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Abstract

Background: Despite its popularity, issues concerning the estimation of power in multilevel logistic regression

models are prevalent because of the complexity involved in its calculation (i.e., computer-simulation-based approaches).

These issues are further compounded by the fact that the distribution of the predictors can play a role in the power to

estimate these effects. To address both matters, we present a sample of cases documenting the influence that predictor

distribution have on statistical power as well as a user-friendly, web-based application to conduct power analysis for

multilevel logistic regression.

Method: Computer simulations are implemented to estimate statistical power in multilevel logistic regression

with varying numbers of clusters, varying cluster sample sizes, and non-normal and non-symmetrical distributions

of the Level 1/2 predictors. Power curves were simulated to see in what ways non-normal/unbalanced distributions of

a binary predictor and a continuous predictor affect the detection of population effect sizes for main effects, a cross-

level interaction and the variance of the random effects.

Results: Skewed continuous predictors and unbalanced binary ones require larger sample sizes at both levels

than balanced binary predictors and normally-distributed continuous ones. In the most extreme case of

imbalance (10% incidence) and skewness of a chi-square distribution with 1 degree of freedom, even 110 Level 2

units and 100 Level 1 units were not sufficient for all predictors to reach power of 80%, mostly hovering at

around 50% with the exception of the skewed, continuous Level 2 predictor.

Conclusions: Given the complex interactive influence among sample sizes, effect sizes and predictor distribution

characteristics, it seems unwarranted to make generic rule-of-thumb sample size recommendations for multilevel

logistic regression, aside from the fact that larger sample sizes are required when the distributions of the predictors are

not symmetric or balanced. The more skewed or imbalanced the predictor is, the larger the sample size requirements.

To assist researchers in planning research studies, a user-friendly web application that conducts power analysis via

computer simulations in the R programming language is provided. With this web application, users can conduct

simulations, tailored to their study design, to estimate statistical power for multilevel logistic regression models.
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Background

Data with dependencies due to clustering or repeated

measurements are commonplace within the behavioural

and health sciences [1–3]. Acknowledging these depend-

encies increases the complexity of research hypotheses

and places new demands on the analytical methods

needed to test said hypotheses [4]. From the array of

statistical techniques that can handle these types of de-

pendencies, multilevel modelling or linear mixed effects

models have become commonplace, with a wide variety

of applications within epidemiological, social, educa-

tional and psychological fields [5].

In spite of the popularity of these statistical approaches,

the added complexity implied by them places a demand

for a more sophisticated technical knowledge on the user,

whether it relates to issues of estimation, interpretation or

distributional assumptions of the data [6, 7]. Sample size

determination falls within this spectrum of added com-

plexity since it cannot be calculated exactly and needs to

be approximated via computer simulation [8]. Maas and

Hox’s [9] and Pacagnella’s [10] simulation studies provide

one of the most often-cited guidelines regarding sample

sizes in multilevel models where they claim that, if fixed

effects are of interest, a minimum of 30 Level 1 units and

10 Level 2 units are required and, if the inferences pertain

to random effects, the number of Level 2 units should in-

crease to 50. This is sometimes referred to in the literature

as the “50–30 rule” of multilevel modelling and has been

used before as sample size justification for using this type

of statistical method [11–13]. It is important to highlight,

however, that the recommendations based on these stud-

ies pertain exclusively to issues of estimate bias. When

these same sample size recommendations are used to esti-

mate power, they generally fall short of the commonly rec-

ommended 80% [14, 15].

Not much research has been published regarding sam-

ple size recommendations for multilevel logistic regression

models or other types of generalized linear models [16,

17]. Zhang and Yuan [18] looked at issues of power ana-

lysis and predictor distributions, but their recommenda-

tions are presented within the context of single-level

logistic regression. Only two studies seem to directly ad-

dress the issue of power within the context of mixed ef-

fects logistic regression. Moineddin, Matheson and

Glazier [19] concluded that, although multilevel logistic

regression shares similar characteristics to regular multi-

level linear regression, there are some important differ-

ences, such as the need for much larger samples to obtain

unbiased estimates when testing for cross-level interac-

tions. They also found that, although Wald-type confi-

dence intervals showed a more consistent 95% coverage

for fixed effects, the confidence interval coverage for ran-

dom effects was biased downwards resulting in an infla-

tion of Type I error rates. Schoeneberger [20] offers a

comprehensive simulation study aimed at informing re-

searchers of issues related to sample size and power when

working with multilevel logistic regression, highlighting

the fact that the sample size requirements for the appro-

priate use of these models is much larger than what is rec-

ommended for continuous multilevel linear models [11].

In some of their studies, particularly those with

medium-sized, fixed effects regression coefficients, up to

80 Level 2 clusters, each with 100 Level 1 units, were

needed to yield the 80% power recommended in the litera-

ture. He also offers one of the few examples where a

dummy-coded binary predictor variable is included as

both a Level 1 and Level 2 predictor; showing that if a bin-

ary variable is placed in the model, it tends to require lar-

ger sample sizes than that of a continuous predictor at

both levels to make sure that its power and Type I error

rate fall within their nominal values of .8 and .05

respectively.

