot respiration. Plants fixing N₂, however, respired 11-13% more fixed C each day than plants utilizing nitrate. Comparing growth coefficients of subterraneum clover (<u>Trifolium</u> <u>subterraneum</u> L.) dependent on N₂ fixation or supplied combined N, Silsbury (1977) concluded that the energy requirement of the former was much greater.

Studies by Finke et al. (1982) and Ryle et al. (1979), demonstrated that increased respiratory activity due to N_2 fixation was not accompanied by increased photosynthetic activity when compared to plants supplied combined N. This suggests that the latter were able to partition more fixed C into plant growth. Indeed, Pate et al. (1979) showed that white lupin (Lupinus <u>alba</u> L.) dependent on symbiotically fixed N₂ converted 57% of its net photosynthate to dry matter while plants supplied NO3 converted 69% to dry matter. They attributed the difference to a greater energy expenditure for N_2 than NO_3 assimilation. Finke et al. (1982) demonstrated that soybeans dependent on N_2 fixation retained 8 to 12% less photosynthate as dry matter compared to nitrate supplied plants. Minchen and Pate (1973) determined that the nodules of Pisum sativum commanded 32% of the net photosynthate; 16% of which was used in growth, 37% in respiration and 47% to return reduced N to the shoot.

The amount of photosynthate available to the nodules is a

major factor influencing N_2 fixation. Numerous studies have shown that factors which increase or decrease the supply of photosynthate to the N2 fixing apparatus result in concomitant respective increases or decreases in N_2 fixation. Streeter (1973) obtained a 75% increase in apparent $N_{2}(C_{2}H_{2})$ fixation after grafting an additional shoot to a soybean plant. Lawn and Brun (1974) also showed an increase or decrease in apparent N₂ fixation following a respective increase or decrease in the source/sink ratio in soybeans. Increasing carbon exchange rates by CO, enrichment or O, depletion of the atmosphere surrounding legumes has been shown to result in increased rates of apparent N, fixation (Hardy and Havelka, 1976; Phillips et al., 1976; Quebedeaux et al., 1975). These results suggest that the full potential of the N_{2} fixing system is not normally expressed due to inadequate photosynthetic activity.

The limitations placed on N_2 fixation by the daily photosynthetic activity of the shoot are said to be reflected in observed diurnal variations in root/nodule activity. In the field, N_2 fixation has been reported to be closely correlated with solar radiation with activity declining significantly during darkness (Bergesen, 1970; Hardy <u>et al.</u>, 1968; Magee and Burris, 1972; Ruegg and Alston, 1978). In controlled environment studies, maximum activity has been observed near the end of a fixed light period with rates again declining significantly during the dark period (Gersen <u>et al.</u>, 1978; Mederski and Streeter, 1977; Bethlenfalvay and Phillips, 1977). Such diurnal variations in root/nodule activity suggest that N₂ fixation relies upon a current supply of photosynthate (as opposed to that resulting from starch degradation) and does not utilize stored carbohydrate during the dark periods of the diurnal cycle.

Results suggest that plants do not regulate partitioning of photosynthate to the nodules, i.e. the amount of photosynthate which reaches the nodules is proportional to the amount produced. There are, however, reports which conflict with this idea. Williams et al. (1982) increased the carbon exchange rate of 2, 3 and 4 week-old soybeans by 87, 84 and 76% respectively by increasing growth chamber CO_2 concentration from 320 to 1000 There was no noticeable effect on root/nodule activity over $\mu 1/1.$ a ten hour period. Finn and Brun (1982) obtained similar results in 4-week old soybeans over a 36 hour period. Sheehy et al. (1980) increased the carbon exchange rate of soybeans over four-fold and failed to show any increase in root/nodule activity. In addition to these reports, diurnal root/nodule activity has been shown to remain fairly constant during 24 hour light/dark cycles (Fishbeck et al., 1973; Haystead et al., 1979; Schweitzer and Harper, 1980; Williams et al., 1982). These results would seem to indicate that photosynthesis per se is not the limiting factor in N_2 fixation, but that some other variable may serve to regulate or control nodule function..

The products of photosynthesis are either translocated out of the chloroplast or retained there for use in starch synthesis

(Silvius <u>et al.</u>, 1979). Chatterton and Silvius (1979) demonstrated that starch accumulation in the chloroplast during the photosynthetic period is a programmed response influenced by the energy demands during the diurnal non-photosynthetic period. Soybeans were grown under two different light regimes: a.) a 14hour photoperiod at 64 nE cm⁻² s⁻¹ and b.) a photoperiod comprised of 7 hours at 64 nE cm⁻² s⁻¹ followed by 7 hours at 1 nE cm⁻² s⁻¹. The time of exposure at 64 nE cm⁻² s⁻¹ was termed the photosynthetic period. Plants grown in a 14-hour photosynthetic period partitioned 60% of the daily accumulated photosynthate into starch while plants grown under a 7hour photosynthetic period partitioned 90% to this pool to sustain the supply of photosynthate during the longer dark period.

Plants have also been shown to acclimate to the total daily integrated photosynthetic photon flux density (PPFD) maintained during growth (Hofstra and Hesketh, 1975; Nobel, 1976). Chabot <u>et al.</u> (1979) found that both leaf structure and apparent photosynthesis in <u>Fragaria virginiana</u> were similar in plants subjected to the same total daily integrated PPFD even though peak PPFD was different in the two treatments. When total daily quanta varied, however, significant differences in apparent photosynthesis, leaf thickness, specific leaf weight, mesophyll cell volume and Ames/A ratio were measured. Partitioning of photosynthate is also influenced by prior acclimation to total daily integrated PPFD maintained during the photosynthetic period. When soybeans were grown under 12 hour photoperiods at either 600 or 950 μ M m⁻² s⁻¹, the amount of starch accumulation was the same in both treatments (Silvius et al., 1979). The additional photosynthate formed at the higher irradiance was exported as sucrose as indicated by increased translocation rates. If plants grown at 600 μ M m⁻² s⁻¹ were transferred to 950 μ M m⁻² s⁻¹, starch accumulation in the leaves increased significantly, but translocation rates did not. These results did not change two days after exposure to the higher irradiance photoperiod. Sheikholeslam et al. (1975) compared partitioning of photosynthate in peas (Pisum sativum L.) grown under 200, 500 or 800 μ E m⁻² s⁻¹. Plants grown at the higher irradiance partitioned more assimilate to the nodules. When plants grown at 500 μ E m⁻² s⁻¹ were exposed to 200 or 800 μ E m⁻² s^{-1} for 10 hours, partitioning to the nodules remained unchanged. These results suggest that acclimation to a specific irradiance environment is fundamental in regulating distribution of photosynthetic products potentially available for use as energy in N₂ fixation.

Another environmental parameter capable of regulating photosynthate partitioning and N₂ fixation is temperature. Waughman (1977) examined temperature effects on nitrogenase activity in five legume species and found activity to be temperature sensitive. Although response varied between species, activity generally increased with increasing temperature up to an optimum after which it declined. Nitrogenase activity in soybeans had an optimum temperature of 30 C. Increasing temperature beyond

this resulted in significant decline in activity. Sloger et al. (1975) compared the relationship between $N_2(C_2H_2)$ reduction in soybean and both soil and ambient temperature throughout a growing season. Average specific activity of the nodules was significantly correlated with average daily ambient temperature and cumulative daily solar radiation, but not with average soil temperature. Schweitzer and Harper (1980) demonstrated that diurnal variations in temperature, not light, were responsible for observed diurnal differences in root/nodule activity. Soybean plants maintained at 18 C showed no diurnal variation in root/nodule activity, while plants maintained at alternating 27 C day:18 C night temperatures showed a significant decrease in activity at the lower temperature. The temperature of the shoot appeared to be responsible for the observed activity, for when the root zone was maintained at 18 C, there was a significant decrease in root/nodule activity when the shoot temperature was lowered from 27 C to 18 C. Eckart and Raguse (1982) also found acetylene reduction activity to respond more to fluctuations in temperature than light and suggested that temperature buffered N_2 fixation against short-term changes in photosynthate supply. It is interesting to note that many investigations into the diurnal activity of ${\rm N}_{\rm 2}$ fixation resulted in conclusions implicating light as the responsible environmental variable even though temperature is often closely correlated with light.

Results which demonstrate a close relationship between

carbohydrate availability and N_2 fixation have resulted in the general assumption that N_2 fixation is primarily C limited. This concept may be oversimplified when one considers that because photosynthesis and N_2 fixation are interdependent, carbohydrate production may be a function of N availability. Bethlenfalvay <u>et al.</u> (1978) showed a 10-fold increase in the carbon exchange rate of 26-day-old peas in response to increasing the supply of NH_4^+ from 0 to 16 mM. DeJong and Phillips (1981) inoculated peas with <u>Rhizobium</u> strains with varying ability to fix N₂. As plant N increased due to the increased efficiency (CO₂ fixation).

Williams <u>et al.</u> (1981) suggest that the question of whether symbiotic legumes are primarily C or N limited is analytically complex. It may be simplified by considering mature plants and developing seedlings separately. During the early development of the symbiotic legume, N is supplied from stored reserves in the cotyledons. As this supply of N is depleted, the plant enters a stage referred to as the "nitrogen hunger period" by Fred <u>et al.</u> (1938), which occurs before the nodules are capable of meeting the N demands for growth. In soybeans, N₂ fixation may not begin until three to five weeks after planting (Hardy <u>et al.</u>, 1971). Mahon and Child (1979) compared relative growth rates in peas dependent on N₂ fixation or supplied NH_4NO_3 . During the early stages of growth, NH_4NO_3 increased relative growth rates. They attributed this response to

a relief of the period of N stress. During later stages of growth, relative growth rates were increased also, a result which they attributed to an increased partitioning of assimilate into shoot development. Williams et al. (1981) compared dry weights of developing soybeans provided with 0.0, 1.0, or 8.0 mM $\rm NH_4NO_3$ and 320 or 1000 $\mu 1/1$ CO_2. After 22 days, plants grown under 320 $\mu 1/1$ CO $_2$ and 8mM $\rm NH_4NO_3$ had 252% and 100% greater dry weight than plants supplied 0.0 or 1.0 mM $\mathrm{NH}_{\mathrm{L}}\mathrm{NO}_{\mathrm{Q}},$ respectively. Comparing dry weights between the two CO $_2$ treatments showed increases of 51%, 49% and 64% for the respective 0.0, 1.0 and 8.0 mM NH₄NO₃ treatments. Dry weight accumulation was therefore limited more by N availability than carbohydrate supply during this early stage of development. Comparing these results with those which demonstrate C limitations, it may be concluded that symbiotic legumes are primarily N limited prior to development of functioning nodules and C limited as the energy demands of N_{2} fixation become significant. With this in mind, Williams et al. (1981) suggested that any attempts to enhance N₂ fixation must consider both periods of growth.

Attempts to overcome the period of N stress and supplement N_2 fixation by supplying combined N have been met with mixed results. In general, the addition of combined N inhibits the infection process, nodule development and N_2 fixation (Allos and Bartholomew, 1959; Beard and Hoover, 1971; Gibson, 1974; Harper and Cooper, 1971; Munns, 1968; Norman and Krampitz, 1946;

Weber, 1966). This antagonistic response is due to the fact that supplemental combined N tends to replace rather than contribute to N_2 fixation. There are reports, however, that small amounts of combined N actually promote nodule development and N_2 fixation. Eaglesham <u>et al.</u> (1983) obtained four fold increases in nodule weight and six fold increases in acetylene reduction in response to application of 36 mg N/plant to soybean. Bethlenfalvay <u>et al.</u> (1978) more than doubled acetylene reduction activity by adding 2mM NH₄ to peas. Williams <u>et</u> <u>al.</u> (1981) showed a similar increase in soybeans supplemented with 2 mM NO₃.

The area of N_2 fixation research currently receiving the most attention concerns the possibilities for developing more efficient relationships between rhizobia and the host legume. Progress in this area has primarily been through the development of superior strains of rhizobia. One aspect of this improvement concerns the nitrogenase enzyme. This enzyme also reduces H^+ to form H_2 . It has been estimated that the production of H_2 may utilize 40 % of the energy available for N_2 fixation (Schubert and Evans, 1976). Certain strains of rhizobia have been found to possess a hydrogenase enzyme which oxidizes the H_2 , thereby recapturing some of the energy lost in its formation resulting in more efficient use of carbohydrate substrate (Emerich <u>et al.</u>, 1979). Maier and Brill mutagenized <u>Rhizobium japonicum</u> through treatment with N-methyl-N'-nitro-N-nitrosoguanidine. After subculturing for several generations, individual colonies were screened for effectiveness in reducing acetylene. Out of 2500 colonies, two were found to reduce acetylene at significantly higher rates. When compared to the original wild type, soybeans inoculated with these strains had 60% greater dry weight and 100% greater N content. Maier and Brill attributed this response to earlier nodule formation since these strains apparently lacked the hydrogenase enzyme. Because these strains begin to fix N₂ earlier than the wild type, it may be assumed that they may aid in overcoming the period of N stress.

Although mutant strains of rhizobia increase N_2 fixation and plant growth under controlled environmental conditions, results concerning increased yield are not as conclusive. In the field, soil N content and indigenous rhizobia population have been shown to influence yield responses. Hanus et al. (1981) compared yields in soybeans inoculated with rhizobia mutants with and without the hydrogenase enzyme and failed to show significant increases. They attributed the lack of response to relatively high soil N content. Williams and Phillips (1983) compared the promotive effects on yield in soybeans by inoculating with Rhizobium japonicum strains 110 and a mutant of 110 (C33). Strain C33 had previously been shown to double the acetylene reduction activity when compared to strain 110 in free-living culture. In one year, strain C33 increased yields by 210 Kg/ha relative to 110. The next year, this mutant increased yields by 420 Kg/ha. Williams and Phillips attributed the greater promotive

effects demonstrated in the second year to lower soil N that particular year.

When legumes are inoculated with mutant strains of rhizobia, these strains must compete with indigenous strains in the soil for nodulation sites. Therefore, the beneficial effects of the mutant strain may not be exhibited. Abel and Erdman (1964) could only show yield increases in soybean inoculated with <u>R. japonicum</u> strain 110 when fields were void of indigenous strains. Dunigan <u>et al.</u> (1984) inoculated soybeans with <u>R. japonicum</u> strain 110 over a period of seven years and determined the number of inoculated bacteria which actually produced nodules during each year. For the first four years, recovery of 110 from nodules ranged from 0-17%. This increased to 29-33% in the fifth year and 54% by the seventh. Thus, under soil conditions in which more efficient rhizobia strains must compete with indigenous strains, promotive effects may not be noticed for several years after initial introduction. The following two manuscripts were prepared for presentation to the American Society of Plant Physiologists for publication in

Plant Physiology .

MANUSCRIPT 1

Carbohydrate Partitioning and the Capacity of Apparent Nitrogen Fixation of Soybeans Grown Outdoors

E. P. Millhollon and L. E. Williams

Department of Agronomy

Louisiana State University, Baton Rouge, LA 70803

ABSTRACT

Diurnal trends in leaf carbohydrate partitioning and nodule activity in soybeans under natural conditions and the irradiance level required to allocate sufficient carbohydrate to obtain maximum rates of $N_2(C_2H_2)$ reduction were studied. Soybeans grown outdoors maintained constant levels of soluble carbohydrates in the leaves and constant rates of N_2 fixation and root + nodule respiration when root temperature was kept constant but shoot temperature varied. When plants were subjected to a 40-hour dark period, then exposed to 200 to 1000 μ E m⁻² sec⁻¹, 200 μ E m⁻² sec⁻¹ resulted in maximum leaf soluble carbohydrate and nodule activity. Results suggest that nodule activity is controlled by carbohydrate partitioning in the shoot and support the concept of an environment-mediated programming of carbohydrate distribution.

INTRODUCTION

Symbiotic nitrogen fixation in legumes requires significant input of carbon substrates to provide energy for N_2 fixation and acceptor molecules for subsequent transport of reduced N. Due to this large C requirement, symbiotic N_2 fixation is closely coupled to photosynthate production and is frequently said to be limited by rates of photosynthesis. This concept is supported by experiments which show that factors known to increase photosynthesis, such as increased irradiance level, CO_2 enrichment and lowered partial pressures of O_2 , result in increased rates of symbiotic N_2 fixation (7,13,14).

There are reports, however, that indicate N_2 fixation may not be directly limited by photosynthetic activity. This is supported by data showing no diurnal variation in nodule activity and a lack of response to short term increases in photosynthate production (5,6,9,15,24). In recent studies, CO_2 enrichment resulted in increased rates of leaf carbon exchange in soybeans (24) and significant increases in foliar starch content. However, neither the concentration of leaf soluble sugars nor root nodule activity increased (5,24). Thus, it would appear that the increased photosynthate production was merely channeled into starch and therefore was not made available for increases in N_2 fixation.

Control of partitioning of photosynthate between reserve and

mobile forms appears to be an environment-mediated response. Chatterton <u>et al.</u> (2) demonstrated that the amount of photosynthate partitioned into starch is proportional to the length of the photosynthetic period or, perhaps more importantly, to the energy requirements during the non-photosynthetic period. Silvius <u>et al.</u> (18) found that acclimation to a specific irradiance environment also regulates partitioning. Soybeans acclimated to either a moderate or high irradiance environment exhibited similar starch accumulation rates, but plants acclimated to the higher irradiance had significantly greater rates of translocation and carbon exchange. If the plants acclimated to moderate irradiance were transferred to the high irradiance level, rates of carbon exchange and starch accumulation increased, but translocation rates did not.

The irradiance environment of plants grown in the field is complex. Instantaneous photosynthetic photon flux density (PPFD) changes constantly depending upon solar angle and intermittent cloud cover. As a result, total integrated PPFD varies daily. The studies by Chatterton <u>et al.</u> (2) and Silvius <u>et al.</u> (18) indicate that acclimation to a particular environment is fundamental in regulating the partitioning of photosynthate. Such control could be especially significant in the case of the nodulated legume dependent on the availability of carbohydrate to meet the energy demands of N₂ fixation. The question of how the symbiotic legume acclimates to such a complex environment and what influence this has on the capabilities of the N₂ fixing apparatus is unknown. The purpose of this study was to determine how a symbiotic legume adjusts to its natural environment and what role such adjustments play in regulating photosynthate partitioning and N_2 fixation.

MATERIALS AND METHODS

Soybeans <u>(Glycine max</u> {L.} Merr. cv. Clark) were germinated in the dark at 25 C. Three days after imbibition, seedlings were inoculated with a slurry of <u>Rhizobium japonicum</u> USDA strain 110 and transferred to 13 cm diameter pots containing vermiculite. Pots were sealable for separate measurement and control of root and shoot functions. Plants were then placed on platforms outdoors where they remained throughout the experimental period. A nutrient solution modified to contain 2 mM KNO₃ (23) and distilled water were used alternately for daily watering of plants.

To determine effects on plants grown under different irradiance environments, experiments were conducted during the late Spring and the early Fall in Baton Rouge, Louisiana. At each time, diurnal changes in photosynthate partitioning in the leaves and root + nodule activity were determined in 35-day-old plants. Two temperature treatments were imposed during each diurnal study. During the late Spring, the root zone of one set of four replicate plants was kept at 25 ± 2 C, while that of another set was allowed to vary with ambient air temperature. During the early Fall, either both the shoot and root or just the root zone were kept at 25 ± 2 C. Temperature control was accomplished by placing either the pot or the entire plant in a plexiglass chamber equipped with a heat exchanger coupled to a water bath. When the

entire plant was placed in a chamber, shoot carbon exchange rates during the day were determined using differential infrared gas analysis in an open system (24).

Diurnal activity of the roots and nodules was determined in a manner similar to that described by Sheehy et al. (16). Respiration was monitored by passing air at a constant flow rate through the sealed pots to an automatic gas sampling system. This system consisted of solenoid values operated by a cam timer which sampled air in each pot every three minutes. A complete cycle was thirty minutes in duration. Carbon dioxide concentration was determined using differential infrared gas analysis. Irradiance (photosynthetically active radiation) was measured at the plant canopy top using a LI-COR Model 185B quantum radiometer. Temperature, irradiance and output from the infrared gas analyzer were recorded every minute with a data logger. At approximately four-hour intervals during the diurnal period, air flow through the pots was interrupted, and the reduction of acetylene to ethylene over a twenty-minute period was determined.

Plants were harvested at four-hour intervals in order to determine diurnal changes in nonstructural carbohydrate composition in the leaves. Leaves were separated from the rest of the plant and oven dried at 75 C for 48 hours. Leaf tissue was finely ground and a subsample analyzed for starch and soluble sugar content using the method described by Upmeyer and Koller (21).

The irradiance level required to allocate carbohydrate

sufficient to produce maximum root-nodule activity was determined by first extending the normal dark period for forty hours to deplete carbohydrate reserves. Plants were then exposed to stepped increases in irradiance provided by 1000-watt-metal-halide lamps. During exposure, respiration of the roots and nodules was monitored. Root + nodule respiration reached a maximum approximately 3-4 hours after the lights were turned on regardless of irradiance level. After 10 hours, plants were assayed for acetylene reduction activity, and the leaves removed and analyzed for starch and soluble sugar content.

