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A new solution to the master equation relating the rate coefficients for unimolecular, 

recombination (association) and chemical activation reactions, incorporating weak collision 

effects, is presented. The solution establishes conditions for the validity of the commonly used 

procedure of relating the recombination rate coefficient, throughout the falloff regime, to the 

reverse single-channel unimolecular rate coefficient via the equilibrium constant. In addition, a 

relationship between the rate coefficient for stabilization in a chemical activation reaction and 

the reverse multichannel unimolecular dissociation rate coefficient is derived. This result, in 

conjunction with recently developed methods for fully incorporating angular momentum 

conservation into the solution of the master equation for unimolecular dissociation, enables 

both angular momentum and weak collision effects to be accurately incorporated into the 

solution of the master equation for chemical activation reactions in the falloff regime. 

Application of this method to a typical ion/molecule chemical activation reaction, that of 

CH
3
+ with NH3, illustrates the importance of weak collision and angular momentum effects in 

this system. 

I. INTRODUCTION 

A reaction between two species A and B which proceeds 

through a collision complexAB • may be classified as either a 

recombination (association) reaction (in which AB· can 

dissociate only to produce reactants A and B) or a chemical 

activation reaction (in which AB • can dissociate to produce 

other products as well). Both types of reaction exhibit the 

characteristic falloff behavior of unimolecular reactions, in 

which there is competition between collisional (activation/ 

deactivation) and reaction processes. Proper modeling of 

these processes increases the reliability of a priori prediction 

of data (and of extrapolation of data to different pressures 

and temperatures), and also enables one to obtain experi

mental information about collisional energy transfer 

between the bath gas and the molecule in question. Chemical 

activation, unimolecular and recombination processes obey 

essentially the same master equation with different initial 

conditions and/or number of channels. 

Chemical activation rate coefficients 

Rate coefficients in a chemical activation system can be 

predicted from a knowledge of the microscopic rates. The 

most common method of modeling these reactions has been 

to treat the collision complex population as being at steady 

state. In this method, the reactive influx to a given energy 

level of collision complex is exactly balanced by ( 1) dissocia

tion back to reactants, (2) dissociation through any other 

"exit channels" which may exist, and (3) irreversible stabili

zation to form the molecular product. In the simplest treat

ments, the collisional stabilization process is modeled using 

the strong collision approximation. 1 This amounts to an as

sumption that every inelastic collision with a bath gas mole-

cule leads to irreversible stabilization of the collision com

plex, no matter how great the excitation of the complex. It is 

now recognized,2 however, that use of the strong collision 

assumption can lead to gross error in many cases (e.g., when 

the reaction is carried out with monatomic or diatomic bath 

gases). A weak collision model for the collisional energy 

transfer, in which the probability of energy transfer is small 

for large differences between the final and initial energies, is 

much more physically realistic.3 Attempting to correct the 

strong collision approach by using a collision efficiency /3 
provides a basis for comparison between systems but, when 

used to extrapolate data over a wide range of pressures or 

temperatures, can easily be incorrect by a factor of, e.g., 3, 

for typical systems.2 Various other methods of accounting 

for weak collision effects within the steady-state framework 

have been utilized. Rabinovitch and co-workers4 have illus

trated the use of various forms of weak collision probability 

distribution functions in a steady-state master equation ap

proach which does not consider the molecular states below 

the dissociation threshold. Herbst5 utilizes an empirical sta

bilization rate coefficient which decreases exponentially as 

the energy of the collision complex above the dissociation 

threshold increases. All of these approximate steady-state 

methods have in common the assumption that collisional 

stabilization is irreversible (i.e., all collisions resulting in ac

tivation from below the threshold may be neglected).6 As 

has been pointed out,7 however, neglect of activating colli

sions can lead to significant errors, particularly at lower pre

sures where collisional processes become rate determining. 

Larson et al. 1 have suggested an approximate means by 

which such collisional activation may be accounted for with

in the limits of the steady state, strong collision approach. A 

more complete master equation treatment, which considers 
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4266 Smith, McEwan, and Gilbert: Activation and unimolecular dissociation 

all energy states of the molecule and includes the effect of 

activating collisions, is required. 

Relation between unimolecular and recombination rate 

coefficients 

In a pioneering theoretical study of nonequilibrium re

combination of atoms and the corresponding dissociation of 

diatomics, Keck and Carriers presented an approximate 

proof that the rate coefficients for recombination and disso

ciation are related by the equilibrium constant. The usual 

approach to calculating recombination rate coefficients 

(with proper account for weak collision effects) has there

fore been9
,10 to calculate first the rate coefficient for the re

verse single-channel unimolecular dissociation at the appro

priate pressure. The recombination rate coefficient is then 

determined from the dissociation rate coefficient and the 

equilibrium constant. However, as far as we are aware, this 

relationship between the rate coefficients for recombination 

and dissociation has never been rigorously proven using a 

general master equation involving both collisional transi

tions and microscopic rate coefficients for dissociation and 

recombination. A similar relationship between the rate coef

ficient for stabilization in a chemical activation reaction and 

that for the reverse multichannel dissociation reaction has 

recently been inferred by Larson et al. 1 on the basis of strong 

collision modeling, but again not rigorously proven. 

Quack 11 has provided an exact relationship between the for

ward and reverse rates for unimolecular isomerization (Va

lance and Schlag12 had also considered this problem), but it 

will be seen that the unimolecular dissociation case is differ

ent. 