In spite of the work that has been done to document the

impact that sample characteristics have on the power of

multilevel logistic regression, there still remain several ave-

nues of research. For instance, it is not uncommon to work

with continuous predictors that are not normally-distributed

(e.g., income) or categorical predictors with an uneven num-

ber of participants within each group (e.g., minority status).

Yet most of the simulation studies published to date assume

both symmetrically-distributed predictors and equal number

of participants across categories [14, 21–23]. There is virtu-

ally no information regarding the power to detect either

continuous by categorical or categorical by categorical inter-

actions [24]. Commonly, power analyses are conducted by

using ready-made statistical software that assumes ideal con-

ditions (i.e., normally distributed continuous variables and

balanced categorical discrete variables) for the type of the

data the researchers may encounter. The nature of the pre-

dictors can, however, have a considerable impact on the

power to detect an effect and the influence that the pre-

dictor distribution has on power tends to be overlooked by

researchers or cannot be accommodated by current software

with pre-made routines [25–27].

The present study

In order to address these issues and following up on

the recommendations for future studies suggested by

Schoeneberger [20], the purpose of this article is two-

fold: (i) To investigate the power of multilevel logistic

regression models under commonly found conditions

that may violate the assumptions made in power ana-

lysis regarding the type of predictors used (e.g.,

non-normally distributed continuous predictors and

unbalanced categorical predictors); and (ii) to provide

applied researchers who may be unfamiliar with the

methodology of computer simulations with a

user-friendly web application so that power can be
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approximated at the sample and effect sizes deter-

mined by them. We hope that a point-and-click,

easily-accessible web application will help promote

the practice of more ‘realistic’ power analyses where

the distribution of the predictors is taken into

account.

With regards to the first objective, we will exemplify

the influence that the distribution of the predictors has

on approximated power by presenting several represen-

tative scenarios where the predictors at each Level may

be skewed or unbalanced using medium and large popu-

lation effect sizes. The power curves of the different

types of predictors (continuous, categorical and inter-

action) will be compared among themselves (primarily)

as well as across simulation conditions to understand

the interplay between distributional assumptions, effect

sizes and sample sizes.

With regards to the second objective a tutorial will be

presented towards the end of the article on how to use

the newly-developed web application so that simulations

similar to the ones presented here can be conducted or

adapted to the individual needs of each researcher.

Method

The following two-level multilevel model was used

throughout the simulations, both in its two-level equa-

tion notation and single-equation notation. Notice that

this model is the same one used in Moineddin, Mathe-

son and Glazier [19]:

logit πij

� �

¼ β0 j þ β1 jX ij

β0 j ¼ γ00 þ γ01Z j þ u0 j

β1 j ¼ γ10 þ γ11Z j þ u1 j ð1Þ

As a single-equation model, Equation (1) can be

expressed as logit(πij) = γ00 + γ10Xij + γ01Zj + γ11(ZjXij) +

Fig. 1 Power curves for the continuous, Level 2 predictor. Conditions of normality (‘Normal’ in the figure legend), moderate (‘Mod. skew’ in the

figure legend or
ffiffiffiffiffiffiffi

8=5
p

Þ and extreme (‘Extr. Skew in the figure legend or
ffiffiffi

8
p

Þ skewness are presented. The population ICC is 0.3 and the regression coefficients

use a medium effect size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows

power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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u1jXij + u0j with
u0 j
u1 j

� �

� Nð 0
0

� �

σ2
0 σ01

σ01 σ2
1

� �

Þ by assumption,

where i denotes Level 1 units and j indexes Level 2 clus-

ters. In (1), β denotes Level 1 regression coefficients, γ is

used for Level 2 regression coefficients and u stands for a

random effect. The coefficient γ11 refers to a cross-level

interaction. This type of interaction effects is common-

place in contextual effects modelling where the level 1

predictor is an individual-level variable, such as minority

status or disease exposure, and the level 2 predictor may

stand for a cluster-level variable, such as neighbourhood

socioeconomic status or area-level pollution [28]. For in-

stance, consider the hypothetical scenario in which one

wishes to model the odds of a person’s infection as a func-

tion of disease exposure of the patient (a Level 1 pre-

dictor) and area-level measures of pollution (a Level 2

predictor). A cross-level interaction between exposure and

pollution (e.g., assuming that higher levels of pollution

among those exposed to the disease raise the odds of be-

coming infected if the same pattern does not occur for in-

dividuals not exposed to the disease) would be an example

of a contextual effects model where interaction among

Level 2 predictors with Level 1 ones are needed to further

understand the phenomenon being studied.
The degree of between-cluster relatedness was set

through the intraclass correlation coefficient (ICC) cal-

culated as an intercept-only model, logit(πij) = γ00 + u0j,

using the formula ICC ¼ σ20
σ20þσ2e

where σ2e ¼ π2

3
denotes

the variance of a standard logistic distribution. Medium

and large effect sizes, as defined in Cohen [29], were

used to populate Equation (1). The effect sizes for the

binary predictor are expressed in standardized mean dif-

ference units whereas the continuous predictor ones use

the correlational metric, matching the recommendations

presented in Cohen [29].

