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Abstract Brain connectivity is often considered in terms of the communication between

functionally distinct brain regions. Many studies have investigated the extent to which patterns of

coupling strength between multiple neural populations relates to behaviour. For example, studies

have used ‘functional connectivity fingerprints’ to characterise individuals’ brain activity. Here, we

investigate the extent to which the exact spatial arrangement of cortical regions interacts with

measures of brain connectivity. We find that the shape and exact location of brain regions interact

strongly with the modelling of brain connectivity, and present evidence that the spatial

arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and

lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of

functional brain regions are being interpreted as changes in functional connectivity. Therefore, a

better understanding of these effects is important when interpreting the relationship between

functional imaging data and cognitive traits.

DOI: https://doi.org/10.7554/eLife.32992.001

Introduction
The organisation of the human brain into large-scale functional networks has been investigated

extensively over the past two decades using resting state functional magnetic resonance imaging

(rfMRI). Spontaneous fluctuations in distinct brain regions (as measured with rfMRI) show temporal

correlations with each other, revealing complex patterns of functional connectivity (FC)

(Biswal et al., 1995; Friston, 1994, 2011). Extensive connectivity between cortical areas and with

subcortical brain regions has long been considered a core feature of brain anatomy and function

(Crick and Jones, 1993), and dysfunctional coupling is associated with a variety of neurological and

psychiatric disorders including schizophrenia, depression, and Alzheimer’s disease

(Castellanos et al., 2013). Given the great potential neuroscientific and clinical value of rfMRI, it is
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important to determine which aspects of rfMRI data most sensitively and interpretably reflect trait

variability across subjects. At a neural level, potential sources of meaningful cross-subject variability

include: (i) the strength of the functional coupling (i.e. interactions) between two different neural

populations (‘coupling’), and (ii) the spatial configuration and organisation of functional regions

(‘topography’). In this study, we aim to identify how these key aspects of rfMRI data influence

derived measures of functional connectivity and how they relate to interesting trait variability in

behaviour and lifestyle across individuals. Our findings reveal variability in the spatial topography of

functional regions across subjects, and suggest that this variability is the primary driver of cross-sub-

ject trait variability in correlation-based FC measures obtained via group-level rfMRI parcellation

approaches. These results have important implications for future rfMRI research, and for the inter-

pretation of FC findings.

A commonly applied approach used to derive FC measures from rfMRI data is to parcellate the

brain into a set of functional regions (‘nodes’), and estimate the temporal correlations between pairs

of node timeseries (‘edges’) to build a network matrix (Smith et al., 2013b). This approach has pre-

viously been likened to a fingerprint, enabling the unique identification of individuals, and the pre-

diction of behavioural traits such as intelligence (Finn et al., 2015; Passingham et al., 2002). Of

particular interest is the ability of network matrices to explain cross-subject variability in behaviour

and performance on psychometric tests. To this end, Cross Correlation Analysis (CCA) was previ-

ously adopted to link a ‘positive-negative’ axis of behaviour to network matrices in data from the

Human Connectome Project (Smith et al., 2015). CCA allows the comparison of a set of variables

obtained from rfMRI (such as network matrices of edges) to a set of behavioural variables by estimat-

ing independent linear transformations for the two sets of variables such that they are maximally cor-

related. Here, we replicated this previous work in a larger subject sample (almost double the

number of individuals), and adopt CCA to determine which key aspect of rfMRI data is uniquely

associated with behaviour.

Parcellation methods that can be used to estimate network matrices include the use of anatomi-

cal, functional, and multi-modal atlases (Glasser et al., 2016; Tzourio-Mazoyer et al., 2002;

Yeo et al., 2011), with functional parcellations often being data driven via techniques such as

eLife digest People differ a lot from one another in terms of their personality, behaviour and

lifestyle. This individuality is attributed to the different regions in the brain, and the strength of

communication between them. The connectivity pattern between these areas is thought to be as

unique as a fingerprint. If the connections are weak or disrupted it can play a role in conditions such

as schizophrenia, depression or Alzheimer’s disease. It is thought that the strength of the connection

depends on how strongly the nerve cells in these regions communicate. But are these individual

differences solely caused by different strengths of connection, or could other factors contribute to

them?

Now, Bijsterbosch et al. found that the size, shape and exact position of the brain regions was

also strongly linked to the different behaviours of individuals. The study used brain scans,

behavioural tests and questionnaires from a large database about lifestyle choices and

demographics, to analyse the relationship between the different brain features of healthy

individuals. The results showed that the variations in the brain regions were linked to many

behavioural factors including intelligence, life satisfaction, drug use and aggression problems.

Moreover, Bijsterbosch et al. showed that the existing methods for estimating the strength of

connection between brain regions could reveal more about the spatial layout of these regions than

the actual connection strength between them. This suggests that new approaches are needed to

properly evaluate the strength of the connections.

Some psychiatric and neurological diseases may be associated with changes in size and position

of the different regions in the brain. In future, the findings of this study could be applied to

individuals affected by such conditions, to see if the location of a region could be used as a

diagnostic indicator.

DOI: https://doi.org/10.7554/eLife.32992.002
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clustering and independent component analysis (ICA) (Beckmann et al., 2005; Craddock et al.,

2012). Data-driven approaches such as ICA have been used to identify consistent large-scale resting

state networks (Damoiseaux et al., 2006) and to characterise FC abnormalities in a variety of mental

disorders (Littow et al., 2015; Pannekoek et al., 2015). Any given parcellation is typically defined

at the group level, and hence additional steps are required to map a group-level parcellation onto

individual subjects’ data (that has undergone registration to a common space), in order to obtain

subject-specific parcel timeseries and associated connectivity edge estimates. Timeseries derived

from hard (binary, non-overlapping) parcellations are often obtained using a simple masking

approach (i.e. extracting the averaged BOLD timeseries across all voxels or vertices in a node),

whereas ICA parcellations (partially overlapping, soft parcellations that contain continuous weights)

are mapped onto single-subject data using dual regression analysis or back projection

(Calhoun et al., 2001; Filippini et al., 2009). The first stage of a dual regression approach involves

multiple spatial regression of group ICA maps into each preprocessed individual dataset to obtain

subject-specific timeseries; the second stage is a multiple temporal regression of these stage one

timeseries into the same preprocessed dataset to obtain subject-specific spatial maps. Note, dual

regression is, to some extent, expected to underestimate subject-specific spatial variability because

it involves post-hoc regressions of a group-level set of spatial maps, which are unlikely to be an accu-

rate model for the data of individual subjects. Indeed, previous work has shown that, in the presence

of spatial variability or inaccurate intersubject alignment, these common methods for mapping

group parcellations onto individuals do not recover accurate subject-specific functional regions, and

this can severely impact the accuracy of estimated timecourses and derived FC edges (Allen et al.,

2012; Smith et al., 2011).

More recently, several studies have developed more thorough characterisations of the patterns of

spatial variability in network topography across subjects (i.e. spatial shape, size and position of func-

tional regions) (Glasser et al., 2016; Gordon et al., 2017a, 2017b; Laumann et al., 2015;

Swaroop Guntupalli and Haxby, 2017; Wang et al., 2015). For example, Glasser et al. showed that

the subject-specific spatial topology of area 55b in relation to the frontal and premotor eye fields

substantially diverged from the group average in 11% of subjects (Glasser et al., 2016). In addition,

the size of all cortical areas, including large ones like V1, varies by twofold or more across individuals

(Amunts et al., 2000; Glasser et al., 2016). This extensive presence of spatial variability across indi-

viduals highlights the need for analysis methods that are adaptive and better able to accurately cap-

ture functional regions in individual subjects. Another approach that aims to achieve a more

accurate subject-specific description of this spatial variability is PROFUMO, which simultaneously

estimates subject and group probabilistic functional mode (PFM) maps and network matrices

(instead of separate parcellation and mapping steps). Specifically, PROFUMO is a matrix factorisa-

tion model that decomposes data into estimates of subject-specific spatial maps, time courses, and

amplitudes using a variational Bayesian approach with both spatial and temporal priors that seek to

optimise for both spatial map sparsity and temporal dynamics consistent with

haemodynamically regularised neural activity (Harrison et al., 2015). PROFUMO adopts a hierarchi-

cal approach by iteratively optimising subject and group estimates (instead of first estimating group

components using group ICA and separately mapping these onto subjects using dual regression),

and is therefore expected to more accurately capture subject-specific spatial variability than does

dual regression. Other approaches are available to obtain group and subject parcellations in one

step, for example using a groupwise normalised cut spectral clustering approach (Shen et al.,

2013). In the present study, we show that the spatial variability across subjects captured in PFMs is

strongly associated with behaviour.

Conceptually, network edges are commonly thought of as reflecting coupling strength between

spatially separated neuronal populations. However, as discussed above, edge estimates are highly

sensitive to spatial misalignments across individuals. Additionally, correlation-based edge estimates

are influenced by the amplitudes of localised spontaneous rfMRI fluctuations (Duff et al., 2018),

which have been shown to capture trait variability across subjects, and state variability within an indi-

vidual over time (Bijsterbosch et al., 2017). These findings demonstrate the sensitivity of edge-

strength estimates to many different types of subject variability, and highlight the need to identify

which aspects of FC tap most directly into behaviourally relevant population-level variability. Here,

we investigate the complex relationships between different features of an rfMRI dataset and also the

associations with variability across individuals in terms of their performance on behavioural tests,
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their lifestyle choices, and demographic information. Using data from the Human Connectome Proj-

ect (HCP), we provide evidence for systematic differences in the spatial organisation of functional

regions. We then use simulations that manipulate aspects of the data such that, for example, only

cross-subject spatial variability is present in the data (i.e. by fixing edge strength to be the group

average for each individual) to investigate whether these differences reflect meaningful cross-subject

information and drive edge estimates for several common FC approaches.

