
The Relationship Between Test Coverage and Reliability

Yashwant K. Malaiya*
Naixin Li

Jim Biemant
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

malaiya@cs.colost ate.edu

Abstract

W e model the relation among testing effort, cover-
age and reliability, and present a logarithmic model
that relates testing effort t o tes t coverage (block,
branch, e-use or p-use) . The model is based on the hy-
pothesis that the enumerables (like branches or blocks)
for any coverage measure have different detectability,
jus t like the individual dejects. This model allows us
t o relate a tes t coverage measure directly wi th defect
coverage. Data sets f o r programs with real dejects are
used t o validate the model. The results are consistent
wi th the known inclusion relationships among block,
branch and p-use coverage measures. W e show how
deject density controls time to next failure.

The model can eliminate the variables like tes t ap-
plication strategy f r o m consideration. It is suitable f o r
high reliability applications where automatic (or man-
ual) tes t generation i s used t o cover enumerables which
have not yet been tes ted.

1 Introduction

Developers can increase the reliability of software
systems by measuring reliability as early as possible
during development. Early indications of reliability
problems allow developers to correct errors and make
process adjustments.

Reliability can be estimated as soon as running code
exists. To quantify reliability during testing, the code
(or portion of code) is executed using inputs randomly
selected following an operational distribution. Then,

*Y. Malaiya and N. Li are partly supported by a BMDO
funded project monitored by ONR

t J . Bieman is supported, in part, by the NASA Langley
Research Center, the Colorado Advanced Software Institute
(CASI), Storage Technology Inc, and Micro-Motion Inc. CASI
is supported in part by the Colorado Advanced Technology In-
stitute (CATI). CATI promotes advanced technology teaching
and research at universities in Colorado for the purpose of eco-
nomic development.

Rick Karcich
Bob Skibbe
StorageTek

2270 South 88th Street
Louisville, CO 80028-2286

RickXarcich@stortek.com
(303) 673-6223

a reliability growth model can be used to predict the
amount of effort required to satisfy product reliability
requirements.

The needs of early reliability measurement and
modeling are not met by common testing practices.
The focus of testing is on finding defects, and defects
can be often found much faster by non-random meth-
ods [2]. Testing is directed towards inputs and pro-
gram components where errors are more likely. For
example, testing may be conducted to insure that par-
ticular portions of the program and/or boundary cases
are covered.

Models that can measure and predict reliability
based on the status of non-random testing are clearly
needed. Reliability achieved will be affected by:

the testing strategy: Test coverage may be based
on the functional specification (black-box), or
it may be based on internal program structure
(white-box). Strategies can vary in their ability
to find defects.

the relationship between calendar time and execu-
tion time: The testing process can be accelerated
through the possibly parallel, intensive execution
of tests at a faster rate that would occur during
operational use.

the testing of rarely executed modules: Such
modules include exception handling or error re-
covery routines. These modules rarely run, and
are notoriously difficult to test. Yet, they are crit-
ical components of a system that must be highly
reliable. Only by forcing the coverage of such crit-
ical components, can reliability be predicted at
very high levels.

Intuition and empirical evidence suggests that test
coverage must be related to reliability. Yet, the con-
nection between structure based measurements, like
test coverage, and reliability is still not well under-
stood.

Ramsey and Basili [24] investigated different per-
mutations of the same test set and collected data relat-

1071-9458/94 $4.00 0 1994 IEEE
186

mailto:RickXarcich@stortek.com

ing the number of tests to statement coverage growth.
They tried a variety of models to fit the data. The
best fit was obtained using the Goel and Okumoto’s
exponential model (GO model).

Dalal, Horgan and Ketterring [6] examined the cor-
relation between test coverage and the error removal
rate. They give a scatter plot of the number of faults
detected during system testing versus the block cover-
ages achieved during unit testing. The plot shows that
modules covered more thoroughly during unit testing
are much less likely to contain errors.

