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Abstract

We examined the relationship between resource abundance and the feeding activity of phy-

tophagous insects on three common island plants. The aim was to investigate the correla-

tion between phytophagous insects’ abundance and availability of food and island

geography. We collected 30,835 leaves from three tree species groups (Mallotus japonicus,

Prunus species, and Quercus species) on 18 islands in southwest Korea. The number of

plant resources for herbivores varied: the number of leaves per shoot was the highest in

Mallotus, leaf weight and the water content per leaf was significantly lower in Quercus spe-

cies. External feeding was higher for Prunus and Quercus species, whereas the internal

feeding type was significantly higher for Quercus species. Geography (area and distance),

elevation and food resource (elevation, number of plant species, and the forest cover rate)

had a variable effect on phytophagous insects feeding activities: distance and the number of

plant species were more explainable to the external feeding guild. In contrast, area and for-

est cover were more to the internal feeding guild.

Introduction

An island is an isolated landmass surrounded by water and typically comprised of diverse hab-

itats from seashores to forested areas despite their limited size. Islands offer an important

opportunity to investigate the evolution theory because island biota often evolved peculiar

characteristics to adapt to the island environment over time. MacArthur & Wilson [1] sug-

gested an equilibrium theory of island biogeography that predicts that the number of species

on an island is determined by island size and isolation. This theory postulated that species

inhabiting islands closer to the mainland are more likely to immigrate than those further from

the mainland. It also proposed that species living on small islands have a higher probability of

going extinct than those on larger islands due to competition [1]. The island biogeography the-

ory is now widely accepted as an established ecological theory. Multiple studies show a strong

relationship between the number of species on an island and the island’s area [1–14]. Also,

Lack [15] suggested that island species diversity is closely related to habitat diversity with more

distant islands having lower diversity caused by low habitat heterogeneity due to impoverish-

ment [16].
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About 925,000 insects comprise more than half of the living organisms on Earth and show

great morphological and functional diversity [17]. Insects can be divided into three functional

groups based on their feeding strategies: phytophagous, predacious, and saprophagous. Phy-

tophagous insects, the focus of this study consume plant materials and comprise a quarter of

the total insect species. They include more than nine orders: Coleoptera, Collembola, Diptera,

Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Phasmida, and Thysanoptera. Phytopha-

gous insects are an important link between plants and secondary consumers, including preda-

ceous insects, birds, bats, and mammals [18]. Leaf damage, produced by the feeding activities

of phytophagous insects, traces the typical interaction between plants and animals. Phytopha-

gous insects can be further divided into two categories based on their feeding mechanisms and

leaf damage: external feeder (leaf chewer) regarded as generalist [19], and internal feeder (gall-

maker, leaf miner, and sap-sucker) mostly specialists [20].

Here, we measured leaf damage in three plant species to investigate the food plants abun-

dance for phytophagous insects in islands of different sizes and distances from the mainland.

The resource abundance hypothesis [21] predicts that plants that offer more resources can sup-

port more species and greater abundances of insect herbivores [22]. Since plants and insects

arrive and colonize islands independently, phytophagous insects, especially on remote islands,

might face the unfavorable condition of lacking their preferred host plant [23]. This mismatch-

ing of plants and herbivores can cause insects to either fail to survive or obligatorily subsist on

less preferred plant species, causing their larvae to develop more slowly and in reduced num-

bers. The resulting reduction in herbivore pressure could lead plants to evolve relaxed defenses

and alter their chemical traits [24]. Thus, we also measured the number of food resources and

leaf traits in the three plant groups to investigate their effect on herbivore survival.

Studies on herbivore-caused leaf damage on island plants are rare [25, 26]. The abundance

of host plant individuals or plant biomass is the main resource affecting herbivores’ distribu-

tion and population oscillation [22, 27]. We investigated the feeding activities of phytophagous

insect species on three plant species on the surveyed islands to determine whether abundant

plant resources are beneficial for the abundance of phytophagous insects. We also tested the

island biogeography theory using island characteristics, including island size and distance

from the mainland, on the abundance of phytophagous insects. We hypothesized that leaf

damage would be closely related to island area size and distance from the mainland as postu-

lated by the island biogeography theory since phytophagous insects’ diversity and abundance

are closely related [28]. The abundance of phytophagous insects on the island measured as leaf

damage was related to food abundance [1].