Schranz and Nordholm,7 in an exact master equation 

analysis of chemical activation reactions with a constant re

active influx, showed that the rate coefficient for stabiliza

tion, and hence the dissociation/stabilization ratio, could be 

obtained by evaluating the expansion coefficients of the reac

tive influx vector in terms of eigenvectors of the collisional! 

reactive matrix which appears in the solution of the master 

equation for thermal unimolecular dissociation. In the pres

ent paper we generalize their approach to the case of a time

dependent reactive influx (i.e., the reactant populations vary 

with the progress of reaction). By invoking microscopic re

versibility for the reactive influx, we show that this gives a 

direct connection between the rate coefficient for stabiliza

tion and the rate coefficient for the corresponding unimole

cular dissociation. The relationship derived also verifies the 

common practice of relating a recombination rate coefficient 

to the reverse unimolecular dissociation rate coefficient via 

the equilibrium constant at all pressures (e.g., Refs. 9 and 

10). The derivations show that the problem of calculating 

stabilization rate coefficients in recombination or chemical 

activation reactions is entirely equivalent to that of calculat

ing the reverse single-channel or multichannel unimolecular 

dissociation rate coefficients. Hence, recently developed 

methods of solving the two-dimensional master equation (in 

energy E and angular momentum J) for single-channel and 

multichannel unimolecular dissociation reactions 13-15 may 

be applied to solve the corresponding recombination and 

chemical activation problems. For the latter, the relation-

ship derived therefore provides a new and powerful means of 

incorporating weak collision and angular momentum effects 

into the calculation of stabilization rate coefficients without 

the use of any steady-state approximations or treatments 

such as the Waage-Rabinovitch method 16 which invoke the 

unphysical strong-collision approximation. 

For sample calculations using the present method, we 

choose an ion/molecule chemical activation reaction which 

has been the subject of several experimental and theoretical 

studies: 17- 19,5 that ofCH3+ with NH3 in a helium bath gas. 

Estimates of the average downward internal energy transfer, 

(AEdown ), and the average downward rotational energy 

transfer, (AR down ), may be made by modeling the pressure 

dependence of the stabilization rate coefficient. Comparison 

of the present calculations with those based on the strong 

collision assumption, and with those obtained by solution of 

the master equation without conservation of angular mo

mentum in the falloff regime, shows the sensitivity of this 

system to proper incorporation of weak collision and angu

lar momentum effects. 

II. SOLUTION OF THE MASTER EQUATION FOR 

RECOMBINATION AND CHEMICAL ACTIVATION 

SYSTEMS 

We consider a system in which thermalized reactants A 

and B, with total populations A (t) and B(t), collide to form 

a collision complex AB * which may either form the stable 

molecule AB by collisions with an inert bath gas M, or disso

ciate via one or more channels. The reaction scheme is indi

cated in Eq. (1): 

k-'(E-tlH~) 

[A+B]E_tlH
o
' ;:::t AB*(E), 

k'(E) 
k'(E) 

AB*(E) ---> [C+D]E_ tlH5' (1) 

AB*(E) +M;:::t···;:::t AB+M. 

Here AH ~ is the enthalphy difference between the products 

of channel i and the molecule AB at 0 K, k i (E) is the micro

scopic dissociation rate for channel i, and k - 1 (E - AH b ) is 
the microscopic bimolecular rate coefficient for formation of 

the molecule at energy E from reactants A and B. If there is 

only one dissociative channel for the collision complex (that 

leading back to reactants), then the master equation de

scribes a recombination reaction. Unimolecular dissociation 

is the reverse process to that represented in Eq. (1): one 

starts with a population of molecules AB which are excited 

by collisions and may then dissociate to give products A + B, 

C + D, etc. The master equation describing the rate of for

mation and loss of the molecular population at energy E and 

time t, denoted g(E,t) is written 

Jg(E,t)/Jt 

= OJ f [P(E,E')g(E',t) - P(E',E)g(E,t) ]dE' 

- k(E)g(E,t) + k -1(E - AHb) 

xl,. (E - AH b)A (t)B(t) , (2) 

where OJ is the collision frequency of the molecule with the 

bath gas, P(E,E') is the probability of molecular energy 
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transfer from energy E ' to energy E on collision with the bath 

gas, and k(E) = l:; k; (E) is the total microscopic unimole

cular rate coefficient for reaction from energy E. We refer to 

the dissociative channel leading back to reactants as channel 

1. For purposes of clarity, we deal only with the one-dimen

sional master equation in energy, though the appropriate 

generalization allows the two-dimensional master equation 

in energy and angular momentum to be treated similarly. 

fr (E - I:1H b) is the (normalized) thermal equilibrium pop

ulation of reactants: 

f,.(E) =Pr(E)exp( - E IkBnlQr , 

wherepr (E) is the total density of states of A and B (includ

ing the relative translational and separate rotational degrees 

offreedom), and Qr is the corresponding partition function 

for reactants. The above form for fr for the populations of A 

and B invokes the assumption that A and B both undergo 

many more nonreactive collisions than reactive ones; this is 

usually an excellent approximation, particularly in the com

mon situation where both are dilute in a bath gas. Equation 

(2) includes all energy levels of the molecule: those of the 

stable AB and those of the unstable collision complex AB *. 
A(t) and B(t) are related to g(E,t) by mass conservation: 

A (t) = A (t = 0) - Sg(E,t)dE, etc. The other main class of 

unimolecular reactions, isomerization, has been considered 

in detail by Quack; II the essential difference between isomer

ization and dissociation/recombination is that in the latter 

case, the separate moieties are in thermal equilibrium, 

whence the term!r in Eq. (2). 