RESULTS

Experimental data from measurements conducted on soybeans grown in containers outdoors showed that there was no diurnal variation in root + nodule respiration and apparent N2 fixation when the root system was maintained at a constant temperature (Figs. 1 and 2). Irradiance levels and ambient air temperatures varied considerably both times the experiment was conducted. There was a diurnal pattern of leaf starch accumulation with a maximum concentration measured at 1800 h, but only a slight variation in leaf soluble sugar content occurred either day. Root zone temperature varied between 19 and 37 C during the course of the day (Fig. 1). Root + nodule respiration had a Q_{10} of approximately 2 from 0800 h to 1400 h when root zone temperature increased from 20 to 35 C. Subsequently, respiration dropped almost three-fold to 3.5 mg CO₂ plant $^{-1}h^{-1}$ while the root-zone temperature increased to 37 C. There was a significant decrease in apparent N₂ fixation after the pot temperature had increased to above 35 C and then decreased to 30 C.

The response of whole plant apparent photosynthesis to irradiance level was measured on soybeans previous to the Fall diurnal study (Fig. 3). Irradiance levels were varied by the use of shade screens. Light saturation of apparent photosynthesis occurred at 600 μ E m⁻²s⁻¹ under these growth conditions.

The whole plant carbon exchange rate at 200 μ E m⁻²s⁻¹ was almost 50% of the light saturated values.

In order to assess potential regulating effects of irradiance levels on apparent N_2 fixation of soybeans, plants were subjected to an extended dark period of 40 h after the normal photoperiod to deplete stored carbohydrates (Fig. 4). There was no significant change in acetylene reduction until 14 h into the extended dark treatment. This approximately corresponds to the time when the normal photoperiod would have begun outdoors. There was no further decrease in apparent N_2 fixation with an additional 20 hours of darkness.

The response of nodule functioning to various levels of carbohydrate depleted soybeans is shown in Figures 5 and 6. An irradiance level of 200 μ E m⁻²s⁻¹ significantly increased the rate of apparent N₂ fixation. There was no further increase in nodule activity at the higher irradiance levels on either date. Leaf starch content increased with increasing irradiance levels up to 600 μ E m⁻²s⁻¹. Starch content in leaves after 10 hours at the higher irradiance levels was similar to the maximum value measured during both diurnal studies (Figs. 1 and 2).

DISCUSSION

Nodules of soybeans grown outdoors apparently can function at a constant rate when the temperature of the root system remains constant. This occurred despite changes in irradiance levels and shoot temperature throughout the day. These results are similar to several controlled-environment studies (6,24). Other data (15,19) suggest, however, that the acetylene reduction activity of nodules also responds to shoot temperature, perhaps resulting from temperature effects on vein loading and carbohydrate translocation from shoot to nodules. Vein loading and translocation in the phloem of wheat plants, however, has been shown to be largely unaffected by temperatures from 20 to 40 C (22). Similar translocation-temperature response curves also have been shown with bean plants (20,10). In the present study, ambient air temperatures were within limits that probably would not significantly decrease the export of carbohydrates out of the leaves or other storage organ (Figs. 1 and 2).

Optimum activity of apparent N_2 fixation in nodulated soybeans occurs at root temperatures between 20 and 30 C (4,8). There was no significant decrease in apparent N_2 fixation when root zone temperature reached 35 C (Fig. 1). Subsequent to this measurement at 1400 h, there was a significant decrease in both root + nodule respiration and acetylene reduction. The decrease in root + nodule respiration from 1400 to 1600 h occurred without

a concomitant decrease in root zone temperature. It is unknown whether continued high root zone temperature and/or other related variables such as plant water status were responsible for both decreases.

The pattern of nonstructural carbohydrate content throughout the day (Figs. 1 and 2) resembled that found in soybeans grown under controlled environmental condition (3.21). Maximum starch content measured at 1800 h both days was similar to maximum values obtained after carbohydrate depleted plants had been held at a constant irradiance level for 10 hours (Figs. 5 and 6). This was probably due to the similarities in length of the normal photoperiod both days (approximately 11-12 h, Figs. 1 and 2) and the time used for the constant irradiance experiments. Chatterton and Silvius (2) have shown that the rate of starch accumulation in fully expanded soybean leaves was a function of the duration of the daily photosynthetic period. They also reported that lowering the irradiance level did not change the partitioning of photosynthate as long as the duration of the photosynthetic period remained the same (3). In this study, reduction in irradiance level below the light saturation level of 600 $\mu E m^{-2} s^{-1}$ (Fig. 3) resulted in a significant decrease in starch content when compared after 10 h in the light (Fig. 6). Differences in results between the two studies may have been due to differences in tissues sampled (all leaves on a plant vs. only fully expanded leaves) and sinks present (nodulated vs. non-nodulated plants).

Results from growth chamber studies in which nodulated legumes were transferred from one irradiance regime to another

suggest that acclimation to a particular irradiance environment is fundamental in regulating the supply of potential energy sources for N₂ fixation (17,23). The question of concern here was how does a symbiotic legume acclimate to a natural, variable irradiance and temperature environment. One possible mechanism that may be used by plants to regulate or adapt to variable light regimes is the process of photosynthesis. Total daily PPFD (1,11) or total daily CO_2 uptake by the plant (12) appear to have the greatest influence over adaptive processes of the leaf and its photosynthetic apparatus which in turn could be the stimuli for adaptation of other physiological responses within the plant.

Results from this study indicate that soybeans grown outdoors are adapted to maintain constant maximum diurnal nodule activity. The fact that exposure to low irradiance produced maximum nodule activity supports a recent report from Sheehy <u>et al.</u> (16) wherein it was shown that carbon exchange rates as low as 10 mg CO_2 plant $^{-1}h^{-1}$ were sufficient to obtain maximum acetylene reduction following a 40 h dark treatment. Thus, it would appear that the adaptive processes of soybeans are structured to withstand periods of stress which may occur during prolonged periods of inclement weather. This raises the question of whether or not these adaptive processes can be altered to allow full exploitation of the environment and increased yield.

LITERATURE CITED

- 1. CHABOT BF,TW JURIK, JF CHABOT 1979 Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am J Bot 66:940-945
- 2. CHATTERTON NJ, JE SILVIUS 1979 Photosynthate partitioning into starch in soybean leaves I. Effects of photoperiod versus photoperiod duration. Plant Physiol 64:749-753
- 3. CHATTERTON NJ, JE SILVIUS 1981 Photosynthate partitioning into starch in soybean leaves. II. Irradiance level and daily photosynthetic period duration effects. Plant Physiol 67:257-260
- 4. DART PS, JM DAY 1971 Effects of incubation temperature and oxygen tension on nitrogenase activity of legume root nodules. <u>In</u> TA Lie and EG Mulder (eds.), Biological Nitrogen Fixation in Natural and Agricultural Habitats. Plant Soil Spe. Vol. Martinus Nighoff, The Hague. pp. 167-184
- 5. FINN GA, WA BRUN 1982 Effect of atmospheric CO₂ enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol 69:327-331
- 6. FISHBECK K, HJ EVANS, LL BOERSMA 1973 Measurement of nitrogenase activity of intact legume symbionts <u>In Situ</u> using the acetylene reduction assay. Agron J 65:429-433

- 7. HARDY RWF, VD HAVELKA 1976 Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with emphasis on soybeans. <u>In</u> PS Nutman, ed, Symbiotic Nitrogen Fixation in Plants. Cambridge University Press Cambridge. pp. 421-439
- 8. HARDY RWF, RD HOSTEN, EK JACKSON, RC BURNS 1968 The acetylene-ethylene assay for N₂ fixation: laboratory and field evaluation. Plant Physiol 45:1185-1207
- 9. HAYSTEAD A, J KING, WIC LAMB 1979 Photosynthesis, respiration and nitrogen fixation in white clover. Grass and Forage Science 34:125-130
- 10. HEWITT SP, OF CURTIS 1948 The effect of temperature on loss of dry matter and carbohydrate from leaves by respiration and translocation. Am J Bot 35:746-755
- 11. NOBEL PS 1976 Photosynthetic rates of sun versus shade leaves of <u>Hyptis emoryi</u> Torr. Plant Physiol 58:218:223
- 12. NOBEL PS, TL HARTSOCK 1981 Development of leaf thickness for <u>Plectranthus parviflorus</u> -influence of photosynthetically active radiation. Physiol Plant 51:163-166
- 13. PHILLIPS DA, KD NEWELL, SA HASSELL, CE FELLING 1976 The effect of CO₂ enrichment on root nodule development and symbiotic N₂ reduction in <u>Pisum</u> <u>sativum</u> L. Am J Bot 63:356-362
- 14. QUEBEDEAUX B, UD HAVELKA, KL LIVAK, RW HARDY 1975 Effect of altered p0, in the aerial part of soybean on

symbiotic N2 fixation. Plant Physiol 56:761-764

- 15. SCHWEITZER LE, JE HARPER 1980 Effect of light, dark, and temperature on root nodule activity (acetylene reduction) of soybeans. Plant Physiol 65:51-56
- 16. SHEEHY JE, KA FISHBECK, TM DEJONG, LE WILLIAMS, DA PHILLIPS 1980 Carbon exchange rates of shoots required to utilize available acetylene reduction capacity in soybean and alfalfa root nodules. Plant Physiol 66:101-104
- 17. SHEIKHOLESLAM SN, KA FISHBECK, DA PHILLIPS 1980 Effect of irradiance on partitioning of photosynthate to pea root nodules. Bot Gaz 141:48-52
- 18. SILVIUS JE, NJ CHATTERTON, DF KREMER 1979 Photosynthate partitioning in soybean leaves at two irradiance levels (comparative responses of acclimated and unacclimated leaves). Plant Physiol 64:872-875
- 19. SLOGER C, D BEZDICEK, R MILBERG, N BOONKERD 1975 Seasonal and diurnal variations in N2 (C2H2)-fixing activity in field soybeans. <u>In</u> WDP Stewart,ed., Nitrogen Fixation by Free-living Micro-organisms, Cambridge University Press, London. pp. 271-284
- 20. SWANSON CA, RH BOHNING 1951 The effect of petiole temperature on the translocation of carbohydrate from bean leaves. Plant Physiol 26:557-564
- 21. UPMEYER DJ, HR KOLLER 1973 Diurnal trends in net photosynthetic rate and carbohydrate levels of soybean leaves. Plant Physiol 51:871-874

- 22. WARDLAW IF 1974 Temperature control of translocation. <u>In</u> RL Bieleski, AR Ferguson, MM Cresswell (eds), Mechanism of Regulation of Plant Growth. pp. 381-391 London, New York
- 23. Williams, LE, DA PHILLIPS 1980 Effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiol 66:968-972
- 24. WILLIAMS LE, TM DEJONG, DA PHILLIPS 1982 Effect of changes in shoot carbon-exchange rate on soybean root nodule activity. Plant Physiol 69:432-436

FIGURE LEGENDS

- Fig. 1. Comparison of apparent N₂ fixation and root + nodule respiration in soybean with and without controlled root temperature to diurnal trends in leaf carbohydrate partitioning, ambient air temperature and solar radiation.
- Fig. 2. Comparison of apparent N₂ fixation and root + nodule respiration in shoot and root temperature controlled or root temperature controlled soybeans to diurnal trends in leaf carbohydrate partitioning, ambient air temperature and solar radiation.
- Fig. 3. Response of apparent photosynthetic rates of plants represented in Figure 2 to irradiance. $y=47.9(1-e^{(-0.004x)}); R^2=0.96$
- Fig. 4. Apparent N_2 fixation of plants represented in Figure 2 during a 40-hour extension of the normal dark period. Each point represents the mean + SE of four plants.
- Fig. 5. Response of apparent N₂ fixation and leaf carbohydrate partitioning to increased irradiance levels following a 40hour extension of the normal dark period of plants represented in Figure 1. Each point represents the mean + SE of four plants.

Fig. 6. Response of apparent N_2 fixation and carbohydrate

partitioning to increased irradiance levels following a 40hour extension of the normal dark period of plants represented in Figure 2. Each point represents the mean + SE of four plants.

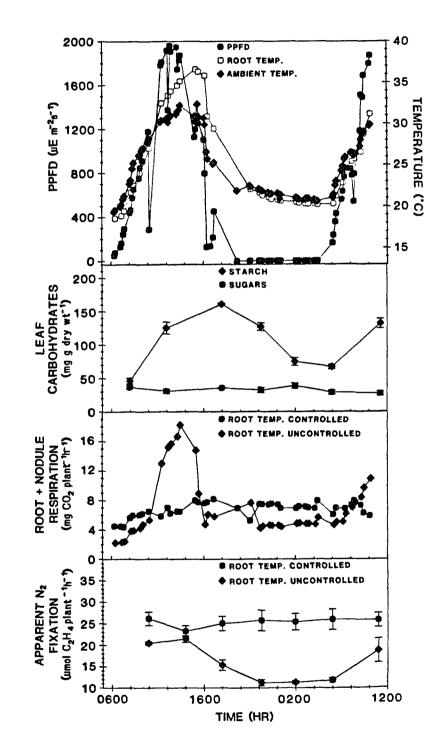
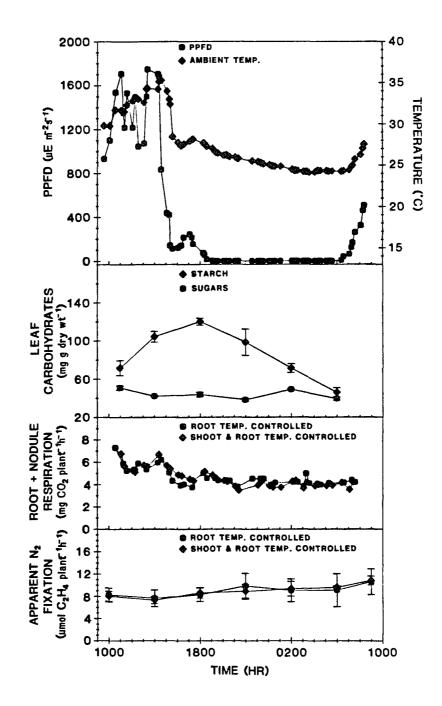



Fig. 1

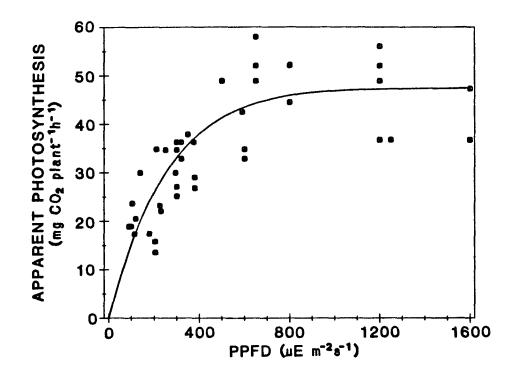


Fig. 3

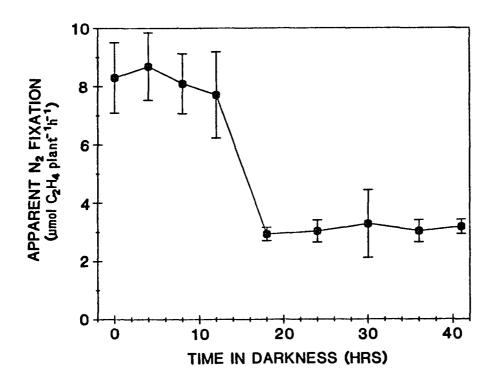


Fig. 4

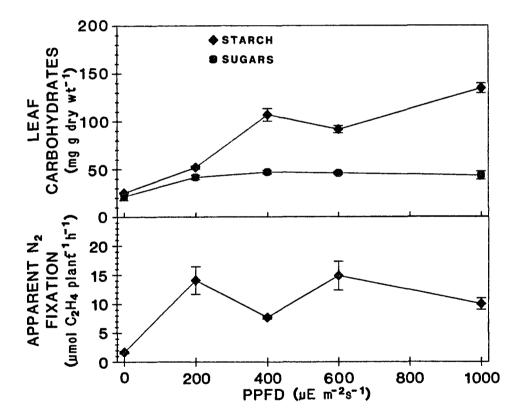


Fig. 5

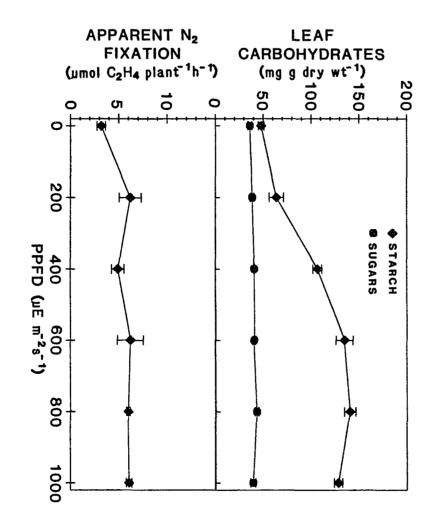


Fig. 6

MANUSCRIPT 2

Carbon and Nitrogen Limitations to Growth of Soybeans Under Variable Environmental Conditions

E. P. Millhollon, L. E. Williams and E. P. Dunigan

Department of Agronomy

Louisiana State University, Baton Rouge, LA 70803

ABSTRACT

Carbon and nitrogen limitations to growth of symbiotically-grown soybean plants were assessed by examining growth characteristics of plants grown under low irradiance in a greenhouse and high irradiance outdoors and provided 0.0, 2.0, 6.0 or 12.0 mM NO₃. Under low irradiance, supplementing N₂ fixation with 2.0 mM NO₃ resulted in relative growth rates (RGR), leaf area ratios (LAR) and net assimilation rates (NAR) very similar to plants supplied 12.0 mM NO₃. As a result, total plant dry weight and leaf area of these two treatments were equivalent in 6-week-old plants despite a significantly lower N content in the 2.0 mM treatment.

Under high irradiance, plants supplied 6.0 and 12.0 mM NO_3 manifested greater relative growth rates and net assimilation rates during growth. Total plant dry weight and N content were also greater compared to the 0.0 and 2.0 mM treatments at six weeks. Leaf N content and area were equivalent in all treatments at this time. Results suggest that growth limitations to nodulated soybeans are primarily due to an inability to arrive at a functional balance between C and N accumulation prior to establishment of a fully functional N₂ fixation system. Once N₂ fixation is established, the increased input of N is used to increase both the photosynthetic efficiency and area of leaf tissue.

INTRODUCTION

The average yield of soybeans (approximately 1610 Kg/ha) is relatively low compared to other agronomic crops. Reports of record yields as high as 7,390 Kg/ha suggest that the genetic potential for higher productivity is present.

The reasons for the average lower productivity are unclear. It is known that growth of a plant is subject to an interdependence among the activities of various organs and the interdependence between photosynthesis and N₂ fixation in nodulated legumes is well documented. Several reports (e.g. 1,9,13) suggest that the large energy requirements of N₂ fixation result in C limitations to growth. Finke <u>et al</u> .(4) estimated that 25% of the daily C input was respired from the root systems of soybeans entirely dependent on N₂ fixation, versus a 16% loss in NO₃ grown plants. As a result, they concluded that N₂ fixing soybeans retained up to 12% less C as dry matter. There are, however, reports which indicate that the energy requirements of N₂ fixation are similar to requirements for assimilation and reduction of NO₃ (6,11).

In addition to reported C limitations, legume seedlings, grown under conditions of low soil N, typically enter a period of N-limited growth (10,17). This occurs after N reserves in the cotyledons are depleted and before N₂ fixation is capable of meeting the N demands for photosynthesis and growth. During this

period, the developing legume must satisfy equally important demands for C and N input by constructing both photosynthetic and N_2 fixing tissue. The method by which the legume controls the partitioning of photosynthate to meet these demands under variable environmental conditions and what burden this places on the overall growth and productivity of the plant is not known.

The purpose of the present study was to assess C and N limitations of field grown soybean plants during this critical stage of development. This was accomplished by determining changes in dry matter accumulation and N distribution in soybean plants grown under low as well as natural insolation, and either completely or partially dependent on N_2 fixation.

MATERIALS AND METHODS

Plant Material and Growing Conditions

Soybeans (<u>Glycine max</u> [L.] Merr. cv. Clark) were germinated in the dark at 25 C. Three days after imbibition, seedling were inoculated with a slurry of <u>Rhizobium</u> japonicum USDA strain 110 and transferred to 13 cm diameter pots containing vermiculite. Plants were reinoculated seven days later.

Experiments were conducted at two different times of the year under two different light regimes. The first study was made on plants grown in the greenhouse during the Winter of 1983 in Baton Rouge, Louisiana. The average daily integrated photosynthetic photon flux density (PPFD) in the photosynthetically active range received at the plant canopy top during the experimental period was 8.6 E m⁻² day⁻¹. The maximum peak instantaneous PPFD reached during this period was 1040 μ E m⁻²s⁻¹. Average daily ambient temperature was 22 C. Minimum and maximum temperatures were 18 and 29 C, respectively. In the second study, both Clark soybeans and the non-nodulating isogenic line L73-1054 were grown outside on platforms where average daily integrated PPFD was 31.3 E m⁻² day⁻¹. Average, minimum and maximum daily ambient temperatures during this period were 26, 16, and 39 C, respectively. Beginning two weeks after imbibition, plants were watered every other day with a complete nutrient solution modified to contain either 0.0, 2.0, 6.0 or 12.0 mM NO_3 (15)

and on alternate days with distilled water. The non-nodulating isoline was supplied with the latter three concentrations of NO_3 .