Results

Cross-subject information in fMRI-derived measures
To determine whether a given rfMRI-derived FC measure contains meaningful cross-subject informa-

tion rather than random variability, we adopted an approach that makes use of the extensive set of

behavioural, demographic, and lifestyle data acquired in the HCP. Our first analysis aims to deter-

mine which measures obtained from rfMRI and task data most strongly relate to interesting behav-

ioural variability across individuals. Using Canonical Correlation Analysis (CCA), we extracted

population modes of cross-subject covariation that represent maximum correlations between combi-

nations of variables in the subject behavioural measures and in the fMRI-derived measures, uncover-

ing multivariate relationships between brain and behaviour. For example, previous work has used

CCA on HCP data to identify a mode of population covariation that linked a positive-negative axis

of behavioural variables to patterns of FC edge strength (Smith et al., 2015). A specific pattern of

connectivity, primarily between ‘task-negative’ (default mode) regions (Raichle et al., 2001), was

found to be linked to scores on positive factors such as life satisfaction and intelligence, and

inversely associated with scores on negative factors such as drug use.

CCA works by finding a linear combination of behavioural measures (V) that is maximally corre-

lated with a linear combination of rfMRI-derived measures (U). CCA scores for each subject are

obtained for the behavioural and fMRI-derived measures (V and U), which represent the subject’s

position along the population continuum for the latent CCA variable(s). The key result of a CCA anal-

ysis for each mode of covariation is the correlation between U and V, denoted rUV, which describes

the strength of the multivariate brain-behaviour relationship. Given that CCA explicitly optimises rUV,

it is essential to perform permutation testing in order to test the significance of the CCA result. To

determine which behavioural measures contribute strongly to the CCA result, V is subsequently

regressed into original non-imaging variables (Figure 1B; although interpretation of these results is

complicated by behaviour-behaviour correlations). Additionally, U is used to visualise variation at

both the population extremes (see Figure 2 below and Figure 2—figure supplements 2–7), and

across the full population continuum (Supplementary video files).

We applied a separate CCA analysis for each of the various fMRI-derived measures (including spa-

tial, network matrix, and amplitude measures). The results (Figure 1 and Supplementary file 1a and

b) reveal that highly similar associations with behaviour and life factors occur across a wide range of

different fMRI-derived measures. Correlating the behavioural subject weights (V) across the different

CCA instances in Figure 1 shows that a similar behavioural mode is obtained from the independent

instances of CCA (particularly for those CCAs that have a high rU-V and low PU-V; Figure 1—figure

supplement 1). Mapping these subject weights onto behaviour through correlation reveals consis-

tent positive associations with, for example, fluid intelligence, life satisfaction, and delayed discount-

ing, and consistent negative correlations with use of tobacco, alcohol and cannabis. All behavioural

correlations with mean correlation r>|0.25| (chosen for visualisation purposes) are shown in

Figure 1B. The results show that spatial features such as PFM subject spatial maps and subject task

contrast maps are strongly associated with behaviour. Overall, these findings reveal that a large vari-

ety of fMRI measures have similarly strong associations with behaviour.

Direct comparison between the results in Figure 1—figure supplement 1a) and the

HCP_MMP1.0 parcellation (e.g. the 360-region ‘Glasser parcellation’ [Glasser et al., 2016]) and

against associated fractional surface area (in native space as a ratio to total surface area, for each of

the 360 parcels in the HCP_MMP1.0 parcellation) is challenging due to the large difference in the

number of subjects (n = 819 for Figure 1 and n = 441 for HCP_MMP1.0). Therefore, we have

included an analysis on all PFM metrics in a reduced number of subjects (the same n = 441 subjects)

in order to facilitate direct comparison between these two recent parcellation approaches that both
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Figure 1. Highly similar associations between behaviour and the brain occur across 17 distinct measures derived from fMRI. (A) Comparison of strength

of CCA result for network matrices, spatial maps and amplitudes (node timeseries standard deviation) derived from several distinct group-average

spatial parcellations/decompositions: ICA decompositions at two scales of detail (dimensionalities of 25 and 200, with ‘ICA200 partial network matrix’

corresponding to the measures used previously [Smith et al., 2015]); a PROFUMO decomposition (PFM; dimensionality 50); an atlas-based hard

Figure 1 continued on next page
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aim to achieve accurate detection of subject-specific spatial boundaries (Supplementary file 1b).

These results show that spatial features from a variety of sources (surface area, multimodal parcella-

tion and PFMs) are strongly associated with measures of behaviour and lifestyle. Also note that net-

work matrices obtained by the HCP_MMP1.0 parcellation are more predictive of behaviour than are

PFM network matrices.

For correlation-based parcellated FC estimates (network edges), a common assumption is that

functional coupling is primarily reflected in the edges. In theory, true network coupling information

can be manifested along a continuum ranging from spatial maps to network matrices. On one

extreme, coupling information is purely contained in spatial maps, as is the case when performing

temporal ICA (where the temporal correlation matrix is by definition the identity matrix [Smith et al.,

2012]). On the other extreme, coupling information can be fully contained in network matrices as is

often assumed to be the case when using an individualised hard parcellation (however, coupling can

only be represented fully in edge estimates if all subjects are perfectly functionally aligned to the

parcellation, and if the node timeseries amplitudes do not contain useful cross-subject information).

It is likely that the dimensionality of the decomposition may influence this; for example, for a low-

dimensional decomposition (into a small number of large-scale networks), much cross-subject varia-

tion in functional coupling is likely to occur between sub-nodes of the networks, which is therefore

more likely to be represented in the spatial maps, whereas in a higher dimensionality decomposition

this information is more likely to be represented in the network matrix. However, the results in Fig-

ure 1 show that this CCA mode of population covariation is significantly present in both spatial

maps and network matrices for both low- and high-dimensional decompositions (ICA 25 and 200).

Therefore, the potential role of dimensionality is not sufficient to explain the common information

present in spatial maps, timeseries amplitudes, and network matrices.

The presence of this behaviourally meaningful spatial variability is somewhat surprising, because

these data were aligned using a Multimodal Surface Matching (MSM) approach (Robinson et al.,

2014; 2018), driven by both structural and functional cortical features (including myelin maps and

resting state network maps). MSM has been shown to achieve very good functional alignment com-

pared with other methods, and particularly compared with volumetric alignment approaches or sur-

face-based approaches that use cortical folding patterns rather than areal features (Coalson et al.,

2018). However, residual cross-subject spatial variability is still present in the HCP data after the reg-

istration to a common surface atlas space (in part due to the constrained parameterisation of MSM

and in part because weighted regression subject maps used to drive MSM may not fully capture all

spatial variability). In line with this, approaches which are expected to better identify residual subject

spatial variability (specifically, PFM spatial maps and subject task contrast maps in Figure 1) show

strong correspondence between spatial variability and behaviour/life-factor measures.

Figure 1 continued

parcellation (108 parcels [Yeo et al., 2011]), task contrast spatial maps (86 contrasts, 47 unique), and warp field from native space to MSMAll alignment.

Each bar reports a separate CCA analysis (first CCA mode shown), performed against behaviour/life-factors. A similar mode of variation is found across

most of the parcellation methods and different fMRI measures. rUV is the strength of the canonical correlation between imaging and non-imaging

measures. Error bars indicate confidence intervals (2.5–97.5%) estimated using surrogate data (generated with the same correlation structure), and red

lines reflect the p<0.002 significant threshold compared with a null distribution obtained with permutation testing (i.e. family-wise-error corrected

across all CCA components and Bonferroni corrected across a total of 25 CCAs performed, see Supplementary file 1a and b for the full set of results).

CCA estimates the highest possible ruv given the dataset; therefore, the null distribution for low-dimensional brain data (e.g. ICA 25 amplitude) is

expected to be lower than for high-dimensional brain data. (B) Set of non-imaging variables that correlate most strongly with the CCA mode (averaged

subject weights V across results marked with * in A; i.e. p=0.00001) with behavioural variables. Position against the y-axis and font size indicate strength

of correlation.

DOI: https://doi.org/10.7554/eLife.32992.003

The following source data and figure supplement are available for figure 1:

Source data 1. Source data for Figure 1.

DOI: https://doi.org/10.7554/eLife.32992.004

Figure supplement 1. Similarity of behavioural subject weights from a range of separate CCA analyses between MRI-derived measures and

behavioural measures.

DOI: https://doi.org/10.7554/eLife.32992.005
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Figure 2. A: representative maps of the two extreme ends (identified based on the low and high extremes along a

linearly spaced vector that spans the full range of subject CCA scores) of the CCA mode of population covariation

continuum are shown for the default mode network (DMN, the PFM mode that contributed most strongly to the

CCA mode of population covariation). The top row shows that the inferior parietal node of the DMN differs in

shape and extends into the intraparietal sulcus in subjects who score high on the positive-negative CCA mode

(right), compared with subjects who score lower (left). The bottom row shows that medial prefrontal and posterior

cingulate/precuneus regions of the DMN differ in size and shape as a function of the CCA positive-negative

mode. The representative maps at both extremes are thresholded at ±2 (arbitrary units specific to the PFM

algorithm) for visualisation purposes (the differences are not affected by the thresholding; for unthresholded

video-versions of these maps, please see the Supplementary video files. The grey contours are identical on the left

and right to aid visual comparison and are based on the group-average maps (thresholded at 0.75). Spatial

changes of all PFM modes can be seen in the Supplementary video files and in Figure 2—figure supplements 2–

7. B: difference maps (positive - negative; thresholded at ±1) are shown to aid comparison. C: A summary of

topographic variability across all PFM modes, showing PFM correlations with CCA subject weights (at each

grayordinate the maximum absolute r across all PFMs is displayed). An extended version of C is available in

Figure 2—figure supplement 7. Data of Figure 2 available at: https://balsa.wustl.edu/8lVx.

DOI: https://doi.org/10.7554/eLife.32992.006

The following figure supplements are available for figure 2:

Figure supplement 1. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.007

Figure supplement 2. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.008

Figure supplement 3. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.009

Figure supplement 4. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.010

Figure supplement 5. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.011

Figure supplement 6. Representative maps of the two extreme ends of the positive-negative continuum for five

PFMs.