We note that k I (E) and k -I (E - I:1H b) are exactly 

related by microscopic reversibility: 

kl(E)p(E) =k- I(E-I:1Hb)Pr(E-I:1Hb), (3) 

where p(E) is the molecular density of states; the corre

sponding molecular partition function is Q = Sb(E)dE, 

where the (unnormalized) population b(E) =p(E) 

exp( - E IkB n. Equation (2) may therefore be rewritten 

as 

ag(E,t)lat 

= (j)S[P(E,E')g(E',t) - P(E',E)g(E,t) ]dE' 

- k(E)g(E,t) + Keqk I (E)b(E)A(t)B(t)IQ, (4) 

where Keq is the equilibrium constant relating the equilibri

um concentrations of reactants and molecule: 

(5) 

It is convenient to consider discrete states so that one 

may write Eq. (4) in matrix form: 

dg(t)ldt = Jg(t) + KeqrA(t)B(t)IQ, (6) 

where J is the collisional/reactive matrix describing transi

tions between and reactive loss from the molecular popUla

tions, which are represented by the vector g(t):20 

Jij = (j)P(E;,Ej ), ii=j, 

Ju = - [k(E;) + (j)] , (7) 

and r is the equilibrium reactive flux vector: r; 

= k I (E; )b(E;). From the transformation20 g = Sc, where 

S is a diagonal matrix with elements Su = [b(E;)] 1/
2

, Eq. 

(6) is transformed into one involving an Hermitian matrix 

operator B: 

dc(t)ldt = Bc(t) + KequA(t)B(t)IQ, (8) 

where B = S -IJS and u = S -Ir. Equation (8) has the for

mal solution21 

K i' c(t) =-'=!... dseB(t-s)uA(s)B(s) , 
Q 0 

(9) 

where the initial condition g(t = 0) = 0 has been invoked. 

The vector u may be expanded in terms of a complete set of 

orthogonal eigenvectors of the matrix B, {tP;}: 

( 10) 

Substituting Eq. (10) into Eq. (9) yields 

K eq " i'd k(,-s)A B( c(t)=--~q;tP; se' (s) s), 
Q; 0 

(11 ) 

where A; is the eigenvalue corresponding to the eigenvector 

tP;. Now it has been established7
•
22 that in most cases the 

higher eigenvalues relax very quickly on an experimental 

timescale. This means that the terms for i> 1 in Eq. (11) 

reduce as follows: 

(12) 

This is because for terms with i> 1 the integrand only takes 

any appreciable value whenA (s)B(s);::;;;A (t)B(t) (note that 

all eigenvalues are negative, AI being the least negative). 

Equation (11) therefore reduces to 

c(t) = KQq [qltPl L ds e - k
un

,(' - s)A (s)B(s) 

+ (I ~ tP; - 3ltPl )A (t)B(t)] , (13) 
,1,.1,;1 k Uni 

where we have identified - AI as kuni' the total rate coeffi

cient for unimolecular dissociation through all channels. 

Now it is easily shown that 

I~tP; = -B-Iu. 
; 1,.1,;1 

(14) 

Furthermore, we may evaluate q I as 

ql = tPl·u/tPl·tPl = xl'S -2r / x1 'S -2XI 

= IXI(E;)k1(E;)!I ([xl(E;)]2Ib(E;)} 
, , 

=k~niIXI(E;)/I [x l(Ei )2Ib(E;)] , (15) 
I I 

where XI is the nonequilibrium eigenvector of J correspond

ing to the eigenvalueA I = - k Uni (XI = StPl)' whose ith ele

ment isx\ (E;), and where k ~ni is the unimolecular ratecoef

ficient for dissociation of the molecule through channel 1 

(i.e., that leading to species A and B). Substituting Eqs. (14) 

and (15) into Eq. (13) and multiplying through by S gives 

Keq {k 1 l:;XI(E;) 

g(t) =--0 uni l:i Xl(E;)2Ib(E;) XI 

XL ds e - kun,(t - S)A (s)B(s) 
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4268 Smith, McEwan, and Gilbert: Activation and unimolecular dissociation 

[ 
k~nil:jXI(Ej) ] 

+ 1] - 2 XI 
k Uni l:jX I (Ej ) /b(Ej) 

XA(t)B(t)} , 

where the vector 11 is defined by the equation 

11= -J-Ir. 

(16) 

(17) 

In Eq. (16), the molecular population splits into two 

terms. The first contributes mainly below the lowest disso

ciation threshold E ;;,in (its distribution being governed by 

XI) and builds up with time at a rate which will be seen to be 

governed by k ~ni . This may be identified as the population of 

"stabilized" molecules g' (t): 

Keq k ~ni l:jX I (Ej ) 
g'(t) =-- XI 

Q l:jx l (Ei )2/b(Ej ) 

X f dse-kun;(t-SlA(s)B(s). (18) 

The second term in Eq. ( 16) is at steady state with the popu

lation of reactants. Further examination will show that (a) it 

constitutes a very small part of the molecular popUlation and 

(b) it contributes mostly above the dissociation threshold. It 

may be identified (see the Appendix) as the steady-state 

population distribution of the collision complex g* (t): 

K [ kl.l:.xl(E.) ] 
g*(t) = ~ 1/ - I Un!' 2' XI A(t)B(t) . 