Vouk [28] found that the relation between struc-
tural coverage and fault coverage is a variant of the
Rayleigh distribution. He assumed that the fault de-
tection rate during testing is proportional to the num-
ber of faults present in the software and test coverage
values including block, branch, data-flow, and func-
tional group coverage. Vouk’s experimental results
suggest the use of a more general Weibull distribu-
tion. It was observed that, in terms of error removal
capability, the relative power of the coverage measures
b1ock:p-use:DUD-chains is 1:2:6.

Chen et a1 [5] add structural coverage to traditional
time-based software reliability models (SRMs). Their
model excludes test cases that do not increase cover-
age. The adjusted test effort data is used to fit existing
time-based models to avoid overestimation from tra-
ditional time-based SRMs due to the saturation effect
of testing strategies.

Assuming random testing, Piwowarski, Ohba and
Caruso [22] analyze block coverage growth during
function test, and derive an exponential model relat-
ing the number of tests to block coverage. Their model
is equivalent to the GO model [24]. They also derive
an exponential model relating the covering frequency
to the error removal ratio. The utility of the model
relies on prior knowledge of the error distribution over
different functional groups in a product.

Frank1 and Weiss [9] compare the fault exposing
capability of branch coverage and data flow coverage
criteria. They find that for 4 out of 7 programs, the
effectiveness of a test in exposing an error is positively
correlated with the two coverage measures. They ob-
served complex relationships between test coverage
growth and the probability of exposing an error for a
test set. Since the 7 programs they used are very small
and they only considered subtle errors, the result may
not be directly applicable to practical software.

The Leone test coverage model given in [21] is a
weighted average of four different coverage metrics
achieved during test phases: lines of executable code,
independent test paths, functions/requirements, and
hazard test cases. The weighted average is used as an
indicator of software reliability. The model assumes
that full coverage of all four metrics implies that the
software tested is 100% reliable. In reality, such soft-
ware may have some remaining faults. A similar ap-
proach, but with different coverage metrics, was taken

to provide a test quality report [23].
In this paper, we explore the connection between

test coverage and reliability. We develop a model
that relates test coverage to defect coverage. With
this model we can estimate the defect density. With
knowledge of the operational profile, we can predict
reliability from test coverage measures.

2 Coverage of Enumerables

The concept of test coverage is applicable for both
hardware and software. In hardware, coverage is mea-
sured in terms of the number of possible faults cov-
ered. For example, each node in a digital system can
possibly be stuck-at 0 or stuck-at 1. A stuck-at test
coverage of 80% means that the tests applied would
have detected any one of the 80% faults covered.

In contrast, the number of possible software faults
in not known. Test coverage in software is measured in
terms of structural or data-flow units that have been
exercised. These units can be statements (or blocks),
branches, etc. as defined below:

0 Statement (or block) coverage: the fraction of
the total number of statements (blocks) that have
been executed by the test data.

0 Branch (or decision) coverage: the fraction of the
total number of branches that have been executed
by the test data.

0 C-use coverage: the fraction of the total num-
ber of computation use (c-uses) that have been
covered by one c-use path during testing. A c-use
path is a path through a program from each point
where the value of a variable is modified to each
c-use (without the variable being modified along
the path).

0 P-use coverage: the fraction of the total number
of p-uses that have been covered by one p-use
path during testing. A p-use path is a path from
each point where the value of a variable is modi-
fied to each p-use, a use in a predicate or decision
(without modifications to the variable along the
path).

When such a unit is exercised, it is possible that one
or more associated faults may be detected. Counting
the number of units covered gives us a measure of the
extent of sampling. The defect coverage in software
can be defined in an analogous manner; it is the frac-
tion of actual defects initially present that would be
detected by a given test set.

In general, test coverage increases when more tests
are applied, provided that the test cases are not re-
peated and complete test coverage has not already
been achieved. A small number of enumerables may

187

not be reachable in practice. We assume that the frac-
tion of such enumerables is negligible.