Fig. 2 Power curves for the binary categorical, Level 1 predictor. Conditions of balance (‘Balance’ in the figure legend or 50/50), moderate (‘Mod.

Imblanace’ in the figure legend or 70/30 ) and extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population

ICC is 0.3 and the regression coefficients use a medium effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis

denotes Level 1 sample size and the vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for

Level 1 and LV2 stands for Level 2
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� σ20 ¼ π2

7
(medium effect size) as the variance of the

random intercept, which results in an ICC of
π2

7
π2

7 þπ2

3

¼ 0:3 and σ2
0 ¼ π2

7
(large effect size) for an ICC of 0.5

� σ21 ¼ 0:3 (medium effect size) and σ21 ¼ 0:5 (large

effect size) for the variance of the random intercept.

� γ10 = 0.5 (medium effect size) and γ10 = 0.8 (large

effect size) for the regression coefficient of the

binary predictor .

� γ01 = 0.3 (medium effect size) and γ01 = 0.5 (large

effect size) for the regression coefficient of the

continuous predictor .

� γ11 = 0.3 (medium effect size) and γ11 = 0.5 (large

effect size) for the cross-level interaction effect.

For the continuous predictor distribution, three levels

of skewness were used: normally-distributed predictors

(i.e., skewness of 0), a chi-square distribution with 5 de-

grees of freedom (i.e., moderate skewenss of
ffiffi

8
p

5
) and a

chi-square distribution with 1 degree of freedom (i.e., ex-

treme skewness of
ffiffiffi

8
p

). The levels of skewness are simi-

lar to those encountered in real datasets as reported by

Micceri [30], Blanca et al. [31] and Cain, Zhang and

Yuan [24].For the binary categorical predictor three con-

ditions were studied: balanced (i.e., a 50/50 split between

the incidence group marked as 1 and the no-incidence

group marked as 0), a moderate imbalance (i.e., a 30/70

split with 30% of the sample showing incidence) and an

extreme imbalance condition (i.e., a 10/90 split with only

10% of the sample showing incidence). Three cases were

studied with some representative scenarios in an attempt

to better understand the relationship between power

and distributional assumptions: Case (1): A “benchmark

scenario” with a standard, normally-distributed Level

Fig. 3 Power curves for the continuous (Level 2) by categorical (Level 1) cross-level interaction. Benchmark conditions (normally-distributed Level

2 and balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and extreme

(skewness of
ffiffiffi

8
p

and 90/10 imbalance) conditions are presented. The population ICC is 0.3 and the regression coefficients use a medium effect size of

0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power. Level 2 sample

sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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2 predictor (Z) and an evenly-balanced, dummy-coded

Level 1 predictor (X). A second scenario with a

normally-distributed Level 1 predictor (X) and an ex-

tremely unbalanced Level 2 binary predictor (Z) and

a third scenario with an extremely skewed Level 1

predictor (X) and a perfectly-balanced Level 2 pre-

dictor (Z). Medium effect sizes were used throughout.

Case (2): Moderate and extremely unbalanced Level 1

predictor (X) with moderately and extremely skewed

Level 2 predictor (Z). Medium and large effect sizes

were used. Case (3): Moderately and extremely

skewed Level 1 predictor (X) with moderately and ex-

tremely unbalanced Level 2 predictor (Z). Medium ef-

fect sizes were used. For sample sizes, the Level 1

sample sizes were set to N1 = 10, 11, 12,… , 99, 100

and Level 2 sample sizes to N2 = 10, 30, 50, 70, 90,

110.
1 Please notice that the Level 1 sample sizes are

clustered within the Level 2 sample sizes so that, for

instance, in the first simulation condition there are 10

clusters, each cluster having 10, 11, 12,…,99, 100

Level 1 sample units for a total sample size of 10

clusters × 100 sample units per cluster = 1000 col-

lected sample units. For the second condition there

are 30 clusters where each of the thirty clusters has

10, 11, 12,…,99,100 units and so on for all possible

combinations of Level 1 and Level 2 sample sizes.

The simulations were all conducted in the R pro-

gramming language using the simglm, paramtest and

lme4 packages. Gaussian quadrature integration was

used for estimation and Wald-type standard errors

and p-values were employed to calculate the power of

the fixed effects. Statistical significance for the ran-

dom effects was evaluated via the recommended

one-degree-of-freedom, likelihood-ratio test where a

chi-square difference test is conducted between the

reduced model and the extended model with the

Fig. 4 Power curves for the variance component of the random intercept are presented. Benchmark conditions (normally-distributed Level 2 and

balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and extreme

(skewness of
ffiffiffi

8
p

and 90/10 imbalance) conditions are shown. Variance for the random intercept is σ20 ¼ π
2

7
for an ICC of 0.3. Power of 80% is

marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top

of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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added random effects [9–11, 20]. For each combin-

ation of simulation conditions, 1000 replications were

run and the proportion of statistically significant par-

ameter estimates from the total number of simula-

tions was calculated as the empirical power of each

model. The nominal alpha of 5% was used to test the

significance of the coefficients.