Q kunil:jXI(Ej) /b(Ej) 

(19) 

Note that the long time limit of the molecular popula

tion distribution g(t) defined in Eq. (16) is a steady-state 

distribution for which the net rate offormation of molecules 

is zero, such as that attained at long times in the reactive 

system. Summing Eq. (16) over all energies, we obtain the 

result 

GU) = [Keqk~nJnef dse-kun;(t-SlA(S)B(S)] 

+K ,', I -~/, A (t)B(t) 
(

l:.1'1(E.) kl. ) 

eq Q k
Uni 

ne 

= GS(t) + G*(t) , (20) 

where G(t) is the total population of the molecule, 

GS (t) = l:jg'(Ej,t) is the population of the stabilized com

plex, G*(t) = l:jg*(Ej>t) and/ne is defined as 

In. = [l:jX I(E)]2/Ql:j[x l (Ej )2/b(Ej )]. (21) 

The total rate off ormation of the molecule is therefore given 

by 

dG(t)/dt 

= Keqk ~nJ,.eA(t)B(t) - k Uni GS(t) + dG * (t)/dt . 

(22) 

Equations (20) and (22), together with the conservation of 

mass relations for A (t) and B(t), A (t) = A (t = 0) - G(t), 

etc., completely specify the time evolution of the system. 

However, Eq. (22) can be simplified: since the population 

of collision complex is very small and varies only slowly 

compared with the rate off ormation of stable molecules, we 

may neglect the third term in Eq. (22). The second term is 

the reverse reaction, since GS is the population of stabilized 

molecules. The first term in Eq. (22) then serves to define 

the stabilization rate coefficient ks' in terms of the rate coef

ficient for the reverse unimolecular dissociation, the equilib

rium constant relating the equilibrium concentrations of the 

reactants and the molecular product, and the factor Ine' as 

(23) 

Although Ine is easily calculated, this is usually unnec

essary, since/ne = 1 to an excellent approximation (with the 

possible exception of reactions at very high temperatures 

wherelne may become significantly less than unity). 

Having determined the molecular popUlation distribu

tion as in Eq. (16), it is possible to calculate kd' the rate of 

dissociation into each of the product channels. Assuming the 

system is far from equilibrium, the contribution from the 

population gS (t) is negligible and the rate of dissociation 

through the ith channel is given by the integral (or, in the 

discretized case, the sum) over energy of k
j 
(E)g*(E,t): 

where k!s is the rate coefficient for dissociation through 

channel i if the system were at steady state (i.e., net rate of 

formation of molecules = 0). Note that, due to mass conser

vation, at steady state the total rate of dissociation equals the 

capture rate, hence ~jk!s = kcap = k~, the high-pressure 

recombination rate coefficient. k ~ni is the multichannel uni

molecular rate coefficient for dissociation through channel i, 

with ~jk ~ni = k uni ' Hence, the rate coefficient through the 

ith channel is 

k ~ = k!s - ksk ~n;lkuni . (25) 

An important constraint is that of mass balance: 

Lk~ +ks=.kcap =k~. (26) 
j 

Substituting Eqs. (23) and (25) into Eq. (26) shows that 

this constraint is indeed satisfied. Equation (25) and sup

porting relations enable quantities such as stabilization/de

activation ratios to be calculated. They are similar to, but 

contain terms missing from, the pioneering results of Rabin

ovitch and co-workers4 on chemical activation; these latter 

workers derived their results only for the steady-state case 

without considering states below the dissociation threshold. 

In the case of a recombination reaction there are no 

products except for the molecule, and so the recombination 

rate coefficient is given by 

(27) 

where kUni is the nonequilibrium rate coefficient for the re

verse (single channel) unimolecular dissociation. Mass con-
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servation, together with Eq. (16), gives the precise evolution 

ofthe molecular population distribution in a recombination 

system until it attains eventual equilibrium with reactants. 

Note that Keq in Eq. (27) is given by the partition function 

ratio at equilibrium [Q = fb(E)dE, etc.], not the nonequi

librium population [i.e., Q # fx(E)dE]. This is a major dif

ference to the case for forward and reverse rate coefficients 

for isomerization, where the ratio k forward / kback is dependent 
on pressure. II 

In summary, for a chemical activation system, the stabi

lization rate coefficient ks is given by Eq. (23), where the 

k ~ni therein is obtained from 

k~ni = JXI(E)kl(E)dE JXI(E)dE, (28) 

where the distribution function XI (E) is obtained from the 

solution of the integral eigenvalue relation: 

- kuniX I (E) = U) J [P(E,E/)xl (E') - P(E/,E)xl(E)] 

XdE' - k(E)xl(E) (29) 

with k(E) = ~k; (E). The dissociation rate through chan

nels other than the entrance channel (the entrance channel 

being denoted as channell) is given by Eq. (25), wherein 

the rate coefficient k ~s is given by 

(30) 

where the distribution 1](E) at energy E; is given by (revert

ing to discrete notation for convenience) 11 = - J -Ir , with 

r; = k I (E; ) beE; ). Matrix inversion to find J -I is avoided 

by solving the set oflinear simultaneous equations which are 

the discrete equivalent of 

U) J [P(E,E')1](E') - P(E',E)1](E) ]dE' - k(E)1](E) 

= - k I(E)b(E) . 