Harvest Procedure and Growth Analysis

Harvesting began two weeks after seed imbibition. All harvests were conducted at approximately 9 A.M. central standard time each day. Four plants from each treatment were harvested three times a week until plants were 45 days old. Following each harvest, apparent N_2 fixation was determined on detached root systems using the acetylene reduction assay (7). Total leaf area of the harvested plants was determined using a Licor model 3000 area meter. Dry weights of leaves, stems, roots and nodules were obtained separately after drying in a forced air oven at 75 C for 48 h. Organic N content was determined by Kjeldahl analysis (2).

Growth analysis functions were calculated as described by Hunt and Parsons (8). In this method, the polynomial (up to the third order) which best fits the logarithms of the dry weight (W) and leaf area (A) on time (T) is determined by least squares analysis. This method offers the advantage of allowing determination of general trends in growth characteristics. Relative growth rate (RGR), leaf area ratio (LAR) and net assimilation rate (NAR) are then determined as follows:

> RGR=d(lnW)/dt = (l/W)(dW/dt) LAR=A/W NAR=RGR/LAR

RESULTS

Greenhouse Study, Low Irradiance

Changes in leaf area ratio, net assimilation rate and relative growth rate of plants grown in the greenhouse at low irradiance and supplied either 0.0, 2.0, 6.0 or 12.0 mM NO3 are shown in Figure 1. The most notable differences are between plants supplied any level of NO3 and plants entirely dependent on N from seed reserves or symbiotic N2 fixation. While relative growth rates of all plants receiving NO3 increased for approximately fifteen days then declined, the 0.0 mM treatment maintained a constant relative growth rate. Changes in relative growth rate can be attributed to any factor which affects either the net efficiency (net assimilation rate) or the size (leaf area ratio) of the assimilatory apparatus. Examination of both of these variables shows that there was very little effect of NO_3 concentration on leaf area ratio throughout the harvesting period. The net assimilation rate of the 0.0 mM treatment, however, declined at a faster rate than the other treatments and remained lower until approximately day 25 when rates were increasing at the same time rates of the other treatments were decreasing. The constant relative growth rate of this treatment was therefore largely due to reciprocal changes in leaf area ratio and net assimilation rate.

Data showing changes in total and individual plant part dry

weight and N content, leaf area and acetylene reduction activity at low irradiance are presented in Tables 1 and 2. By the thirteenth day of harvest, plants receiving no supplemental N had significantly ($P \leq 0.05$) lower N content compared to plants receiving 6.0 or 12.0 mM NO₃. The effects of this N deficiency were first noted in the lower leaf area on that day followed by lower total plant dry weight on day 18 (Table 1).

By day 27, there were no significant differences in total plant dry weight or leaf area between plants receiving 2.0 mM NO₃ and plants receiving 12.0 mM NO₃ (Table 1). This was despite significant differences in total plant N between these two treatments. Total plant dry weight and leaf area were significantly (P \leq 0.05) less in the 0.0 and 6.0 mM NO₃ treatment compared to the 2.0 and 12.0 mM treatments.

Outdoor Study, High Irradiance

Growth function regression lines of soybeans grown outdoors and supplemented with either 0.0, 2.0, 6.0 or 12.0 mM NO₃ are shown in Figure 2. Trends in relative growth rate were considerably different compared to low irradiance plants grown in the greenhouse. For the first fifteen days of harvest, the relative growth rates of all treatments were declining. Plants either solely dependent on N₂ fixation or supplemented with 2.0 mM NO₃ declined at a much greater rate than plants supplemented with 6.0 or 12.0 mM NO₃. Relative growth rates of plants receiving 6.0 or 12.0 mM NO₃ continued to decline, but rates of the 0.0 and 2.0 mM treatments increased.

Examination of the components of relative growth rate, net assimilation rate and leaf area ratio, shows that trends in relative growth rate of the 0.0 and 2.0 mM NO₃ treatments were largely due to similar trends in net assimilation rate.

Growth functions of non-nodulating soybeans are shown in Figure 3. Changes in relative growth rate, leaf area ratio and net assimilation rate of plants receiving 6.0 or 12.0 mM NO_3 were very similar to nodulated plants receiving the same treatment. The 2.0 mM NO_3 treatment, however, did not show the decreasing then increasing changes in relative growth rate and net assimilation rate which were apparent in nodulated plants receiving that concentration of N.

Nine days after harvesting began, significant differences (P ≤ 0.05) in N content (Table 3) were apparent between nodulated plants entirely dependent on N₂ fixation or supplemented with 2.0 mM NO₃ and plants supplemented with 12.0 mM NO₃. At this time, non-nodulating soybeans receiving 2.0 mM NO₃ were also significantly (P ≤ 0.05) N deficient compared to plants supplemented with 6.0 or 12.0 mM NO₃ (Table 4). The time at which significant differences in dry weight and leaf area were evident in nodulated plants coincided with the time at which these differences occurred in non-nodulating plants (Tables 5 and 6). However, whereas differences in dry weight, leaf area (Table 6) and N content (Table 4) between the 2.0 mM and 12.0 mM

harvest, differences between nodulated plants receiving the same NO_3 treatments increased until day 18, then began to decrease (Table 5). By day 28, although total plant dry weight and N content of nodulated plants were significantly (P \leq 0.05) less in the 2 mM treatment compared to the 12.0 mM treatment, there were no differences in leaf N content or leaf area at this time (Tables 3,5).

DISCUSSION

Although many reports have indicated that growth limitations of a symbiotic legume are primarily related to a necessity to partition carbohydrate to construct root nodules (5) and supply energy for N_2 fixation (11), results from the present study support growth chamber studies in demonstrating that growth is primarily limited by N availability (10,16).

Supplying 2.0 mM NO3 to nodulated soybeans grown under low insolation was sufficient to obtain growth characteristics very similar to plants supplied 12.0 mM $\rm NO_3$ (Fig. 1). As a result, there were no differences in final total plant dry weight or leaf area between these two treatments. This was despite significant differences in total plant as well as individual plant part N content. Raper et al. (12) have recently shown that growth of soybeans and cotton is subject to an ability to arrive at a functional balance between carbohydrate supplied from the leaves and N supplied from the root system. Our results support this concept and suggest that under these low light conditions, supplementing symbiotic N_2 fixation with 2.0 mM NO_3 was sufficient to allow the plant to arrive at such a balance. Although 12.0 mM NO3 did result in significant increases in N content, the photosynthetic efficiency (net assimilation rate) of this treatment did not vary considerably from plants receiving 2.0 mM NO3 (Fig. 1). Thus it would appear that, due to the

low light conditions, plants supplied 12.0 mM NO_3 were unable to increase carbohydrate input in proportion to N input.

In contrast, growth functions of nodulated soybeans grown outdoors under normal insolation and supplied 2.0 mM NO3 differed considerably from plants supplied 12.0 mM NO3. Plants either entirely dependent on ${\rm N}_2$ fixation or supplemented with 2.0 mM NO_3 showed decreasing relative growth rates until approximately the fifteenth day of harvest when rates began to increase. Relative growth rates of nodulated plants receiving 6.0 or 12.0 mM NO3 continually decreased as did rates of non-nodulating plants receiving these treatments. Changes in the relative growth rates of the 0.0 and 2.0 mM treatments corresponded to similar changes in net assimilation rates, suggesting that growth of these plants was largely regulated by photosynthetic efficiency. DeJong and Phillips have recently shown a positive correlation between photosynthetic efficiency and foliar N content (2). Comparing net assimilation rates and leaf N content of all four treatments on the fourteenth day of harvest shows that differences in net assimilation rate did indeed correspond to differences in leaf N content.

The time at which relative growth rates and net assimilation rates of the 0.0 and 2.0 mM NO₃ treatments began to increase corresponded well with the time at which these plants were reducing acetylene at significantly ($P \leq 0.05$) greater rates than the 6.0 and 12.0 mM NO₃ treatments (approximately day 18, Fig. 2, Table 3.). Once N₂ fixation was well established, the increasing availability of N to the 0.0 and 2.0 mM NO_3 treatments was apparently preferentially allocated to the leaves. As a result, although total plant dry weight and N content were significantly (P \leq 0.05) less in these treatments compared to the 6.0 and 12.0 mM treatments, there were no differences in leaf N content or leaf area. Thus the increasing net assimilation rates of the 0.0 and 2.0 mM treatments between the fourteenth and twenty-eighth day of harvest were apparently due to increases in both the quality and quantity of assimilatory tissue.

Results from this study indicate that even though nodulated soybeans grown under low soil N conditions may allocate substantial photosynthate for nodule production and activity, limitations to growth are primarily related to N deficiencies which occur prior to establishment of a fully functional N₂ fixing apparatus. Results also support the concept that growth of soybeans is restricted by a need to arrive at a functional balance between C and N assimilation. We conclude that significant improvements in soybean yield may be possible by increasing the availability of N to the plant during the critical early stages of growth.

LITERATURE CITED

- BOND G 1941 Symbiosis of leguminous plants and nodule bacteria.

 Observations on respiration and on the extent of utilization of host carbohydrates by the nodule bacteria. Ann Bot 5:313-337
- BURRIS RH, PW WILSON 1957 Methods for measurement of nitrogen fixation. Methods Enzymol 4:355-366
- 3. DEJONG TM, DA PHILLIPS 1981 Nitrogen stress and apparent photosynthesis in symbiotically grown <u>Pisum sativum</u> L. Plant Physiol. 68:309-313
- 4. FINKE RL, JE HARPER, RH HAGEMAN 1982 Efficiency of nitrogen assimilation by N₂-fixing and nitrate-grown soybean plants (<u>Glycine max</u> [L.] Merr.) Plant Physiol. 70:1178-1184
- 5. GIBSON AH 1966 The carbohydrate requirements for symbiotic nitrogen fixation : A "whole-plant" growth analysis approach. Aust J Biol Sci 19:499-515
- 6. GIBSON AH 1976 Recovery and compensation by nodulated legumes to environmental stress. <u>In</u> PS Nutman, ed, Symbiotic nitrogen fixation in plants. Cambridge Univ. Press, Cambridge,pp. 385-403
- 7. HARDY RWF, RD HOLSTEN, EK JACKSON, RC BURNS 1968 The acetylene-ethylene assay for N₂ fixation:laboratory and field evaluation. Plant Physiol. 43:1185-1207

- 8. HUNT R, IT PARSONS 1974 A computer program for deriving growth-functions in plant growth analysis. J Appl Ecol 11:297-308
- 9. MAHON JD 1977 Respiration and the energy requirements for nitrogen fixation in nodulated pea roots. Plant Physiol. 60:817-821
- 10. MAHON JD, JJ CHILD 1979 Growth responses of inoculated pea (<u>Pisum sativum</u>) to combined nitrogen. Can J Bot 57:1687-1693
- 11. MINCHIN FR, JS PATE 1973 The carbon balance of a legume and the functional economy of its root nodules. J Exp Bot 24:259-271
- 12. RAPER CD, LR PARSONS, DT PATTERSON, PJ KRAMER 1977 Relationship between growth and nitrogen accumulation for vegetative cotton and soybean plants. Bot Gaz 138:129-137
- 13. RYLE GJA, CE POWELL, AJ GORDON 1978 Effect of source of nitrogen on the growth of Fiskeby soya bean: The carbon economy of whole plants. Ann Bot 42:637-648
- 14. RYLE GJA, CE POWELL, AJ GORDON 1979 The respiratory costs of nitrogen fixation in soyabean, cowpea, and white clover. II. Comparisons of the cost of nitrogen fixation and the utilization of combined nitrogen. J Exp Bot 30:145-153
- 15. WILLIAMS LE, DA PHILLIPS 1980 The effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiol. 66:968-972

- 16. WILLIAMS LE, TM DEJONG, DA PHILLIPS 1981 Carbon and nitrogen limitations in soybean seedling development. Plant Physiol 68:1206-1209
- 17. WILSON PW 1935 The carbohydrate-nitrogen relation in symbiotic nitrogen fixation. Rec. Bull, Agric Exp Sta, University of Wisconsin, Madison, 129:1-40

Table 1. Changes in plant dry weight and leaf area of soybeans grown in the greenhouse at low irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.

	Nitrate							
	Treatment (mMoles)	0	4	Days Fr 9	om FIrst 13	Harvest 18	23	27
	(111101037	0				(grams)-		
Total Plant	0	0.15	0.20	0.36	0.44	0.74	1.15	1.62
	2	0.18	0.21	0.39	0.59	0,98	1.48	2.06
	6	0.17	0.23	0.40	0,59	1.03	1.61	1.83
	12	0.17	0.25	0.39	0,60	1.11	1.72	2.21
	LSD(.05)	0.21	0.20	0,09	0.00		1012	2
	230(*05)	0.21						
Leaves	0	0.11	0.12	0.19	0.22	0.38	0.63	0.85
	2	0.11	0.11	0.20	0.30	0.52	0.80	1.06
	6	0.10	0.13	0.21	0.30	0,55	0.88	0,92
	12	0.11	0.14	0.21	0.32	0.61	0.97	1.12
	LSD(.05)	0.11			•			-
Stem	0	0.01	0.02	0.06	0.08	0.14	0.23	0.35
	2	0.02	0.03	0.07	0.12	0.21	0.32	0.46
	6	0.02	0.03	0,08	0.13	0.23	0.36	0.46
	12	0.02	0.04	0.08	0.13	0.26	0.41	0.56
	LSD(.05)	0.06						
Roots	0	0.03	0.06	0.10	0.12	0.18	0.22	0.31
	2	0.05	0.07	0.11	0.15	0.21	0.30	0.43
	6	0.05	0.07	0.11	0.15	0.23	0.33	0.39
	12	0.04	0.08	0.10	0.15	0.23	0.32	0.48
	LSD(.05)	0.05						
N. 4 1	<u>,</u>				0.00	0.04	0 07	0.11
Nodules	0	-	-	0.01	0.02	0.04 0.04	0.07 0.06	0.11
	2	-	-	0.01	0.02			
	6	-	-	-	0.01	0.02	0.04	0.06
	12	-	-	-	-	0.01	0.02	0.05
	LSD(.05)	0.02						
eaf Area					-cm ² /pla	nt		ې خې دي چې کې دي چې د
	0	12.14	21.93	71.16	109.99	179.10	221.64	266.19
	2	10.75	28.41	82.81	153.82	237.90	289.26	338,98
	6	11.64	27.45	88,31	152.09	250.10	285.18	293.54
	12	14,90	33,97	91.22	152,95	281.08	293.67	357.80
	LSD(.05)							

Nitrate Plant Treatment Days From First Harvest 4 23 27 Part (mMoles) 0 9 13 18 -mg N-___ _____ Total Plant 0 11.62 11.44 13.82 9,60 14.96 20.84 32.34 2 11.62 11.11 14.22 15.77 22.57 27.73 37.32 6 11.78 16.23 18.54 27.31 35.53 40.00 13.30 12 11.87 15.74 17.27 34.53 42.03 55.87 22.53 LSD(.05) 7.32 Leaves 0 7.88 7.95 9.91 6.74 10.51 15.08 22.78 2 7.82 9.38 16.08 19.12 24.43 7.16 11.09 6 7.44 8.40 10.59 13.13 19.00 25.02 25.82 12 7.52 9.96 10.84 14.66 23.48 26.16 36.52 LSD(.05) 4.69 4.77 Stems 0 1.17 0.81 1.52 1.05 1.72 2.66 1.77 2 3.09 3.92 5.79 1.16 1.42 1.95 6 3,99 1.45 2.24 5,56 6.66 1.60 2.33 12 1.53 1.90 2.81 3.22 5,45 8.46 9.09 LSD(.05) 1.39 Roots + 0 2.57 2.68 2,39 1.81 2.73 3.10 4.79 2.64 Nodules 2 2.53 3.07 2.73 3.40 4.69 7.10 6 2.89 3.40 3.08 4.32 4.95 7.52 3.30

Table 2. Changes in nitrogen accumulation and apparent N fixation of soybeans grown in the greenhouse at low irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.

Apparent N		و ب نه ه ه ه ه		µmoles e		plant/hc	ur	
Apparent N Fixation	0	-	-	1.28	4.00	7.09	12.21	18.66
	2	-	-	0.69	2.93	7.52	10,56	13.97
	6	-	-	0.27	1.02			6.51
	12	-	-	0.27	0.11	1.44	0.96	3.95
	LSD(.05)	2.37						

3.62

4.65

3.88

5.40

7.41

10.26

12

2.82

LSD(.05) 1.21

Table 3. Changes in nitrogen accumulation and apparent N fixation of soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.

	Nitrate							
Plant	Treatment					t Harves		
Part	(mMoles)	0	4	9	14	18	23	28
	_				mg N-			*
Total Plant	-	12.48	13.32	11.68	14.02	23.44	49.33	98.04
	2	12.59	12.28	13.84	16.66	23.60	51.30	91.81
	6	8.12	10.51	21.31	31.70	47.27	67.54	107.06
	12	11.60	16.23	29.76	45.02	75.91	93.72	124.21
	LSD(.05)	13.33						
Leaves	0	8,33	8.65	7.15	7.35	15.82	33,53	63,33
	2	7,26	8.14	8,60	13.16	15.67	35.86	61.30
	6	5.02	6.37	14.45	20,98	32.21	42.16	68,50
	12	6.81	10.27	19,42	28,47	44.08	54.85	65.88
	LSD(.05)	8.98						
Stems	0	1,54	1.70	1.40	3,83	3.44	7.84	19.37
	2	2.35	1.60	1.68	2.27	3.18	7.08	15.81
	6	1.14	1.56	2,56	4.95	7.62	11.43	19.08
	12	1.93	3.04	4.58	8.94	17.76	22.36	34.36
	LSD(.05)	3.35						
Roots +	0	2.61	2,97	3.13	3.79	4.18	7,97	15.34
Nodules	2	2.98	2,95	3,55	4.52	4.75	8.36	14.69
	6	1.96	2,58	4.30	5.77	7.45	13,95	19.48
	12	2.86	2.92	5.76	7.62	14.07	16.51	23.97
	LSD(.05)	2.86			•••			
Apparent N 2				umoles e	thylene/	plant/ho	ur	
Fixation ²	0	-	0.10	3.87	6.21	9.29	24,52	41.16
	2	-	0.09	1.97	4.75	5.57	21.27	41.64
	6	_	0.10	1.40	3.70	4.71	6.33	21.66
	12	-	0.14	0.62	0.74	0.65	1.04	1.83
	LSD(.05)	6.04		0.02	U1 , 1			

Table 4. Changes in nitrogen accumulation of non-nodulated soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.

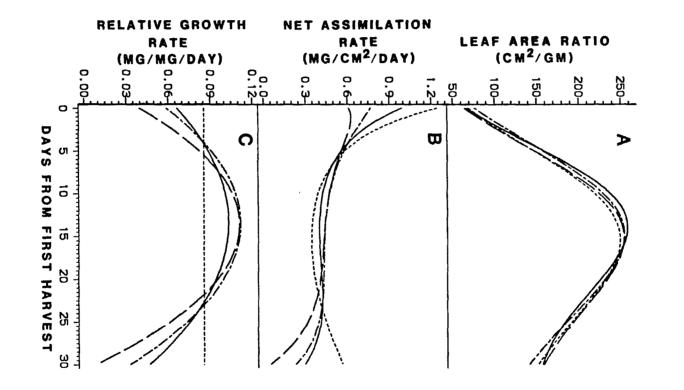
Plant	Nitrate Treatment			Davs Fi	rom Firs	t Harves	t	
Part	(mMoles)	0	4	9	14	18	23	28
					mg N			
Total Plan	† 2	7.36	6.24	8.01	8.48	15,90	18.36	23.11
	6	6.42	7.77	12.69	19,60	21.72	37,56	62.20
	12	6.44	8.51	17.60	31.33	47.36	75.32	92.40
	LSD(.05)	8.22						
Leaves	2	4.61	3.62	4.69	4.45	8.88	10.80	13.06
	6	3.46	4.12	7.32	12.06	17.72	23.02	37.15
	12	3.74	5.00	11.60	19.65	29,62	45.20	53.25
	LSD(.05)	5.29						
Stems	2	1.03	1.02	0.83	0.88	1.76	2.03	3.22
	6	1.48	1.21	1.78	2.43	3.53	5.05	10.28
	12	1.18	1.29	2.53	5,54	9.32	14.11	25.49
	LSD(.05)	2.19						
Roots	2	1.72	1.85	2,50	3.15	5.26	5.52	6.84
	6	1.48	2.43	3.59	5.11	4.89	9.49	10.28
	12 LSD(.05)	1.52 2.85	2.22	3.48	6.13	8.42	16.01	20.03

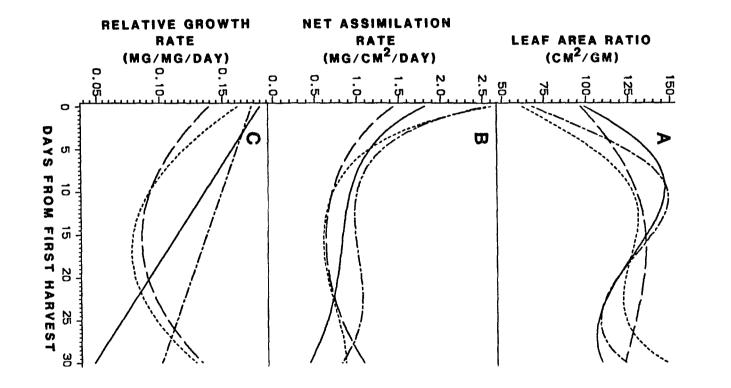
•

	Nitrate							
Plant	Treatment			Days Fr	om First	Harvest		
Part	(mMoles)	0	4	9	14	18	23	28
				dry	weight (grams)		
Total Plan	+ 0	0.25	0.41	0.76	0.99	1.25	2.48	4.23
	2	0.28	0.37	0.75	1.11	1.32	2.37	3.86
	6	0.20	0.32	0.89	1.48	2.00	3.47	5.69
	12	0.24	0.43	0.97	1.61	2.73	3.86	5.98
	LSD(.05)	0.65						
Leaves	0	0.14	0.21	0.32	0.37	0.53	1.04	1.80
	2	0.14	0.19	0.33	0.41	0.55	1.01	1.57
	б	0.11	0.16	0.43	0.62	0.89	1.36	2.34
	12	0.13	0.24	0.49	0.71	1.26	1.59	2.15
	LSD(.05)	0.26						
Stem	0	0.03	0.06	0.14	0.20	0.27	0.61	1.13
	2	0.04	0.06	0.14	0.23	0.29	0,58	1.06
	6	0.02	0.05	0,18	0.37	0.54	1.01	1.47
	12	0.03	0.07	0.20	0.42	0.77	1.23	1.6
	LSD(.05)	0.18						
Roots	0	0.08	0.14	0,26	0.35	0.36	0.63	0.99
	2	0.10	0.12	0,25	0.40	0.41	0.64	0.99
	6	0.07	0.11	0,26	0.45	0.49	1.01	1.7
	12	0.09	0.12	0,26	0.46	0.68	1.02	1.19
	LSD(.05)	0.20						
Nodules	0	-	-	0.04	0.07	0.09	0.20	0.31
	2	-	-	0.03	0.07	0.07	0.14	0.24
	6	-	-	0.02	0.04	0.08	0.09	0.15
	12	-	-	0.02	0.02	0.02	0.02	0.03
	LSD(.05)	0.04						
if Area		*****	****	C	m ² /plant			
	0	18.80	50.25	87,84	115.63		255.50	525.12
	2	24.90	46.25	94.41	134.09		349.01	545.06
	6	19.59	39.16	124,53	194.01	291.55	406.51	585.67
	12	15.10	49.43	138,86	203.28	279.04	440.26	536.73
	LSD(.05)	61.67						

Table 5. Changes in plant dry weight and leaf area of soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.