Figure 1 [31] shows the relationship among some
well-known criteria as proven by Weyuker. If there
is a directed path from criteria A to criteria B , then
test sets that meet criteria A (achievement of complete
coverage) are guaranteed to satisfy criteria B. Table 1
shows the maximum number of tests [31] to satisfy
these criteria and the observed complexities [30] for
some specific cases. The upper bound for all-du-paths
was reached in one subroutine out of 143 considered

All-DU-Paths

All-Paths

by Bieman and Schultz [bisc89,bisc92].
2d

2d
CO AlCPsths

B
All-DU-Paths

A I I - U ~ S

AICC-Uses All-P-Uses
SombP-Uses SomeC-Uses

% & B
AICP-Uses

B
All-Branches

B
AlCBlocks

Figure 1: The subsumption relationships of different
complete coverage criteria [31]

To keep the following discussion general, we will use
the term enumerab le . For branch coverage, the enu-
merables are branches, for defect coverage the enu-
merables are defects and so on. We use the term
“enumerable-type” to imply defects, blocks, branches,
c-uses or p-uses. We use superscript i , i = 0 to 4,
to indicate one of the five types in this sequence: 0:
defects, 1: blocks, 2:branches, 3: c-uses, 4: p-uses.

3 Detectability Profiles of Enumer-
ables

The coverage achieved by a set of tests depends
not only on the number of tests applied (or, equiva-
lently, the testing time) but also on the distribution
of t e s tab i l i t y values of the enumerables. A statement
which is reached more easily is more testable. Such

Table 1: The complexity (test length) for achieving
different coverage criteria [31]

Coveraee Criterion I UDDer bound I Observed I
I All-Blocks i d + 1 I I
All-Branches I d + l 1
All- P- U ses I f(d2 + 4d + 3) I0.38d + 3.17

statements are likely to get covered (i.e. exercised at
lease once) with only a small number of tests. Testa-
bility also depends on the likelihood that a fault that
is reached actually causes a failure [27]. A statement
that is executed only in rare situations has low testa-
bility. It may not get exercised by most of the tests
that are normally applied. As testing progresses, the
distribution of testability values will shift. The easy-
to-test enumerables are covered early during testing,
and are removed from consideration. The remaining
enumerables include a larger fraction of hard-to-test
enumerables. Thus, the growth of coverage will be
slower.

Definition: Detectability of an enumerable d{ is
the probability that the I-th enumerable of type j will
be exercised by a randomly chosen test.

The detectabi l i ty profi le is the distribution of de-
tectability values in the system under test. The de-
tectability profiles were introduced by Malaiya and
Yang [15]. They have been used to characterize test-
ing of hardware [29] and software [19]. A continuous
version of the detectability profile was defined by Seth,
Agrawal and Farhat [25]. For convenience, we use the
normalized detectability profile (NDP) as defined be-
low.

Definition: The discrete NDP for the system un-
der test is given by the vector,

pi = {dl,d2, ..., di, ...,d,’,

where di is the fraction of all enumerables of type j
which have detectability equal to di . Thus p i , 3 rep-
resents the fraction of all branches with detectability
of 0.3. In Equation 1, du is the detectability value of
unity (l), the highest value possible. cii=op$i = 1
since all fractions added will be unity.

A detectability value of 0 is possible, since a branch
might be infeasible, or a defect might not be testable

due to redundancy in implementation. Researchers
have compiled detectability profiles of several digital
circuits [15, 291 and software systems [26, 71.

If the number of enumerables is large, a continuous
function can approximate the discrete NDP.

Definition: The continuous NDP, for the system
under test is the function p ' (x) , 0 5 x 5 1

(2)
nr-enumerabled (x , x + d x)

all-enumerablesj
p l (x) d x =

where n r _ e n u m e r a b l e d (x , x + d x) denotes all enumer-
ables of type j with detectability values between x and
x + d x .

s,' p J (x) d x = 1, just like the discrete NDP case.

4 A one-parameter Model

The detectability profile gives the probability of ex-
ercising each enumerable. Hence, it can be used to
calculate expected coverage when a given number of
tests have been applied. Here, we assume that testing
is random, i.e. any single test is selected randomly
with replacement. Malaiya and Yang [15], and Wag-
ner et a1 [29] show that the expected coverage of the
enumerables of type j is

n

Cj(n) = 1 - c (1 - d {) " d (3)
i= l

provided testing is random. The same result holds for
continuous NDP [25]

Cj(n) = 1 - l1(l - X Y P (X) d X (4)

Actual testing of software is more likely to be
pseuderandom, since a test once applied will not be
repeated. In such cases, random testing is an approx-
imation. This approximation is reasonable, except
when coverage approaches 100%.