Materials and methods

Study area

Korea has about 3,348 islands, of which 2,878 are uninhabited. About 60% of the islands are

located in the southwest (Jeollanam-do province), and many are part of the Dadohaehaesang

Maritime National Park (Fig 1). We surveyed the leaves of three plant species groups on

18 islands in the national Park. Each island’s area and maximum elevation were obtained

from Korea’s public data portal [29], and the shortest distance from the mainland was mea-

sured using Google Earth (https://earth.google.com). The flora on each island and the num-

ber of plant species were obtained from the National Park Service [30] (Table 1). Forest

cover area (m2) for the surveyed island was acquired by processing the vector data from the

land cover map from the Ministry of Environment, Korea (http://egis.me.go.kr/main.do).

The data comprised seven land cover classes: urban, agricultural, forest (deciduous, conifer-

ous, and mixed), grasses, wetland, bare ground, and water. Images were processed using
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Geographical Information Systems QGis version 2.18.18 (https://www.qgis.org/en/site/

index.html) at a 1:25,000 scale. We used the proportion of forest area (%) as the forest cover

of the island.

Fig 1. Map showing the surveyed 18 islands in southwest Korea: 1. Aphaedo, 2. Hongdo, 3. Heuksando, 4. Yongsando, 5. Bigeumdo, 6.

Dochodo, 7. Sangjodo, 8. Hajodo, 9. Gwanmaedo, 10. Wando, 11. Nohwado, 12. Jangsado, 13. Bogildo, 14. Soando, 15. Cheongsando, 16.

Geomundo (Seodo), 17. Geumodo, 18. Yeondo.

https://doi.org/10.1371/journal.pone.0256183.g001

Table 1. Geographic data and the number of examined leaves of three common plant species on 18 surveyed islands in southwest Korea.

Island Area

(km2)

Distance from mainland

(km)

Maximum elevation

(m)

No. of plant species on

island

Forest cover

(%)

Examined number of leaves

Mallotus
japonicus

Prunus
spp.

Quercus
spp.

Aphaedo 48.84 10.8 234 451 25.51 786 437 562

Bigeumdo 48.06 41.5 220 225 26.9 742 485 646

Bogildo 32.14 19 433 407 86.22 767 397 444

Cheongsando 32.96 32.6 385 264 66.71 763 570 449

Dochodo 44.04 40.3 230 251 29.09 767 378 437

Geomundo

(Seodo)

7.21 47.4 237 248 64.37 824 595 431

Geumodo 27.5 18.8 382 395 72.84 807 534 401

Gwanmaedo 4 46.4 219 253 82.34 770 499 466

Hajodo 17 44.9 234 330 71.16 755 521 460

Heuksando 21.7 90 345 522 93.65 730 446 432

Jangsado 0.28 17.2 65 79 89.93 843 485 445

Nohwado 25.3 13.6 148 584 47.45 744 389 375

Sangjodo 6.87 47.3 221 218 67.78 718 457 363

Soando 23.22 21.3 350 437 58.49 795 424 453

Wando 90.07 9.9 644 105 63.03 784 407 604

Yeondo 6.93 28 231 348 58.01 783 428 454

Yeongsando 1.91 85.5 165 359 92.84 933 479 356

Hongdo 6.47 115 368 330 82.28 784 592 439

https://doi.org/10.1371/journal.pone.0256183.t001
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Sampling method

We sampled leaves from three groups of common island plant species: Mallotus japonicus
(Euphorbiaceae, MAL); Prunus yedoensis, P. takesimensis, and P. jamasakura (Rosaceae); and

Quercus dentata, Q. acutissima, and Q. serrata (Fagaceae). We sampled leaves during June and

July in two years (2017 and 2018), when the leaves are full-grown, and the feeding activity of

phytophagous insects was the highest, while the leaf damage by aging was relatively small [31].