DOI: https://doi.org/10.7554/eLife.32992.012

Figure 2 continued on next page
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To better understand what spatial features represent behaviourally relevant cross-subject informa-

tion, we visually explored what aspects of the PFM spatial maps contributed to the CCA result in

Figure 1 by calculating representative maps at extremes of the CCA mode of population covariation

(based on CCA subject scores). While the PFM maps are estimated using the full set of cortical and

subcortical grayordinates, we focus on cortical findings because these contribute most strongly to

the CCA results. The results reveal complex changes in spatial topography (Figure 2, Figure 2—fig-

ure supplements 2–7, and Videos 1–9. For example, comparing left versus right panels shows the

right inferior parietal node of the DMN extending farther into the intraparietal sulcus (in the vicinity

of area IP1 [Choi et al., 2006; Glasser et al., 2016]) in subjects who score higher on the behavioural

positive-negative mode of covariation. Qualitative inspection of Figure 2—figure supplements 2–

7 suggests that many of the difference maps show notable bilateral symmetry.

Spatiotemporal simulations demonstrating potential sources of
variability in edges
Figure 1 showed that functionally-relevant cross-subject variability is represented in a variety of dif-

ferent measures derived from both resting state and task fMRI. These widespread similarities in cor-

relations with behaviour across a range of measures invite the question of whether the same type of

trait variability is meaningfully and interpretably reflected in a wide range of rfMRI measures, or

whether (for example) estimates of network matrices may instead primarily reflect trait variability in

spatial topography or amplitude (and not coupling strength). Therefore, we wanted to determine to

what extent correlation-based FC measures derived from rfMRI can be influenced by specific aspects

of the rfMRI data such as true topography and true coupling. To this end, we generated simulated

datasets based on the original PFM subjects and/or group spatial maps and timeseries. By holding

either the individual (simulated) subjects’ spatial maps or the network matrices fixed to the group

average we eliminated specific forms of underlying subject variability from the simulated data (Fig-

ure 3). Note, we used PFMs in order to generate simulated data because the PROFUMO model sep-

arately estimates spatial maps, network matrices and amplitudes, thereby allowing each aspect to

be fixed to the group average prior to generating simulated data using the outer product (as

described in detail in Equation (1), and in the section on ‘Creating simulated data’ in the Material

Figure 2 continued

Figure supplement 7. Comparison of the cortical representation of associations with behaviour across fractional

area, HCP_MMP1.0 individual subject parcellation and PFM spatial maps.

DOI: https://doi.org/10.7554/eLife.32992.013

Video 1. Unthresholded maps are shown for the 4

PFMs that contribute most strongly to the CCA result

(14, 45, 35, 33; corresponding stills in Figure 2 and

Figure 2—figure supplement 1). Each video shows

five frames representing the continuum from negative

to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.014

Video 2. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 22, 1, 8, 48; corresponding

stills in Figure 2—figure supplements 1,2). Each video

shows five frames representing the continuum from

negative to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.015
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and methods). Previous simulation results have shown that PROFUMO is able to accurately estimate

spatial maps and network matrices in the presence of cross-subject variability in spatial topography,

relative strength of subregions, and between-mode connectivity (Harrison et al., 2015). The aim of

the simulation analyses was to determine which features in the rfMRI data are likely to be most

strongly reflected in network matrices estimated from rfMRI data. We assess this in terms of the

amount of variability across subjects that can be explained, as this is the most relevant application in

biomarker studies and in neuroimaging research more generally.

Timeseries were extracted from both the simulated and original datasets, and network matrices

were estimated. Each simulated dataset was assessed using three metrics: (i) comparing subject-spe-

cific simulated and original network matrices (Znetwork matrix in Table 1), (ii) comparing cross-subject

variability in the simulated and original network matrices (Rcorrelation in Table 1), and (iii) determining

how much of the cross-subject variability in simulated and original network matrices is behaviourally

informative using CCA (see Table 1 legend).

The results (Table 1 and Supplementary file 1c and d) show that, when the subject-varying

aspects of the simulations were exclusively driven by spatial changes across subjects (with the prede-

fined network matrix and amplitudes being identical for all subjects), up to 62% (i.e. square of Rcorre-

lation = 0.79 from Supplementary file 1d ‘maps only’) of the cross-subject variance present in the

network matrices obtained from the original data was regenerated. Hence, this finding reveals that

very similar network matrices can be obtained for any individual subject even if the only aspect of

the rfMRI that is varying across subjects is the topographic information in PFM spatial maps. In addi-

tion, the variance that can be explained by spatial maps is behaviourally relevant; the CCA results

were similarly strong (typically having the same permutation-based p-values) from simulated network

matrices driven purely by spatial changes, compared with those obtained from the original dataset.

The influence of amplitudes on FC estimates was relatively minor (less than 2.5% of variance was

explained by amplitude in all our simulations; i.e. square of Rcorrelation = 0.15 from Table 1 ‘ampli-

tudes only’), although, when amplitudes were combined with spatial maps feeding into the simula-

tions, the amplitudes did in most cases result in an increase in original network matrix regeneration.

Given the complex information present in PFM spatial maps, the effect of spatial information on

network matrices can result from cross-subject variability in: (i) network size, (ii) relative strength of

regions within a given network, or (iii) size and spatial location of functional regions. We performed

two further tests to distinguish these influences by thresholding and binarising the subject-specific

spatial maps used to create the simulated data. Maps were either thresholded using a fixed thresh-

old (removing the influence of relative strength), or (separately) using a percentile threshold (remov-

ing the influence of relative strength and size, as the total number of grayordinates in binarised PFM

maps is fixed across subjects and PFMs). The role of subject-varying spatial maps in driving the

resulting estimated network matrices remains strong when highly simplified binarised maps are used

to drive the simulations (Supplementary file 1e), further supporting our interpretation that the

results are largely driven by the shape of the functional regions (i.e. variability in the location and

shape of functional regions across subjects), rather than by size or local strength.

Unique contribution of topography versus coupling
The results presented above show that a large proportion of the variance in estimated network

matrices is also represented in spatial topography. This suggests either that cross-subject informa-

tion is represented in both the coupling strength between neural populations and in the ‘true’

underlying spatial topography, or that edge estimates obtained from rfMRI data primarily reflect

cross-subject spatial variability (which indirectly drives edge estimates through the influence of spa-

tial misalignment on timeseries extraction, particularly when group parcellations are mapped onto

individual subjects in the case of imperfect alignment). To test these hypotheses further, we investi-

gated the unique information contained in spatial maps and network matrices using a set of 15 ICA

basis maps derived from HCP task contrast maps (Figure 4A). These basis maps can be thought of

as the spatial building blocks that can be linearly combined to create activation patterns for any spe-

cific HCP task contrast, and can be considered here to be another functional parcellation.

The advantage of using basis maps derived from task data is that the tasks essentially act as func-

tional localisers that allow for the precise localisation of task-related functional regions within an indi-

vidual; results at a single-subject level are not influenced in any way, including spatially, by the group

results, as they are derived via the standard task-paradigm analysis (i.e. which relies solely on
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temporal information, and is not influenced by

the group-level maps). The equivalence between

group- and subject-level contrasts (i.e. the inher-

ent assumption in any group-level analysis,

namely that the group ‘2BK-0BK’ contrast map

directly relates to any subject-level ‘2BK-0BK’

contrast) means that any combination of group-

level contrasts is equally valid as a combination at

the subject-level, but with the advantage that the

resulting subject maps will be faithful to the pre-

cise location of functional regions that the sub-

ject-specific contrast maps capture. Hence,

subject-based task basis maps are the most accu-

rate description of subject-specific locations of

functional regions, at least with respect to those

regions identifiable from the range of tasks used.

To investigate the implications of these task-

localised maps on typical rfMRI analyses, either

group-based task basis maps or subject-based

task basis maps were entered into a dual regres-

sion analysis against subjects’ resting-state fMRI

data to obtain network matrices (from dual

regression stage one timeseries) and rfMRI-based spatial maps (from dual regression stage 2) for

each subject (Figure 4B). Subsequently, CCA was performed to determine how well each of the

group-based and subject-task-based rfMRI maps and network matrices was able to predict behav-

ioural variability. Furthermore, a ‘partial CCA’ was performed to characterise the unique variance

that task rfMRI maps carry over and above network matrices, and vice versa. Here, we regressed any

variance explained by network matrices out of the spatial maps prior to running the ‘partial CCA’ to

determine the unique information contained in spatial maps (and vice versa, i.e., regressed any vari-

ance explained by spatial maps out of network matrices before running the ‘partial CCA’).

The results from the CCAs against behavioural measures show that subject-specific spatial maps

(derived from either subject- or group-based task-fMRI maps) capture more behavioural information

than network matrices (and continue to reach significance in the partial CCA), consistent with the

PFM spatial results presented in Figure 1. The full CCA result is marginally stronger (Druv=0.005,

p=0.46) for group-task-based rfMRI spatial maps compared with subject-task-based rfMRI spatial

Video 3. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 4, 26, 15, 6; corresponding

stills in Figure 2—figure supplements 2,3). Each video

shows five frames representing the continuum from

negative to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.016

Video 4. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 40, 12, 50, 46;

corresponding stills in Figure 2—figure supplement

3). Each video shows five frames representing the

continuum from negative to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.017

Video 5. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 18, 9, 43, 2; corresponding

stills in Figure 2—figure supplement 4). Each video

shows five frames representing the continuum from

negative to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.018
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maps. None of the partial CCA results for net-

work matrices reach significance, suggesting

that network matrices do not contain any unique

trait-level information that is not also captured

by spatial variability. Note that dual regression

maps derived from both group-task-based and

subject-task-based templates capture unique

subject-specific spatial variation in the partial

CCA results, consistent with significant CCA

results for ICA25 and ICA200 in Figure 1.

Importantly, subject-task-based rfMRI network

matrices explain the behavioural data consider-

ably less well than group-based task-rfMRI net-

work matrices (difference: p=0.0005 for full

network matrices), confirming that spatial infor-

mation is a significant factor in estimated net-

work matrices. Hence, subject spatial variability

is more uniquely represented in the spatial infor-

mation for subject-task-based estimates, and

therefore does not filter through into the net-

work matrices (marked “§”).