Results

The results are presented in two parts. First, we present

the findings (power curves) from our simulation study.

Second, we describe our newly developed web applica-

tion that integrates the findings from our simulation

study. The R-based web application allows researchers

to conduct a priori power analyses for multilevel logistic

regression with binary, skewed and normally-distributed

predictors.

Fixed effects, binary level 1 predictor and continuous

level 2 predictor (medium effect sizes)

Figures 1, 2 and 3 present the power curves obtained

from the benchmark model (balanced Level 1 categorical

predictor and normally-distributed Level 2 predictor),

moderate skewness/imbalance and extreme skewness/

imbalance for the continuous, categorical and cross-level

interaction. The ‘benchmark model’ reflects the ‘stand-

ard assumptions’ found in previous literature [19, 20]

and what one would expect most typical power analyses

for multilevel logistic regression may look like. For the

case of benchmark model, the power to detect an effect

for the Level 2 predictor was sensitive to the number of

clusters and, by the time the Level 2 sample size reached

50 or more, the detection of a medium effect

approached the probability of 1. The power for the ef-

fects of the Level 1 predictor and the interaction do re-

quire interplay between Level 1 and Level 2 sample

Fig. 5 Power curves for the variance component of the random slope are presented. Benchmark conditions (normally-distributed Level 2 and

balanced Level 1 predictors or ‘Benchmark’ in the figure legend) as well as moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and extreme

(skewness of
ffiffiffi

8
p

and 90/10 imbalance) conditions are shown. Variance for the random slope is σ21 ¼ 0:3 with an ICC of 0.3. Power of 80% is

marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top

of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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sizes. In general, larger number of Level 2 units also

carry larger number of Level 1 units (given this simula-

tion design) so that the power of Level 1 effects in-

creases as a function of both, with the increase being

more pronounced at the highest Level 2 sample size

when compared to the lowest Level 2 sample size.

With the exception of the lower end of the sample size

at Level 1, (around N1 = 30) by the time the simulation

reaches 90 clusters, the power for the three types of

effects was above the recommended minimum reported

in Hox et al. [11].

For the moderate skewness/imbalance conditions, the

degree of imbalance of the Level 1 predictor moved from

50%/50 to 70% of the sample belonging to the group

coded as ‘0’ and 30% belonging to the group coded as ‘1’.

For the continuous predictor, the Level 2, continuous

predictor was sampled from a chi-squared distribution

with 5 degrees of freedom. For the fixed effect of both

types of predictors, the power was adversely affected by

the increased skewness or imbalance of the predictor

distribution, where larger samples both at the cluster

and individual level were required in order to detect the

desired effect. When the Level 2 sample size was 90 or

larger, categorical and continuous main effects were de-

tected in the vast majority of cases, but the interaction

term lagged behind (N1 needed to be larger than

approximately 30 to reach acceptable levels of power).

Even at the largest Level 2 sample size of 110, the num-

ber of Level 1 units needed to be larger than 30 to en-

sure all three types of regression effects had a good

probability of detection.

Finally, the extreme imbalance/skewness conditions

(i.e., the “worst case” scenario), presents a severely

skewed predictor at Level 2 (a chi-square distribution

with 1 degree of freedom) and an extremely unbalanced

categorical predictor at Level 1 (with 90% of the sample

marked as belonging to the ‘0’ group and only 10% of

the sample in the ‘1’ group). In this specific case, only

Fig. 6 Power curves for the continuous, Level 2 predictor. Conditions of moderate (‘Mod. skew’ in the figure legend or
ffiffiffiffiffiffiffi

8=5
p

Þ and extreme (‘Extr.

Skew in the figure legend or
ffiffiffi

8
p

Þ skewness are presented. The population ICC is 0.5 and the regression coefficients use a large effect size of 0.5.

Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power. Level 2 sample

sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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the continuous Level 2 predictor has a slightly better

than 50/50 chance of detecting an effect at the larger

cluster sizes. Neither the Level 1 categorical predictor

nor the cross-level interaction come close, only reaching

power of 50% at the largest cluster size of 110 and Level

1 units close to 100.

Random effects, binary level 1 predictor and continuous

level 2 predictor (medium effect sizes)

Figures 4 and 5 present the power curves for the vari-

ance of the intercept and the random effects in all three

simulation conditions, both evaluated via the likelihood

ratio test. For the benchmark case, in both cases, the

power to detect these variances depends on the interplay

between Level 1 and Level 2 sample sizes. In general, the

power to detect an effect for the intercept variance is

higher than that of the slope variance, with the excep-

tion of lower Level 1 and Level 2 sample size conditions.