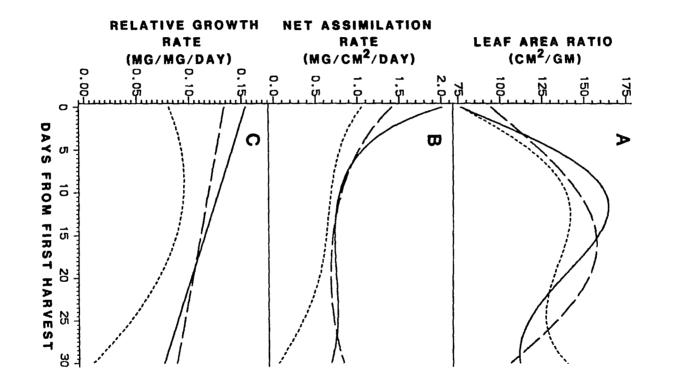
.


Table 6. Changes in plant dry weight and leaf area of non-nodulated soybeans grown outdoors at high irradiance and supplied four levels of nitrate. Harvesting began two weeks after the seeds were imbibed.


	Nitrate							
Plant	Treatment			Days F	rom Firs	t Harves	it	
Part	(mMoies)	0	4	9	14	18	23	28
				dry	weight	(grams)-		
Total Plan	† 2	0.19	0.26	0.46	0.64	0.91	1.43	1.66
	6	0.16	0.29	0.50	1.00	1.21	2.33	3.73
	12	0,18	0.28	0.56	0.99	1.53	3.46	3,57
	LSD(.05)	0.66						
Leaves	2	0.10	0.12	0.18	0.23	0.38	0.59	0.71
	6	0.09	0.13	0.22	0.42	0.57	0.93	1.54
	12	0.10	0.14	0.29	0.46	0.75	1.46	1.60
	LSD(.05)	0.22						
Stems	2	0.02	0.03	0.06	0.11	0.17	0.29	0.36
	6	0.02	0.03	0.08	0.19	0.27	0.59	1.02
	12	0.02	0.03	0.10	0.23	0.40	0,93	1.04
	LSD(.05)	0.15						
Roots	2	0.07	0.11	0.19	0.30	0.36	0.55	0.59
	6	0.05	0.13	0.20	0.39	0.37	0.81	1.17
	12	0.06	0.11	0.17	0.30	0.38	1.07	0.93
	LSD(.05)	0.35			2			
Leaf Area					-cm ² /pla	nt		
	2	13,56	30,60	55.19	81.53	121.92	191.04	222.14
	6	14.29	32,33	72,53	148.44	197.36	307.51	453.07
	12	12.04	37,13	96.06	150.87	238.86	430.15	414.86
	LSD(.05)	57.10						

.

FIGURE LEGENDS


- Fig. 1. Estimated progress curves representing leaf area ratios (A), net assimilation rates (B), and relative growth rates (C) of soybeans grown under an average daily irradiance of $8.6 \text{ Em}^{-2} \text{ s}^{-1}$ and completely dependent on nitrogen fixation (-----), or supplemented with 2 mM NO₃ (----), 6 mM NO₃ (-----), or 12 mM NO₃ (----).
- Fig. 2. Estimated progress curves representing leaf area ratios (A), net assimilation rates (B), and relative growth rates (C) of soybeans grown under an average daily irradiance of $31.3 \text{ Em}^{-2} \text{ s}^{-1}$ day and completely dependent on nitrogen fixation (-----), or supplemented with 2 mM NO₃ (----), 6 mM NO₃ (----), or 12 mM NO₃ (----).
- Fig. 3. Estimated progress curves representing leaf area ratios (A), net assimilation rates (B), and relative growth rates (C) of non-nodulating isogenic line L73-1054 Clark soybeans grown under an average daily irradiance of 31.3 E m⁻² s⁻¹ and supplied 2 mM NO₃ (-----), 6 mM NO₃ (----), or 12 mM NO₃ (-----).

ì

Fig. 2

SUMMARY

Physiological and environmental limitations to nitrogen fixation and growth of soybeans were investigated. Under natural conditions of variable solar radiation and ambient air temperature, 35-day-old plants with constant root zone temperature maintained constant levels of foliar soluble sugars and constant rates of root + nodule respiration and acetylene reduction over a 24-hour period. These results were interpreted to indicate that a constant supply of photosynthate was being partitioned to the nodules. When root zone temperature was allowed to vary with ambient air temperature, nodule activity also varied suggesting that reports of diurnal variation in nodule activity may have been due to diurnal variations in root zone temperature.

Following the diurnal study, the normal dark period of the plants was extended to 40 hours to deplete levels of stored carbohydrates. Plants were then exposed to increases in irradiance provided by metal-halide lamps. It was found that exposure to 200 μ E m⁻²s⁻¹ enabled plants to produce sufficient carbohydrate to obtain maximum rates of acetylene reduction. This irradiance level was approximately one-third of the light saturation level for photosynthesis. It was suggested that plants were acclimated to produce sufficient carbohydrate for maximum nodule activity at low irradiance levels with additional photosynthate being partitioned into starch for maintenance

69

during non-photosynthetic periods. It was also suggested that photosynthesis <u>per se</u> does not limit nitrogen fixation, but that acclimation to a particular environment determines the amount of photosynthate partitioned for nitrogen fixation.

In a separate study, carbon and nitrogen limitations to growth of symbiotically grown soybeans were assessed using mathematical growth analysis techniques. Comparisons were made between plants grown under low insolation in a greenhouse during the Winter and outdoors during the Spring. Plants were either entirely dependent on symbiotically fixed N₂, or supplemented with 2.0 mM, 6.0 mM or 12.0 mM NO₃. Beginning two weeks after seeds were imbibed, dry weight and N content of plant parts, total leaf area and rates of C_2H_2 reduction were determined at frequent intervals. Dry weight and leaf area data were used to calculate relative growth rates (RGR), net assimilation rates (NAR) and leaf area ratios (LAR).

Supplementing N_2 fixation with 2.0 mM NO₃ resulted in maintenance of growth functions which were very similar to plants supplied 6.0 or 12.0 mM NO₃. RGR and LAR of these treatments increased for two weeks, then declined. Plants solely dependent on N_2 fixation, however, maintained similar LAR, but RGR remained constant. Approximately two weeks after harvesting began, plants dependent on fixed N_2 were significantly N-deficient relative to all plants receiving NO₃. The effects of the N deficiency were first noted in significantly lower leaf area followed by significantly lower total plant dry weight. At the final harvest, total plant dry weight and leaf area were equivalent to plants supplemented with 2.0 mM or 12.0 mM NO3.

RGR of all treatments grown outdoors declined for the first two weeks with rates of the 0.0 mM and 2.0 mM NO_3 treatments declining at a much greater rate than plants supplemented with 6.0 mM or 12.0 mM NO2. During the final two weeks of harvest, RGR of the 6.0 mM and 12.0 mM NO_3 treatments continued to decline, but rates of the 0.0 mM and 2.0 mM NO_3 treatments increased. This period corresponded with the time during which the 0.0 and 2.0 mM NO3 treatments had significantly greater rates of acetylene reduction compared to the 6.0 and 12.0 mM NO_3 treatments. Examination of the components of RGR, NAR and LAR, showed that trends in RGR of the 0.0 mM and 2.0 mM NO_3 treatments were largely due to similar trends in NAR. Significant N deficiencies were evident in the 0.0 mM and 2.0 mM NO_3 treatments nine days after harvesting began. By the final harvest, the 0.0 mM and 2.0 mM NO_3 treatments were deficient in total plant N and dry matter compared to the 12.0 mM NO_3 treatment. There were no differences in leaf N content or leaf area indicating that once N2 was established, N was preferentially allocated to the leaves.

It was suggested that results from this study indicated that growth limitations to nodulated soybeans are primarily due to an inability to arrive at a functional balance between C and N accumulation prior to establishment of a fully functional N_2 fixation system. It was also suggested that once N_2 fixation

71

is established, the increased input of N is used to increase both the quality and quantity of leaf tissue.

.

. .

LITERATURE REVIEW CITATIONS

- ABEL GH, LW ERDMAN 1964 Response of Lee soybeans to different strains of Rhizobium japonicum . Agron J 56:423-424
- ALLOS HF, WV BARTHOLOMEW 1959 Replacement of symbiotic nitrogen fixation by available nitrogen. Soil Sci 87:61-66
- BEARD BH, RM HOOVER 1971 Effect of nitrogen on nodulation and yield of irrigated soybeans. Agron J 63:815-816
- BETHLENFALVAY GJ, SS ABU-SHAKRA, DA PHILLIPS 1978 Interdependence of nitrogen nutrition and photosynthesis in <u>Pisum</u> sativum L. I. Effects of combined nitrogen on symbiotic nitrogen fixation and photosynthesis. Plant Physiol 62:127-130
- BETHLENFALVAY GJ, DA PHILLIPS 1977 Ontogenetic interactions between photosynthesis and symbiotic nitrogen fixation. Plant Physiol 60:419-421
- BOYER JS 1982 Plant productivity and environment. Science 218:443-448
- CHABOT BF, TW JURIK, JF CHABOT 1979 Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. Am J Bot 66:940-945
- CHATTERTON NJ, JE SILVIUS 1979 Photosynthate partitioning into starch in soybean leaves I. Effects of photoperiod versus photoperiod duration. Plant Physiol 64:749-753
- DEJONG TM, DA PHILLIPS 1981 Nitrogen stress and apparent photosynthesis in symbiotically grown <u>Pisum</u> <u>sativum</u> L. Plant Physiol 68:309-313
- DUNIGAN EP, PK BOLLICH, RL HUTCHINSON, PM HICKS, FC ZAUNBRECHER, SG SCOTT, RP MOWERS 1984 Introduction and survival of an inoculation strain of <u>Rhizobium</u> japonicum in soil. Agron J In Press
- EAGLESHAM ADJ, S HASSOUNA, R SEEGERS 1983 Fertilizer-N effects on N2 fixation by cowpea and soybean Agron J 75:61-66
- ECKART JF, CA RAGUE 1980 Effects of diurnal variation in light and temperature on the acetylene reduction activity (nitrogen fixation) of subterranean clover. Agron J 72:519-523

- EMERICH DW, T RUIZ-ARGUESO, TM CHING, HJ EVANS 1979 Hydrogen-dependent nitrogenase activity and ATP formation in Rhizobium japonicum bacteroids. J Bact 137:153-160
- FINKE RL, JE HARPER, RH HAGEMAN 1982 Efficiency of nitrogen
 assimilation by N_-fixing and nitrate-grown soybean
 plants (Glycine 2 max ((L.)Merr.). Plant Physiol 70:1178-1184
- FINN GA, WA BRUN 1982 Effect of atmospheric CO₂ enrichment on growth, nonstructural carbohydrate content, and root nodule activity in soybean. Plant Physiol 69:327-331
- FISHBECK K, HJ EVANS, LL BOERSMA 1973 Measurement of nitrogenase activity of intact legume symbionts In Situ using the acetylene reduction assay. Agron J 65:429-433
- FRED EB, PW WILSON, O WYSS 1938 Light intensity and the nitrogen hunger period in Manchu soybean. Proc Natl Acad Sci USA 24:46-52
- FRED EB, IL BALDWIN, E MCCOY 1932 Root Nodule Bacteria and Leguminous Plants. University of Wisconsin, Madison 343 pp.
- GERSEN T, JJ PATEL, MN WONG 1978 The effects of age, darkness and nitrate on poly-B-hydroxybutyrate levels and nitrogen-fixing ability of <u>Rhizobium</u> in <u>Lupinus</u> <u>angustifolius</u>. Physiol Plant 42:420-424
- GIBSON AH 1974 Consideration of the legume as a symbiotic association. In Indian Nat Sci Acad Proc 40B:741-767
- HANUS FJ, SL ALBRECHT, RM ZABLOTOWICZ, DW EMERICH, SA RUSSELL, HJ EVANS 1981 Yield and N content of soybean seed as influenced by <u>Rhizobium japonicum</u> inoculants possessing the hydrogenase characteristic. Agron J 73:368-372
- HARPER JE, RL COOPER 1971 Nodulation response of soybeans (<u>Glycine</u> max L. Merr) to application rate and placement of combined nitrogen. Crop Sci 11:438-440
- HARPER JE 1974 Soil and symbiotic nitrogen requirements for optimum soybean production. Crop Sci 14:255-260
- HAYSTEAD A, J KING, WIC LAMB 1979 Photosynthesis, respiration and nitrogen fixation in white clover. Grass and Forage Science 34:125-130
- HOFSTRA G, JD HESKETH 1975 The effects of temperature and CO₂ enrichment on photosynthesis in soybean. <u>In</u> R. Marcello, ed., Environmental and biological control of photosynthesis. Dr. W. Junk. The Hague. p. 71-80

- LAWN RJ, KS FISHER, WA BRUN 1974 Symbiotic nitrogen fixation in soybeans. II. Interrelationship between carbon and nitrogen assimilation. Crop Sci 14:17-22
- LEONARD LT 1926 A preliminary note on the relation of photosynthetic carbohydrate to nodule formation on soybeans. Agron J 18:1012-1016
- MAGUE TH, BURRIS RH 1972 Reduction of acetylene and nitrogen by field-grown soybeans. New Phyt 71:275-286
- MAHON JD, JL CHILD 1979 Growth responses of inoculated peas (Pisum sativum) to combined nitrogen. Can J Bot 57:1687-1693
- MAIER RJ, WJ BRILL 1978 Mutant strains of <u>Rhizobium</u> japonicum with increased ability to fix nitrogen for soybean. Science 201:448-450
- MEDERSKI HJ, JG STREETER 1977 Continuous, automated acetylene reduction assays using intact plants. Plant Physiol 59:1076-1081
- MINCHIN FR, JS PATE 1974 Diurnal functioning of the legume root nodule. J Exp Bot 25:295-308
- MUNNS DN 1968 Nodulation of <u>Medicago</u> <u>sativa</u> in solution culture III. Effect of nitrate on root hairs and infection. Plant Soil 28:33-47
- NOBEL PS 1976 Photosynthetic rates of sun versus shade leaves of Huptis emoryi Torr. 58:218-223
- NORMAN AG, LD KROMPITZ 1946 The nitrogen nutrition of soybeans. II. Effect of available soil nitrogen on growth and nitrogen fixation. Soil Sci Soc Amer Proc 10:191-196
- PATE JS, DB LAYZELL, CA ATKINS 1979 Economy of Carbon and Nitrogen in a Nodulated and Nonnodulated (NO₃-grown) Legume. Plant Physiol 64:1083-1088
- PHILLIPS DA, KD NEWELL, SA HASSELL, CE FELLING 1976 The effect of CO₂ enrichment on root nodule development and symbiotic N₂ reduction in <u>Pisum</u> <u>sativum</u> L. Am J Bot 63:356-362
- QUEBEDEAUX B, UD HAVELKA, KL LIVAK, RW HARDY 1975 Effect of altered pO₂ in the aerial part of soybean on symbiotic N₂ fixation. Plant Physiol 56:761-764
- RUEGG JJ, AM ALSTON 1978 Seasonal and diurnal variation of nitrogenase activity (acetylene reduction) in barrel medic (Medicago trunculata Gaertn.) grown in pots. Aust J Ag Res 29:951-962

- RYLE GJA, CE POWELL, AJ GORDON 1979 The respiratory costs of nitrogen fixation in soyabean, cowpea and white clover. J Exp Bot 30:145-153
- SCHUBERT KR, HJ EVANS 1976 Hydrogen evolution: a major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci USA 73:1207-1211
- SCHUBERT KR 1982 The energetics of biological nitrogen fixation. American Society of Plant Physiologists, Rockville, MY 30 pp.
- SCHWEITZER LE, JE HARPER 1980 Effect of light, dark, and temperature on root nodule activity (acetylene reduction) of soybeans. Plant Physiol 65:51-56
- SHEEHY JE, KA FISHBECK, TM DEJONG, LE WILLIAMS, DA PHILLIPS 1980 Carbon exchange rates of shoots required to utilize available acetylene reduction capacity in soybean and alfalfa root nodules. Plant Physiol 66:101-104
- SILSBURY JS 1977 Energy requirements for symbiotic nitrogen fixation. Nature 267:149-150
- SILVIUS JE, NJ CHATTERTON, DF KREMER 1979 Photosynthate partitioning in soybean leaves at two irradiance levels (comparative responses of acclimated and unacclimated leaves). Plant Physiol 64:872-875
- SINCLAIR TR, CT DEWIT 1975 Photosynthate and nitrogen requirements for seed production by various crops. Science 189:565-567
- STEWART WDP 1966 Nitrogen fixation in plants. The Athlone Press,London
- STREETER JG 1974 Growth of two soybean shoots on a single root. J Exp Bot 25:189-198
- WAUGHMAN GJ 1977 The effect of temperature on nitrogenase activity. J Exp Bot 28:949-960
- WEBER CR 1966 Nodulating and non-nodulating soybean isolines II. Response to applied nitrogen and modified soil conditions. Agron J 58:46-49
- WILLIAMS LE, TM DEJONG, DA PHILLIPS 1981 Carbon and nitrogen limitations on soybean seedling development. Plant Physiol 68:1206-1209
- WILLIAMS LE, TM DEJONG, DA PHILLIPS 1982 Effect of changes in shoot carbon-exchange rate on soybean root nodule activity. Plant Physiol 69:432-436

- WILLIAMS LE, DA PHILLIPS 1981 Effect of irradiance on development of apparent nitrogen fixation and photosynthesis in soybean. Plant Physiol 66:968-972
- WILLIAMS LE, DA PHILLIPS 1983 Increased soybean productivity with a Rhizobium japonicum mutant. Crop Sci 23:246-250
- WILSON PW 1935 The carbohydrate-nitrogen relation in symbiotic nitrogen fixation. Res Bul Agric Exp Sta, University of Wisconsin, Madison 129:1-40

APPENDIX

Appendix Table 1 contains data for the diurnal study conducted during the late Spring of 1982. Data are coded in the following manner:

Column

```
A. Time (hours).
```

B. Temperature treatment. C and U denote controlled and uncontrolled root-zone temperature, respectively.

C. Temperature $(^{\circ}C)$ of interior chamber enclosing roots and nodules.

D. Ambient temperature.

E. Irradiance ($\mu E m^{-2} s^{-1}$).

F. Mean respiration rate from roots and nodules (mg $\rm CO_2$ plant hour 1).

G. Standard error of mean respiration rate.

Appendix Table 1 (continued).