Taken together, these results show that, while

network matrices obtained from dual regression

against group-level maps do contain behaviourally relevant cross-subject information, this can be

almost completely explained by variability in spatial topographical features across subjects (to the

extent that we can detect it). Hence, dual regression network matrices (obtained from multiple

regression against group spatial maps) apparently contain little unique cross-subject information

regarding coupling strength that is not also reflected in spatial topographical organisation. However,

it is possible that network matrices obtained using parcellation methods and timeseries extraction

approaches that are better able to capture subject-specific spatial variability (such as the

HCP_MMP1.0 parcellation) do contain unique cross-subject information; further research is needed

to test this possibility. Additionally, network matrices may contain unique state-level information rel-

evant to ongoing behaviour (e.g. in a task paradigm).

Discussion
Here, we have identified a key aspect of rfMRI

data that directly reflects interesting variability in

behaviour and lifestyle across individuals. Our

results indicate that spatial variation in the

topography of functional regions across individu-

als is strongly associated with behaviour (Fig-

ure 1). In addition, network matrices (as

estimated with masking or dual regression

against group-level hard or soft parcellations)

reflect little or no unique cross-subject informa-

tion that is not also captured by spatial topo-

graphical variability (Figure 4 and Figure 4—

figure supplement 1). This unexpected finding

implies that the common interpretation of FC as

representing cross-subject (trait) variability in the

coupling strength of interactions between neural

populations may not be a valid inference

(although within-subject state-dependent

changes in coupling may still be reflected in FC

measures). Specifically, we show that up to 62%

Video 6. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 29, 11, 37, 24;

corresponding stills in Figure 2—figure supplements

4,5, map 29 is missing from stills because results fall

below the still threshold). Each video shows five frames

representing the continuum from negative to positive

CCA results.

DOI: https://doi.org/10.7554/eLife.32992.019

Video 7. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 10, 38, 20, 39;

corresponding stills in Figure 2—figure supplements

5,6). Each video shows five frames representing the

continuum from negative to positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.020
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of the variance in rfMRI-derived network matrices (a measure commonly taken as a proxy for cou-

pling) can be explained purely by spatial variability. These findings have important implications for

the interpretation of FC and may contribute to a deeper mechanistic understanding of the role of

intrinsic FC in cognition and disease (Mill et al., 2017).

Our findings are consistent with previous research that has highlighted the presence of structured

cross-subject spatial variance in both functional and anatomical networks (Glasser et al., 2016;

Gordon et al., 2017a; Noble et al., 2015; Sabuncu et al., 2016; Tong et al., 2017; Xu et al.,

2016). Furthermore, recent work has shown that resting state spatial maps can be used to predict

task activation maps from individual subjects very accurately (Tavor et al., 2016), and that interdigi-

tated and highly variable subnetworks can be identified within individuals (Braga and Buckner,

2017). Therefore, the presence of behaviourally relevant cross-subject variance in maps of functional

(co-) activation in itself is not surprising. However, the fact that these variations in spatial topographi-

cal features capture a more direct and unique representation of subject variability than temporal cor-

relations between regions defined by group parcellation approaches (coupling), was unexpected.

The implication of this finding is that the cross-subject information represented in commonly

adopted ‘connectivity fingerprints’ largely reflects spatial variability in the location of functional

regions across individuals, rather than variability in coupling strength (at least for methods that

directly map group-level parcellations onto individual data). Specifically, our partial CCA results (Fig-

ure 4) show that network matrices (as often estimated) contain little unique trait-level cross-subject

information that is not also reflected in the spatial topographical organisation of functional regions.

How the functional organisation of the brain is conceptualised and operationally defined is of

direct relevance to the interpretation of these findings. Some hard parcellation models of the human

cortex (such as the Gordon and Yeo parcellations [Gordon et al., 2016; Yeo et al., 2011]) aim to

fully represent connectivity information in the edges (i.e. correlations between node timeseries).

Thus, hard parcellations of this type assume piecewise constant connectivity within any one parcel

(i.e. each parcel is assumed to be homogeneous in function, with no state- or trait-dependent

within-parcel variability in functional organisation). In contrast, the HCP_MMP1.0 multimodal parcel-

lation presumes within-area uniformity of one or more major features, but overtly recognises within-

area heterogeneity in other features, including connectivity, most notably for distinct body part rep-

resentations (‘sub-areas’) of the somatomotor complex. Soft parcellation models (such as PROFUMO

[Harrison et al., 2015]) allow for the presence of multiple modes of (potentially overlapping) func-

tional organisation. Therefore, PFMs represent connectivity information through complex interac-

tions between amplitude and shape in the spatial maps, and through network matrices. Our findings

show that both the PROFUMO and the multimodal parcellation models successfully capture

Video 8. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 49, 7, 19, 30;

corresponding stills in Figure 2—figure supplement 6,

map 19 is missing from stills because results fall below

the still threshold). Each video shows five frames

representing the continuum from negative to positive

CCA results.

DOI: https://doi.org/10.7554/eLife.32992.021

Video 9. Unthresholded maps are shown for the next 4

PFMs that contribute most strongly to the CCA result

(following earlier video files; 17, 3, 42, 23;

corresponding stills in Figure 2—figure supplement 4,

maps 3, 42, 23 are missing from stills because results

fall below the still threshold). Each video shows five

frames representing the continuum from negative to

positive CCA results.

DOI: https://doi.org/10.7554/eLife.32992.022
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behaviourally relevant cross-subject spatial variability (Supplementary file 1b), but that the precise

location of where this spatial variability is represented overlaps only modestly between the two

approaches (Figure 2—figure supplement 7). Given the differences in the key assumptions made

by the two models (i.e. binary parcellation versus multiple modes of functional organisation), this is

not unexpected. However, it does highlight the need for further research into the optimal represen-

tation of (subject-specific) functional organization in the brain.

For most of the results presented in this work, we estimated spatial information using functional

data (either resting or task fMRI data). While a comprehensive investigation of related anatomical

features is beyond the scope of this work, we did identify significant correlations between fractional

surface area size and subject CCA weights (Figure 2—figure supplement 7). This result suggests

that anatomical variability in the cortical extent of a number of higher level sensory and cognitive

brain regions may contribute to the overall findings presented here. Further research into the

Figure 3. Flowchart for spatiotemporal simulations. Simulated data was generated for each subject by setting one

or more aspects (from the network matrices, node amplitudes, and spatial maps) to the group average. Timeseries

extraction is performed (uinsg either dual regression against original group ICA maps, or masked against a binary

parcellation); network matrices are calculated and compared against network matrices estimated from the original

data.

DOI: https://doi.org/10.7554/eLife.32992.023
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relationship between structural features and functional connectivity measures, and their contribution

to trait-level subject variability is needed to test this hypothesis.

Our findings are relevant to a wide variety of approaches used to study connectivity. For exam-

ple, our simulation results (Table 1 and Supplementary file 1c and d) reveal similar results regard-

less of whether we adopt a dual-regression or a masking approach to obtain timeseries, and the

findings also do not differ qualitatively according to whether full or partial correlation is used to esti-

mate network matrices. Therefore, our findings are relevant to any approach that is based on times-

eries extracted from functional regions defined at the group-level (including graph theory methods

and spectral analyses). The implications of this work may also extend beyond resting-state fMRI. For

example, generative models such as dynamic causal modelling (DCM) are increasingly used to strat-

ify patient populations (Brodersen et al., 2014), and to achieve predictions for individual patients

(Stephan et al., 2017). Previous work has shown that including parameters for the position and

shape of functional regions in individual subjects into the model improves DCM results and better

differentiates between competing models (Woolrich et al., 2009). It is currently unknown to what

extent cross-subject variability observed with these timeseries-based fMRI metrics reflects true cou-

pling between neural populations, rather than being indirectly driven by spatial variability and mis-

alignment, but given that many of these studies are conducted using alignment methods that

perform substantially worse than the MSMAll surface-based alignment used in this study

(Coalson et al., 2018), this is likely a significant confound for such studies. Going forward, it is

important to disambiguate the influence of spatial topography to enable the estimation of fMRI

measures that uniquely reflect coupling strength between neural populations.

Significant advances have already been made in recent years in order to tackle the issue of spatial

misalignment across individuals. For example, the HCP data used in this work were spatially aligned

using the multimodal surface mapping (MSM) technique, which achieves very good functional align-

ment by using features that are more closely tied to cortical areas (although note that, since the

time of the HCP release, refinements to the MSM algorithm and regularisation have resulted in fur-

ther improvements in the observed functional alignment of HCP data [Robinson et al., 2014,

2018]). Therefore, gross misalignment is unlikely to play a role in our results. In fact, some of the

Table 1. Results from simulated datasets in which one or more of the network matrices, amplitudes and spatial maps are fixed to the

group average to remove any subject variability associated with it.

Results in each row were driven by variables in which subject variability was preserved, as indicated with [ (variables with ‘-’ were fixed

to the group average). Results are shown for within-subject correlations between simulated and original z-transformed network matri-

ces (Znetwork matrix), similarities of cross-subject variability represented in simulated and original network matrices (Rcorrelation), and for

results obtained from the CCA against behaviour (where rU-V is the strength of the canonical correlation between imaging and non-

imaging measures, PU-V is the associated (family-wise error corrected) p-value estimated using permutation testing, taking into account

family structure, and rU-Uica is the correlation of a CCA mode (subject weights) with the positive-negative mode of population covaria-

tion obtained from ICA200 partial network matrices as used in Smith et al. (2015). For brevity, this Table presents results from full cor-

relation network matrices obtained from a dual regression of ICA 200 maps onto the simulated data (because this approach closely

matches previously published findings [Smith et al., 2015]), results for other parcellations are in Supplementary file 1c and for partial

correlation network matrices in Supplementary file 1d. The results for a wide range of different parcellations show comparable trends

(i.e. a large proportion of cross-subject variability is captured purely by spatial maps, as indicated by the highlighted rows), and this

main result is also found when using partial network matrices (e.g., for ICA 200, 0.512 = 26% variance explained in partial network

matrices was captured by spatial information, and 0.542 = 29% variance explained in full network matrices was captured by spatial

information).