III. APPLICATION TO THE CHt 1NH3 CHEMICAL 

ACTIVATION REACTION 

(31 ) 

We illustrate the use of Eq. (23) by modeling experi

mental data for a typical ion/molecule chemical activation 

reaction: that of CH3+ with NH3 in He bath gas. This reac

tion has been the subject of a number of experimental and 

theoretical studies. A low-pressure study at 300 K by Hunt

ress et al., 17 using the ion cyclotron resonance (lCR) tech

nique, revealed the presence of two exothermic dissociative 

channels, leading to the products CH2NH2+ and NH4+ , re

spectively. No association (recombination) product was ob

served in the low-pressure study. A selected ion flow tube 

(SIFT) study at higher pressures by Smith and Adams l8 

revealed, in addition to the two dissociative channel prod

ucts, the association product CH3NH3+ : 

CH3+ + NH3 +=t [CH3NH3+ 1* , 

[CH3NH3+ 1* --> CH2NHt + H2 , 

[ CH3NH3+ 1* --> NH4+ + CH2 , 

M + [CH3NH3+ l*+=t .. · +=tCH3NH3+ + M. 

(32a) 

(32b) 

(32c) 

(32d) 

They found that the association product accounted for about 

20% of the total reaction and observed no pressure depend

ence in the range 0.2--0.7 Torr. Saxer et al. 19 studied this 

reaction in a selected ion drift tube (SIDT) with the mean 

relative kinetic energy between reactants ranging from 4.5 to 

19 kJ mol- I. The lowest value corresponds to an essentially 

thermal system and produced results in accord with earlier 

measurements. 18 Their data covered a wider pressure range, 

however, and they observed significant pressure dependence 

of the association rate coefficient. 

Herbst5 has presented a theoretical study of this reac

tion, using RRKM parameters calculated by Nobes and Ra

dom,23 which illustrated the effect on the predicted rate coef

ficients of angular momentum conservation, the dipole 

moment of ammonia, and the barrier height of the major exit 

channel [Eq. (32b)]. The model used by Herbst involved 

calculating the steady-state population of the excited colli

sion complex with a given total energy E and angular mo

mentum J. Microscopic rate coefficients for the reactive in

flux and its reverse dissociation were calculated using the 

phase space approach of Chesnavich and Bowers.24 In this 

approach, the two moieties in the transition state are treated 

as free rotors acting under the influence of a central poten

tial. The microscopic rate coefficients for the major dissocia

tion channel, Eq. (32b), were calculated using RRKM theo

ry. Collisional stabilization was modeled using a particular 

form of "relaxation rate coefficient" krel , which is a function 

of the excess internal energy of the complex above the lowest 

dissociation threshold. This model has two important defi

ciences. The effect of the dipole moment of ammonia is iden

tified as being primarily to increase the range of angular mo

menta which can lead to reaction because of the long-range 

ion--dipole potential. However, the fact that the long-range 

ion--dipole potential is noncentral is neglected in applying 

the phase space24 approach. As has been discussed previous

ly by several authors,25,26,15 the ensuing hindrance of the 

dipole rotation causes the density of states at the transition 

state to be substantially reduced, thus reducing the predicted 

reactive influx. In order to compensate for this deficiency, 

Herbst was forced to use an "effective dipole moment" of 0.3 

Debye, which is much smaller than the actual dipole mo

ment of 1.47 Debye. The second deficiency is in the treat

ment of collisional effects. The correct way to incorporate 

weak collision effects is by the solution of the master equa

tion [Eq. (1), or its two-dimensional equivalent in E and J] . 

The model used by Herbst assumes that collisional stabiliza

tion below the threshold is irreversible, thus neglecting acti

vating collisions. As has been pointed out previously,7 this 

can lead to significant error. In addition, the accuracy of 

using kre1 such as that suggested by Herbst to mimic weak 

collision effects can only be tested by carrying out an exact 

solution to the problem. 

In a recent paperl5 we have presented efficient and accu

rate means by which the effect of the noncentral ion--dipole 

potential and also the effect of angular momentum conserva

tion may be incorporated into the master equation for uni

molecular dissociation. The relevant equations for our solu

tion of the two-dimensional master equation are contained 

therein. The generalization of these equations to the present 

multichannel calculation proceeds in a manner entirely anal-
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4270 Smith, McEwan, and Gilbert: Activation and unimolecular dissociation 

ogous to that required for the simpler treatment which we 

have shown may be used for most neutral reactions. 14 The 

use of Eq. (23) in conjunction with these allows the prob

lems with the Herbst model to be obviated. 

Since reaction (32c) contributes only fractionally to the 

product branching ratio,18,19 we assume that this reaction 

produces a negligible perturbation to the falloff of the stabili

zation rate coefficient and so may be neglected in the calcula

tions. The structure and vibrational frequencies assumed for 

the molecule CH3NH3+ and the transition state for the elimi

nation of H2 [Eq. (32b)] are those used by Herbst,5 calcu

lated by Nobes and Radom23 (vibrational frequencies calcu

lated with the techniques used by these authors are expected 

to be quite accurate for the present purposes, provided a 

correction factor of 0.9 is applied), The vibrational frequen

cies for the simple fission transition state [reaction (32a)] 

are taken as those of the separate reactants. 23,27 The poten

tial of interaction between the moieties in the simple fission 

transition state is that between the positive charge of the 

methyl cation and the dipole and isotropic polarizability of 

ammonia [1.47 Debye28 and 2.26X 10-24 cm3 (Ref. 29), 

respectively]. The separation of the moieties in the simple 

fission transition state was determined by canonical vari

ation30 (this is now a routine technique, wherein one uses the 

same transition state for all E and J, with the separation 

between the moieties chosen, at a given temperature, to pro

duce the minimum overall capture rate). The (high-pres

sure limiting) capture rate so calculated, using ordinary 

RRKM theory (with appropriate modification for the hin

dered-dipole rotation l5 ) for k(E,J) , is 5.2 X 10-9 cm3 S-I. 