Since Prunus and Quercus species distribution differed on each island, we grouped these plant

species into a Prunus group (PRU) and a Quercus group (QUE). We randomly sampled ten

current-year shoots from nine individual trees of each species and counted and measured

external and internal leaf damage observed by the eye. To avoid counting errors, one author

(BS) consistently counted the leaf damage.

We classified leaf damage caused by phytophagous insects into chewers (external leaf dam-

age) and gallers or miners (internal leaf damage). Leaf damage by chewers was coded into six

grades based on the damage proportion of each leaf: 0 = no damage; 1 = 1~10% damage;

2 = 11~25%; 3 = 26~50%; 4 = 51~75%; and 5 = 76~100% [25, 32, 33]. To calculate the chewing

rate of each plant species per island, we first weighted each leaf damage grade differently to a fixed

value: 1–1, 2–11, 3–26, 4–51, and 5–76, then multiplied this fixed value with the damaged number

leaves for each grade per plant. The chewing rate index of each plant species per island was

obtained by dividing the summation of the weighted value by the examined leaves of each island.

Leaf damage by gallers and miners was counted via galls and leaf mines on each leaf. The

internal feeding value was obtained by summing the numbers of galls and mines of each island.

Leaf damages by galls and leaf mines were relatively scarce compared to chewers. Thus, the

internal feeding value was obtained by multiplying ten after averaging the summing numbers

of galls and mines of each island.

All field work was conducted with the permission of the Korea National Park Service.

Leaf traits (LMA, water content)

We collected ten leaves randomly from each tree to measure water content and leaf mass per

area (LMA). We weighted a group of these ten leaves. We made a disk (6 mm diameter) per leaf

using a puncher, totaling a group of ten disks per plant species, and then dried these ten disks

for 48 hrs at 60˚C in a drying oven. We measured the weight of each group of ten disks before

and after drying. LMA and water content were calculated with the following formula [32, 34].

LMAðmg �mm� 2Þ ¼Wdry=Aarea

Water content %ð Þ ¼
Wfresh� Wdry

Wfresh

Wfresh : Weight of fresh leaf

Wdry : Weight of dried leaf

Aarea : Area of leaf disk

Analysis

We tested the effect of the sampling procedure on phytophagous herbivory based on fixed

effects in hierarchical sampling using the island, tree species, numbers of individual trees and

shoot sampled, and year and week of sampling date as random effects. We modeled external
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and internal feeding damage with geography (each islands’ area and distance from the main-

land) and habitat diversity expressed as maximum elevation and food resources (number of

plant species recorded and the forest cover) using generalized linear models (GLMs). We log-

transformed area and distance to reduce skew. We built GLMs with external and internal feed-

ing damage rates as response variables, two sets of explanatory variables: geography (the island

area and distance), habitat diversity, and plant resources (plant species richness and the forest

cover). In these models, we calculated the independent contribution (R2) of each predictor var-

iable and the significance level at 0.05% after 999 randomizations using the “hier.part package”

in R. All analyses were carried out in R (R Core Team, 2018).

Results

Resource abundance and insect herbivory

A total of 30,835 leaves from 610 individual trees on 18 islands were collected. The MAL leaves

were the most abundant, with 14,095 leaves (45.7%), followed by PRU (8,523 leaves, 27.6%)

and QUE (7,655 leaves, 24.8%). There was also a significant difference in the total leaves from

the plants when we randomly sampled ten current-year shoots from nine individuals of each

plant species (ANOVA F2,51 = 141.8, P< 0.001, Fig 2A).

The sampling effect to examine the phytophagous insects on three plant species on 18

islands were negligible: the number of individual tree effect was the highest in the hierarchical

sampling (10.38%), and the variances of the island, tree species, the number of shoots sampled,

year, and week were 3.74, 5.99, 3.25, 3.25, 3.25%, respectively. There was no difference between

the model using individual trees as a fixed effect and or not (Likelihood ratio 1.66, P = 0.20).