Simulation driven by true subject
variability in:

Network
matrix Amplitude

Spatial
map

Z network

matrix

R

correlation

CCA R U-

V

Cca P U-

V

CCA R U-

Uica

ICA
D = 200
N = 819

Nothing - - - �0.0003 0.03 0.65 0.32017 0.11

Amps and maps - [ [ 1.14 0.60 0.71 0.00001 0.52

Connectivity only [ - - 0.47 0.65 0.69 0.00028 0.40

Amplitudes only - [ - 0.22 0.15 0.69 0.00052 0.45

Maps only - - [ 0.78 0.54 0.72 0.00001 0.62

DOI: https://doi.org/10.7554/eLife.32992.024
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Figure 4. Unique contribution of topography versus coupling. (A) Task basis maps are extracted from group-averaged task contrasts (n=86, 47 unique)

using ICA to ensure correspondence of basis maps across subjects. These maps represent the basic building blocks of any activation pattern, and

subject task basis maps (obtained by applying the ICA weights to subject task contrast maps) are not influenced by misalignment problems. (B) Dual

regression against rfMRI data is performed using either the (potentially misaligned) group task basis maps or the (functionally localised) subject task

basis maps. (C) CCA results of group-task-based rfMRI maps and network matrices and of subject-task-based rfMRI maps and netmats. The results

show rUV (i.e., the correlation between the first U and V obtained from the CCA analysis describing the strength of association between the rfMRI and

behavioural measures). The null line (i.e., p=0.05 based on permutation testing) is shown as a dotted line at 0.68; results below this line do not reach

significance. The blue bars show the main CCA results using the complete data, and the red bars show partial CCA results computed after regressing

out any variance that can be explained by network matrices from the spatial maps and vice versa prior to running the CCA. The results show a general

decrease in rUV for all measures when comparing partial to full CCA results. The strongest partial CCA result (red bars on right) are found when using

rfMRI spatial maps, and the associated netmats showed the weakest results (“§”). However, the partial CCA results for the spatial maps (i.e., the red

bars on the right) still reach significance. All of the partial CCAs also showed lower rU-Uica compared to the full CCAs (not shown here).

DOI: https://doi.org/10.7554/eLife.32992.025

The following source data and figure supplement are available for figure 4:

Source data 1. Source data for Figure 4.

Figure 4 continued on next page
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behaviourally relevant variability may have been ‘corrected’ in the MSM pipeline prior to our analy-

ses (indeed, the same positive-negative mode of population covariation is identified when running

the CCA on MSM warp fields; and the fractional surface area results in Supplementary file 1b and

Figure 2—figure supplement 7 reflect the full variability from native space, and are not affected by

the alignment accuracy). Therefore, it is possible that the degree to which spatial information may

influence FC estimates varies considerably across studies, depending on the spatial alignment algo-

rithm that was used, and the amount of subject spatial variability this has removed. It is encouraging

that significant efforts have recently gone into the methods for more accurately estimating the spa-

tial location of functional parcels in individual subjects in recent years (Chong et al., 2017;

Glasser et al., 2016; Gordon et al., 2016; Hacker et al., 2013; Harrison et al., 2015;

Varoquaux et al., 2011; Wang et al., 2015), and into advanced hyperalignment approaches

(Chen et al., 2015; Guntupalli et al., 2016; Guntupalli and Haxby, 2017). The present results high-

light the importance of such advances, and call for the continued development, comparison, and val-

idation of such approaches.

In conclusion, we have demonstrated that spatial topography of functional regions are strongly

predictive of variation in behaviour and lifestyle factors across individuals, and that timeseries-based

methods (as often estimated based on group-level parcellations) contain little unique trait-level infor-

mation that is not also explained by spatial variability.

Materials and methods

Dataset
For this study, we used data from the Human Connectome Project S900 release (820 subjects with

fully complete resting-state fMRI data, 452 male, mean age 28.8 ± 3.7 years old) (Van Essen et al.,

2013). Data were acquired across four runs using multiband echo-planar imaging (MB factor 8,

TR = 0.72 s, 2 mm isotropic voxels) (Moeller et al., 2010; Uğurbil et al., 2013). Data were prepro-

cessed according to the previously published pipeline that includes tools from FSL, Freesurfer,

HCP’s Connectome Workbench, multimodal spatial alignment driven by myelin maps, resting state

network maps, and resting state visuotopic maps (‘MSMAll’), resulting in data in the grayordinate

coordinate system (Fischl et al., 1999; Glasser et al., 2013, 2016; Jenkinson et al., 2012;

Marcus et al., 2013; Robinson et al., 2014; Smith et al., 2013a). ICA-FIX-cleanup was performed

on individual runs to reduce structured noise (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

ICA-FIX achieves 99% sensitivity and 99% specificity on HCP data when compared to manual classifi-

cation by trained raters (Smith et al., 2013a). Only subjects with the full 4800 resting state time-

points (4 scans of 1200 TRs each) were included for the analyses performed in this work. A detailed

overview of quality assessment in the Human Connectome Project was previously published

(Marcus et al., 2013).

Data availability
HCP data are freely available from https://db.humanconnectome.org. The version of MSMAll that is

compatible with the approach implemented for the alignment of HCP data can be found here:

http://www.doc.ic.ac.uk/~ecr05/MSM_HOCR_v2/ (Robinson et al., 2017). Matlab code used in this

work can be found here: https://github.com/JanineBijsterbosch/Spatial_netmat (Bijsterbosch, 2017;

copy archived at https://github.com/elifesciences-publications/Spatial_netmat). Data from many fig-

ures in this study is freely available at https://balsa.wustl.edu/study/show/kKM0.

Inferring functional modes
In order to obtain estimates of the spatial shape and size of functional networks for every subject,

we decompose the HCP data into a set of probabilistic functional modes (PFMs) via the PROFUMO

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.32992.026

Figure supplement 1. Similarities between cross-subject variations estimated from different rfMRI measures.

DOI: https://doi.org/10.7554/eLife.32992.027
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algorithm (Harrison et al., 2015). A set of M PFMs describe each subject’s data (G grayordinates; T

time points; Ds 2 RV�T ) in terms of a set of subject-specific spatial maps (Ps 2 RV�M ), amplitudes

(hs 2 RM ) and timecourses (As 2 RM�T ), all of which are linked via the outer product model:

Ds ¼ Ps � diag hsð Þ � As þ " (1)

These subject-specific decompositions are linked by a set of hierarchical priors. In the spatial

domain, the group-level parameters encode the grayordinate-wise means, variances and sparsity of

the subject maps, while in the temporal domain, the group-level priors constrain the subject-level

network matrices (note that the component amplitudes and hierarchical priors are recent extensions

to the PFMs model and were not included in the original PROFUMO paper [Harrison et al., 2015]).

The PROFUMO framework gives us sensitive estimates of key subject-level parameters, while ensur-

ing that there is direct correspondence between PFMs across subjects.

PROFUMO was run on the rfMRI data from all 820 subjects with a dimensionality of 50 PFMs.

Importantly, the signal-subspace of any given subject’s dataset can be straightforwardly recon-

structed from a set of modes via equation [1], and this can be used to generate the simulated data

as described below.

Canonical correlation analysis (CCA)
For the ICA decompositions, amplitudes were estimated for each subject and component as the

temporal standard deviation of the timeseries obtained from stage 1 of a dual regression analysis.

Full and regularised partial correlation matrices were also calculated from these timeseries. The

Tikhonov regularisation rho used during estimation of the partial correlation matrices was set to 0.01

for the ICA 25, 200 and PFM data (according to previous optimisation results). For high-dimensional

parcellations (Yeo and HCP_MMP1.0), the rho was optimised by finding the maximum correlation

between subject and group-average (using rho = 0.01) network matrices across a range of rho

(0.01:0.5), leading to rho = 0.03 for Yeo and rho = 0.23 for HCP_MMP1.0 results. Lastly, the subject

spatial maps obtained from stage 2 of a dual regression analysis were used. Similarly, for the PRO-

FUMO decomposition, the PFM amplitudes, subject spatial maps and timeseries were used. For the

HCP_MMP1.0 spatial results, either group-level or subject-specific node parcellations were used

(Hacker et al., 2013). The subject-specific parcellations contain missing nodes (parcels) in some sub-

jects (Glasser et al., 2016). Hence, for partial network matrices, the rows and columns in the covari-

ance matrix were set to the scaled group average prior to inverting the covariance matrix. In the

resulting network matrices, the rows and columns relating to missing nodes were set to the group

average (for both partial and full network matrices). Before performing CCA, missing nodes were

accounted for by estimating the subject-by-subject covariance matrix one element at a time, ignor-

ing any missing nodes for any pair of subjects. The nearest valid positive-definite covariance matrix

was subsequently obtained using nearest SPD in Matlab (http://uk.mathworks.com/matlabcentral/fil-

eexchange/42885-nearestspd), prior to performing singular value decomposition as described

below.

Each CCA analysis finds a linear combination of behavioural and life-factor measures (V) that is

maximally correlated with a linear combination of rfMRI-derived measures (U) (Hotelling, 1936):

Y � A ¼ U ~X � B ¼ V . Y is the set behavioural measures, and X are the rfMRI-derived measures (i.e.

spatial maps, or network matrices, or signal amplitudes), ~indicates that U and V are approximately

equal. A and B are optimised such that the correlation between U and V is maximal. Summary meas-

ures from CCA include the correlation between (paired columns of) U and V, and the associated

p-values (derived from permutation testing over n = 100,000 permutations) for the first one or more

CCA modes.

To create the inputs to the CCA, a set of nuisance variables were regressed out of both the

behavioural measures and the amplitudes, network matrices and spatial maps, as done in

(Smith et al., 2015). Subject covariance matrices were subsequently estimated for the amplitudes,

network matrices and for all spatial maps (by summing the covariance matrices of individual spatial

maps). Then, a singular value decomposition was performed on the subject covariance matrices and

the first 100 eigenvectors were entered into the CCA (against 100 eigenvectors obtained from

behavioural variables as explained in Smith et al., 2015).
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In addition to reporting the CCA results for the strength of the canonical correlation between

imaging and non-imaging measures and the associated p-value (rU-V and PU-V), we also report the

correlation between the CCA subject weights and the weights for the ICA 200 partial network matri-

ces (rU-Uica). The reason for including this correlation is to facilitate direct comparison to previously

published CCA results from HCP data (Smith et al., 2015). However, this earlier finding should not

be taken as the gold standard CCA result. The rU-Uica correlation we report is the maximum correla-

tion found between the first CCA mode from the ICA 200 partial network matrices, and any of the

100 modes of population covariation obtained for the comparison CCA result (i.e. the maximum cor-

relation may not be with the strongest CCA mode).