In a
specific case, the coverage can be different. The central
limit theorem suggests that results obtained should be
close to these given by Equations 3 and 4 when a large
number of vectors are applied.

The use of Equations 3 and 4 requires knowledge
of detectability profiles. Obtaining exact detectabil-
ity profiles requires a lot of computation. Discrete
detectability profiles have been calculated for several
small and large combinational circuits. Continuous
detectability profiles for some benchmark circuits have
been estimated [25]. However software systems are
generally much more complex.

Fortunately, it is possible to obtain reasonable ap-
proximation for the detectability profiles. When one
test is applied, the probability that an enumerable

Equations 3 and 4 give expected coverage.

with detectability d: will not be covered is (1 - d i) .
The probability that an enumerable will not be cov-
ered by n tests and thus remain a part of profile is
(1 - d:)" . Thus if the initial profile was given by Equa-
tion l , the profile after having applied n tests, will be
given by

Equivalently the continuous profile is given by

A(.) = P n (x) (l - x)"

Thus enumerables with high testability are likely to
get covered earlier. The profile will "erode" as test-
ing progresses (see Figure 2). Enumerables with low
testability get removed at a much lower rate, and thus
will soon dominate. During much of the testing, the
shape of the profile will appear like the bottom curve
in Figure 2, regardless of the initial profile.

Available results for hardware components suggest
that initial detectability profiles may be of the form

(5)

where m j is a parameter. The factors (m j + 1) ensure
that the area under the initial profile curve is unity.
By substituting the right hand side of Equation 5 in
Equation 4, we get

Cj(n) = 1 - (m j + 1) 1' (1 - x)mj+ndx

(6)
m j + 1 - n = I - -

m j + n + l m j + n + l

The curve given by Equation 6 matches the shape
of experimental data. However it does not provide a
good fit. One problem is that Equation 6 includes only
a single parameter which can be adjusted for fitting.
We can assume a more general initial detectability in
Equation 5 , involving two parameters, but even that
may not be accurate, as we discuss in the next section.
The approach considered next, yields a much better
model.

5 A New Logarithmic Coverage Model

Random testing implies that a new test is selected
regardless of the tests that have been applied thus far,
and that tests are selected based only on the opera-
tional distribution. In actual practice, a test case is
selected in order to exercise a functionality or enumer-
able that has remained untested so far. This process
makes actual testing more directed and hence more
efficient than random testing.

189

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

at time m -
at time 11
at tlme 13 I -

'.
. I . %
, I , %

. \
- : \ . I , * . \

. I . I
. I . > - ',
. I . > . \

,, ,\

0 0.2 0.4 0.6 0.8
Detectability

Figure 2: Distribution of detectability

Malaiya, von Mayrhauser and Srimani [18] show
that this non-random process leads to a defect find-
ing behavior described by the logarithmic growth
model [17]. Their analysis gives an interpretation for
the model parameters. The coverage growth of an
enumerable-type depends on the detectability profile
of the type and the test selection strategy. If the defect
coverage growth in practice is described by the loga-
rithmic model, it is likely that the coverage growth for
other enumerable-types is also logarithmic. We sug-
gest the following model.

N'
cyt) 5 1 (7)

1 '
~ ' (t) = -,B; l n (l+ pi t) ,

where Nf is the total number of enumerables of type i ,
Po and PI are model parameters. If a single application
of a test takes T, seconds, then the time t , needed to
apply n tests is nT,. Substituting in 7,

Defining bb as (3) and b'; as (P;T,), we can rewrite

C'(n) = b6 ln(1 + bfn), C i (n) 5 1 (8)

When C' = 1, there are no more additional enumer-
ables of that type to be found. With non-random test-
ing a finite, although possibly large, number of tests
are required to achieve 100% coverage of the feasible
enumerables.

For defects (i = 0), the parameters and have
the following interpretation [19].

the above as,

(9)

and

where Ko(0) is the exposure ratio at time t = O , TL is
the linear execution time and u0 is a parameter that
describes the variation in the exposure ratio.