We investigated the fresh leaf weight, LMA, and water content for the three plant species

(MAL n = 162, PRU n = 159, QUE n = 162). The average of the fresh leaf weight varied: 41.35

(±1.18 s.e.) mg (MAL), 39.61 (±1.50) mg (PRU), and 33.81 (±1.14) mg (QUE). QUE was sig-

nificantly lighter than the other plant species (ANOVA F2,51 = 9.49, P< 0.001, Fig 2B). The

average LMA did not differ: PRU 6.01 (±0.25 s.e.) mg.mm−2, MAL 6.32 (±0.26) mg.mm−2,

QUE 6.20 (±0.27) mg.mm−2, and was not significantly different (F2,51 = 0.37, P = 0.69, Fig 2C).

The average water content also varied: 56.3 (±1.18 s.e.)% (MAL), 57.6 (±0.65)% (PRU), and

47.2 (±1.90)% (QUE). The water content was significantly lower in QUE (F2,51 = 17.72,

P< 0.001, Fig 2D).

Insect herbivory

Chewers were the most active phytophagous insects, damaging 23,695 leaves (76.8% of the

total leaves): 80.8% (MAL), 79.6% (PRU), and 67.1% (QUE). We found no significant correla-

tion between herbivory rate and the examined leaves of three plant species (Chewers: MAL

Pearson r = −0.06, P = 0.80; PRU r = −0.31, P = 0.22, QUE r = −0.26, P = 0.31; gallers and min-

ers: MAL Pearson r = 0.15, P = 0.55; QUE r = −0.26, P = 0.31), except the internal feeding of

PRU (r = 0.57, P< 0.05).

The average chewing rate varied: PRU 4.15 (±0.46 s.e.)%, QUE 3.32 (±0.75)%, and MAL

2.59 (±0.32)%. The chewing rate of the three plant species across the 18 islands was signifi-

cantly different (Kruskal–Wallis Chi2 = 6.745, P< 0.05, Fig 3A), and the chewing rate of the

PRU was the highest.

The number of leaves damaged by gallers and miners was 585 (1.90%) and 241 (0.78%),

respectively. The number of leaves damaged by gallers was 540 (QUE), 43 (PRU), and 2

(MAL), and that by miners was 133 (MAL), 60 (QUE), and 48 (PRU). The total damage by

internal feeders (gallers and miners) was 600 (QUE), 135 (MAL), and 91 (PRU). The internal
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Fig 2. Box plot of the number of examined leaves (A), the fresh leaf weight (B), LMA (leaf mass per area) (C), and water

content (D) for the three plant species across 18 islands. Different alphabet above the bar indicates the significant difference

at P< 0.05.

https://doi.org/10.1371/journal.pone.0256183.g002

Fig 3. The chewing rate (A) and the sum of internal feeding (B)(± standard error) of the three plant species across the 18

islands. Different alphabet above the bar indicates the significant difference at P< 0.05.

https://doi.org/10.1371/journal.pone.0256183.g003

PLOS ONE Relation between resource and herbivory on islands

PLOS ONE | https://doi.org/10.1371/journal.pone.0256183 August 16, 2021 6 / 12

https://doi.org/10.1371/journal.pone.0256183.g002
https://doi.org/10.1371/journal.pone.0256183.g003
https://doi.org/10.1371/journal.pone.0256183


feeding damages were significantly different among the plants with QUE heavily infested by

internal feeders (Kruskal–Wallis Chi2 = 23.15, P< 0.001, Fig 3B).

There was no correlation between external feeding and internal feeding rates on three

plant species even though both phytophagous insects used the same host plant (MAL Pearson

r = –0.26 P = 0.30; PRU Pearson r = 0.09, P = 0.71; QUE, Pearson r = –0.19, P = 0.44).

We analyzed the effect of island size and distance from the mainland on phytophagous

insect damage. No geographic variable affected external and internal feeders (Table 2). Parti-

tioning of the independent variable to external and internal leaf-feeding guild showed an

opposite explanation: distance effect for external and area effect for internal feeding. For food

resources, plant species richness was significant to external feeding, while forest cover was to

internal feeding guild (Table 3).