Confidence intervals for CCA results in Table 1 were obtained using surrogate data for both the

brain-based CCA input matrix and the behaviour CCA input matrix. To generate the surrogate data,

row and column wise correlations of the original CCA input matrices were maintained using a multi-

variate normal random number generator (mvnrnd.m in Matlab). A total of 1000 instances of surro-

gate data were used to obtain 2.5–97.5% confidence intervals around rU-V.

For visualisation and interpretation purposes, we created videos of the spatial variability along

the axis of the behavioural CCA mode of population covariation. For this, we took the U resulting

from the CCA between PFM spatial maps and behaviour, and created a linearly spaced vector that

spans just over the full range of U (extending beyond the lowest and highest measured subject score

by 10% of the full range). As the CCA is linear, it is straightforward to project a set of U values back

to form a rank-one reconstruction of the original space, which in this case is a set of spatial maps.

This sequence of spatial maps is an approximation to the spatial variability that is encoded along the

previously reported positive-negative axis. These are used as the frames for Videos 1–9 , and for

the illustrative examples shown in Figure 2 and Figure 2—figure supplements 2–7.

The two rfMRI parcellation methods included in Supplementary file 1b (HCP_MMP1.0 and PFM)

explicitly aim to capture cross-subject variability in the spatial location of functional regions. The sub-

ject spatial maps estimated by both methods are strongly associated with cross-subject behavioural

variability (when matching the sample size rU-V did not significantly differ, and subject weights of the

strongest CCA results were moderately correlated rU-U = 0.55). Therefore, it is of interest to com-

pare these results in more detail, to determine whether cross-subject variability is represented simi-

larly for the two approaches. Furthermore, given that fractional surface area (the fraction of cortex

occupied by each area in the multimodal HCP_MMP1.0 parcellation) was also strongly predictive of

behaviour (Supplementary file 1b), we investigated the potential relationship between rfMRI-based

PFM weights, multimodally defined cortical areal boundaries (HCP_MMP1.0 parcellation), and struc-

tural variation in fractional surface area. To this end, we averaged CCA subject weights obtained

from two separate CCA results (PFM spatial maps - behaviour, and HCP_MMP1.0 spatial maps -

behaviour). These averaged subject weights were subsequently correlated against fractional surface

area, and against subject-specific PFM and HCP_MMP1.0 spatial maps (grayordinate-wise), to inves-

tigate which brain regions contribute strongly to the association with behaviour, and to compare

these localised effects across methods/modalities.

Creating simulated data
In order to create simulated datasets for each subject, we took the outer product between PFM spa-

tial maps and timeseries. Compared with data that is completely simulated, this approach has the

advantage of keeping many features in the data (such as the types of structured noise that are pres-

ent, the signal-to-noise ratio, and the autocorrelation structure), while still achieving investigator con-

trol of specific aspects of interest. Data from each run (1200 time points) was processed separately

through the simulation pipeline, including the following steps:

Timeseries processing
Variance normalisation
Each original PFM subject timecourse was set to unit variance, and the variances were retained.

vs ¼ var AT
s

� �

; Bs ¼ As � diag v�1=2
s

� �
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Whitening
The ZCA whitening transform (Bell and Sejnowski, 1997) was used to remove any correlations

between timeseries: Zs ¼ cov Bsð Þ�1=2
; Cs ¼ Bs � Zs

Network matrix application
Timeseries were modified such that the induced correlation matched a pre-specified structure.:

Ds ¼ Cs � a. In the simulations that use a fixed group network matrix, this pre-specified correlation

structure was estimated by projecting the S900 group average HCP dense connectome (following

Wishart Rolloff) onto the group PFM spatial maps.

Restore variances
At this stage, the variances of the original timeseries are restored Es ¼ Ds � diag v1=2s

� �

. This gives a

set of simulated timeseries Es which have all the same properties as the reference timeseries (As),

except for their correlation structure.

Pseudo-PFM generation
We modify the inferred PFMs by selectively setting some of the parameters to their group averages.

For example, if we set Ps ¼ Pg, where Pg is the mean over all 820 subject maps, then we can elimi-

nate any spatial variability across subjects. Similarly, we can set the temporal correlations to a fixed

group mean using the procedure described above to remove any variability in FC across subjects. In

order to remove amplitude variability across subjects, we add in group averaged variances instead

of the subject variances. These simulated PFMs are then described by the simulated maps, ampli-

tudes and timeseries, namely P̂s, ĥs and Âs.

Data reconstruction
Finally, the full data can be reconstructed as per [1]: D̂s ¼ P̂s � diag ĥs

� �

� Âs þ ". Spatio-tempo-

rally white-noise (with variance matched to the original data) is added to the activity described by

the simulated modes to give a dataset that preserves the properties of the original data, but, cru-

cially, one where we have direct control over where in the model subject variability can appear.

Once the simulated data is generated for each run, we extracted timeseries from both the simu-

lated and original data using two different approaches that are commonly adopted in the literature.

Dual regression analysis was performed using the group ICA maps that were estimated using the

(original) HCP group data, and that are freely available with the S900 data release (www.humancon-

nectome.org). Two dimensionalities were tested, so for each simulated dataset dual regression was

performed against 25 and against 200 group ICA components. The timecourses estimated in stage

1 of the dual regression analysis were used to compute network matrices (Filippini et al., 2009;

Nickerson et al., 2017). Mean timeseries were also extracted from a set of 108 binary regions of

interest (ROIs) based on the Yeo parcellation, and from the HCP_MMP1.0 group parcellations and

individual subject parcellations (Glasser et al., 2016). The 108 Yeo ROIs were obtained from the 17-

network parcellation (Yeo et al., 2011), by separating each of the 17 networks into individual contig-

uous regions that had a surface cluster area of at least 20 mm2. Timecourses were used to estimate

full and regularised partial correlation network matrices using FSLnets (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FSLNets). Z-transformation was applied to the network matrices before further comparisons.

The network matrices derived from simulated data are compared against network matrices calcu-

lated from the original data as described below.

Firstly, we compare the simulated network matrix to the original network matrix for each subject,

to determine how similar the measured FC is. For each subject, the node-by-node full or regularised

partial network matrix estimated from the simulated data is reshaped into a single column after

removing the diagonal and is correlated against the reshaped original estimated network matrix.

Prior to reshaping the simulated and original network matrices, the respective group average net-

work matrix (simulated or original) is subtracted from the subject network matrix, so that the subse-

quent correlation is sensitive to the unique subject variability instead of being driven by the group

connectivity patterns. As such, a correlation coefficient between demeaned simulated and original

network matrices is estimated for each subject. The Fisher r-to-z transform was applied to these cor-

relations before averaging across subjects. This first test assesses how different a subject is from the
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group (and the similarity of this difference between original and simulated network matrices), and

therefore does not test for cross-subject variability.

Secondly, the subject-by-subject correlation matrix was estimated from the subject-wise simu-

lated network matrices. Again, this matrix was reshaped into a vector after discarding the diagonal

and was correlated against the reshaped subject-by-subject correlation matrix obtained from the

original network matrices. The aim of this test was to directly compare the cross-subject variability

present in the simulated and original data, which is very important given that variability across sub-

jects is typically of primary interest in FC research. Hence, this analysis aims to compare the cross-

subject variability in original or simulated network matrices, as opposed to comparing the similarity

of original and simulated network matrices within an individual subject (as is the case for the preced-

ing approach).

The last test of the simulated network matrices was to perform a CCA against the set of behav-

ioural and life-factor measures (Smith et al., 2015). A CCA was performed on the simulated network

matrices against the subject behavioural measures as described below. To assess the CCA results,

we report the correlation between U and V (for the first, strongest mode of population covariation),

the associated permuted p-value (n = 100,000 permutations, respecting family structure), and the

maximum correlation between any of the simulated U and the first U obtained when using the origi-

nal ICA 200 dimensionality partial network matrices describing the positive-negative mode of covari-

ation (Smith et al., 2015).

Simulations with further spatial map modulations
The PFM subject spatial maps contain a relatively complex set of information. This may include rela-

tive differences in amplitude in different brain regions that are part of the same mode, which effec-

tively reflect connectivity rather than spatial shape and size. In order to exclude these potential

connectivity-related aspects of the spatial maps and isolate the role of spatial shape, we simplified

the spatial maps for some of the simulations presented. For this, the spatial maps were thresholded

at a very liberal threshold of 1 (arbitrary units specific to the PFM algorithm) and binarised. The sign

was retained such that grayordinates in the subject PFM maps with values > 1 were set to one and

grayordinates with values <-1 were set to �1 and all others to zero. A liberal threshold was purpose-

fully used as we wanted to retain extended (broad, low) shape information, and just remove any

information encoded in the (relative) grayordinate amplitudes. Using a fixed threshold across sub-

jects retains cross-subject variability in the size of networks. To further remove this source of informa-

tion and focus purely on the shape of networks, we applied a percentile threshold such that the size

of networks is fixed across subjects (grayordinates >95th percentile set to one and

grayordinates <5th percentile set to �1, leading to each individual PFM map having the same size of

4564 1s and 4564 –1s across all subjects). The results of simulations where the maps were modulated

in this way prior to calculating the simulation’s space-time outer product are presented in

Supplementary file 1e, including results for which the maps were both thresholded and binarised,

percentile thresholded and binarised, and also results for maps that were thresholded (at 1) but not

binarised.

Comparing cross-subject similarities between different types of
imaging measures
Given that variability between subjects is of primary interest in rfMRI research, this analysis aimed to

directly compare the cross-subject variability present in a range of measures obtained from the origi-

nal data. Between-subject correlation matrices were calculated from network matrices (ICA25,

ICA200 and PFM50), from PFM amplitudes and from spatial maps (ICA25 and ICA200 dual regres-

sion stage two spatial maps, and PFM50 spatial maps). These subject by subject correlation matrices

were reshaped after discarding the diagonal, and full and partial correlations were calculated

between the subject correlation matrices (Figure 4—figure supplement 1).