Equation 8 relates coverage C' to the number of
tests applied. We use it to obtain an expression giving
defect coverage CO in terms of one of the coverage
metrics C', i = 1 to 4. Using Equation 8, we solve for
n,

p," = u0 (10)

i = l t o 4
1 C'

- [e z p (-) bb - I], n = b',

Substituting for Col again using Equation 8,

i = l t o 4
bo C'

CO = bo0 ln[l + + (e z p (F) - l)],
b , bo

Defining ut = b!, U'; = 8 and U$ = k, we can
write the above using three parameters as,

C O = a6 ln [l+ af(ezp(u$C') - 111 i = 1 to 4
(11)

Equation 11 gives a convenient three-parameter
model for defect coverage in terms of a measurable test
coverage metric. Equation 11 is applicable for only
CO 5 1. It is possible to approximate Equation 11 us-
ing a linear relation, but it would be accurate for only
a small range.

6 Analysis of Data

We evaluate the proposed model, as given by Equa-
tions 8 and 11, using four data sets. The first data

190

set, DS1, is from a multiple-version automatic airplane
landing system [14]. It was collected using the ATAC
tool developed at Bellcore. The twelve versions have
a total of 30,694 lines. The data used is for integra-
tion and acceptance test phases, where 66 defects were
found. One additional defect was found during oper-
ational testing. The second data set, DS2, is from a
NASA supported project implementing sensor man-
agement in inertial navigation system [28]. For this
program, 1196 test cases were applied and 9 defects
were detected. The third data set, DS3, is for a sim-
ple program used to illustrate test coverage measures
[l]. The fourth data set, DS4, is from an evolving soft-
ware system containing a large number of modules.

Table 2: Summary table for DS1
(total 21,000 tests applied)

I Blocks I Decisions I c-uses I puses I Defects I

Find cov. 91.8% 83.9% 91.7% 73.5% 98.4%
0.031 0.049 0.036 0.041 0.184
2E+8 1234 3.4E+6 2439 0.01

LSE 5 . 7 E 4 3.53-5 5.83-4 8 . 1 6 5 7 . 3 E 7

bf
LSE

Table 3: Summary table for DS2
(total 1196 tests applied)

6.95

8.435 769 561 162
2E-5 1.7E-3 1 . 6 E 3 2.33-3

The first data set and the results from it are sum-
marized in Table 2. The first row gives the total num-
ber of enumerables for all versions. The second row
gives the average coverage when 21,000 tests had been
applied. The values of the estimated parameters 6;
and bi and the least square error are given in the rows
below. The model given by Equation 8 fits the data
well. The data shows that C' > C2 > C4. This
relationship is expected. Complete decision coverage
implies complete block coverage, and complete p-uses
coverage implies complete decision coverage [2, 8, 201.
The c-uses coverage has no such relation relative to
the other metrics. Indeed the data shows that while
C3 < C' at the beginning of testing, near the end of
testing C3 is almost equal to c1.

Table 3 summarizes the result for DS2. Nine faults
were revealed by application of 1196 tests; we assume
that one fault (i.e. 10%) is still undetected. In spite of
the small number of faults, the model given in Equa-
tions 11 fits the data well.

Figure 3 shows the correlation of other test cover-
age measures Cz, C3 and C4 with block coverage C' .
As we expect, branch coverage, and to a lesser ex-

tent p-use coverage, are both strongly correlated with
block coverage. The correlation with c-use coverage is
weaker. Figure 4 shows actual and computed values
for fault coverage. The computed values have been
obtained using branch coverage and Equation 11. At
50% branch coverage the fault coverage is still quite
low (about IO%), however with only 84% branch cov-
erage, 90% fault coverage is obtained. The branch
coverage shows saturation at about 84%. This sup-
ports the view that 80% branch coverage is often ad-
equate [IO].

Figure 5 is a scatter plot of computed values of
defect coverage against actual values. The computed
values are from the number of tests and Equation 8
(traditional reliability growth modeling), and test cov-
erage measures C', C2, C3 and C4 using Equation 11.
The calculated values are all quite close, showing that
coverage based modeling can replace time-based mod-
eling.