<u>A</u>	В	С	D	E	F	G
634	с	22.77	19.33	49.42	4.48	0.57
644	U	18.57	19.53	74.65	2.21	0.13
704	С	22.93	19.96	128.39	4.45	0.53
714	U	18.88	20.21	161.51	2.28	0.12
734	С	23.26	20.88	243.48	4.36	0.57
744	U	19.44	21.23	292.15	2.38	0.09
804	С	21.07	22.74	438.91	5.60	•
814	U	21.72	23.15	465.41	3.80	0.09
834	С	25.01	24.56	572.49	5.93	0.83
844	U	22.54	25.24	649.96	3.87	0.06
9 04	С	26.50	26.14	751.33	5.99	0.91
914	U	24.02	26.25	850.18	4.18	0.21
934	С	27.68	26.74	913.42	6.14	1.04
944	U	25.45	26.97	1020.21	4.69	0.27
1004	С	28.58	27.75	1175.56	6.47	1.17
1014	U	27.05	28.15	285,93	5.30	0.41
1138	С	26.40	30.21	1782.14	5.81	0.62
1148	U	32.49	30.40	1810.48	12.97	1.48
1208	С	25.31	30.65	1915.49	6.98	1.62
1218	U	33.39	30.15	1372.03	15.18	2.48
1238	С	24.43	30.77	1961.11	6.22	1.64
1248	U	33.94	31.03	1907.71	15.65	1.26
1308	С	23.91	31.10	1947.46	6.47	1.55
1318	U	34.63	31.44	1744.13	16.64	0.03
1338	С	23.84	31.66	1827.53	6.45	1.34
1348	U	35.14	32.21	1873.15	18.20	1.45
1508	С	25.27	30.90	1127.69	7.98	1.31
1518	U	36.58	30.27	1197.16	14.77	0.85
1538	С	24.99	32.35	1307.06	7.75	1.33
1548	U	36.30	30.89	1252.92	8.89	0.84
1608	С	25.46	30.69	1103.85	7.62	1.18
1618	U	35.84	29.89	796.03	4.72	0.09
1638	С	24.54	26.59	125.80	7.75	1.38
1648	U	30.90	25.73	132.94	6.05	0.29
1708	С	24.32	25.10	212.89	8.15	2.75
1718	U	29.41	25.29	449.97	5.77	0.12
2108	С	27.14	22.46	0.00	5.23	0.80
2118	U	22.06	22.35	0.00	7.61	0.42
2208	С	25.33	22.06	0.00	7.44	0.50
2218	U	21.62	21.98	0.00	4.18	0.41
2238	С	25.70	21.86	0.00	7.33	0.36
2248	U	21.29	21.83	0.00	4.48	0.56
2308	С	26.03	21.66	0.00	7.39	0.37
2318	U	21.08	21.49	0.00	4.62	0.71
2338	С	26.21	21.45	0.00	7.52	0.22
2348	U	20.84	21.50	0.00	4.55	0.60

Appendix Table 1 (continued).

<u>A</u>	В	С	D	E	<u>F</u>	G
8	С	26.35	21.53	0.00	7.41	0.35
18	U	20.76	21.52	0.00	4.59	0.60
38	С	25.86	20.84	0.00	6.93	0.32
48	U	20.63	21.36	0.00	4.38	0.56
208	С	25.25	21.00	0.00	6.93	0.55
218	U	20.53	21.00	0.00	4.82	1.07
238	С	25.35	20 .9 0	0.00	7.16	0.73
248	U	20.40	20.80	0.00	4.89	1.13
308	С	25.40	20.80	0.00	7.13	0.73
318	U	20.30	20.90	0.00	4.79	0.98
338	С	25.40	20 .9 0	0.00	6.98	0.69
348	U	20.30	20.90	0.00	4.79	0.98
408	С	25.40	20.80	0.00	6.90	0.70
418	U	20.30	20.60	0.00	4.72	1.01
438	С	25.40	20.55	0.00	7,92	0.69
448	U	20.20	20.60	0.00	5.64	1.01
608	С	24.95	21.08	164.51	6.06	0.88
618	U	20.30	21.40	234.55	4.65	0.63
638	С	25.45	22.50	355.45	6.93	1.03
648	U	21.23	23.00	427.85	5.03	0.66
708	С	26.10	24.25	556.24	6.09	0.90
718	U	22.80	24.77	630.60	5.06	0.84
738	С	26.80	25.68	760.67	6.85	0.94
748	U	24.33	25.90	839.35	6.11	0.95
808	С	27.48	26.43	834.45	7.34	0.97
818	U	25.40	26.43	773.68	6.96	0.89
838	С	27.85	26.08	537.24	7.92	1.21
848	U	25.70	26.33	787.28	7.61	1.18
9 08	С	27.88	27.20	1179.53	7.31	1.05
918	U	26.53	28.13	1507.05	8.35	1.30
9 38	С	26.93	28.75	1486.08	6.27	0.66
9 48	U	28.70	22.20	1686.53	9.65	1.49
1008	С	25.9 0	29.70	1795.39	5.88	0.52
1018	U	31.17	29.87	1870.85	10.90	1.60

Appendix Table 2. Mean \pm standard error of foliar starch and soluble sugar content in 35-day-old soybeans harvested during the Spring diurnal study.

Time (Hours)	Soluble Sugars (mg/g dry weight)	Starch (mg/g dry weight)
(Hours)	(mg/g diy weight)	(mg/g diy weight)
0800	36.53+1.95	45.94+4.35
1200	30.70+3.07	125.21+8.86
1800	35,23+0.78	160.40+1.72
2230	31.98+3.94	126.71+5.81
0200	38.38+3.97	74 . 79 4 5.80
0600	28.68+3.10	66.80 + 3.19
1130	26.90+3.35	131.76 - 7.18

Appendix Table 3. Mean + standard error of acetylene reduction activity of 35-day-old soybeans during the Spring diurnal study with and without temperature controlled root zone.

Time (Hours)	Root Zone Temperature Controlled	Root Zone Temperature Uncontrolled
1000	26.10+1.56	20.40+0.35
1400	23.20+1.29	21.40+0.78
1800	25.00+1.67	15.30+1.21
2230	25.70+2.40	11.20+0.73
0200	25.40+1.93	11.30+0.36
0600	25.95+2.37	11.80+0.53
1130	25.90+1.65	18.80+2.81

Appendix Table 4. Mean + standard error of foliar starch and soluble sugar content and acetylene reduction activity of 35-day-old soybeans grown during the late Spring and exposed to 10 hours at a specific irradiance level following 40 hours of darkness.

Irradiance	Soluble Sugars	Starch	umoles Ethylene
Level	(mg/g dry weight)	(mg/g dry weight)	plant/hour
0	21.50+3.94	25.08+0.72	1.68+0.19
200	41.58+2.25	51 . 84 + 1.69	14.07+2.38
400	46.88+1.68	106.81+6.55	7.69+0.26
600	45.68+1.37	91.42 + 3.76	14.86+2.48
1000	42.98+4.31	134.27 + 5.09	10.00+0.99

•

Appendix Table 5 contains data for the diurnal study conducted during the early Fall of 1982. Data are coded in the following manner:

Column

```
A. Time (hours).
```

B. Temperature treatment. S/R and R denote controlled shoot and root temperature and controlled root temperature, respectively.

C. Temperature ($^{\circ}$ C) of interior chamber enclosing shoot and/or root.

D. Ambient temperature (^oC).

E. Irradiance ($\mu E m^{-2} s^{-1}$).

F. Mean respiration rate from roots and nodules (mg $\rm CO_2$ plant $^{-1}\rm hour$).

G. Standard error of mean respiration rate.

Appendix Table 5 (continued).

_ <u>A</u>	В	С	D	E	F	G
105 9	S/R	25.87	31.72	1537.00	7.30	0.71
1109	R	27.77	31.66	1706.75	6.75	0.76
1129	S/R	25.04	31.52	1350.00	5.87	0.48
1139	R	25.87	31.50	1217.50	5.63	0.58
1159	S/R	24.66	32.29	1530.33	5.23	0.45
1209	R	26.42	32.82	1217.25	5.27	0.46
1229	S/R	24.99	33.27	1806.67	5.36	0.40
1239	R	26.06	33.16	1262.75	5.10	0.58
1259	S/R	24.63	33.01	1045.33	5.88	0.59
1309	R	25.43	32.63	1071.75	5.73	0.66
1329	S/R	24.48	34.27	1499.00	5.34	0.54
1339	R	26.74	34.31	1747.00	5.60	0.64
1429	S/R	25.10	34.22	1704.00	5.96	•
1439	R	25.68	35.15	1680.25	6.66	0.80
1459	S/R	25.27	35.30	832.67	6.23	0.58
1509	R	24.22	33.99	437.00	5.70	0.64
1529	S/R	24.04	33.01	420.33	5.08	0.34
1539	R	24.06	32.40	141.75	5.40	0.33
1559	S/R	23.34	28.46	112.33	4.33	0.19
1609	R	23.84	27.74	120.75	4.87	0.32
1629	S/R	23.71	27.40	138.33	3.93	0.27
1639	R	25 .9 0	27.41	141.75	4.77	0.28
1659	S/R	24.84	27.57	213.67	4.02	0.29
1709	R	24.87	27.88	244.00	4.47	0.30
1729	S/R	24.32	28.09	213.67	3.75	0.31
1739	R	24.98	28.15	156.25	4.34	0.27
1829	S/R	24.66	27.70	73.00	5.04	0.53
1839	R	24.77	27.64	56.75	5.14	0.28
1859	S/R	25.11	27.27	15.00	4.55	0.42
1909	R	24.76	27.04	3.00	4.84	0.28
1929	S/R	25.10	26.70	0.00	4.55	0.39
1939	R	24.94	26.58	0.00	4.57	0.20
1959	S/R	25.39	26.46	0.00	4.37	0.43
200 9	R	24.97	26.19	0.00	4.34	0.17
202 9	S/R	25.80	26.24	0.00	4.37	0.43
2039	R	24.98	26.17	0.00	4.24	0.20
2059	S/R	25.73	26.02	0.00	4.33	0.29
2109	R	24 .9 5	25.97	0.00	3.84	0.16
2129	S/R	25.76	25.78	0.00	3.80	0.31
2139	R	24.99	25.80	0.00	3.48	0.18
2259	S/R	25.73	25.50	0.00	4.51	0.27
2309	R	25.10	25.41	0.00	3.94	0.18
2329	S/R	25.94	25.33	0.00	4.51	0.27
2339	R	25.09	25.27	0.00	4.24	0.13
2359	S/R	25.89	25.12	0.00	4.51	0.08
9	R	25.10	25.04	0.00	3.88	0.20
29	S/R	25.78	24.91	0.00	3.98	0.23
39	R	25.14	24.89	0.00	3.74	0.20

Appendix Table 5 (continued).	
-----------------------------	----	--

A	В	С	D	E	F	G
59	S/R	25.46	24.84	0.00	4.15	0.23
109	R R	25.16	24.85	0.00	3.74	0.23
209	R	25.28	24.47	0.00	4.24	0.41
229	S/R	25.23	24.34	0.00	4.21	0.22
239	R	25.28	24.35	0.00	4.34	0.38
259	S/R	25.46	24.32	0.00	4.20	0.42
309	R	25.25	24.23	0.00	3.65	0.27
329	S/R	25.52	24.20	0.00	4.59	0.42
339	R	25.31	24.20	0.00	4.18	0.26
359	S/R	25.48	24.10	0.00	4.11	0.28
409	R	25.35	24.12	0.00	3.85	0.31
429	S/R	25.41	24.32	0.00	4.06	0.22
439	R	25.21	24.30	0.00	3.98	0.29
459	S/R	25.46	24.30	0.00	3.97	0.20
509	R	25.15	24.31	0.00	3.87	0.21
529	S/R	25.41	24.22	0.00	4.11	0.21
639	R	25.02	24,23	6.00	4.14	0.22
659	S/R	25.48	24.27	39. 00	4.15	0.04

.

Appendix Table 6. Mean \pm standard error of foliar starch and soluble sugar content in 35-day-old soybeans harvested during the Fall diurnal study.

Time	Soluble Sugars	Starch
(Hours)	(mg/g dry weight)	(mg/g dry weight)
1100 1400 1800 2200 0200 0600	50.87+2.23 42.13+0.67 43.73+2.45 38.13+1.31 48.97+0.62 39.25+1.64	71.70+7.88 $104.46+5.62$ $120.10+3.55$ $98.49+13.83$ $71.25+4.64$ $45.85+4.86$

.

Appendix Table 7. Mean + standard error of acetylene reduction activity of 35-day-old soybeans during the Fall diurnal study with either controlled shoot and root zone temperature or controlled root zone temperature.

Time	Shoot and Root Zone	Root Zone
(Hours)	Temperature Controlled	Temperature Controlled
1000	8.26+1.25	8.03+0.90
1400	7.67+1.49	7.33+0.64
1800	8.30+1.21	8.63+0.95
2200	9.83+2.32	8.90+1.21
0200	9.06+2.05	9.34+1.32
0600	9.09+2.96	9.59+0.25
0900	10.59+2.30	10.80+0.79

Appendix Table 8. Mean + standard error of foliar starch and soluble sugar content and acetylene reduction activity of 35-day-old soybeans grown during the early Fall and exposed to 10 hours at a specific irradiance level following 40 hours of darkness.

Irradiance Level	Soluble Sugars (mg/g dry weight)	Starch (mg/g dry weight)	umoles Ethylene plant/hour
	<u> </u>		······································
0	36.13+1.91	47.90+2.93	3.54+0.67
200	38.50+1.72	63.73+7.49	6.43+0.75
400	40.55+0.70	106.64+4.68	4.94+0.64
6 00	40.35+1.48	134.65+8.93	6.22+1.35
800	42.87+1.95	140.29+5.96	6.00+0.18
1000	39.15+2.60	128.14+4.42	6.08+0.29

Appendix Table 9. Nutrient solutions modified to contain specific concentrations of nitrate.

.

	OmM	2mM	6mM	12mM
Compound	Final (Concentrat	ion in So	lution
KH ₂ PO ₄	2mM	2mM	2mM	2mM
MgŚO, ⁴	lmM	lmM	lınM	1mM
Mg\$04 CaS04	4mM	4mM	lmM	
канрол	1mM			
кńo, ⁴		2mM	2mM	2mM
Ca(NO2)2			3mM	5mM

Nitrate Concentration

Micronutrient Concentration in all solutions.

Compound Final Concentration in Solution

KCL	50µM
H ₂ BO ₂	25µM
H_3BO_3 MnSO ₄ · H_2O	5µM
ZnS0 ⁴ .7H ₂ 0	2µM
$CuSO_{4}^{4} \cdot 5H_{2}^{2}O$	0.5µM
H ₂ Mod, ²	0 . 5µM
H ₂ Mod ₄ CoCl ₂ ·6H ₂ O	4µМ
Z Z	

pH adjusted to 6.8

Appendix Table 10.	Rhizobium japonicum incubation medium.
Compound	Final Concentration in Medium
Mannitol	1.00 g/1
Yeast Extract	1.00 g/1
кн ₂ ро ₄	0.30 g/1
Na2HPO4	0.30 g/1
MgSO4	0.10 g/1
CaCl ₂	0.50 g/1
H ₃ BO ₃	10.00 mg/1
ZnS0 ₄ •2H ₂ 0	1.00 mg/1
FeCl ₃	1.00 mg/1
CuSO ₄ · 5H ₂ O	0.50 mg/1
MnC1 ₂	0.15 mg/1
NaMo0 ₄ • 2Н ₂ 0	0.10 mg/1
Biotin	0.20 mg/1
Agar	15.00 g/1

pH adjusted to 6.8

Appendix Table 11 contains data for the growth analysis study conducted in the greenhouse during the Winter. The experiment began January 7, 1983, when seeds were imbibed, and continued through February 21, 1983, which was the final harvest date. Harvesting began January 22, 1983. Data are coded in the following manner:

Column

A. Concentration of nitrate (mMoles) in nutrient solution administered on alternate days.

- B. Days from first harvest.
- C. Plant Part.
- D. Mean of four replicate plant part dry weights (grams).
- E. Standard error of the mean plant part dry weight.

F. Mean percent nitrogen content of individual plant parts. Values listed for roots are actually a combination of roots and nodules.

G. Standard error of mean percent nitrogen content.

H. Mean total leaf area (cm^2) .

I. Standard error of mean total leaf area.

	I	4 2.0	14 2.03	4 2.0	9 2 8	39 2 8	9 2 8				'n	0.5.	0 2.		م	10 10	1 1 2 1 2 1 2	16 3.	2 2	82 5.	82 5.	5.5	9 9.7	6	7.6 6	6.7	8 4.7	8 4.7	4.	8 4.7	70°7		6.2	1 7.3	81 7.3	7.3	7.3	64 5.	64 5.9	64 5.	4 5.0	8 17.	8 1	58 17 57	
	Н	.21 12	.43 12	.06 12	. 22	. 22	. 22	. 50 21	. 21	•34 2I	.76 21			8 8	•	.42 /1	. 0			ō	. 106	0	.19 10	10	.08 10	.02 10	. 193		. 193	- T	.2/ 1/	 	11 11	. 22		2		.07 22	2	.05 22	.11 22		Ξ	210	
	F G	.27	7.42 0	.49	•	•	•	6.58 0	•	.11	5.36 0	•	•	•	•	0 82.6	• ^u	4 0		•	•	•	2.96 0	•	ъ	1.26 0	•	•	•		2.80 0	•	1.20 0	,	•	•	•	2.39 0	•	2	1.16 0	•	•		
ned).	ы	਼	00.0	•	Ō	਼	Ō	00.0	00.0	0.01	00.00	0.01	0.00	0.01	0.01				0.01	00.0	0.01	0.01	0.02	00.00	0.01	0.01	0.01	00.00	0.01	00.0	0.04	0.01	10°0	0.02	0.00	0.01	0	•	0	਼	0		0	Ċ	
(continued)	Q		0.03	਼	0.13	਼	0.02		00.0	਼	0.03	•	00.0	਼	\circ		⊃ -	; <	0.03	10	•	0	•2	਼	-	਼	ب	0.04	-		٠	਼ਾ	01.0	: '	0		ē,	9	0		ŝ,	•	0.08		•
Table II	U	LEAVES	ROOTS	STEM	LEAVES	ROOTS	STEM	ŝ	NODULES	ROOTS		LEAVES	NODULES	ROOTS	STEM	n r	NUDULES	CTOOT O	T.F.AVFS			STEM	LEAVES	NODULES	ROOTS	STEM	ŝ	NODULES	ROOTS	1	ŝ	NODULES	STEM	LEAVES	i		STEM	LEAVES	- 3		STEM	LEAVES	NODULES	00000	
Appendix	B	0	0	0	7	7	2	4	4	4	4	9	9	9	9	יכ	ס ת		ر ۱۱		11	11	13	13	13	13	16	16	16	16			0 6							23					
App(A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	D C				0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	C	

Appendix Table 11 (continued).

90

Appendix Table 11 (continued).

_ <u>A</u>	В	С	D	E	<u> </u>	G	H	I
0	27	LEAVES	0.85	0.15	2.76	0.16	266.19	37.21
0	27	NODULES	0.11	0.02	•	•	266.19	37.21
Õ	27	ROOTS	0.31	0.05	1.55	0.05	266.19	37.21
õ	27	STEM	0.35	0.07	1.36	0.05	266.19	
õ	30	LEAVES	1.00	0.06	3.81	0.06	367.11	15.65
õ	30	NODULES	0.16	0.01	•	•	367.11	15.65
õ	30	ROOTS	0.42	0.02	1.55	0.04	367.11	15.65
õ	30	STEM	0.49	0.03	1.83	0.08	367.11	15.65
2	0	LEAVES	0.11	0.01	7.20	0.15	10.75	1.33
2	õ	ROOTS	0.05	0.00	5.06	1.07	10.75	1.33
2	Õ	STEM	0.02	0.00	6.78	1.32	10.75	1.33
2	2	LEAVES	0.13	0.01	•	•	23.22	2.83
2	2	ROOTS	0.06	0.01	-	•	23.22	2.83
2	2	STEM	0.03	0.00		•	23.22	2.83
2	4	LEAVES	0.11	0.01	6.27	0.44	28.41	4.43
2	4	NODULES	0.00	0.00	•	•	28.41	4.43
2	4	ROOTS	0.07	0.00	3.72	0.34	28.41	4.43
2	4	STEM	0.03	0.00	4.61	0.34	28.41	4.43
2	6	LEAVES	0.12	0.01	•	•	36.71	1.20
2	6	NODULES	0.00	0.00	•	•	36.71	1.20
2	6	ROOTS	0.06	0.00	•	•	36.71	1.20
2	6	STEM	0.03	0.00	•	•	36.71	1.20
2	9	LEAVES	0.20	0.01	4.65	0.10	82.81	2.35
2	9	NODULES	0.01	0.00	•	•	82.81	2.35
2	9	ROOTS	0.11	0.00	2.94	0.31	82,81	2.35
2	9	STEM	0.07	0.00	2.52	0.07	82.81	2.35
2	11	LEAVES	0.24	0.01	•	•	107.74	8.78
2	11	NODULES	0.01	0.00	•	•	107.74	8.78
2	11	ROOTS	0.12	0.01	•	•	107.74	8.78
2	11	STEM	0.09	0.01	•	•	107.74	8.78
2	13	LEAVES	0.30	0.01	3.64	0.11	153.82	9.16
2	13	NODULES	0.02	0.00	•	•	153.82	9.16
2	13	ROOTS	0.15	0.01	1.77	0.05	153.82	9.16
2	13	STEM	0.12	0.01	1.59	0.06	153.82	9.16
2	16	LEAVES	0.35	0.01	•	•	200.30	8.06
2	16	NODULES	0.03	0.00	•	•	200.30	8.06
2	16	ROOTS	0.18	0.00	•	•	200.30	8.06
2	16	STEM	0.15	0.00	•	•	200.30	8.06
2	18	LEAVES	0.52	0.01	3.08	0.14	237 .9 0	
2	18	NODULES	0.04	0.00	•	•	237.90	4.66
2	18	ROOTS	0.21	0.00	1.61	0.01	237.90	
2	18	STEM	0.21	0.00	1.46	0.03	237.90	
2	20	LEAVES	0.56	0.02	•	•	245.20	
2	20	NODULES	0.05	0.00	•	•	245.20	
2	20	ROOTS	0.25	0.01	•	•	245.20	
2	20	STEM	0.23	0.01	•	•	245.20	8.44

Appendix Table 11 (continued).