For the moderately skewed Level 2 predictor and the

moderately unbalanced Level 1 binary predictor (30% of

the sample labelled as “1”) the overall pattern of power

curves exhibits few differences from the benchmark

model condition, preserving the pattern of higher power

to detect the variance of the intercept and, in compari-

son, lower power to detect the variance of the slope.

Level 1 units also play a slightly bigger role in increasing

the power to detect both effects, showing that, albeit

small, the type of the distribution of the fixed effects can

influence the ability to detect random effects.

Finally, the power curves for the random effects under

the most severe predictor conditions of a chi-square dis-

tribution with 1 degree of freedom for the Level 2 pre-

dictor and only 10% of the sample belonging to the

group labelled as ‘1’ for the categorical predictor. It ap-

pears that the increased skewness and imbalance of the

predictors exert a detrimental influence on the probabil-

ity of detection of the variance components, with the

Fig. 7 Power curves for the binary categorical, Level 1 predictor. Conditions of moderate (‘Mod. Imblanace’ in the figure legend or 70/30 ) and

extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population ICC is 0.5 and the regression coefficients use a

large effect size of 0.8. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows

power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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variance of the slope experiencing the largest shrinkage

of power compared to the variance of the intercept.

Fixed effects, binary level 1 predictor and continuous

level 2 predictor (large effect sizes)

Figures 6, 7 and 8 show the same levels of skewness of the

continuous predictor and imbalance of the categorical

predictor with one important exception: the population ef-

fect sizes are now large instead of medium. This helps ex-

plore how distributional characteristics interact with

larger effect sizes and if they help enhance the probability

of detecting an effect when compared to medium effect

sizes. In general, large population effect sizes resulted in

power curves with steeper slopes which also converged to

the upper limit of 1 faster. They also preserve the same

pattern where the continuous predictor exhibits higher

probability of effect detection compared to the categorical

predictor and the interaction effect. The interaction effect

always showed the lowest power, although, in the large

effect size condition, it does reach acceptable levels of

power towards the largest Level 2 sample size conditions.

The condition of extreme skewness and extreme imbal-

ance also reveals a wider range of estimated power across

Level 1 and Level 2 sample sizes. Whereas for moderate

effect sizes the probability of detection was constricted

and increasing slowly, for large effect sizes the slopes of

the power curves were much steeper so that increases in

sample sizes (at Level 1 or Level 2) were met with consid-

erable gains in power.

Random effects, binary level 1 predictor and continuous

level 2 predictor (large effect sizes)

Similarly to what was shown in the previous section for

the fixed effects, defining large population effect sizes

for the random effects also resulted in larger prob-

abilities of detection when compared to medium ef-

fect sizes, diminishing the negative influence that

increases in skewness and imbalance had on

Fig. 8 Power curves for the continuous (Level 2) by categorical (Level 1) cross-level interaction. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30

imbalance) and extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation conditions are presented. The population ICC is 0.5 and the regression

coefficients use a large effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the

vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2

Olvera Astivia et al. BMC Medical Research Methodology           (2019) 19:97 Page 10 of 20



estimated power. The overall pattern in the power

curves shown in Figs. 9 and 10 remained the same

for both cases, even though the power to detect the

variance of the intercept was consistently greater than

the power to detect the variance of the slope. It is

important to point out that for the case of moderate

skewness and moderate imbalance, a wider range of

estimated power was observed than for the cases of

extreme skewness and imbalance. This wider range,

however, was only observed for the case of lower

Level 2 sample sizes (i.e., N2 = 10, 30) and disap-

peared for larger Level 2 samples, where the random

effects of both intercept and slope showed larger

levels of power.

Fixed effects, continuous level 1 predictor and binary

level 2 predictor (medium effect sizes)

This section begins by showing the scenario where the

Level 2 predictor is now binary categorical and the Level

1 predictor is continuously-distributed. Several import-

ant differences arose in Figs. 11, 12 and 13 when com-

pared to Figs. 1, 2 and 3, where the distribution of the

predictors switches levels. Power overall appears to be

better in this present scenario, with the estimated power

of both predictors and their respective interaction con-

verging faster to their theoretical upper limit of 1 than

in the scenarios presented in Figs. 1, 2 and 3. It appears

that, although the continuous predictor is skewed, more

sample units at the Level 1 helped it capture the rela-

tionship more efficiently. In a similar manner, although

the effective sample size for the Level 2 predictor was

smaller (i.e., it only depended on the number of Level 2

units as opposed to Level 1 sample size which is a prod-

uct of both Level 1 times Level 2 units), with no random

effect for the binary predictor, the variability of the esti-

mates is reduced so that power to detect an effect im-

proves. Although the power to detect the categorical by

continuous interaction in both scenarios is low, it shows a

Fig. 9 Power curves for the variance component of the random intercept are presented. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance)

and extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation conditions are shown. Variance for the random intercept is σ20 ¼ π
2

3
for an ICC of

0.5 (large effect size). Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power.

Level 2 sample sizes are shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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moderate improvement when a continuous Level 1 pre-

dictor interacts with a binary Level 2 predictor.