Table 4: Summary table for DS3
(total 16 tests applied)

i= 1

I I I I

I 0.061 0.111 0.111 0.121

Table 4 shows similar results for a very small illus-
trative program. No defects were involved. However,
this again demonstrates the applicability of our mod-
eling scheme. We see that C1 2 C2 > C4. The c-use
coverage again behaves differently.

In evolving programs, significant changes are be-
ing made while testing is in progress. Because new
modules are being added, new defects as well as non-
covered enumerables are also being added. The cover-
age obtained by a test set can actually go down in some
cased. From DS4, (see Figure 6) , the linear correla-
tion between coverage measures can still be applica-
ble. The data used here covers an intermediate phase
of the process. The analysis of evolving programs is
more complex and is the subject of future research.

7 Model Parameters

Researchers find that the logarithmic model works
best among other two-parameter models [16], however
interpretation of its parameters is difficult. One in-
terpretation given by Malaiya et a1 [18] is described
by Equations 9 and 10. The same interpretation may
be applicable for enumerables other than defects. The
first parameter of Equation 8 is,

191

0.9

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Block Coverage

Figure 3: Scatter plot of C2, C3 and C4 against C1
0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.1

I
0.45 0.5 0.55 0.8 0.65 0.7 0.75 0.8 0.85

Branch Coverage

Figure 4: Actual and fitted (using Equation 11) values of defect coverage

and a i is as an initial estimate for numerically fit-
ting Equation 11, the initial estimate itself provides

aaTrNi a'Tr (12) a least-square fit. If the initial estimates are signif-
. K'(0)N' - - K ' (0) = -

&. Y

icantly different, then the least square fit may iield
somewhat different parameter

A-priori estimation of model parameters remains a
partly unsolved problem. Currently we must rely on

The linear execution time is given by the number of
lines of code multiplied by the average execution time

An empirical method to estimate the
initial fault exposure ratio Ko(0) has been suggested
by Li and Malaiya 1121. Estimation of a' remains an

Of each line.
curve fitting based approaches.

open problem. The second parameter is given by,

6' = aoT, (13) 8 Defect density and reliability
The single test execution time T, depends on the

program size and its structure. The product bgbi then
should be independent of the program size.

of bb and bf above. When this definition for ab, a;,

Since the failure intensity is proportional to the

Ii'
TL

number of defects, we have [1g, 191,

The parameters U;, a i , and a i are defined in terms A = - N . .

192

1

0.8

0.6

0.4

0.2

0

n-fi c
bk-fi -t-.
br-fi -e- -
=-fi ..y
p-fi 4.-

.......... *LZL . .
- y=x -

0 0.2 0.4 0.6 0.8
Actual Fault Coverage

Figure 5: Actual defect coverage vs computed values
44

real data e
fitted line -

Figure 6: Scatter chart for module & branch coverages for an evolving program

Equation 14 can also be used for operational period us-
ing the appropriate value for the fault exposure ratio.

Let NO be the total number of faults initially Notice that K will depend on the operational profile
used.

Where K is the overall value of fault exposure ratio.

present in the program and there is no new fault in-
troduced during testing process. Then N can be com-
puted as:

N = No(1 -CO) 9 Conclusions and Discussions

Substituting CO using Equation 11, We developed a modeling scheme that relates de-
fect density to measurable coverage metrics. Defects
have a detectability distribution like other coverage
enumerables, and the same model may govern them.
TWO advantages of using a logarithmic model to de-
scribe test effort and enumerables covered are:

N = NO(I - ut In[l+ uf(ezp(uiC1) - 111)

Hence, the expected duration between successive

1 TL 1
A

failures can be obtained as

1. The logarithmic model is superior to other models
(14) for predicting the number of defects.

-
K NO(1 - u t h[l+ u i (e z p (u i C i) - I)])

193

2. The logarithmic model can account for 100% cov-
erage achieved in finite time. For high reliability
applications, 100% block coverage night not be
sufficient. A more strict coverage measure such
as branch or p-use coverage can be used to fur-
ther estimate the defect density.