Two improvements to this method of treating the simple 

fission transition state would be as follows: ( 1) to use micro

canonical variational transition-state theory [in which a dif

ferent separation of the moieties may be chosen for each E 

and J, the criterion for selection being to minimize 
k( E,J)] 25,31,32 and (2) to make allowance for poor coupling 

of some internal degrees offreedom in ion/molecule systems 

where the transition state is at very large separations.25.26,33 

Chesnavich et al.25 have incorporated these improvements 

into a simplified microcanonical variational model for the 

calculation of capture rates in ion/molecule reactions which 

predicts the capture rate for the CH3+ /NH3 system to be 

2.8X 10-9 cm3 S-I. We conclude from the significant dis

crepancy between the two capture rates that a microcanoni

cal variational treatment with uncoupling of appropriate in

ternal degrees of freedom at the long range, orbiting 

transition state would be necessary if a more exact treatment 

were required. Such a calculation is in progress and will be 

presented in a later paper.33 Given the illustrative purposes 

of our present calculations, we have chosen at this stage sim

ply to apply the RRKM canonical variational treatment. 

Note that the methods of Chesnavich et al.25 and Troe,26 

because they deal only with degrees of freedom that are im

portant on the long-range ion-dipole potential surface, are 

limited to calculation of the high-pressure limit of the stabili

zation rate coefficient. 

For the falloff calculation, full account was taken of an

gular momentum conservation. 13-15 This involves solving a 

two-dimensional master equation for unimolecular dissocia-

tion with independent variables being the energy of the ac

tive degrees of freedom E (one active external rotor plus all 

internal degrees offreedom) and the angular momentum J. 

The two-dimensional master equation in E and J is first 

transformed into one involving the active internal energy E 

and the rotational energy R for the two inactive external 

rotational degrees of freedom.9,13 The resulting equation is 

reduced by a first-order perturbational technique 15 to a one

dimensional J-averaged master equation in the internal ener

gy E alone, which is solved exactly by numerical means. 13 

The probability distribution functions for internal energy 

transfer, P(E,E '), and external (inactive) rotational energy 

transfer,p(R,R ') (R being the rotational energy), were both 

approximated by an exponential-down form: 

P(E,E') o::exp[ (E - E')/(LlE
down

)] , 

E < E', etc. The falloff curve is not strongly dependent on the 

form of P(E,E') as long as it is physically reasonable, and it 

has been shown 13 that an exponential-down form for 

p(R,R ') is physically correct for an ion/molecule system; 

upward rates were given by microscopic reversibility. The 

method of solution of the master equation was that appropri

ate for an ion/molecule system. 15 The collision frequency (j) 

for collisions of [CH3NH3] + with He was taken to be that 

given by the Langevin ion/induced dipole result, leading to 

(j)=4.07XI07 (p/T) S-I, wherep is the pressure of He 

(Pa) and T the tern perature (K). 

The RRKM parameters for the two channels are pre

sented in Table I. Figure 1 gives a schematic illustration of 

the profile of the potential surface along the reaction coordi

nate and shows the relevant threshold energies used in the 

calculation. The threshold for dissociation of CH3NH3+ 

back to rectants is taken to be 442 kJ mol- I (Ref. 23). The 

barrier height for the dissociating channel leading to prod

ucts [Eq. (32b)] is taken as 348 kJ mol- I. This barrier 

height is slightly lower than that predicted by Nobes and 

Radom23 (367 kJ mol-I). It was found, however, that the 

experimental falloff data could not be fitted using a barrier 

height of 367 kJ mol-I unless the average internal and rota

tional energy transfer parameters (LlE down) and (LlR down) 

were assumed to have values which were too small ( < 100 

cm- I) to be physically reasonable. Previous work l5 .34 indi

cates that the values of these quantities should be of the order 

ofO.5kB T-1.5kB T (100--300cm- 1 at 300 K) for this type of 

system. In the absence of further knowledge about the rela

tive sizes of these two parameters, we chose to assign the 

same value for both of them, and vary the magnitude of this 

value in order to reproduce the experimental data. The val

ues of (LlEdown ) and (LlR down ) used for the calculated curve 

in Fig. 2 are both 0.75kB T (156 cm- I), which allow an 

excellent fit of the experimental data when used in conjunc

tion with a barrier height for the exit channel of 348 kJ 
mol-I. 

The calculated pressure dependence of the stabilization 

rate coefficient ks for the reaction at 300 K is shown in Fig. 2 

(curve A), along with the experimental falloff data for the 

reaction obtained by Saxer et al. 19 Curve B is that resulting 

from use of the strong collision assumption: it includes angu

lar momentum conservation but does not include weak colli-
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TABLE I. RRKM parameters for multichannel dissociation of (CH3NH3 ) +. (A) Molecular vibrational fre

quencies and rotational constants for (CH3NH3 ) +. Frequencies (appropriately scaled) and structure from 

Nobes and Radom (Ref. 23). (B) Frequencies and rotational constants for transition states of Eqs. (32a) and 

(32b). For simple fission transition state (32a), rotational constant for hindered dipole rotation (Ref. 15) 

marked with an asterisk. Frequencies and structure ofCHt from Nobes and Radom (Ref. 23). Potential of 

interaction along reaction coordinate for (32a) taken as VCr) = - 6.9492 X 1026 air" - 289.21 

f-tlr kJ mol-I, with a = 2.26x 10- 24 cm\ f-t = 1.47 Debye, rin A. 