A	В	С	D	E	F	G	н	
2	23	LEAVES	0.80	0.06	2.39	0.11	289.26	20.06
2	23	NODULES	0.06	0.01		0.11	289.26	
2	23	ROOTS	0.30	0.01	1.54	0.05	289.26	
2	23	STEM	0.32	0.03	1.21	0.04	289.26	
2	25	LEAVES	0.90	0.04			302.20	
2	25	NODULES	0.08	0.04	•	•	302.20	
2	25	ROOTS	0.00	0.00	•	•	302.20	12.59
2	25	STEM	0.34	0.02	•	•	302.20	12.59
2	27	LEAVES	1.06	0.02	2.30	0.23	338.98	8.24
2	27	NODULES	0.11	0.01		0.25	338.98	8.24
2	27	ROOTS	0.43	0.02	1.64	0.03	338.98	8.24
2	27	STEM	0.45	0.01	1.25	0.03	338.98	8.24
2	30	LEAVES	1.05	0.10	3.26	0.11	362.63	22.65
2	30	NODULES	0.07	0.03		•	362.63	22.65
2	30	ROOTS	0.45	0.03	1.72	0.04	362.63	22.65
2	30	STEM	0.52	0.02	1.43	0.07	362.63	22.65
6	0	LEAVES	0.10	0.02	7.30	0.41	11.64	1.71
6	Ő	ROOTS	0.05	0.01	6.34	0.49	11.64	1.71
6	Ő	STEM	0.02	0.00	9.09	0.69	11.64	1.71
6	2	LEAVES	0.13	0.01	•	•	23.22	2.45
6	2	ROOTS	0.06	0.01	•	•	23.22	2.45
6	2	STEM	0.03	0.00	•	•	23.22	2.45
6	4	LEAVES	0.13	0.01	6.67	0.23	27.45	4.06
6	4	NODULES	0.00	0.00	•	••••••	27.45	4.06
6	4	ROOTS	0.07	0.00	4.48	0.39	27.45	4.06
6	4	STEM	0.03	0.00	5.31	0.49	27.45	4.06
6	6	LEAVES	0.16	0.01	•	•	49.78	3.28
6	6	NODULES	0.00	0.00	•	•	49.78	3.28
6	6	ROOTS	0.08	0.00	•	•	49.78	3.28
6	6	STEM	0.04	0.00		•	49.78	3.28
ő	9	LEAVES	0.21	0.01	5.14	0.28	88.31	8.76
6	9	NODULES	0.00	0.00	•	•	88.31	8.76
6	9	ROOTS	0.11	0.01	3.05	0.14	88.31	8.76
6	9	STEM	0.08	0.01	2.99	0.21	88.31	8.76
6	11	LEAVES	0.23	0.02	•	•	103.27	12.25
6	11	NODULES	0.00	0.00	•	•	103.27	12.25
6	11	ROOTS	0.10	0.01	•	•	103.27	
6	11	STEM	0.09	0.01	•	•	103.27	12.25
6	13	LEAVES	0.30	0.03	4.31	0.30		
6	13	NODULES	0.01	0.00	•	•	152.09	
6	13	ROOTS	0.15	0.01	2.10	0.09	152.09	
6	13	STEM	0.13	0.02	1.86	0.13	152.09	
6	16	LEAVES	0.33	0.04	•	•	189.67	18.80
6	16	NODULES	0.01	0.00	•	•	189.67	18.80
6	16	ROOTS	0.17	0.02	•	•	189.67	18.80
6	16	STEM	0.14	0.02	•	•	189.67	18.80

Appendix Table 11 (continued).

A	В	С	D	E	F	G	<u> </u>	I
6	18	LEAVES	0.55	0.02	3.44	0.10	250.10	7.68
6	18	NODULES	0.02	0.00	•	•	250.10	7.68
6	18	ROOTS	0.23	0.00	1.91	0.06	250.10	7.68
6	18	STEM	0.23	0.01	1.73	0.06	250.10	7.68
6	20	LEAVES	0.52	0.02	•	•	238.38	4.86
6	20	NODULES	0.02	0.01	•	•	238.38	4.86
6	20	ROOTS	0.24	0.02	•	•	238.38	4.86
6	20	STEM	0.24	0.01	•	•	238.38	4.86
6	23	LEAVES	0.88	0.06	2.85	0.11	285.18	18.25
6	23	NODULES	0.04	0.00	•	•	285.18	18.25
6	23	ROOTS	0.33	0.02	1.49	0.18	285.18	18.25
6	23	STEM	0.36	0.02	1.55	0.24	285.18	18.25
6	25	LEAVES	1.00	0.07	•	•	307.75	16.78
6	25	NODULES	0.05	0.00	•	•	307.75	16.78
6	25	ROOTS	0.39	0.04	•	•	307.75	16.78
6	25	STEM	0.47	0.03	•	•	307.75	16.78
6	27	LEAVES	0.92	0.07	2.84	0.09	293.54	23.03
6	27	NODULES	0.06	0.01	•	•	293.54	23.03
6	27	ROOTS	0.39	0.02	1.93	0.18	293.54	23.03
6	27	STEM	0.46	0.04	1.54	0.33	293.54	23.03
б	30	LEAVES	1.07	0.02	3.40	0.12	380.57	6.74
6	30	NODULES	0.09	0.01	•	•	380.57	6.74
6	30	ROOTS	0.53	0.01	1.85	0.06	380.57	6.74
6	30	STEM	0.61	0.05	1.29	0.13	380.57	6.74
12	0	LEAVES	0.11	0.01	6.80	0.57	14 .9 0	1.27
12	0	ROOTS	0.04	0.00	6.64	0.62	14 .9 0	1.27
12	0	STEM	0.02	0.00	7.38	0.79	14.90	1.27
12	2		•	•	•	•	19.20	1.69
12	4	LEAVES	0.14	0.00	6.88	0.15	33.97	1.43
12	4	NODULES	0.00	0.00	•	•	33.97	1.43
12	4	ROOTS	0.07	0.00	4.77	0.15	33.97	1.43
12	4	STEM	0.04	0.00	4.91	0.15	33.97	1.43
12	6	LEAVES	0.15	0.01	•	•	46.66	1.71
12	6	NODULES	0.00	0.00	•	•	46.66	1.71
12	6	ROOTS	0.07	0.00	•	•	46.66	1.71
12	6	STEM	0.04	0.00	•	•	46.66	1.71
12	9	LEAVES	0.21	0.01	5.11	0.21	91.22	4.90
12	9	NODULES	0.00	0.00	•	•	91.22	4.9 0
12	9	ROOTS	0.10	0.00	3.49	0.43		4 .9 0
12	9	STEM	0.08	0.01	3.64	0.29	91.22	4 .9 0
12	11	LEAVES	0.26	0.01	•	•	110.40	5.28
12	11	NODULES	0.00	0.00	•	•	110.40	5.28
12	11	ROOTS	0.11	0.00	•	•	110.40	5.28
12	11	STEM	0.09	0.01	•	•	110.40	5.28
12	13	LEAVES	0.32	0.01	4.53	0.23	152.95	6.72
12	13	NODULES	0.00	0.00	•	•	152.95	
12	13	ROOTS	0.15	0.01	3.23	0.42		6.72
12	13	STEM	0.13	0.01	2.39	0.25	152 .9 5	6.72

Α	В	C	D	E	F	G	Н	I
12	16	LEAVES	0.42	0.02	•	•	232.74	9.20
12	16	NODULES	0.01	0.00	•	•	232.74	9.20
12	16	ROOTS	0.18	0.01	•	•	232.74	9.20
12	16	STEM	0.18	0.00	•	•	232.74	9.20
12	18	LEAVES	0.61	0.02	3.85	0.17	281.08	12.82
12	18	NODULES	0.01	0.00	•	•	281.08	12.82
12	18	ROOTS	0.23	0.01	2.32	0.04	281.08	12.82
12	18	STEM	0.26	0.01	2.10	0.04	281.08	12.82
12	20	LEAVES	0.73	0.02	•	•	304.61	7.97
12	20	NODULES	0.02	0.00	•	•	304.61	7.97
12	20	ROOTS	0.28	0.00	•	•	304.61	7.97
12	20	STEM	0.34	0.01	•	•	304.61	7.97
12	23	LEAVES	0.97	0.06	2.69	0.07	293.67	21.22
12	23	NODULES	0.02	0.01	•	•	293.67	21.22
12	23	ROOTS	0.32	0.03	2.35	0.10	293.67	21.22
12	23	STEM	0.41	0.03	2.06	0.12	293.67	21.22
12	25	LEAVES	0.98	0.04	•	•	314.89	12.78
12	25	NODULES	0.02	0.01	•	•	314.89	12.78
12	25	ROOTS	0.36	0.01	•	•	314.89	12.78
12	25	STEM	0.46	0.02	•	•	314.89	12.78
12	27	LEAVES	1.12	0.09	3.28	0.04	357.80	21.29
12	27	NODULES	0.05	0.01	•	•	357.80	21.29
12	27	ROOTS	0.48	0.03	2.16	0.05	357.80	21.29
12	27	STEM	0.56	0.04	1.64	0.04	357.80	21.29
12	30	LEAVES	1.36	0.08	3.58	0.06	427.88	34.30
12	30	NODULES	0.06	0.02	•	•	427.88	34.30
12	30	ROOTS	0.66	0.08	2.20	0.14	427.88	34.30
12	30	STEM	0.67	0.05	2.05	0.24	427.88	34.30

Appendix Table 11 (continued).

Appendix Table 12 contains data for the growth analysis study conducted outdoors during the Spring and Summer. The experiment began May 9, 1984, when seeds were imbibed, and continued through June 24, 1983, which was the final harvest date. Harvesting began May 23, 1983. Data are coded in the following manner:

Column

A. Concentration of nitrate (mMoles) in nutrient solution administered on alternate days. The abbreviation NN denotes the non-nodulating treatment.

B. Days from first harvest.

C. Plant Part.

D. Mean of four replicate plant part dry weights (grams).

E. Standard error of the mean plant part dry weight.

F. Mean percent nitrogen content of individual plant parts. Values listed for roots are actually a combination of roots and nodules.

G. Standard error of mean percent nitrogen content.

H. Mean total leaf area (cm^2) .

I. Standard error of mean total leaf area.

Appendix	Table	12	(continued).

A	В	С	D	E	F	G	Н	
0	0	LEAVES	0.14	0.02	5.71	0.19	18.80	4.96
Õ	Õ	ROOTS	0.08	0.01	3.51	0.39	18.80	4.96
Õ	Ő	STEMS	0.03	0.01	6.56	0.89	18.80	4.96
Õ	2	LEAVES	0.14	0.01	•	•	19.45	5.87
Ō	2	NODULES	0.00	0.00	•	•	19.45	5.87
Ō	2	ROOTS	0.09	0.00	•	•	19.45	5.87
Ō	2	STEMS	0.04	0.00	•	•	19.45	5.87
Ō	4	LEAVES	0.21	0.01	4.22	0.04	50.25	2.70
0	4	NODULES	0.00	0.00	•	•	50.25	2.70
0	4	ROOTS	0.14	0.01	2.11	0.05	50.25	2.70
0	4	STEMS	0.06	0.00	2.71	0.04	50.25	2.70
0	7	LEAVES	0.27	0.02	•	•	79.73	3.83
0	7	NODULES	0.02	0.00	•	•	79.73	3.83
0	7	ROOTS	0.20	0.01	•	•	79.73	3.83
0	7	STEMS	0.11	0.01	•	•	79.73	3.83
0	9	LEAVES	0.32	0.02	2.24	0.18	87.84	8.31
0	9	NODULES	0.04	0.00	•	•	87.84	8.31
0	9	ROOTS	0.26	0.01	1.21	0.06	87.84	8.31
0	9	STEMS	0.14	0.01	1.00	0.07	87.84	8.31
0	11	LEAVES	0.39	0.02	•	•	111.21	6.15
0	11	NODULES	0.05	0.01	•	•	111.21	6.15
0	11	ROOTS	0.32	0.01	•	•	111.21	6.15
0	11	STEMS	0.17	0.01	•	•	111.21	6.15
0	14	LEAVES	0.37	0.00	2.01	0.61	115.63	4.79
0	14	NODULES	0.07	0.00	•	•	115.63	4.79
0	14	ROOTS	0.35	0.02	1.15	0.09	115.63	4.79
0	14	STEMS	0.20	0.01	1.94	0.47	115.63	4.79
0	16	LEAVES	0.58	0.03	•	•	176.02	11.23
0	16	NODULES	0.10	0.01	•	•	176.02	11.23
0	16	ROOTS	0.40	0.03	•	•	176.02	11.23
0	16	STEMS	0.27	0.01	•	•	176.02	11.23
0	18	LEAVES	0.53	0.08	2.91	0.13	165.23	21.87
0	18	NODULES	0.09	0.01	•	•	165.23	21.87
0	18	ROOTS	0.36	0.05	1.12	0.09	165.23	21.87
0	18	STEMS	0.27	0.04	1.26	0.08	165.23	21.87
0	21	LEAVES	0.81	0.06	•	•	201.14	14.41
0	21	NODULES	0.15	0.02	•	•	201.14	14.41
0	21	ROOTS	0.56	0.04	•	•	201.14	
0	21	STEMS	0.41	0.03	•	•	201.14	
0	23	LEAVES	1.04	0.03	3.21	0.28	255.50	
0	23	NODULES	0.20	0.01	•	•	255.50	
0	23	ROOTS	0.63	0.07	1.27	0.04	255.50	
0	23	STEMS	0.61	0.02	1.29	0.08	255.50	
0	25	LEAVES	1.23	0.08	•	•	404.51	
0	25	NODULES	0.20	0.02	•	•	404.51	
0	25	ROOTS	0.64	0.04	•	•	404.51	
0	25	STEMS	0.71	0.10	•	•	404.51	35.12

Appendix Table 12 (continued).

A	В	С	D	E	F	G	н	I
0	28	LEAVES	1.80	0.21	3.53	0.10	525.12	49.28
0	28	NODULES	0.31	0.03	•		525.12	
0	28	ROOTS	0.99	0.13	1.54	0.04	525.12	
Õ	28	STEMS	1.13	0.16	1.70	0.11	525.12	
ŏ	30	LEAVES	1.94	0.28	•	•	577.01	
õ	30	NODULES	0.32	0.05	•	•	577.01	
Õ	30	ROOTS	0.99	0.19	•	•	577.01	
õ	30	STEMS	1.22	0.21	•	•	577.01	
2	0	LEAVES	0.14	0.01	5.14	0.18	24.90	0.79
2	Õ	ROOTS	0.10	0.01	3.14	0.07	24.90	0.79
2	Ő	STEMS	0.04	0.00	6.76	1.12	24.90	0.79
2	2	LEAVES	0.15	0.01	•	•	32.02	1.12
2	2	NODULES	0.00	0.00	•	•	32.02	1.12
2	2	ROOTS	0.11	0.01	•	•	32.02	1.12
2	2	STEMS	0.05	0.00	•	•	32.02	1.12
2	4	LEAVES	0.19	0.02	4.27	0.26	46.25	3.65
2	4	NODULES	0.00	0.00	•	•	46.25	3.65
2	4	ROOTS	0.12	0.01	2.43	0.13	46.25	3.65
2	4	STEMS	0.06	0.01	2.89	0.22	46.25	3.65
2	7	LEAVES	0.28	0.02	•	•	76.31	2.92
2	7	ROOTS	0.20	0.01	•	•	76.31	2.92
2	7	STEMS	0.11	0.01	•	•	76.31	2.92
2	9	LEAVES	0.33	0.00	2.62	0.07	94.41	3.45
2	9	NODULES	0.03	0.00	•	•	94.41	3.45
2	9	ROOTS	0.25	0.02	1.42	0.01	94.41	3.45
2	9	STEMS	0.14	0.00	1.17	0.04	94.41	3.45
2	11	LEAVES	0.38	0.04	•	•	114.95	11.42
2	11	NODULES	0.05	0.00	•	•	114.95	11.42
2	11	ROOTS	0.29	0.04	•	•	114.95	11.42
2	11	STEMS	0.18	0.03	•	•	114.95	11.42
2	14	LEAVES	0.41	0.04	3.03	0.28	134.09	8.38
2	14	NODULES	0.07	0.01	•	•	134.09	8.38
2	14	ROOTS	0.40	0.02	1.13	0.07	134.09	8.38
2	14	STEMS	0.23	0.02	0.97	0.14	134.09	8.38
2	16	LEAVES	0.55	0.06	•	•	175.29	15.97
2	16	NODULES	0.07	0.01	•	•	175.29	15.97
2	16	ROOTS		0.04	•	•	175.29	15.97
2	16	STEMS	0.28	0.03	•	•	175.29	
2	18	LEAVES	0.55	0.10	2.83	0.29		
2	18	NODULES	0.07	0.01	•	•	180.54	
2	18	ROOTS	0.41	0.06	1.16	0.04	180.54	
2	18	STEMS	0.29	0.04	1.06	0.14		
2	21	LEAVES	0.94	0.03	•	•	304.06	
2	21	NODULES	0.14	0.01	•	•	304.06	
2	21	ROOTS	0.75	0.03	•	•	304.06	
2	21	STEMS	0.57	0.01	•	•	304.06	17.66

Appendix Table 12 (continued).

-	A	В	С	D	E	F	G	н	I
	2	23	LEAVES	1.01	0.02	3.57	0.14	349.01	3.34
	2	23	NODULES	0.14	0.02	•		349.01	3.34
	2	23	ROOTS	0.64	0.02	1.30	0.04	349.01	3.34
	2	23	STEMS	0.58	0.01	1.22	0.11	349.01	3.34
	2	25	LEAVES	1.26	0.04	•	•	386.63	9.75
	2	25	NODULES	0.19	0.01	•	•	386.63	9.75
	2	25	ROOTS	0.84	0.00	•	•	386.63	9.75
	2	25	STEMS	0.79	0.01	•		386.63	9.75
	2	28	LEAVES	1.57	0.20	3.85	0.29	545.06	72.36
	2	28	NODULES	0.24	0.02	•		545.06	72.36
	2	28	ROOTS	0.99	0.08	1.48	0.04	545.06	72.36
	2	28	STEMS	1.06	0.13	1.44	0.15		72.36
	2	30	LEAVES	2.42	0.22	•	•	635.75	25.24
	2	30	NODULES	0.35	0.05	•	•	635.75	25.24
	2	30	ROOTS	1.41	0.10	•	•	635.75	25.24
	2	30	STEMS	1.54	0.11	•	•	635.75	25.24
	2NN	0	LEAVES	0.10	0.01	4.22	0.38	13.56	1.20
	2NN	0	ROOTS	0.07	0.00	2.56	0.17	13.56	1.20
	2NN	0	STEMS	0.02	0.00	5.22	0.29	13.56	1.20
	2NN	2	LEAVES	0.10	0.01	•	•	22.21	1.91
	2NN	2	ROOTS	0.09	0.01	•	•	22.21	1.91
	2NN	2	STEMS	0.02	0.00	•	•	22.21	1.91
	2NN	4	LEAVES	0.12	0.01	3.05	0.18	30.60	2.52
	2NN	4	ROOTS	0.11	0.01	1.63	0.10	30.60	2.52
	2NN	4	STEMS	0.03	0.00	3.36	0.22	30.60	2.52
	2NN	7	LEAVES	0.16	0.01	•	•	52.76	3.06
	2NN	7	ROOTS	0.15	0.02		•	52.76	3.06
	2NN	7	STEMS	0.05	0.00	•	•	52.76	3.06
	2NN	9	LEAVES	0.18	0.01	2.53	0.11	55.19	2.76
	2NN	9	ROOTS	0.19	0.00	1.33	0.05	55.19	2.76
	2NN	9	STEMS	0.06	0.00	1.29	0.06	55.19	2.76
	2NN	11	LEAVES	0.27	0.02	•	•	82.59	7.10
	2NN	11	ROOTS	0.22	0.02	•	•	82.59	7.10
	2NN	11	STEMS	0.11	0.01	•	•	82.59	7.10
	2NN	14	LEAVES	0.23	0.01	1.93	0.08	81.53	0.47
	2NN	14	ROOTS	0.30	0.01	7.78	6.74	81.53	0.47
	2NN	14	STEMS	0.11	0.01	0 .79	0.02	81.53	0.47
	2NN	16	LEAVES	0.30	0.01	•	0	94.82	3.00
	2NN	16	ROOTS	0.29	0.03	•	•	94.82	3.00
	2NN	16	STEMS	0.12	0.00	•	•	94.82	3.00
	2NN	18	LEAVES	0.38	0.03	2.36	0.07	121.92	7.37
	2NN	18	ROOTS	0.36	0.04	1.46	0.19	121.92	7.37
	2NN	18	STEMS	0.17	0.01	1.03	0.04	121.92	7.37
	2NN	21	LEAVES	0.54	0.02	•	•	175.35	12.97
	2NN	21	ROOTS	0.50	0.04	•	•	175.35	12.97
	2NN	21	STEMS	0.29	0.03	•	•	175.35	12.97

-

Appendix Table 12 (continued).