Unique contribution of topography versus coupling
To obtain a basis set of spatial maps based on task contrast data, we performed a spatial ICA (with

a dimensionality of 15) on the concatenated group-averaged task contrast maps (a total of 86 maps,

47 of which are unique). The ICA dimensionality was determined based on the proportion variance
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explained in the PCA data reduction step (99.0% for d = 15). Spatial ICA was performed on the

group-average task contrasts maps to avoid the correspondence problem that would arise if ICA

were applied separately to individual subject task contrast maps. This resulted in a set of ICA

weights (15*86), which describe the contribution of each task contrast map to each extracted ICA

component. The outer product of these weights with either the group-averaged contrast maps or

the corresponding subject-specific contrast maps was used to obtain maps to drive subsequent dual

regression analysis. Dual regression analysis (driven by either group-averaged or subject-specific

task basis maps after normalising the maximum of each subject and component map to 1) was run

against subject resting state data to obtain timeseries and maps. CCA against behaviour was per-

formed separately on the resulting network matrices and spatial maps as described above. Addition-

ally, partial CCA was performed to determine the unique information contained in network matrices

and in spatial maps. For this, any variance explained by network matrices was regressed out of the

spatial maps and vice versa (i.e. was ‘partialled out’), before running the ‘partial CCA’. Specifically,

the 100 eigenvectors used as the input matrix to the CCA (as explained above and following

[Smith et al., 2015]) for partial network matrices were regressed out of the 100 eigenvectors for the

spatial maps before running CCA, or conversely the 100 eigenvectors for spatial maps were

regressed out of the 100 eigenvectors for the network matrices before running CCA.
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Supplementary files
. Supplementary file 1. (a) Highly similar associations between behaviour and the brain can be found

across a wide range of different measures derived from fMRI. We included a set of network matrices,

spatial maps and amplitudes (node timeseries standard deviation) derived from several distinct

group-average spatial parcellations/decompositions: from ICA decompositions at two scales of

detail (dimensionalities of 25 and 200); a PROFUMO decomposition (PFM; dimensionality 50); an

atlas-based hard parcellation (108 parcels [Yeo et al., 2011]); task contrast spatial maps (86 con-

trasts); and MSM warp fields from native space to MSMAll aligned data (from estimate_metric_dis-

tortion; https://github.com/ecr05/MSM_HOCR_macOSX/blob/master/src/MSM/estimate_metric_

distortion.cc). Each row reports a separate CCA analysis, performed against behaviour/life-factors. A

very similar mode of variation is found across most of the parcellation methods and different fMRI

measures. rU-V is the strength of the canonical correlation between imaging and non-imaging meas-

ures (confidence intervals estimated using surrogate data), PU-V is the associated (family-wise error

corrected) p-value estimated using permutation testing, taking into account family structure, and rU-

V CI is the 2.5–97.5% confidence interval estimated using surrogate data. rU-Uica is the correlation of

a CCA mode (subject weights) with the positive-negative mode of population covariation obtained

from ICA200 partial network matrices as used in Smith et al. (2015), and is therefore defined to be

one in the row containing the results from that CCA. The rU-Uica result was included because it shows

whether different metrics are associated with similar or distinct behavioural modes of population

covariation (one may expect different rfMRI measures to be associated with distinct aspects of

behaviour). The final column contains the total number of CCA modes with PU-V <0.05 (results in

other columns correspond to the most significant CCA mode, except for rU-Uica, which relates to the

maximum correlation across all CCA modes). (b) The rU-V results here are inflated in comparison to

the results presented in Supplementary file 1a (due to increased overfitting as a result of the parcel-

lation only being available in 441 subjects compared with 819 subjects included for the other CCAs),

but the associated PU-V can (to some extent) be used for comparison. Therefore, this Table compares

PFM (d = 50), HCP_MMP1.0 (d = 360), and fractional surface area (the fraction of cortex occupied

by each area in the multimodal HCP_MMP1.0 parcellation) on the same set of 441 subjects (only

considering subjects with a complete set of 4800 resting state timepoints). (c) Results from simulated

datasets in which one or more of the network matrices, amplitudes and spatial maps are fixed to the

group average to remove any subject variability associated with it. Results in each row were driven

by variables in which subject variability was present, as indicated with [ (variables with - were fixed

to the group average). Results are shown for within-subject correlations between simulated and
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original z-transformed network matrices (Znetwork matrix), across-subject correlations between simu-

lated and original subject correlation matrices (Rcorrelation), and for results obtained from the CCA

against behaviour. Note that comparable CCA results from the original data can be found in

Supplementary file 1a. This Table presents results from full correlation network matrices. (d) Results

from simulated datasets in which one or more of the network matrices, amplitudes and spatial maps

are fixed to the group average to remove any subject variability associated with it. Results in each

row were driven by variables in which subject variability was present, as indicated with [ (variables

with - were fixed to the group average). Results are shown for within-subject correlations between

simulated and original z-transformed network matrices (Znetwork matrix), across-subject correlations

between simulated and original subject correlation matrices (Rcorrelation), and for results obtained

from the CCA against behaviour. This Table presents results from partial correlation network matri-

ces. Note that the results flagged with * are poorly estimated as a result of the low rank of the PFM

subject network matrices (containing 50 PFM modes) used to drive these simulations. The reason for

this is that the PFM 50-dimensional subject network matrices were added into the data (to keep the

simulation pipeline identical). This approximated 50-dimensional network matrix is too low rank to

allow accurate estimation of partial connectivity across a much larger number of nodes. The full cor-

relation results in Supplementary file 1c are estimable, and support the 25-dimensional ICA results.

(e) Modulating the subject spatial maps by thresholding and binarizing retains the shape and size

aspects, but removes any relative amplitude information from the spatial maps. Binarised % results

are binarised after applying a percentile threshold, and therefore only retain shape aspects (while fix-

ing the size). The results reveal that even after thresholding and binarizing the spatial maps, remain-

ing spatial variability strongly drives the cross-subject information present in the resulting network

matrices. See earlier Tables for a description of the measures.

DOI: https://doi.org/10.7554/eLife.32992.028
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Major datasets

The following dataset was generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Janine Diane Bij-
sterbosch, Mark W
Woolrich, Matthew
F Glasser, Emma C
Robinson, Christian
F Beckmann, David
C Van Essen, Sa-
muel J Harrison,
Stephen M Smith

2018 Study: The relationship between
spatial configuration and functional
connectivity of brain regions

https://balsa.wustl.edu/
study/show/kKM0

Available on login at
the Brain Analysis
Library of Spatial
maps and Atlases
(BALSA)

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Van Essen D,
Ugurbil K

2017 Human Connectome Project https://www.humancon-
nectome.org/

Freely available upon
agreeing with Open
Access Data Use
Terms and Restricted
Data Use Terms (
https://www.
humanconnectome.
org/study/hcp-young-
adult/document/
quick-reference-
open-access-vs-
restricted-data).

Bijsterbosch et al. eLife 2018;7:e32992. DOI: https://doi.org/10.7554/eLife.32992 23 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.32992.028
https://doi.org/10.7554/eLife.32992.029
https://balsa.wustl.edu/study/show/kKM0
https://balsa.wustl.edu/study/show/kKM0
https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://doi.org/10.7554/eLife.32992


References
Allen EA, Erhardt EB, Wei Y, Eichele T, Calhoun VD. 2012. Capturing inter-subject variability with group
independent component analysis of fMRI data: a simulation study. NeuroImage 59:4141–4159. DOI: https://
doi.org/10.1016/j.neuroimage.2011.10.010, PMID: 22019879

Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. 2000. Brodmann’s areas 17 and 18 brought into
stereotaxic space-where and how variable? NeuroImage 11:66–84. DOI: https://doi.org/10.1006/nimg.1999.
0516, PMID: 10686118

Beckmann CF, DeLuca M, Devlin JT, Smith SM. 2005. Investigations into resting-state connectivity using
independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 360:
1001–1013. DOI: https://doi.org/10.1098/rstb.2005.1634, PMID: 16087444

Bell AJ, Sejnowski TJ. 1997. The "independent components" of natural scenes are edge filters. Vision Research
37:3327–3338. DOI: https://doi.org/10.1016/S0042-6989(97)00121-1, PMID: 9425547

Bijsterbosch J, Harrison S, Duff E, Alfaro-Almagro F, Woolrich M, Smith S. 2017. Investigations into within- and
between-subject resting-state amplitude variations. NeuroImage 159:57–69. DOI: https://doi.org/10.1016/j.
neuroimage.2017.07.014, PMID: 28712995

Bijsterbosch JD. 2017. Spatial_netmat_scripts. Github. 1.0. https://github.com/JanineBijsterbosch/Spatial_netmat
Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human
brain using echo-planar MRI. Magnetic Resonance in Medicine 34:537–541. DOI: https://doi.org/10.1002/mrm.
1910340409, PMID: 8524021

Braga RM, Buckner RL. 2017. Parallel interdigitated distributed networks within the individual estimated by
intrinsic functional connectivity. Neuron 95:457–471. DOI: https://doi.org/10.1016/j.neuron.2017.06.038,
PMID: 28728026

Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE. 2014. Dissecting
psychiatric spectrum disorders by generative embedding. NeuroImage: Clinical 4:98–111. DOI: https://doi.org/
10.1016/j.nicl.2013.11.002, PMID: 24363992

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for making group inferences from functional MRI
data using independent component analysis. Human Brain Mapping 14:140–151. DOI: https://doi.org/10.1002/
hbm.1048, PMID: 11559959

Castellanos FX, Di Martino A, Craddock RC, Mehta AD, Milham MP. 2013. Clinical applications of the functional
connectome. NeuroImage 80:527–540. DOI: https://doi.org/10.1016/j.neuroimage.2013.04.083, PMID: 23631
991

Chen P-H, Chen J, Yeshurun Y, Hasson U, Haxby J, Ramadge PJ. 2015. A Reduced-Dimension fMRI Shared
Response Model. In: Cortes C, Lawrence N. D, Lee D. D, Sugiyama M, Garnett R (Eds). Advances in Neural
Information Processing Systems. 28 Curran Associates, Inc. p. 460–468.