Discussion

The island biogeography theory has been previously tested on Korean islands using plants [9],

moths [35], and birds [36]. These studies confirmed the dynamic equilibrium model; larger

island areas have more species and more distant islands have few species. In contrast, the num-

ber of butterflies and staphylinid beetles [6, 11, 14] and insects on Gwanmae-do Island [37]

Table 2. Generalized linear regression for external and internal feeding guilds using geography (a) and habitat

diversity and plant resources (b). Std Error, Standard Error, AIC, Akaike Information Criteria. � P< 0.0.5.

Dependent variable Independent variables Estimate Std Error t-value AIC

(a)

External leaf damage Intercept 8.38 3.46 2.42� 114.74

Log (area) -0.46 2.91 -0.16

Log (distance) 5.17 5.89 0.88

Internal leaf damage Intercept 0.34 0.75 0.46 59.44

Log (area) 0.64 0.63 1.02

Log (distance) 0.39 1.27 0.31

(b)

External leaf damage Intercept 0.03 4.87 0.01 110.15

Elevation -0.004 0.01 -0.52

Plant species 0.02 0.01 2.00

Forest cover 0.09 0.05 1.85

Internal leaf damage Intercept 3.05 1.09 2.81� 56.15

Elevation 0.00 0.00 -0.52

Plant species 0.00 0.00 -0.23

Forest cover -0.03 0.01 -2.35�

https://doi.org/10.1371/journal.pone.0256183.t002

Table 3. Summary of hierarchical partitioning for external and internal feeding guilds using geography and habitat diversity and plant resources.

Model Variables External Internal

Mal Pru Que Total Mal Pru Que Total

Geography Area 52.78 18.57 6.63 9.41 5 89.93 95.77 92.99

Distance 47.22 81.43 93.37 90.59 95 10.07 4.23 7.01

Food resources Elevation 54.71 12.58 1.87 3.21 16.61 43.87 2.8 6.84

Plant species 29.05 57.33 47.26 53.24� 33.89 3.66 0.06 0.53

Forest cover 16.21 30.09 50.88 43.55 49.5 52.48 97.14� 92.63�

Bold indicates the highest explanatory value; an asterisk shows the significant difference at P < 0.05 after 999 randomizations.

https://doi.org/10.1371/journal.pone.0256183.t003
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showed that only the island’s area was related to species diversity and that the number of plant

species [13] was not affected by island area or distance from the mainland.

Island size is the most informative variable of island biogeography and can be a good surro-

gate for productivity and food chain length [24, 38]. In this study, the area and distance from

the mainland did not affect external and internal feeders on the islands. This result differed

from other studies of the effect of island size on consumers [5, 39, 40]. Arnold & Asquith [26]

showed a relationship between leaf damage and island size but no relationship with distance.

Insect feeding activity was not affected by distance probably because islands offshore of Korea

were isolated after the Holocene with no drastic changes in the biology of the island biota [13],

and that most islands are close enough to each other to act like stepping stones [6, 11, 41].

Thus, the careful examination of these complex variables should be considered together with

the main variables of the dynamic equilibrium theory of island biogeography (area, distance

from mainland).

The resource concentration hypothesis explains that high insect density occurs at places

with abundant resources, including monocultural areas, high plant densities, and large plant

habitats [42, 43]. Since increasing insect density causes more feeding, the examination of leaf

damage at high-density areas of insects should show more leaf damage per leaf. In addition,

the direct and indirect factors of leaf damage such as vegetation structure, tree age, plant diver-

sity, biomass, leaf physical and leaf traits (LMA, water content, C/N ratio, second metabolites)

should be considered when counting leaf damage by phytophagous insects [44–50].

We found that the plant species richness and forest cover played an essential role in the

activities of phytophagous insects. However, these two feeding guilds were disproportionally

affected by plant diversity and abundance: the external feeder was strongly affected by the

number of plant species, while the internal feeder was affected by the forest cover. Leaf damage

by chewers differs from galler and miner damage because each feeding guild favors leaves dif-

ferently. In addition, the diversity of plant species affects the species richness of chewers and

miners: chewers favor areas with higher plant diversity. In contrast, miners are negatively

affected by higher plant species richness due to the dilution of their preferred host species [51–

53]. We found that the leaf density of the three plant groups differed, with MAL the most

abundant and the leaf biomass and water content of MAL and PRU being significantly larger

than QUE. We predicted that abundant resources, such as MAL and PRU would have greater

feeding damage than QUE. Still, this prediction was only partly congruent: the higher external

feeding rates in PRU and QUE were not significantly different.