_A	В	С	D	E	F	G	н	I
2NN	23	LEAVES	0.59	0.01	1.82	0.08	191.04	14.95
2NN	23	ROOTS	0,55	0.03	1.01	0.03	191.04	14.95
2NN	23	STEMS	0.29	0.01	0.70	0.03	191.04	
2NN	25	LEAVES	0.61	0.03	•	•	202.12	
2NN	25	ROOTS	0.55	0.02	•	•	202.12	
2NN	25	STEMS	0.31	0.04	•	•	202.12	
2NN	28	LEAVES	0.71	0.05	1.84	0.04	222.14	
2NN	28	ROOTS	0.59	0.05	1.16	0.05	222.14	
2NN	28	STEMS	0.36	0.05	0.88	0.05		
2NN	30	LEAVES	0.74	0.02	•	•	226.47	12.31
2NN	30	ROOTS	0.59	0.03	•	•	226.47	12.31
2NN	30	STEMS	0.38	0.02	•	•	226.47	12.31
6	0	LEAVES	0.11	0.01	4.72	0.37	19.59	2.24
6	0	ROOTS	0.07	0.01	2.81	0.20	19.59	2.24
6	0	STEMS	0.02	0.00	4.92	0.10	19.59	2.24
6	2	LEAVES	0.13	0.02	•	•	32.16	4.18
6	2	NODULES	0.00	0.00	•	•	32.16	4.18
6	2	ROOTS	0.09	0.01	•	•	32.16	4.18
6	2	STEMS	0.04	0.01	•	•	32.16	4.18
6	4	LEAVES	0.16	0.01	3.95	0.46	39.16	2.40
6	4	NODULES	0.00	0.00	•	•	39.16	2.40
6	4	ROOTS	0.11	0.01	2.39	0.12	39.16	2.40
6	4	STEMS	0.05	0.00	3.36	0.25	39.16	2.40
6	7	LEAVES	0.27	0.01	•	•	98.48	2.13
6	7	NODULES	0.01	0.00	•	•	98.48	2.13
6	7	ROOTS	0.20	0.01	•	•	98.48	2.13
6	7	STEMS	0.13	0.00	• • • • •	• • • •	98.48	2.13
6	9	LEAVES	0.43	0.02	3.35	0.06	124.53	6.57 6.57
6	9 9	NODULES	0.02 0.26	0.00 0.01	1.65	0.12	124.53 124.53	6.57
6 6	9	ROOTS STEMS	0.20	0.01	1.44	0.12	124.53	6.57
6	11	LEAVES	0.54	0.03	1.44	0.10	152.16	8.00
6	11	NODULES	0.03	0.00	•	•	152.16	8.00
6	11	ROOTS	0.35	0.00	•	•	152.16	8.00
6	11	STEMS	0.26	0.02	•	•	152.16	8.00
6	14	LEAVES	0.62	0.06	3.42	0.21	194.01	17.70
6	14	NODULES	0.04	0.01	•	••••	194.01	17.70
6	14	ROOTS	0.45	0.06	1.31	0.10	194.01	
6	14	STEMS	0.37	0.04	1.49	0.42		
6	16	LEAVES	0.83	0.04	•	•	239.52	
6	16	NODULES	0.06	0.01	•	•	239.52	
6	16	ROOTS	0.53	0.03	•	•	239.52	
6	16	STEMS	0.49	0.03	•	•	239.52	11.72
6	18	LEAVES	0.89	0.08	3.57	0.12		5.61
6	18	NODULES	0.08	0.02	•	•	291.55	5.61
6	18	ROOTS	0.49	0.06	1.57	0.06	291.55	5.61
6	18	STEMS	0.54	0.03	1.45	0.09	291.55	5.61

.

6 21 LEAVES 1.27 0.11	.91
6 21 NODULES 0.08 0.01	
6 21 ROOTS 0.86 0.05 365.99 26.	
6 21 STEMS 0.79 0.05 365.99 26.	
6 23 LEAVES 1.36 0.07 3.10 0.09 406.51 12.	
6 23 NODULES 0.09 0.02 406.51 12.	
6 23 ROOTS 1.01 0.11 1.41 0.08 406.51 12.	
6 23 STEMS 1.01 0.05 1.15 0.11 406.51 12.	
6 25 LEAVES 1.58 0.15 420.17 34.	
6 25 NODULES 0.10 0.02 420.17 34.	
6 25 ROOTS 1.14 0.13 420.17 34.	
6 25 STEMS 1.08 0.08 420.17 34.	
6 28 LEAVES 2.34 0.14 2.95 0.19 585.67 26.	
6 28 NODULES 0.15 0.03 585.67 26.	
6 28 ROOTS 1.47 0.17 1.33 0.07 585.67 26.	
6 28 STEMS 1.73 0.14 1.12 0.08 585.67 26.	
6 30 LEAVES 2.43 0.04	
6 30 NODULES 0.17 0.03	
	.68
	.68
	•68
	•00
	.67
	•67 •74
	.74
	.74
	.22
	.22
	•22
	.00
	.00
	.00
	.79
	.79
	.79
	.65
	.65
	.65
	.53
	•53
	•53
6NN 18 LEAVES 0.57 0.04 3.34 0.07 197.36 13.	
6NN 18 ROOTS 0.37 0.04 1.34 0.07 197.36 13.	
6NN 18 STEMS 0.27 0.03 1.34 0.15 197.36 13.	.18

Appendix Table 12 (continued).

Appendix Table 12. (continued).

A	В	С	D	E	F	G	H	<u> </u>
6NN	21	LEAVES	0.87	0.05	•	•	283.16	19.64
6NN	21	ROOTS	0.69	0.04	•	•	283.16	19.64
6NN	21	STEMS	0.50	0.05	•	•	283.16	19.64
6NN	23	LEAVES	0.93	0.02	2.49	0.12	307.51	10.45
6NN	23	ROOTS	0.81	0.04	1.17	0.05	307.51	10.45
6NN	23	STEMS	0.59	0.02	0.86	0.06		10.45
6NN	25	LEAVES	1.21	0.13	•		403.80	36.49
6NN	25	ROOTS	1.09	0.12	•	•	403.80	
6NN	25	STEMS	0.72	0.14	•	•	403.80	
6NN	28	LEAVES	1.54	0.22	2.47	0.14	453.07	51.92
6NN	28	ROOTS	1.17	0.17	1.28	0.06	453.07	51.92
6NN	28	STEMS	1.02	0.18	1.02	0.04	453.07	51.92
6NN	30	LEAVES	1.74	0.08	•	•	463.75	21.54
6NN	30	ROOTS	1.39	0.06		•	463.75	21.54
6NN	30	STEMS	1.15	0.04	•	•	463.75	
12	0	LEAVES	0.13	0.01	5.38	0.60	15.10	2.12
12	0	ROOTS	0.09	0.00	3.34	0.12	15.10	2.12
12	0	STEMS	0.03	0.00	6.50	0.85	15.10	2.12
12	2	LEAVES	0.14	0.00	•	•	30.17	1.72
12	2	NODULES	0.00	0.00	•	•	30.17	1.72
12	2	ROOTS	0.09	0.01	•	•	30.17	1.72
12	2	STEMS	0.04	0.00	•	•	30.17	1.72
12	4	LEAVES	0.24	0.02	4.35	0.12	49.43	4.17
12	4	NODULES	0.00	0.00	•	•	49.43	4.17
12	4	ROOTS	0.12	0.01	2.37	0.10	49.43	4.17
12	4	STEMS	0.07	0.00	4.54	1.00	49.43	4.17
12	7	LEAVES	0.36	0.02	•	•	107.44	6.92
12	7	NODULES	0.01	0.00	•	u	107.44	6.92
12	7	ROOTS	0.20	0.02	•	•	107.44	6.92
12	7	STEMS	0.13	0.01	•	•	107.44	6.92
12	9	LEAVES	0.49	0.02	3.99	0.13	138.86	4.47
12	9	NODULES	0.02	0.00	•	•	138.86	4.47
12	9	ROOTS	0.26	0.01	2.22	0.06	138.86	4.47
12	9	STEMS	0.20	0.01	2.27	0.08	138.86	4.47
12	11	LEAVES	0.62	0.01	•	•	179.39	7.15
12	11	NODULES	0.02	0.00	•	•	179.39	7.15
12	11	ROOTS	0.33	0.03	•	•	179.39	7.15
12	11	STEMS	0.28	0.02	•	•	179.39	
12	14	LEAVES	0.71	0.03	4.04	0.14	203.28	
12	14	NODULES	0.02	0.00	•	•	203.28	
12	14	ROOTS	0.46	0.04	1.65		203.28	
12	14	STEMS	0.42	0.03	2.16		203.28	
12	16	LEAVES	0.94	0.08	•	•	250.34	
12	16	NODULES	0.02	0.01	•	•	250.34	
12	16	ROOTS	0.53	0.04	•	•	250.34	
12	16	STEMS	0.56	0.05	•	•	250.34	22.18

Appendix Table 12 (continued).

_A	В	С	D	E	F	G	н	I
12	18	LEAVES	1.26	0.11	3.54	0.36	279.04	36.53
12	18	NODULES	0.02	0.01	•	•	279.04	36.53
12	18	ROOTS	0.68	0.05	2.07	0.14	279.04	36.53
12	18	STEMS	0.77	0.04	2.34	0.26	279.04	36.53
12	21	LEAVES	1.43	0.07	•	•	355.12	23.76
12	21	NODULES	0.02	0.01	•	•	355.12	23.76
12	21	ROOTS	0.80	0.12	•	•	355.12	23.76
12	21	STEMS	0.91	0.05	•	•	355.12	23.76
12	23	LEAVES	1.59	0.06	3.45	0.08	440.26	18.58
12	23	NODULES	0.02	0.00	•	•	440.26	18.58
12	23	ROOTS	1.02	0.07	1.62	0.02	440.26	18.58
12	23	STEMS	1.23	0.04	1.81	0.07	440.26	18.58
12	25	LEAVES	1.99	0.02	•	•	458.49	33.52
12	25	NODULES	0.04	0.00	•	•	458.49	33.52
12	25	ROOTS	1.16	0.04	•	•	458.49	33.52
12	25	STEMS	1.38	0.12	•	•	458.49	33.52
12	28	LEAVES	2.15	0.20	3.10	0.20	536.73	35.96
12	28	NODULES	0.03	0.01	•	*	536.73	35.96
12	28	ROOTS	1.19	0.18	2.04	0.08	536.73	35.96
12	28	STEMS	1.61	0.15	2.20	0.28	536.73	35.96
12	30	LEAVES	2.73	0.29	•	•	597.56	48.94
12	30	NODULES	0.03	0.01	•	•	597.56	48.94
12	30	ROOTS	1.58	0.23	•	•	597.56	48.94
12	30	STEMS	1.93	0.16	•	•	597.56	48.94
12NN	0	LEAVES	0.10	0.01	3.81	0.39	12.04	2.67
12NN	0	ROOTS	0.06	0.01	2.67	0.25	12.04	2.67
12NN	0	STEMS	0.02	0.00	6.71	1.34	12.04	2.67
12NN	2	LEAVES	0.10	0.00	•	•	23.51	1.49
12NN	2	ROOTS	0.08	0.01	•	•	23.51	1.49
12NN	2	STEMS	0.02	0.00	•	•	23.51	1.49
12NN	4	LEAVES	0.14	0.00	3.66	0.15	37.13	0.93
12NN	4	ROOTS	0.11	0.01	2.13	0.16	37.13	0.93
12NN	4	STEMS	0.03	0.00	3.95	0.45	37.13	0.93
12NN	7	LEAVES	0.22	0.01	•	•	70.42	3.84
12NN	7	ROOTS	0.16	0.01	•	•	70.42	3.84
12NN	7	STEMS	0.07	0.00	•	•	70.42	3.84
12NN	9	LEAVES	0.29	0.02	3.97	0.07	96.06	7.72
12NN	9	ROOTS	0.17	0.02	2.08	0.09	96.06	7.72
12NN	9	STEMS	0.10	0.01	2.55	0.15	96.06	7.72
12NN	11	LEAVES	0.40	0.03	•	•	124.54	2.47
12NN	11	ROOTS	0.22	0.01	•	•	124.54	2.47
12NN	11	STEMS	0.16	0.01	•	•	124.54	2.47
12NN	14	LEAVES	0.46	0.04	4.27	0.04	150.87	10.94
12NN	14	ROOTS	0.30	0.02	2.04	0.09	150.87	10.94
12NN	14	STEMS	0.23	0.02	2.43	0.09	150.87	10.94
12NN	16	LEAVES	0.65	0.03	•	•	182.43	8.64
12NN	16	ROOTS	0.41	0.04	•	•	182.43	8.64
12NN	16	STEMS	0.37	0.03	•	•	182.43	8.64

.

_	Α	В	С	D	Е	F	G	H	I
-									
	12NN	18	LEAVES	0.75	0.09	3.96	0.08	238.86	31.04
	12NN	18	ROOTS	0.38	0.06	2.22	0.15	238.86	31.04
	12NN	18	STEMS	0.40	0.05	2.38	0.15	238.86	31.04
	12NN	21	LEAVES	1.14	0.10	•	•	331.24	38.82
	12NN	21	ROOTS	0.74	0.12	•	•	331.24	38.82
	12NN	21	STEMS	0.70	0.05	•	•	331.24	38.82
	12NN	23	LEAVES	1.46	0.14	3.12	0.14	430.15	38.37
	12NN	23	ROOTS	1.07	0.18	1.53	0.12	430.15	38.37
	12NN	23	STEMS	0.93	0.07	1.58	0.29	430.15	38.37
	12NN	25	LEAVES	1.50	0.20	•	•	423.04	49.59
	12NN	25	ROOTS	0.81	0.17	•	•	423.04	49.59
	12NN	25	STEMS	0.99	0.11	•	•	423.04	49.59
	12NN	28	LEAVES	1.60	0.22	3.40	0.23	414.84	47.08
	12NN	28	ROOTS	0.93	0.18	2.26	0.22	414.84	47.08
	12NN	28	STEMS	1.04	0.13	2.75	0.12	414.84	47.08
	12NN	30	LEAVES	2.33	0.21	•	•	593.43	44.84
	12NN	30	ROOTS	1.86	0.68	•	•	593.43	44.84
	12NN	30	STEMS	1.60	0.13	•	•	593.43	44.84

Appendix Table 12 (continued).

Appendix Tables 13 and 14 contain acetylene reduction values for plants harvested from the greenhouse during the Winter (Table 13) or from outside during the Spring and Summer (Table 14). Data are coded in the following manner:

Column

A. Concentration of nitrate (mMoles) in nutrient solution administered on alternate days.

B. Days from first harvest.

C. Mean acetylene reduction activity (uMoles C_2H_4 /plant/hour).

D. Standard error of mean acetylene reduction activity.

Appendix Table 13.

<u>A</u>	В	С	D	Α	<u> </u>	С	D
0	6	0.85	0.46	6	6	0.00	0.00
0	9	1.28	0.18	6	9	0.27	0.10
0	11	1.60	0.51	6	11	0.32	0.14
0	13	4.00	0.40	6	13	1.02	0.29
0	16	4.85	0.29	6	16	1.44	0.24
0	18	7.09	1.46	6	18	3.31	0.56
0	20	7.62	0.51	6	20	3.15	0.98
0	23	12.21	0.56	6	23	5.37	0.46
0	25	14.18	2.68	6	25	7.68	0.97
0	27	18.66	2.09	6	27	6.51	1.05
0	30	6.83	1.77	6	30	3.42	1.71
2	6	0.00	0.00	12	6	0.00	0.00
2	9	0.69	0.24	12	9	0.00	0.00
2	11	1.30	0.40	12	11	0.11	0.06
2	13	2.93	0.24	12	13	0.11	0.06
2	16	2.51	0.57	12	16	0.48	0.18
2	18	7.52	0.59	12	18	1.44	0.20
2	23	10.56	1.95	12	20	1.55	0.18
2	25	13.95	1.29	12	23	0.96	0.54
2	27	13.97	1.46	12	25	1.39	0.48
2	30	5.02	1.08	12	27	3.95	0.86

A	B	С	D	<u>A</u>	В	С	D
0	4	0.10	0.03	6	4	0.10	0.04
Ō	7	1.57	0.30	6	7	0.31	0.06
0	9	3.87	0.84	6	9	1.40	0.45
0	11	5.72	1.55	6	11	2.09	0.64
0	14	6.21	0.88	6	14	3.70	0.57
0	16	7.11	1.47	6	16	3.72	0.78
0	18	9.29	0.70	6	18	4.71	1.85
0	21	20.30	2.24	6	21	7.07	2.70
0	23	24.52	1.49	6	23	6.33	1.52
0	25	27.78	2.03	6	25	8.43	3.21
0	28	41.16	6.27	6	28	21.66	4.12
0	30	33.78	4.52	6	30	17.05	4.71
2	4	0.09	0.06	12	4	0.14	0.05
2	7	1.55	0.57	12	7	0.42	0.12
2	9	1.97	0.21	12	9	0.62	0.13
2 2	11	3.87	0.87	12	11	0.47	0.12
2	14	4.75	1.78	12	14	0.74	0.24
2	16	8.11	0.92	12	16	0.62	0.17
2	18	5.57	0.69	12	18	0.65	0.25
2	21	19.27	2.78	12	21	0.62	0.24
2	23	21.27	1.44	12	23	1.04	0.24
2	25	28.61	0.91	12	25	1.94	0.28
2	28	41.64	6.04	12	28	1.85	0.47
2	30	39.71	4.67	12	30	1.67	0.48

.

Appendix Table 14 (continued).

Appendix Tables 15 and 16 contain total daily integrated photosynthetic photon flux densities (PPFD) received during the harvesting period for studies conducted in the greenhouse (Table 15) or outdoors (Table 16). Data are coded in the following manner:

Column

A. Days from first harvest. Harvesting began two weeks after seeds were imbibed.

B. Total daily integrated PPFD ($\mu E/m^2/day$)

Appendix Table 15.

Α	В	Α	В
0	5.85	16	12.12
1	9.98	17	11.05
2	9.45	18	7.88
3	5.05	19	5.69
4	3.91	20	9.66
5	10.21	21	7.71
6	7.88	22	13.60
7	12.07	23	14.02
8	5 .9 0	24	12.59
9	2.51	25	3.46
10	12.73	26	13.34
11	13.14	27	12.35
12	7.66	28	14.73
13	2.00	29	16.94
14	3.90	30	5.57
15	12.12		

Appendix Table 16.

А	В	A	В
0	40.10	16	41.65
1	41.39	17	42.30
2	42.24	18	40.88
3	38.74	19	35.13
4	36.20	20	31.00
5	37.80	21	33.54
6	37.44	22	17.16
7	28.84	23	25.48
8	39.01	24	11.86
9	38.28	25	12.36
10	38.07	26	33.87
11	35.25	27	32.98
12	21.41	28	16.63
13	11.94	29	18.02
14	18.52	30	21.81
15	39.55		

Appendix Table 17. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown in the greenhouse and entirely dependent on N_2 fixation.

SOURCE MODEL ERROR CORRECTED TOTA	DF 3 52 L 55	SUM OF 9 61.0448 2.9992 64.0440	9299 20142	20.	N SQUARE 34829766 05767695	F VALUE 352.80 PR > F 0.0001
R-SQUARE 0.953170	C.V. 5.2626	ROOT 0.240	MSE 16026		P. VAR. ME 563535691	AN
SOURCE	DF	TYPE I S	SS F	VALUE	PR > F	
LINEAR QUADRATIC CUBIC	1 1 1	55.69040 5.12896 0.22184	128	965.62 88.93 3.85	0.0001 0.0001 0.0552	
PARAMETER	ESTI	MATE	T FOR PARAMI		PR > T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	0.27 -0.00	316311 696888 858659 010316	24.55 9.24 -3.59 1.96		0.0001 0.0001 0.0007 0.0552	0.09705697 0.02996393 0.00239279 0.00005260

Appendix Table 18. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown in the greenhouse and supplied 2mM NO_3 .

SOURCE MODEL ERROR CORRECTED TOTA	DF 2 53 L 55	SUM OF 69.625 1.604 71.229	29624 45794	34.81	SQUARE 264812 027279	F VALUE 1149.96 PR > F 0.0001
R-SQUARE 0.977475	C.V. 3.6993		' MSE 399078		VAR.MEA 338152	AN
SOURCE	DF	TYPE I	SS F	VALUE	PR > F	
LINEAR QUADRATIC	1 1	62.6876 6.9376		2070.76 229.17	0.0001	
PARAMETER	ESTI	MATE	T FOR PARAME		> T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC	0.24	883087 948598 461371	41.76 26.75 -15.14	0.	0001 0001 0001	0.05863581 0.00932504 0.00030477

т. н**е** с

Appendix Table 19. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown in the greenhouse and supplied 6mM NO_3^- .

SOURCE MODEL ERROR CORRECTED TOTA	DF 3 52 L 55	SUM OF S 65.32350 1.79503 67.11853	0982 2381	MEAN SQUARE 21.77450327 0.03451969	F VALUE 630.79 PR > F 0.0001
R-SQUARE 0.973256	C.V. 3.9389	ROOT 1 0.185		DEP. VAR. ME 4.71695174	AN
SOURCE	DF	TYPE I S	S F VAL	UE PR > F	
LINEAR QUADRATIC CUBIC	1 1 1	58.597438 6.525404 0.200660	475 189.	510.0001030.0001810.0195	
OF PARAMETER	ESTI	MATE	T FOR HO: PARAMETER		STD ERROR ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	0.29 -0.00	546770 208941 886815 15293E-05	32.44 12.60 -4.79 2.41	0.0001 0.0001 0.0001 0.0195	0.07508601 0.02318094 0.00185113 0.00004069

Appendix Table 20. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown in the greenhouse and supplied 12mM NO_3 .