Choi HJ, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K. 2006. Cytoarchitectonic
identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human
intraparietal sulcus. The Journal of Comparative Neurology 495:53–69. DOI: https://doi.org/10.1002/cne.
20849, PMID: 16432904

Chong M, Bhushan C, Joshi AA, Choi S, Haldar JP, Shattuck DW, Spreng RN, Leahy RM. 2017. Individual
parcellation of resting fMRI with a group functional connectivity prior. NeuroImage 156:87–100. DOI: https://
doi.org/10.1016/j.neuroimage.2017.04.054, PMID: 28478226

Coalson TS, Van Essen DC, Glasser MF. 2018. Lost in Space: The Impact of Traditional Neuroimaging Methods
on the Spatial Localization of Cortical Areas. bioRxiv. DOI: https://doi.org/10.1101/255620

Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS. 2012. A whole brain fMRI atlas generated via
spatially constrained spectral clustering. Human Brain Mapping 33:1914–1928. DOI: https://doi.org/10.1002/
hbm.21333, PMID: 21769991

Crick F, Jones E. 1993. Backwardness of human neuroanatomy. Nature 361:109–110. DOI: https://doi.org/10.
1038/361109a0, PMID: 8421513

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. 2006. Consistent
resting-state networks across healthy subjects. PNAS 103:13848–13853. DOI: https://doi.org/10.1073/pnas.
0601417103, PMID: 16945915

Duff EP, Makin T, Cottaar M, Smith SM, Woolrich MW. 2018. Disambiguating brain functional connectivity.
NeuroImage. DOI: https://doi.org/10.1016/j.neuroimage.2018.01.053, PMID: 29476911

Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM, Beckmann CF,
Mackay CE. 2009. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. PNAS 106:
7209–7214. DOI: https://doi.org/10.1073/pnas.0811879106, PMID: 19357304

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT. 2015.
Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature
Neuroscience 18:1664–1671. DOI: https://doi.org/10.1038/nn.4135, PMID: 26457551

Fischl B, Sereno MI, Dale AM. 1999. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based
coordinate system. NeuroImage 9:195–207. DOI: https://doi.org/10.1006/nimg.1998.0396, PMID: 9931269

Friston KJ. 1994. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping 2:
56–78. DOI: https://doi.org/10.1002/hbm.460020107

Friston KJ. 2011. Functional and effective connectivity: a review. Brain Connectivity 1:13–36. DOI: https://doi.
org/10.1089/brain.2011.0008, PMID: 22432952

Bijsterbosch et al. eLife 2018;7:e32992. DOI: https://doi.org/10.7554/eLife.32992 24 of 27

Research article Neuroscience

https://doi.org/10.1016/j.neuroimage.2011.10.010
https://doi.org/10.1016/j.neuroimage.2011.10.010
http://www.ncbi.nlm.nih.gov/pubmed/22019879
https://doi.org/10.1006/nimg.1999.0516
https://doi.org/10.1006/nimg.1999.0516
http://www.ncbi.nlm.nih.gov/pubmed/10686118
https://doi.org/10.1098/rstb.2005.1634
http://www.ncbi.nlm.nih.gov/pubmed/16087444
https://doi.org/10.1016/S0042-6989(97)00121-1
http://www.ncbi.nlm.nih.gov/pubmed/9425547
https://doi.org/10.1016/j.neuroimage.2017.07.014
https://doi.org/10.1016/j.neuroimage.2017.07.014
http://www.ncbi.nlm.nih.gov/pubmed/28712995
https://github.com/JanineBijsterbosch/Spatial_netmat
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/mrm.1910340409
http://www.ncbi.nlm.nih.gov/pubmed/8524021
https://doi.org/10.1016/j.neuron.2017.06.038
http://www.ncbi.nlm.nih.gov/pubmed/28728026
https://doi.org/10.1016/j.nicl.2013.11.002
https://doi.org/10.1016/j.nicl.2013.11.002
http://www.ncbi.nlm.nih.gov/pubmed/24363992
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1048
http://www.ncbi.nlm.nih.gov/pubmed/11559959
https://doi.org/10.1016/j.neuroimage.2013.04.083
http://www.ncbi.nlm.nih.gov/pubmed/23631991
http://www.ncbi.nlm.nih.gov/pubmed/23631991
https://doi.org/10.1002/cne.20849
https://doi.org/10.1002/cne.20849
http://www.ncbi.nlm.nih.gov/pubmed/16432904
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1016/j.neuroimage.2017.04.054
http://www.ncbi.nlm.nih.gov/pubmed/28478226
https://doi.org/10.1101/255620
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1002/hbm.21333
http://www.ncbi.nlm.nih.gov/pubmed/21769991
https://doi.org/10.1038/361109a0
https://doi.org/10.1038/361109a0
http://www.ncbi.nlm.nih.gov/pubmed/8421513
https://doi.org/10.1073/pnas.0601417103
https://doi.org/10.1073/pnas.0601417103
http://www.ncbi.nlm.nih.gov/pubmed/16945915
https://doi.org/10.1016/j.neuroimage.2018.01.053
http://www.ncbi.nlm.nih.gov/pubmed/29476911
https://doi.org/10.1073/pnas.0811879106
http://www.ncbi.nlm.nih.gov/pubmed/19357304
https://doi.org/10.1038/nn.4135
http://www.ncbi.nlm.nih.gov/pubmed/26457551
https://doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269
https://doi.org/10.1002/hbm.460020107
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1089/brain.2011.0008
http://www.ncbi.nlm.nih.gov/pubmed/22432952
https://doi.org/10.7554/eLife.32992


Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF,
Jenkinson M, Smith SM, Van Essen DC. 2016. A multi-modal parcellation of human cerebral cortex. Nature
536:171–178. DOI: https://doi.org/10.1038/nature18933, PMID: 27437579

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M,
Polimeni JR, Van Essen DC, Jenkinson M, WU-Minn HCP Consortium. 2013. The minimal preprocessing
pipelines for the Human Connectome Project. NeuroImage 80:105–124. DOI: https://doi.org/10.1016/j.
neuroimage.2013.04.127, PMID: 23668970

Gordon EM, Laumann TO, Adeyemo B, Gilmore AW, Nelson SM, Dosenbach NUF, Petersen SE. 2017a.
Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage
146:918–939. DOI: https://doi.org/10.1016/j.neuroimage.2016.08.032, PMID: 27640749

Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. 2016. Generation and evaluation of
a cortical area parcellation from resting-state correlations. Cerebral Cortex 26:288–303. DOI: https://doi.org/
10.1093/cercor/bhu239, PMID: 25316338

Gordon EM, Laumann TO, Adeyemo B, Petersen SE. 2017b. Individual variability of the system-level organization
of the human brain. Cerebral Cortex 27:bhv239. DOI: https://doi.org/10.1093/cercor/bhv239, PMID: 26464473

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, Douaud G, Sexton CE, Zsoldos E, Ebmeier KP,
Filippini N, Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K, Miller KL, Smith SM. 2014. ICA-based
artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95:
232–247. DOI: https://doi.org/10.1016/j.neuroimage.2014.03.034, PMID: 24657355

Guntupalli JS, Hanke M, Halchenko YO, Connolly AC, Ramadge PJ, Haxby JV. 2016. A model of representational
spaces in human cortex. Cerebral Cortex 26:2919–2934. DOI: https://doi.org/10.1093/cercor/bhw068,
PMID: 26980615

Guntupalli JS, Haxby J. 2017. A computational model of shared fine-scale structure in the human connectome.
bioRxiv. DOI: https://doi.org/10.1101/108738

Hacker CD, Laumann TO, Szrama NP, Baldassarre A, Snyder AZ, Leuthardt EC, Corbetta M. 2013. Resting state
network estimation in individual subjects. NeuroImage 82:616–633. DOI: https://doi.org/10.1016/j.neuroimage.
2013.05.108, PMID: 23735260

Harrison SJ, Woolrich MW, Robinson EC, Glasser MF, Beckmann CF, Jenkinson M, Smith SM. 2015. Large-scale
probabilistic functional modes from resting state fMRI. NeuroImage 109:217–231. DOI: https://doi.org/10.
1016/j.neuroimage.2015.01.013, PMID: 25598050

Hotelling H. 1936. Relations between two sets of variates. Biometrika 28:321–377. DOI: https://doi.org/10.1093/
biomet/28.3-4.321

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. 2012. FSL. NeuroImage 62:782–790.
DOI: https://doi.org/10.1016/j.neuroimage.2011.09.015, PMID: 21979382

Laumann TO, Gordon EM, Adeyemo B, Snyder AZ, Joo SJ, Chen MY, Gilmore AW, McDermott KB, Nelson SM,
Dosenbach NU, Schlaggar BL, Mumford JA, Poldrack RA, Petersen SE. 2015. Functional system and areal
organization of a highly sampled individual human brain. Neuron 87:657–670. DOI: https://doi.org/10.1016/j.
neuron.2015.06.037, PMID: 26212711
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Khorshidi G, Woolrich MW, Barch DM, Uğurbil K, Van Essen DC. 2013b. Functional connectomics from resting-
state fMRI. Trends in Cognitive Sciences 17:666–682. DOI: https://doi.org/10.1016/j.tics.2013.09.016,
PMID: 24238796

Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J,
Dolan RJ, Friston KJ, Heinz A. 2017. Computational neuroimaging strategies for single patient predictions.
NeuroImage 145:180–199. DOI: https://doi.org/10.1016/j.neuroimage.2016.06.038, PMID: 27346545

Swaroop Guntupalli J, Haxby JV. 2017. A computational model of shared fine-scale structure in the human
connectome. bioRxiv. DOI: https://doi.org/10.1101/108738

Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S. 2016. Task-free MRI predicts individual
differences in brain activity during task performance. Science 352:216–220. DOI: https://doi.org/10.1126/
science.aad8127, PMID: 27124457

Tong T, Aganj I, Ge T, Polimeni JR, Fischl B. 2017. Functional density and edge maps: Characterizing functional
architecture in individuals and improving cross-subject registration. NeuroImage 158:346–355. DOI: https://doi.
org/10.1016/j.neuroimage.2017.07.019, PMID: 28716714

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M. 2002.
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI
MRI single-subject brain. NeuroImage 15:273–289. DOI: https://doi.org/10.1006/nimg.2001.0978, PMID: 11771
995
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