Vibrations: 

Frequencies" (cm - I) 

275 (1) 

907 (1) 

1006 (2) 

1348 (2) 

1610 (1) 

1653 (2) 

1703 (1) 

1844 (2) 

3259 (1) 

3367 (2) 

3538 (1) 

3615 (2) 

Vibrations: 

Frequencies" (cm - I ) 

(32b) (32a) 

452 (1) 950 (1) 
822 (1) 1628 (2) 

1001 (1) 3337 (1) 
1061 (1) 3414 (2) 

i093 (1) 1350 (1) 
1183 (1) 1370 (2) 

1388 (1) 2903 (1) 
1558 (1) 3090 (2) 

1562 (1) 
1731 (1) 

1805 (1) 
2106 (1) 
2517 (1) 
3299 (1) 
3403 (1) 
3701 (1) 

3821 (1) 

(A) 

Type 

External inactive 

External active 

(B) 

Type 

External inactive 

External active 

Internal 

" Degeneracies in parentheses. 

Rotations 

Rotations 

(32b) 

0.646 (1,2) 

2.269 (1,1) 

bParenthetic quantities are symmetry number and dimension, respectively. 

sion effects. An approximate method correcting curve B for 

weak collision effects is to calculate a value of P with physi

cally reasonable values of (Il.E down) and (Il.Rdown ) by using 

the relationship derived by Troe,9 which relates these quan

tities in the low-pressure limit. However, the Troe solution 

can overestimate P by a factor of 2 for typical ion/molecule 

reactions. 15 While this error can be corrected,15 the Troe 

model is not readily extendable to multichannel reactions, 14 

as would be required in the present case (one needs a colli

sion efficiency Pi which is specific to the reactant channel). 

Hence, the present method appears to be the only currently 

available means of accurately determining the stabilization 

rate coefficient in the falloff regime. 

B valuesb (cm- I) 

0.648 (1,2) 

2.725 (3,1) 

(32a) 

0.Q205 

2.543 

10.36 

8.951 

*9.301 

(1,2) 

(3,1) 

(3,1) 

(2,2) 

(1,2) 

An alternative might be to determine a value of P which 

allows the storng collision curve to fit the experimental re

sults over a limited pressure range (ca. 1 Torr) and then 

extrapolate to lower pressures. The value of P required to 

reproduce the experimental data in this way is 0.13. Extrapo

lating with this value of P to low pressures produces a curve 

which overestimates the rate coefficient by a factor of ca. 2. 

Therefore, the use of P to modify the strong collision curve 

does not allow reliable extrapolation of the data over a wide 

range of pressures. In this case such an error may not mater

ially affect the predicted behavior of the system, since at low 

pressures dissociation of the collision complex is the domi

nant process, the rate of stabilization being negligible in 

J. Chern. Phys., Vol. 90, No.8, 15 April 1989 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct

2016 06:45:56



4272 Smith, McEwan, and Gilbert: Activation and unimolecular dissociation 

CH;+ NH. 

(442) \ (CH.NH;J' 
\ 

\ / (348) \ 
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\ " AH~ 
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I 

CH.+NH; 
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FIG. 1. Schematic diagram of potential surface along reaction coordinate 

for CHt /NH) reaction, relative to [CH)NH,)+ having energy 0.0 

kJ mol-I. 

comparison. However, for reactions where the collision 

complex has a longer lifetime and hence association persists 

to low pressures, such an extrapolation will produce signifi

cant error. 

The sensitivity of the solution to correct incorporation 

of angular momentum conservation is seen by comparing 

with results for ks obtained by solution of the one-dimen

sional master equation without conservation of angular mo

mentum in the falloff regime 13.35 (the same (!:J.Edown ) value 

is used, but (!:J.Rdown ) is not involved in the purely one-di

mensional solution); these values were several orders of 

magnitude too small. It is apparent that correct accounting 

for both weak collision and angular momentum effects is 

essential in order to obtain an accurate fit to the data and to 

deduce information concerning energy transfer. The param

eters which are most uncertain in the calculation are the 

average internal and rotational energy transfer per collision 

with the bath gas helium, and the barrier height for the exit 

channel. The lack of temperature-dependent data does not 

allow an unambiguous determination of both the barrier 

height for the exit channel and the average energy transfer 

parameters. 

For the results shown in Fig. 2, fne was evaluated exact

ly at a number of pressures throughout the falloff regime. In 

..... 
'; 

I/) 
., 
E 
() ...... 
.¥. 

10~~--------------------------~ 

B 

10-9 
A 

• • 

10-10 

0~-----0~.5-------1~.0-------1~.5~ 

p (Torr) 

FIG. 2. Calculated pressure dependence of stabilization rate coefficient k, 

(as ratio to high·pressure limiting value) for CH3+ /NH3 chemical activa

tion reaction at 298 K; parameters as in the text. For conversion from uni

molecular rate coefficients, Keq = 2.93 X lOS I cm3
. A: master equation solu· 

tion with full angular momentum conservation. B: strong collision 

calculation with J conservation. Points: data of Saxer et al. (Ref. 19). 

all cases the value of fne was indistinguishable from 1. The 

approximation of settingf"e equal to unity is therefore fully 

justified. 