The data sets used suggest that the model works
well. The results are consistent with the analytical
coverage inclusion relationships. Our model is simple
and easily explained, and is thus suitable for industrial
use.

The model given by Equation 11 can be used in two
different ways. Extrapolation requires collecting data
for part of the testing process, which is then used to
estimate the applicable parameter values. These are
used for making projections for planning the rest of
the test effort. A priori parameter estimation requires
empirical estimation of parameters even before testing
begins. We have some observations on what factors
control the parameter values. Further work is needed
to fully develop these techniques and would include a
careful study of enumerable exposure ratios.

As we show, any test coverage measure can be used
to estimate the defect density, by using applicable pa-
rameter values. This raises an important question.
Should several coverage measures be used or just one?
Which individual measure (or selected set) provides
the best estimate?

We need further studies to determine which cov-
erage measure provide the best estimates of the
number of defects. For DS2, we find that block
coverage C’ provides the best and c-uses coverage
C3 the worst fit. This result may be true for only
specific data sets, or for specific coverage/defect
density ranges. Since the different coverage mea-
sures can be strongly correlated, perhaps they
may work equally well in many situations.

For very high reliability, we may need a “scale”
that works in that region. If the requirements
are such that 100% block coverage is not enough,
branch or p-use coverage may be more appropri-
ate. Branch coverage may be an adequate mea-
sure in many cases, since about 80% branch cover-
age often produces acceptable results [IO]. How-
ever for testing of individual modules or for highly
reliable software p-use may be better.

Researchers suggests the use of a weighted risk
measure [l, 23, 211. Weights are chosen on the
basis of relative significance of each measure. As
we find, structural coverage measures tend to be
strongly correlated, and thus a weighted average
may not provide more information than a single
measure. We need to identify more independent
measures. Other types of coverage measures like
functional coverage may be suitable.

Our results can serve as a basis for further data
collection and analysis. We need to examine the be-
havior a t different fault densities, especially at very
low defect densities (for highly reliable applications).
We also need to validate the model for different, testing
strategies on the modeling scheme and the parameter
values. In general, deterministic (coverage driven) is
more efficient than true random testing. Testing using
special values or use of equivalence partitioning can
significantly compress the test time. Since test cover-
age measures provide direct sampling of the state of
the software, we expect Equation 11 to hold because
time is eliminated as a variable. Additional data will
allow us to validate and refine our modelling scheme.
In addition we need to develop schemes for evolving
programs where new faults and other non-covered enu-
merables are being added.

10 Acknowledgement

We would like to thank Albert0 Pasquini, Bob Hor-
gan, Aditya Mathur and Peng Lu for discussions on
this subject.

References

H. Agrawal, J . Horgan, E. Krauser, S. London,
“A testing-Based model and Risk Browser for
C” Proc. Int . Conf. Rel . , Q u d C o n t r o l l3 Risk
Asses . , Oct. 1993, pp 1-7.

B. Beizer, Software Testing Techniques, Van Nos-
trand Reinhold, 1990, pp. 74-75, 161-171.

J . Bieman and J . Schultz, “Estimating the Num-
ber of Test Cases Required to Satisfy the All-
du-paths Testing Criterion,’’ Proc. ACM TAV.9-
SIGSOFT, pp. 179- 186.

J . Bieman and J . Schultz, “An Empirical Evalua-
tion (and Specification) of the All-du-paths Test-
ing Criterion,” Software Eng. J . , Jan. 1992, pp.
43-5 1 .

M. Chen, J . Horgan, A. Mathur and V. Rego, “A
time/structure based model for estimating soft-
ware reliability,” SERC- T R - l l r - P , Purdue Uni-
versity, Dec. 1992.

S. Dalal, J . Horgan and J . Kettenring, “Reliable
Software and Communications: Software Qual-
ity, Reliability and Safety,” Proc. 15th Int . Conf.
Software Eng., May 1993, pp. 425-435

194

J . Dunham, “Experiments in software reliability:
Life Critical Applications,” IEEE Trans. Soft.
Eng., Jan. 1986, pp. 110-123.