Random effects, continuous level 1 predictor and binary

level 2 predictor (medium effect sizes)

This section also considers the condition where the

Level 2 predictor is binary categorical and the Level 1

predictor is continuously-distributed to mimic the same

process described above. The same levels of moderate

and extreme skewness/imbalance were used. The trend

of estimated power curves found for the fixed effects

case is emphasized even more strongly when analyzing

the random effects associated with the variance of the

intercept and slope of the Level 1, continuous predictor.

When comparing Figs. 4 and 5 with Figs. 14 and 15, it

becomes apparent that, although the increase in skew-

ness and imbalance still affects the probability of detec-

tion, this probability was higher for the case of random

effects of continuous predictors than binary categorical

predictors. This could very well be the case that the ran-

dom effects are Level 1 properties, i.e., they depend on

whether the low-level sample sizes change from cluster

to cluster.

Normally-distributed, level 1 predictor and extremely

unbalanced level 2 predictor (medium effect sizes)

In order to attempt to isolate the different influences that

predictor distributions can have on estimated power and

understand if the type of random variable simulated (con-

tinuous VS categorical) plays a role on estimated power,

Fig. 16 present the case of a normally-distributed Level 1

predictor and an extremely unbalanced (i.e., 10% inci-

dence) Level 2 predictor for medium effect sizes. The

normally-distributed Level 1 predictor shows large esti-

mated power across all conditions of Level 1 and Level 2

sample sizes. The usual patterns were also observed with

the categorical predictor and the interaction with one im-

portant twist. As Level 2 sample sizes reached 70 clusters

Fig. 10 Power curves for the variance component of the random slope are presented. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and

extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation conditions are shown. Variance for the random slope is σ21 ¼ 0:5 with an ICC of 0.5

(large effect size). Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level

2 sample sizes are shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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or more, the power to detect an interaction is higher than

that of its corresponding categorical main effect. The

interaction with the normally-distributed predictor (which

enhances the detection of an effect) may be exerting an at-

tenuating influence on the reduced incidence, making the

power estimates higher than those of the binary predictor.

Extremely skewed level 1 continuous predictor and

balanced level 2 predictor (medium effect sizes)

Finally, Fig. 17 shows the case for a Level 1,

chi-square-distributed continuous predictor with 1 degree

of freedom (i.e., population skewness of
ffiffiffi

8
p

) and a balanced

Level 2 categorical predictor, following on the same trend to

try and understand whether the type of random variable in-

vestigated (continuous VS categorical) plays a role in power

or not. This is the only case where the power of the categor-

ical predictor is consistently greater than the continuous

predictor and its interaction, although at larger Level 1

sample sizes the power of both types of predictors are very

close to each other. It is also important to point out that for

the skewed, continuous predictor there is a wider range of

estimated power values whereas for the categorical pre-

dictor the range of power tends to shrink towards its upper

bound as the number of Level 2 units increases. For in-

stance, after 50 Level 2 units the power is consistently over

50% and at the largest Level 2 sample size of 110 it is almost

always 1. The interaction still shows lower power than its

corresponding main effects, albeit it gets closer and closer

in power as the sample sizes at Levels 1 and 2 increase. It

appears that having a skewed Level 1 predictor combined

with a balanced categorical predictor results in lower power

estimates than a normally-distributed Level 1 predictor with

an extremely unbalanced Level 2 predictor. This echoes the

previous explanations of the difficulties associated with cat-

egorical predictors where the ability to detect an effect is

negatively impacted by the number of sample units that ex-

hibit the effect.

Fig. 11 Power curves for the continuous, Level 1 predictor. Conditions of moderate (‘Mod. skew’ in the figure legend or
ffiffiffiffiffiffiffi

8=5
p

Þ and extreme

(‘Extr. Skew in the figure legend or
ffiffiffi

8
p

Þ skewness are presented. The population ICC is 0.3 and the regression coefficients use a medium effect

size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis shows power.

Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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Implications of results: a new web application to conduct

power analysis for multilevel logistic regression

Currently, researchers must conduct computer simula-

tions to estimate power for multilevel logistic regression

models. This creates a technical barrier between applied

researchers and best practices in data analysis. Yet, re-

searchers must implement best practices when planning

research studies (including sample size determination)

and when applying for research grants. The current lack

of availability of a user-friendly computer simulation

software that can estimate power for predictors with

(commonly encountered) non-normal/unbalanced distri-

bution characteristics and cross-level interactions may

push researchers to rely on questionable rules of thumb

to justify/plan their sample sizes.

In order to address this issue, we have created a freely

available web application developed in the R package

shiny that provides a user-friendly, point-and-click inter-

face to run the simulations in the present article.

Researchers can try their own combinations of Level 1

and Level 2 sample sizes, effect sizes for regression coef-

ficients and variance components in order to calculate

statistical power for the specified fixed and random ef-

fects. In line with the approach in the present simulation

study, users can also change the distribution of the pre-

dictors under study. For continuous predictors there are

two options: normally-distributed or skewed (i.e.,

chi-square distributed with 1 degree of freedom). For

the binary categorical predictor, the user has the option

of selecting the proportion (from 0 to 1) of Level 1 units

coded as ‘1’. If researchers are well-versed in the R pro-

gramming language, the source code running the simu-

lations is also provided so that it can be downloaded and

modified at will.