IV. CONCLUSIONS 

The problem of predicting falloff behavior and model

ing falloff data in recombination and chemical activation 

reactions is an important and fundamental one. Various ap

proaches to this problem have been used, most of which treat 

the collisional stabilization process as irreversible, using a 

steady-state approximation to determine the collision com

plex populations.4
,5 This neglects activation of stabilized 

molecules and can lead to significant error,7 particularly at 

lower pressures and high temperatures where the effect of 

activating collisions is most significant. Moreover, a poster

iori corrections (such as the collision efficiency in the strong 

collision model) provide little more than a scale for qualita

tive comparison between systems and may lead to substan

tial error if used to extrapolate beyond the range of experi

mental data used to determine them, 2 

In order to overcome these problems one must solve the 

chemical activation/ recombination master equation involv

ing all states of the molecule, including those below the dis

sociation threshold. 7 From this, we have shown that the rate 

coefficients for stabilization and for the reverse single-chan

nel or multichannel unimolecular dissociation are directly 

related by an expression involving the equilibrium constant 

for the reaction and a "nonequilibrium" factor fne which is 

in most cases unity. This relationship, expressed for chemi

cal activation reactions in Eq. (23) and for recombination 

reactions in Eq. (27), allows the use of the steady-state ap

proximation to be avoided at no extra computational cost, 

since very efficient algorithms exist for the solution of the 

multichannel unimolecular master equation, with full angu

lar momentum conservation if necessary. 36 (For most ion/ 

molecule reactions, because of the long-range nature of the 

potential of interaction, including angular momentum con

servation will be very important). A summary of the appro

priate formulas is given at the end of Sec. II. Use of this 

method will lead to improved reliability of a priori prediction 

of chemical activation rate coefficients, and enables average 

energy transfer parameters for collisions between the prod

uct molecule and the bath gas to be determined in chemical 

activation systems by modeling experimental falloff data. 

The analysis presented justifies the procedure (which, 

though not all new,8 has not previously been rigorously 

proven for reactions involving polyatomic species) of relat

ing recombination rate coefficients to the reverse single

channel unimolecular dissociation rate coefficients by the 

equilibrium constant throughout the falloff regime. How

ever, it shows that fne may become significantly less than 

unity at sufficiently high temperatures, a caveat which must 

be borne in mind when relating dissociation and recombina

tion data over a very wide tern perature range (e. g., Ref. 37). 
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APPENDIX: IDENTIFICATION OF THE COLLISION 

COMPLEX POPULATION DISTRIBUTION 

The identification of g* (t) as the steady-state complex 

population proceeds as follows. First, we note that, from Eq. 

(17), the population distribution KeqA(t)B(t)"1/Q is the 

solution v(t) ofthe equation 

Jv+KeqrA(t)B(t)/Q=O. (Al) 

This is an equation for a steady-state molecular population 

distribution. Equation (AI) describes a steady-state distri

bution involving all molecular states for which the net rate of 

formation of molecules is zero, such as that attained at long 

times in the reactive system. For a recombination system, 

Eq. (Al) has solution v = KeqA(t)B(t)b/Q (in this case, 

the steady-state distribution is an equilibrium distribution). 

In the case of a chemical activation system, the energy distri

bution ofv(t) , v(E,t) in continuum notation, will be Boltz

mann in nature at lower energies, but will deviate from 

Boltzmann at energies close to and above the lowest disso

ciative threshold. That v for a chemical activation system is 

still essentially a Boltzmann distribution at lower energies 

can be seen by noting that in Eq. (AI) k(E) = 0 for 

E < E ;;,in and so, for energies below the lowest dissociation 

threshold, Eq. (AI) becomes 

(U J P(E,E')v(E')dE' - (Uv(E) = 0, E <E;;'in. (A2) 

Hence at energies sufficiently far below E ;;'in the effect of the 

nonequilibrium nature of the populations close to and above 

E ;;,in is negligible and Eq. (A2) will be satisfied by a distribu

tion which is Boltzmann in nature. From Eqs. (14) and 

(At), the steady state v(t) may be expressed as 

v(t) = [Keq A(t)B(t)IQ]"1 

= - [KeqA(t)B(t)/Q ]SB -IU 

= KeqA(t)B(t) L ....!!.!....- X; , 

Q ; IA;I 
(A3) 

where X; is the ith eigenvector of the J matrix. Since, from 

Eqs. (15) and (19), the population g*(t) contains all the 

terms in this expansion except that involving Xi' we see that 

g*(t) is the contribution to the steady state population dis

tribution v(t) of the higher eigenvectors, corresponding to 

the eigenvalues which relax much more quickly than AI' In 

Eq. (19), g* (t) is represented as the difference between two 

vectors which are both essentially Boltzmann distributions 

at lower energies and only deviate from each other at ener

gies close to and above E;;'in. This population distribution 

therefore contributes mainly above the threshold, is small in 

magnitude (since IA21-1,IA31-1, ... «IAII-I), and is at 

steady state with the reactant population A(t)B(t). Equa

tion ( 19) constitutes a mathematical definition of the steady 

state distribution of excited collision complexes. This com

pletes the identification of g* (t) as the steady-state complex 

population. 
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