P. Frankl and E. Wayuker, “An Applicable Fam-
ily of Data Flow Testing Criteria,” IEEE Trans.
Soft. Eng., Oct. 1988, pp. 1483-1498.

P. Frankl and N . Weiss, “An Experimental Com-
parison of the Effectiveness of Branch Testing
and Data Flow Testing,’’ IEEE Trans. Soft. Eng.,
Aug. 1993, pp. 774-787.

R. Grady, Practical Software Metrics for Project
Management and Process improvement, PTR
Prentice-Hall, 1992, pp. 58-60.

H. Hecht and P. Crane, “Rare Conditions and
Their Effect on Software Failures,” Proceedings of
Ann. Reliability and Maintainability Symp., pp.
334-337, Jan. 1994.

N. Li and Y. Malaiya, “Fault Exposure Ratio and
Reliability Estimation,” Proc. 3rd Workshop Is-
sues Software Reliability, Nov. 1993, pp. 6.3.1-
6.3.18.

N. Li and Y. Malaiya, “Enhancing Acuracy of
Software reliability Prediction” ISSRE’93, pp. 71-
79.

M. Lyu, J . Horgan and S. London, “A Cover-
age Analysis Tool for the Effectiveness of Software
Testing” ISSRE’93, pp. 25-34.

Y. Malaiya and S. Yang, “The Coverage Problem
for Random Testing,” Proc. Int. Test Conference,
pp. 237-242, Oct. 1984.

Y. Malaiya, N. Karunanithi and P. Verma, “Pre-
dictability of Software Reliability Models,” IEEE
Trans. Reliability, Dec. 1992, pp. 539-546.

[20] S. Ntafos, “A Comparision of Some Structural
Testing Strategies” IEEE Trans. Software Eng.,
June 1988, pp.868-874.

(211 A. Neufelder, Ensuring Software Reliability, Mar-
cel Dekker Inc., 1993, pp. 137-140.

[22] P. Piwowarski, M. Ohba and J . Caruso, “COV-
erage measurement experience during function
test ,” ICSE’99, pp. 287-300

[23] R. Poston, “The Power of Simple Software Test-
ing Metrics”, Software Testing Times, Vol. 3, No.
1993.

[24] J . Ramsey and V. Basili, “Analyzing the
Test Process Using Structural Coverage”, Proc.
ICSE’85, pp, 306-312.

[25] S. Seth, V. Agrawal and H. Farhat, “A Statisti-
cal Theory of Digital Circuit Testability,” IEEE
Trans. Comp., Apr. 1990, pp. 582-586.

[26] M. Trachtenberg, “Why Failure Rates observe
Zipf’s Law in Operational Software,” IEEE
Trans. Reliability, Sept. 1992, pp. 386-389.

[27] J . Voas and K. Miller, “Improving the Soft-
ware Development Process Using Testability Re-
search,” ISSRE’92, pp. 1 14- 12 1.

[28] M. Vouk “Using Reliability Models During Test-
ing With Non-operational Profiles,” Proc. 2nd
Bellcore/Purdue workshop issues in Software Re-
liability Estimation, Oct. 1992, pp. 103-111

[29] K. Wagnor, C . Chin and E. McCluskey, “Pseu-
dorandom Testing,” IEEE Trans. Comp., Mar.
1987, pp. 332-343.

[30] E. Weyuker, “An Empirical Study of the Com-
plexity of Data Flow Testing,” Proc. TAV2, July
1988.

[31] E. Weyuker, “More Experience with Data Flow
Testing”, IEEE Trans. Soft. Eng., Sept. 1993, pp. [17] J. Musa, A. Iannino, K . Okumoto, Software Re-

liability, Measurement, Prediction, Application,
McGraw-Hill, 1987.

9 12-9 19.

[18] Y. Malaiya, A. von Mayrhauser and P. Srimani,
“The Nature of Fault Exposure Ratio,” Proc.
IEEE Int. Symp. Soft. Rei. Eng., Oct. 1992, pp.
23-32.

[19] Y. Malaiya, A. von Mayrhauser and P. Sri-
mani, “An Examination of Fault Exposure Ra-
tio,” IEEE Trans. Software Eng. Nov., 1993, pp.
1087-1094.

195