Hiura & Nakamura [32] reported that external and internal herbivores responded differ-

ently to leaf traits, including leaf toughness and LMA. Plant with higher leaf toughness and

LMA produce thicker leaves, protecting them from external herbivores [32, 54]. In contrast,

internal herbivores favor the thick leaves because they can harbor larger herbivores, reduce

dryness, and avoid plant chemical attacks by favoring the palisade parenchyma of the leaves

[32, 55–57]. Hiura & Nakamura [32] noted that increasing LMA reduced leaf damage by chew-

ers but increased leaf damage by gallers and miners. This study observed that QUE had lighter

leaves with little water content and was severely infested by internal feeders. Fernandes & Price

[58] suggested that galling insect richness was closely related to hygrothermal harshness; that

is, more galling species were found in drier environments. We concluded that leaf traits such

as leaf weight, water content, and LMA impacted the leaf damage activities of internal feeders.

We hypothesized that leaf damage would be closely related to island area size and distance,

but we found that the leaf damage was not clearly related to island geography, area and dis-

tance from the mainland (Table 2). Instead, two feeding guilds were affected differently: exter-

nal feeder activity was more explained by distance, and internal feeder activity was by area

(Table 3). We also hypothesized that the abundance of phytophagous insects was closely
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related to food abundance. Both plant species richness and forest cover played an important

role in phytophagous insects. However, the external feeder was more explained by the species

richness, and the forest cover more explained the internal feeder (Table 3). Phytophagous

insects attacking three common plants on the Korean islands were differently affected by

quantity and diversity of food resources. We conclude that mechanisms affecting phytopha-

gous insects on the Korean islands were linked to amount and different kinds of food resources

which indirectly linked to area and distance.

Supporting information

S1 Data. External leaf damage by chewers on 18 islands in southwest Korea. Islands (Is.): 1.

Aphaedo, 2. Bigeumdo, 3. Bogildo, 4. Cheongsando, 5. Dochodo, 6. Geomundo (Seodo), 7.

Geumodo, 8. Gwanmaedo, 9. Hajodo, 10. Heuksando, 11. Jangsado, 12. Nohwado, 13. Sang-

jodo, 14. Soando, 15. Wando, 16. Yeondo, 17. Yongsando, 18. Hongdo. Tree species (Tree): 1.

Mallotus japonicas, 2. Prunus spp. 3. Quercus spp.

(XLSX)

S2 Data. Interrnal leaf damage by gallers and miners on 18 islands in southwest Korea.

Islands (Is.): 1. Aphaedo, 2. Bigeumdo, 3. Bogildo, 4. Cheongsando, 5. Dochodo, 6. Geomundo

(Seodo), 7. Geumodo, 8. Gwanmaedo, 9. Hajodo, 10. Heuksando, 11. Jangsado, 12. Nohwado,

13. Sangjodo, 14. Soando, 15. Wando, 16. Yeondo, 17. Yongsando, 18. Hongdo. Tree species

(Tree): 1. Mallotus japonicas, 2. Prunus spp. 3. Quercus spp.

(XLSX)

S3 Data. Leaf traits of three species on 18 islands in southwest Korea. Islands (Is.): 1.

Aphaedo, 2. Bigeumdo, 3. Bogildo, 4. Cheongsando, 5. Dochodo, 6. Geomundo (Seodo), 7.

Geumodo, 8. Gwanmaedo, 9. Hajodo, 10. Heuksando, 11. Jangsado, 12. Nohwado, 13. Sang-

jodo, 14. Soando, 15. Wando, 16. Yeondo, 17. Yongsando, 18. Hongdo. Tree species (Tree): 1.

Mallotus japonicas, 2. Prunus spp. 3. Quercus spp.

(XLSX)
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