The computations involved in approximating the power

for these types of models can place an undue burden on

the server where the web application is hosted. This is es-

pecially true if a large number of people are accessing it

Fig. 12 Power curves for the binary categorical, Level 2 predictor. Conditions of moderate (‘Mod. Imblanace’ in the figure legend or 70/30 ) and

extreme (‘Extr. Imbalance in the figure legend or 90/10) imbalance are presented. The population ICC is 0.3 and the regression coefficients use a

medium effect size of 0.5. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and the vertical axis

shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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simultaneously. An alternative solution would be to run

small number of replications (perhaps 100 or 500) mul-

tiple times and take the average of these power estimates.

Running 10 simulations with 100 replications and taking

the average of those 10 simulations is equivalent to run-

ning 1 simulation with 1000 replications. The benefit of

taking the small-number-of-replications approach is that

the demands placed on the server are lower, preventing

potential crashes. In general, one requires a large number

of replications to ensure the reliability of simulation find-

ings. Although the default is set at 10 replications, this is

merely as an example and not sufficient for research

purposes.

The shiny web application with instructions and full

tutorial can be found in:

https://psychometroscar.com/2018/07/31/power-ana-

lysis-for-multilevel-logistic-regression/

Although not currently available within the web applica-

tion, the personal github account of the first author hosts

R code capable of running uneven Level 1 sample sizes

within Level 2 clusters to extend the applicability of this

simulation-based approach to power analysis. A link to

the R code is provided in the same webpage where the tu-

torial is hosted. It is also currently not possible for the

web application to approximate a full power curve, given

the unreasonable amount of time that it would take the

server to do this, but the R code provided can offer this to

the user if it were to be run in a local computer.

Discussion

The popularity of multilevel or linear mixed effects

models to analyze clustered data and investigate com-

plex hypotheses has placed an increased demand on the

technical knowledge of researchers interested in using

them. Because no closed-form formulas are available,

power analyses for multilevel logistic regressions can

only be approximated through computer simulation [11,

32]. Even though we used a (relatively) simple and

Fig. 13 Power curves for the continuous (Level 1) by categorical (Level 2) cross-level interaction. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30

imbalance) and extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation conditions are presented. The population ICC is 0.3 and the regression

coefficients use a medium effect size of 0.3. Power of 80% is marked with a horizontal line. The horizontal axis denotes Level 1 sample size and

the vertical axis shows power. Level 2 sample sizes are shown on top of each panel (in grey). LV1 stands for Level 1 and LV2 stands for Level 2
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common model that reflects realistic data analysis condi-

tions, the simulation results highlight the substantial in-

fluence that predictor distributions may have on the

statistical power for main effects and interaction effects.

In the following, we discuss several trends from our re-

sults that we believe are important to highlight.

First, categorical predictors require larger sample sizes

to reach acceptable levels of power than continuous pre-

dictors. This is not a new finding within the multilevel

model literature for both linear and logistic regression

but, to the authors’ knowledge, this is the first simula-

tion attempt that manipulates the proportion of preva-

lence in the Level 1 predictor [14]. The presence of

unevenly-distributed groups is commonplace in

epidemiological-observational studies, and the simula-

tion results presented herein highlight the fact that un-

balanced Level 1 predictors can substantially reduce the

statistical power for the detection of an effect. Power

analyses that are conducted without taking this aspect

into consideration may result in over-optimistic power

estimates. Although the distribution of the continuous

predictor influenced the approximated power, it was

mostly negligible with the Level 2 coefficient showing

acceptable levels at 50 clusters or more.

Second, cross-level interactions require larger samples

at both levels and the sample size demands are usually

higher than those of its constituent main effects. This

has also been demonstrated previously in the literature

for multilevel models, but this simulation attempts to

highlight the cases where the ability to detect interac-

tions is further influenced by the distributions of the

predictors that define it [20]. This information is par-

ticularly relevant to researchers who examine hypotheses

within models that involve theoretically and practically

relevant cross-level interactions [18].The results pre-

sented here highlight the fact that large sample sizes

Fig. 14 Power curves for the variance component of the random intercept are presented, now for a Level 1 (continuous) and Level 2

(categorical) predictors. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation

conditions are shown. Variance for the random intercept is σ20 ¼ π
2

7
for an ICC of 0.3 (medium effect size). Power of 80% is marked with a

horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top of each panel in

grey. LV1 stands for Level 1 and LV2 stands for Level 2
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may be needed to detect a given effect size in this kind

of setting.