SOURCE MODEL ERROR CORRECTED TOTA	DF 2 53 L 55	SUM OF SQUARES 67.22323163 1.07798717 68.30121881	MEAN SQUARE 33.61161582 0.02033938	F VALUE 1652.54 PR > F 0.0001
R-SQUARE 0.984217	C.V. 2.9631	ROOT MSE 0.14261620	DEP. VAR.MEA 4.81312806	N
SOURCE	DF	TYPE I SS F VA	ALUE PR > F	
LINEAR QUADRATIC	1 1		2.950.00012.130.0001	
OF PARAMETER	ESTI	T FOR HO	, I	STD ERROR ESTIMATE
INTERCEPT LINEAR QUADRATIC	0.24	875553 54.28 192964 31.65 441347 -17.67	0.0001 0.0001 0.0001	0.04806241 0.00764352 0.00024981

Appendix Table 21. Analysis of variance for the linear regression of natural log of dry weight with time(days) of nodulated soybeans grown in the greenhouse and entirely dependent on nitrogen fixation.

.

SOURCE	DF	SUM OF SQUARES	MEAN SQUARE	F VALUE
MODEL ERROR CORRECTED TO	1 54 DTAL 55	35.73435558 1.96740831 37.70176389	35.73435558 0.03643349	980.81 PR > F 0.0001
R-SQUARE	C.V.	ROOT MSE	DEP. VAR. MEA	N
0.947817	31.6565	0.19087558	-0.60295911	
SOURCE DF	TYPE I	SS F VALUE PR	> F	
LINEAR 1	35.7343	5558 980.81 0.	0001	
PARAMETER	ESTIMATE	T FOR HO: PARAMETER=0	PR > T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR	-1.8511855 0.0856626			0.04731966 0.00273526

Appendix Table 22. Analysis of variance for the regression of the natural log of total plant dry weight on time (days) for nodulated soybeans grown in the greenhouse and supplied 2mM NO_3 .

SOURCE MODEL ERROR CORRECTED TO	DF 3 52 TAL 55	SUM OF SQUARH 41.08739207 0.78636650 41.87375858	13.69	SQUARE 9579736 1512243	F VALUE 905.66 PR > F 0.0001
R-SQUARE 0.981221	C.V. 26.7624	ROOT MSE 0.12297330		• VAR• MI 45949951	EAN
SOURCE	DF	TYPE I SS	F VALUE	PR > F	
LINEAR QUADRATIC CUBIC	1 1 1	40.675435585 0.07252802 0.33942847		0.0001 0.0330 0.0001	
PARAMETER	ESTIMATE	T FOR HO PARAMETH		> T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	-1.722759 0.039660 0.005242 -0.0001270	18 2.58 52 4.28	0.(0.(0001 0126 0001 0001	0.04969772 0.01534294 0.00122522 0.00002693

Appendix Table 23. Analysis of variance for the regression of the natural log of total plant dry weight on time (days) for nodulated soybeans grown in the greenhouse and supplied 6mM NO_3 .

SOURCE MODEL ERROR CORRECTED T	DF 3 52 TOTAL 55	SUM OF SQUAR 41.51542555 1.62065792 43.13608347	13.83	SQUARE 847518 116650	F VALUE 444.02 PR > F 0.0001
R-SQUARE 0.962429	C.V. 38.8832	ROOT MSE 0.1765403	+ -	VAR. 1 540276	
SOURCE	DF	TYPE I SS	F VALUE	PR > 1	F
LINEAR QUADRATIC CUBIC	1 1 1	41.38318311 0.03443774 0.09780471	1327.81 1.10 3.14	0.000 0.2980 0.082	5
PARAMETER	ESTIMATE	T FOR HO PARAMETE		T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	-1.7699018 0.0665330 0.0027423 -6.8498129	2 3.02 1 1.56	0.00 0.00 0.12 0.08	39 50	0.07134600 0.02202631 0.00175892 0.00003867

Appendix Table 24. Analysis of variance for the regression of the natural log of total plant dry weight on time (days) for nodulated soybeans grown in the greenhouse and supplied 12mM NO_3 .

SOURCE MODEL ERROR CORRECTED T	DF 3 48 OTAL 51	SUM OF SQUAR 39.19124811 0.52210739 39.71335550	13.06 0.01	SQUARE 374937 087724	1201.02
R-SQUARE 0.986853	C.V. 38.0748	ROOT MSE 0.1042939		VAR. M 7391856	
SOURCE	DF	TYPE I SS	F VALUE	PR > 1	F
LINEAR QUADRATIC CUBIC	1 1 1	38.94205438 0.05517083 0.19402290		0.0001	Ð
PARAMETER	ESTIMATE	T FOR HO PARAMETE		T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	-1.7313558 0.0589345 0.00392412 -9.68068421	7 4.39 2 3.74	0.00 0.00 0.00 0.00	01 05	0.04797237 0.01341840 0.00104867 0.00002292

Appendix Table 25. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown outdoors and entirely dependent on N_2 fixation.

SOURCE MODEL ERROR CORRECTED	3 52	SUM OF SQUARES 62.87030415 6.95089015 69.82119430	MEAN SC 20.9567 0.1330	76805	156.78
R-SQUARE 0.900447	C.V. 7.5946	ROOT MSE 0.36561040		VAR. 407285	
SOURCE	DF	TYPE I SS F	VALUE	PR >	F
LINEAR QUADRATIC CUBIC	1 1 1	60.19676549 1.25567752 1.41786115	450.34 9.39 10.61	0.000	34
PARAMETER	ESTIMATE	T FOR HO: PARAMETER=	PR > 0	T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	2.65420525 0.30127333 -0.01352224 0.00025774	6.64 -3.74	0.000 0.000 0.000 0.002	01 05	0.14808729 0.04537558 0.00361659 0.00007914

Appendix Table 26. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown outdoors and supplied 2mM NO₃.

SOURCE MODEL ERROR CORRECTED TOT	3 51	SUM OF SQUARES 50.58724515 1.30551968 51.89276483	MEAN SQI 16.8624 0.02559	1505 65 9843 PR	VALUE 8.73 > F 0001
R-SQUARE 0.974842	C.V. 3.2427	ROOT MSE 0.15999508		VAR. MEAN D2545	
SOURCE	DF	TYPE I SS	F VALUE	PR > F	
LINEAR QUADRATIC CUBLC	1 1 1	49.96458256 0.47874657 0.14391602	1951.86 18.70 5.62	0.0001 0.0001 0.0216	
PARAMETER	ESTIMATE	T FOR HO PARAMETE			ERROR OF IMATE
INTERCEPT LINEAR QUADRATIC CUBIC	3.18930050 0.18187944 -0.00498748 8.44980108	9.07 -3.09	0.000 0.000 0.001 0.02	01 0.03 32 0.00	5491276 2004640 0161207 0003564

Appendix Table 27. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown outdoors and supplied 6mM NO_3 .

SOURCE	DF	SUM	OF SQUAR	ES ME	EAN SQ	UARE	F VALUE
MODEL	3	60	.49675076	20	.1655	8359	789.75
ERROR	49	1	.25117242	C	.0255	3413	PR > F
CORRECTED TOTA	L 52	61	.74792318				0.0001
R-SQUARE	C.V.]	ROOT MSE	Γ	DEP. V	AR.ME.	AN
0.979737	3.1548	(0.1597940	3 5	.0650	6404	
SOURCE	DF	TYPI	E I SS	F VALUE	E P	r > f	
LINEAR	1	56.5	52561939	2213.73	0 8	.0001	
QUADRATIC	1	3.0	63564252	142.38	30	.0001	
CUBIC	1	0.1	33548884	13.14	+ 0	.0007	
PARAMETER	ESTIMATE		T FOR HO PARAMETE		?R >		STD ERROR OF ESTIMATE
INTERCEPT	2.909040	65	44.84	C	.0001	(0.06487199
LINEAR	0.276751	86	13.75	C	.0001	(0.02013271
QUADRATIC ·	-0.009242	72	-5.66	C	.0001	(0.00163232
CUBIC	0.000131	46	3.62	C	.0007	(0.00003627

Appendix Table 28. Analysis of variance for the regression of the natural log of total leaf area on time (days) for nodulated soybeans grown outdoors and supplied 12mM NO_3 .

SOURCE MODEL ERROR CORRECTED TO	DF 3 50 TAL 53	SUM OF SQUARI 63.15394367 1.45192097 64.60586465	21.	N SQUARE .05131456 .02903842	F VALUE 724.95 PR > F 0.0001
R-SQUARE 0.977526	C.V. 3.3440	ROOT MSE 0.1704066		EP. VAR. MI 09595535	EAN
SOURCE	DF	TYPE I SS	F VALUE	PR > F	
LINEAR QUADRATIC CUBIC	1 1 1	56.14480610 5.90219844 1.10693914	1933.47 203.25 38.12	0.0001 0.0001 0.0001	
PARAMETER	ESTIMATE	T FOR HO PARAMETH		PR > T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	2.7260162 0.3528700 -0.014601 0.0002315	16.49 -8.51	0).0001).0001).0001).0001	0.06920307 0.02140287 0.00171484 0.00003750

.

Appendix Table 29. Analysis of variance for the regression of the natural log of dry weight on time (days) of soybeans grown outdoors and entirely dependent on nitrogen fixation.

SOURCE	DF	SUM OF SQUARE	S MEAN SQ	UARE F	VALUE
MODEL	3	44.54459803	14.8481	9934 40	4.05
ERROR	52	1.91090762	0.0367	4822 PR	> F
CORRECTED I	OTAL 55	46.45550565		0.	0001
R-SQUARE	C.V.	ROOT MSE	DEP.	VAR MEAN	
0.958866	196.4109	0.1916982		760063	
SOURCE	DF	TYPE I SS	F VALUE	PR > F	
LINEAR	1	44.23186628	1203.65	0.0001	
QUADRATIC	1	0.10502025	2.86	0.0969	
CUBIC	1	0.20771150	5.65	0.0211	
PARAMETER	ESTIMATE	T FOR H PARAMET		1-1	D ERROR OF TIMATE
INTERCEPT	-1.48281672	7 -19.10	0.00	01 0.	07764570
LINEAR	0.16230444	4 6.82	0.00	01 0.	02379150
QUADRATIC	-0.00499582	2 -2.63	0.01	11 0.	00189627
CUBIC	9.86480311	E-05 2.38	0.02	11 0.	00004149
1. 					
Appendix Ta	ble 30. Ana	alysis of vari	ance for th	e regress	ion of the

Appendix Table 30. Analysis of variance for the regression of the natural log of dry weight on time (days) for soybeans grown outdoors and supplied 2mM NO₃.

SOURCE MODEL ERROR CORRECTED T	DF 3 51 OTAL 54	SUM OF SQUARES 46.69002589 1.35921305 48.04923894	15.56334	196	F VALUE 583.96 PR > F 0.0001
R-SQUARE 0.971712	C.V. 119.4620	ROOT MSE 0.1632520		• VAR 366560	
SOURCE	DF	TYPE I SS	F VALUE	pr >	F
LINEAR QUADRATIC CUBIC	1 1 1	46.56836915 0.00393831 0.11771844	1747.32 0.15 4.42	0.000 0.702 0.040	23
PARAMETER	ESTIMATE	T FOR PARAME		T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	-1.389992 0.139331 -0.003485 7.522078	16 6.84 16 -2.14	0.000 0.000 0.03 0.040	01 75	0.06616267 0.02035770 0.00163127 0.00003579

Appendix Table 31. Analysis of variance for the regression of the natural log of total plant dry weight on time (days) for nodulated soybeans grown outdoors and supplied 6mM NO_3^{-1} .

SOURCE	DF	SUM OF S	SQUARES	MEAN	SQUARE	F VALUE
MODEL	2	60.7185	50369	30.3	5925185	169.51
ERROR	52	9.3133	35781	0.1	7910303	PR > F
CORRECTED TO	TAL 54	70.0318	86150			0.0001
R-SQUARE	C.V.	ROOT	MSE	DEP. VA	AR. MEAN	
0.867013	187.232	9 0.423	320566	0.22603	3172	
SOURCE	DF	TYPE I S	SS F	VALUE	PR > F	
LINEAR	1	60.02258	3855 3	35.13	0.0001	
QUADRATIC	1	0.69591	514	3.89	0.0001	
		T F	FOR HO:	PR	> T	STD ERROR OF
PARAMETER	ESTIMATE	PAR	AMETER=	0		ESTIMATE
INTERCEPT	-1.612559	92 -11	.16	0.0	0001	0.14445571
LINEAR	0.1562854	44 6	.84	0.0	0001	0.02285985
QUADRATRIC	-0.001476	37 –1	.97	0.0	0540	0.00074898
N	-					

Appendix Table 32. Analysis of variance for the regression of the natural log of total plant dry weight on time (days) for nodulated soybeans grown outdoors and supplied 12mM NO_3 .

SOURCE MODEL ERROR CORRECTED T	2 51	UM OF SQUARES 57.95990167 1.03756654 58.99746821	MEAN SQUARE 28.97995083 0.02034444	F VALUE 1424.47 PR > F 0.0001
R-SQUARE 0.982413	C.V. 38.1598	ROOT MSE 0.14263394	DEP. VAR. ME 0.37378088	AN
SOURCE LINEAR QUADRATIC	DF 1 1	TYPE I SS F V. 56.22976629 276 1.73013538 8		
PARAMETER	ESTIMATE	T FOR HO: PARAMETER=O	PR > T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC	-1.50782980 0.17627256 -0.00225727	23.25	0.0001 0.0001 0.0001	0.04853315 0.00758011 0.00024477

Appendix Table 33. Analysis of variance for the regression of the natural log of total leaf area on time (days) for non-nodulated soybeans grown outdoors and supplied $2mM NO_3^{-1}$.

SOURCE	DF	SUM OF	SQUARES	S ME	EAN SO	QUARE	F VALUE
MODEL	3	41,950	10475	13	.983	36825	566.71
ERROR	51	1.258	41463	(.024	67480	PR > F
CORRECTED TOTAL	L 54	43,208	51938				0.0001
R-SQUARE	C.V.	ROC	T MSE		DEP.	VAR.	MEAN
0.970876	3.5620	0.1	5708213	3	4.409	994012	2
SOURCE	DF	TYPE I	SS	F VALU	JE	pr >	F
LINEAR	1	39.743	94090	1610.7	'1	0.000)1
QUADRATIC	1	2.115	84174	85.7	'5	0.000)1
CUBIC	1	0.090	32211	3.6	6	0.061	.3
PARAMETER	ESTIMATH		FOR HO		pr >	T	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	2.675241 0.198775 -0.005456 6.509221	514 1 539 -	1.98 0.15 3.50 1.91		0.000 0.000 0.000 0.06	01 10	0.06372067 0.01958098 0.00155679 0.00003402

Appendix Table 34. Analysis of variance for the regression of the natural log of total leaf area on time (days) for non-nodulated soybeans grown outdoors and supplied 6mM NO_3 .

SOURCE MODEL ERROR CORRECTED TO'	DF 2 52 TAL 54	SUM OF SQUARES 68.14382400 1.30563326 69.44945726	MEAN SQUARE 34.07191200 0.02510833	F VALUE 1357.00 PR > F 0.0001
R-SQUARE	C.V.	ROOT MSE	DEP. VAR.	
0.981200	3.3153	0.15845609	4.77954089	
SOURCE	DF	TYPE I SS	F VALUE PR >	F
LINEAR	1	65.62488631	2613.67 0.000	
QUADRATIC	1	2.51893769	100.32 0.000	
PARAMETER	ESTIMATE	T FOR HO PARAMETE	1	STD ERROR OF ESTIMATE
INTERCEPT	2.7005675	23.21	0.0001	0.05393781
LINEAR	0.1973788		0.0001	0.00850543
QUADRATIC	-0.0027538		0.0001	0.00027494

-

Appendix Table 35. Analysis of variance for the regression of the natural log of total leaf area on time (days) for non-nodulated soybeans grown outdoors and supplied 12mM NO_3 .

SOURCE MODEL	DF 3		F SQUARE 0182014		AN SQUARE .76727338	
ERROR	52	2.5	1749404	0	.04841335	PR > F
CORRECTED TOTA	L 55	76.8	1931418			0.0001
R-SQUARE	C.V.	R	OOT MSF		DEP. VAR.	MEAN
0.967228	4.4838	0	.2200303	3	4.90722920	C
SOURCE	DF	TYPE	I SS	F VALU	E PR >	F
LINEAR	1	69.2	2782408	1429.9	3 0.00	01
QUADRATIC	1	4.5	9614002	94.9	4 0.00	01
CUBIC	1	0.4	7785604	9.8	7 0.00	28
PARAMETER	ESTIMAT	E	T FOR H PARAMET		PR > T	STD ERROR OF ESTIMATE
INTERCEPT	2.50264	270	28.08		0.0001	0.08912136
LINEAR	0.30562		11.19		0.0001	0.02730776
QUADRATIC	-0.01041		-4.78		0.0001	0.00217652
CUBIC	0.00014	963	3.14		0.0028	0.00004763

Appendix Table 36. Analysis of variance for the regression of the natural log of dry weight on time (days) for non-nodulated soybeans grown outdoors and supplied $2mM NO_3$.

SOURCE MODEL ERROR CORRECTED T	DF 3 51 OTAL 54	SUM OF SQUARES 30.69722209 0.84154044 31.53876253	MEAN SQUARE 10.23240736 0.01650079	
R-SQUARE 0.973317	C.V. 31.3194	ROOT MSE 0.12845541	DEP. VAR M -0.41014607	
SOURCE	DF	TYPE I SS F	VALUE PR >	F
LINEAR QUADRATIC CUBIC	1 1 1	30.13621473 1 0.47415650 0.08685087	826.35 0.000 28.74 0.000 5.26 0.025	1
PARAMETER	ESTIMATE	T FOR HO: PARAMETER		STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC CUBIC	-1.66493329 0.08057264 0.00168083 -6.38291501	4 5.03 2 1.32	0.0001 0.0001 0.1926 0.0259	0.05210819 0.01601253 0.00127308 0.00002782

Appendix Table 37. Analysis of variance for the regression of the natural log of total dry weight on time (days) for non-nodulated soybeans grown outdoors and supplied 6mM NO_3 .

SOURCE MODEL ERROR	DF 2 52	SUM OF SQUARES 61.19185310 1.51313297	MEAN SQUARE 30.59592655 0.02909871	F VALUE 1051.45 PR > F
	TAL 54	62.70498607	0.02909071	0.0001
R-SQUARE 0.975869	C.V. 177.2883	ROOT MSE 0.17058344	DEP. VAR. -0.0962181	
SOURCE	DF	TYPE I SS F	VALUE PR >	F
LINEAR	1	61.00359397 20	096.44 0.000	1
QUADRATIC	1	0.18825913	6.47 0.000	1
PARAMETER	ESTIMATE	T FOR HO: PARAMETER	PR > T =0	STD ERROR OF ESTIMATE
INTERCEPT LINEAR QUADRATIC	-1.8484290 0.1335590 -0.0007528	0 14.59	0.0001 0.0001 0.0001	0.05806592 0.00915639 0.00029598

Appendix Table 38. Analysis of variance for the regression of the natural log of total dry weight on time (days) for non-nodulated soybeans grown outdoors and supplied 12mM NO_3 .

SOURCE MODEL	DF 2	SUM OF SQUARES 66.30632944	MEAN SQUARE 33.15316472	
ERROR	53	2.26939216	0.04281872	PR > F
CORRECTED TOTA	AL 55	68.57572160		0.0001
R-SQUARE	C.V.	ROOT MSE	DEP. VAR.	
0.96907	384.6650	0.20692685	0.05379404	
SOURCE	DF	TYPE I SS F	VALUE PR >	F
DAYS	1	65.73923599 1	535.29 0.00	
DAYS*DAYS	1	0.56709344	13.24 0.00	
PARAMETER	ESTIMATE	T FOR HO: PARAMETER=	PR > T 0	STD ERROR OF ESTIMATE
INTERCEPT	-1.8332118	56 14.00	0.0001	0.07037378
LINEAR	0.1538726		0.0001	0.01099356
QUADRATIC	-0.0012915		0.0006	0.00035491

VITA

Eddie Paul Millhollon was born in Portsmouth, Virginia, on August 2, 1953. His family moved to Tucson, Arizona in 1954. Here he attended elementary school until his family moved to Houma, Louisiana in 1960. In Houma, he graduated from Terrebonne High School in May, 1971. The author entered Nicholls State University in September, 1973 and received a B.S. degree in Biology from that institution in May, 1977.

In August, 1977, he enrolled as a graduate student at Louisiana State University in the Department of Plant Pathology and Crop Physiology and received the M.S. degree in December, 1980. Since May 1982, Eddie has been a candidate for a Ph.D. in the Department of Agronomy at Louisiana State University.

The author is married to the former Beverly Anne Hebert of Gibson, Louisiana. They have two daughters; Michelle and Linda.

118

EXAMINATION AND THESIS REPORT

Candidate: Eddie P. Millhollon

Major Field: Agronomy

Title of Thesis: The Relationship Between Photosynthesis and the Capacity for Nitrogen Fixation in Soybean

Approved:

tward P Major Professor and Chairman Dean of the Graduate School

EXAMINING COMMITTEE:

Date of Examination:

June 7, 1984