Third, we recommend researchers to conceptualize

their power analyses in terms of curves as opposed to

single point estimates. The computational time needed

to obtain a power curve might be cumbersome, due to

the fact that a full simulation is needed for each combin-

ation of conditions; however, power curves allow re-

searchers to see how the power of each predictor

behaves in combination with other predictors in the

model. Such information would be invaluable for plan-

ning Level 1 and Level 2 sample sizes and for making

adequate inferences about levels and effect sizes for each

predictor. Because two different types of sample sizes

play a role in these analyses (the individual-level and

cluster-level one), there is more than one combination

of them that, for a given population effect size, would

yield the same power. Whenever possible, using power

curves for meaningful combinations of sample and effect

sizes is recommended.

Finally, in light of our findings we recommend that re-

searchers who conduct studies requiring multilevel logis-

tic regressions with unbalanced/non-normal predictors

to very judiciously choose a study’s hypothesized effect

size estimates, based on existing research evidence –

ideally, by drawing from comprehensive literature re-

views or consulting published meta-analyses – before a

power analysis is conducted [33]. This is important, be-

cause researchers commonly default to Cohen’s generic

effect size categorization [29] and a hypothesized effect

size that is too small or too large – however, defaulting

to a general benchmark may provide an overly conserva-

tive or overly liberal estimate of power, particularly if

small or medium effect sizes are paired with unbalanced

groups or skewed predictors. Ideally, an informative

combination of power curves at different population

Fig. 15 Power curves for the variance component of the random slope are presented, now for a Level 1 (continuous) and Level 2 (categorical)

predictors. Moderate (skewness of
ffiffiffiffiffiffiffi

8=5
p

and 70/30 imbalance) and extreme (skewness of
ffiffiffi

8
p

and 90/10 imbalance) simulation conditions are

shown. Variance for the random slope is σ21 ¼ 0:3 with an ICC of 0.3 (medium effect size). Power of 80% is marked with a horizontal line.

Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are shown on top of each panel in grey. LV1

stands for Level 1 and LV2 stands for Level 2
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effect sizes should be calculated so that researchers can

observe the power-sample size trade-off more directly

and make practical decisions accordingly.

Conclusion

Power analysis in multilevel modelling requires a nu-

anced understanding of how the statistical models are

defined and estimated. Thanks to the advances of mod-

ern computers, it is now possible to calculate these

power analyses, but more research is needed both in the

type of predictors and how they interact in situations

with non-normal and/or unbalanced distributions. For

instance, creating an imbalance in dummy-coded cat-

egorical predictors induces a correlation between this

predictor and its Level 2 counterpart, a simulation factor

that we did not investigate but which is known to influ-

ence the power to detect an effect [34]. In our simula-

tion, we exclusively worked with a binary predictor, and

it would be of interest to future users to see how this

generalizes to predictors that are coded for multiple

groups. We highlighted that the level of imbalance of

the categorical predictor or skewness of the continuous

predictor were related to a decrease in approximated

power, but only a descriptive relationship is of this fact

is offered in the present article. Elucidating this point

from a more mathematically-justified perspective would

help users understand the relationship between distribu-

tional assumptions and power in a more proper fashion.

Also, it remains to be seen in what ways introducing

additional (and possibly correlated) Level 1 and Level 2

predictors affect the statistical power of Level 1 and

Level 2 predictors with non-normal/unbalanced distribu-

tional properties, in the multilevel logistic regression

case. Although the definitions of “small”, “medium” and

“large” effect size are commonplace within the scientific

literature, the simulation design presented herein does

not account for the changes in the variance of the pre-

dictors (e.g., a variance of .25 for the 50/50 binary condi-

tion VS .09 for the 90/10 unbalanced condition or a

variance of 1 for the standard normal case VS a variance

Fig. 16 Power curves for continuous, normally-distributed Level 1 predictor and unbalanced, categorical Level 2 predictor (10% incidence). The

population ICC is 0.3 and the regression coefficients use medium effect sizes (0.3 for continuous predictor and 0.5 for the categorical predictor).

Power of 80% is marked with a horizontal line. Horizontal axis denotes Level 1 sample size and vertical axis shows power. Level 2 sample sizes are

shown on top of each panel in grey. LV1 stands for Level 1 and LV2 stands for Level 2
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of 2 for the chi-square distribution with 1 degree of free-

dom). An important avenue of future research could

include a design that controls for this fact as well,

given the relationship between issues of variability

and power, particularly at smaller samples. Finally,

multilevel logistic regression is becoming relatively

well-known among researchers, but there are other

multilevel generalized linear models (such as Poisson

regression or Negative Binomial regression) which

have received far less attention with regards to the

power to detect their effects and the influence that

predictor distributions have on it. This could be an

interesting avenue of future research to help comple-

ment the literature of multilevel models and their

sample size requirements. We hope that the findings

from our simulation and the newly developed inter-

active power web application supports researchers in

obtaining estimates of power in multilevel logistic re-

gression without resorting to “one-size-fits-all”

solutions, and also informs further theoretical and ap-

plied research in this complex and growing area of

research.

Endnotes
1Preliminary simulations were conducted to ensure

that Type I error rate was maintained. Symmetric distri-

butions with non-zero kurtosis were also examined. No

detrimental effect on the power of the tests was found

from these distributions.
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