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Abstract 

W e  model the relation among testing effort, cover- 
age and reliability, and present a logarithmic model 
that relates testing effort t o  tes t  coverage (block, 
branch, e-use or p-use) .  The model is based on the hy- 
pothesis that the enumerables (like branches or blocks) 
for any coverage measure have different detectability, 
jus t  like the individual dejects. This  model allows us 
t o  relate a tes t  coverage measure directly wi th defect 
coverage. Data  sets  f o r  programs with real dejects are 
used t o  validate the model. The results are consistent 
wi th the known inclusion relationships among block, 
branch and p-use coverage measures. W e  show how 
deject density controls time to next failure. 

The model can eliminate the variables like tes t  ap- 
plication strategy f r o m  consideration. It is suitable f o r  
high reliability applications where automatic  (or man- 
ual) tes t  generation i s  used t o  cover enumerables which 
have not yet  been tes ted.  

1 Introduction 

Developers can increase the reliability of software 
systems by measuring reliability as early as possible 
during development. Early indications of reliability 
problems allow developers to correct errors and make 
process adjustments. 

Reliability can be estimated as soon as running code 
exists. To quantify reliability during testing, the code 
(or portion of code) is executed using inputs randomly 
selected following an operational distribution. Then, 
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a reliability growth model can be used to predict the 
amount of effort required to satisfy product reliability 
requirements. 

The needs of early reliability measurement and 
modeling are not met by common testing practices. 
The focus of testing is on finding defects, and defects 
can be often found much faster by non-random meth- 
ods [2]. Testing is directed towards inputs and pro- 
gram components where errors are more likely. For 
example, testing may be conducted to insure that par- 
ticular portions of the program and/or boundary cases 
are covered. 

Models that can measure and predict reliability 
based on the status of non-random testing are clearly 
needed. Reliability achieved will be affected by: 

the testing strategy: Test coverage may be based 
on the functional specification (black-box), or 
it may be based on internal program structure 
(white-box). Strategies can vary in their ability 
to find defects. 

the relationship between calendar time and execu- 
tion time: The testing process can be accelerated 
through the possibly parallel, intensive execution 
of tests at a faster rate that would occur during 
operational use. 

the testing of rarely executed modules: Such 
modules include exception handling or error re- 
covery routines. These modules rarely run, and 
are notoriously difficult to test. Yet, they are crit- 
ical components of a system that must be highly 
reliable. Only by forcing the coverage of such crit- 
ical components, can reliability be predicted at 
very high levels. 

Intuition and empirical evidence suggests that test 
coverage must be related to reliability. Yet, the con- 
nection between structure based measurements, like 
test coverage, and reliability is still not well under- 
stood. 

Ramsey and Basili [24] investigated different per- 
mutations of the same test set and collected data relat- 
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ing the number of tests to statement coverage growth. 
They tried a variety of models to fit the data. The 
best fit was obtained using the Goel and Okumoto’s 
exponential model (GO model). 

Dalal, Horgan and Ketterring [6] examined the cor- 
relation between test coverage and the error removal 
rate. They give a scatter plot of the number of faults 
detected during system testing versus the block cover- 
ages achieved during unit testing. The plot shows that 
modules covered more thoroughly during unit testing 
are much less likely to contain errors. 

Vouk [28] found that the relation between struc- 
tural coverage and fault coverage is a variant of the 
Rayleigh distribution. He assumed that the fault de- 
tection rate during testing is proportional to the num- 
ber of faults present in the software and test coverage 
values including block, branch, data-flow, and func- 
tional group coverage. Vouk’s experimental results 
suggest the use of a more general Weibull distribu- 
tion. It was observed that, in terms of error removal 
capability, the relative power of the coverage measures 
b1ock:p-use:DUD-chains is 1:2:6. 

Chen et a1 [5] add structural coverage to traditional 
time-based software reliability models (SRMs). Their 
model excludes test cases that do not increase cover- 
age. The adjusted test effort data is used to  fit existing 
time-based models to avoid overestimation from tra- 
ditional time-based SRMs due to the saturation effect 
of testing strategies. 

Assuming random testing, Piwowarski, Ohba and 
Caruso [22] analyze block coverage growth during 
function test, and derive an exponential model relat- 
ing the number of tests to block coverage. Their model 
is equivalent to the GO model [24]. They also derive 
an exponential model relating the covering frequency 
to the error removal ratio. The utility of the model 
relies on prior knowledge of the error distribution over 
different functional groups in a product. 

Frank1 and Weiss [9] compare the fault exposing 
capability of branch coverage and data flow coverage 
criteria. They find that for 4 out of 7 programs, the 
effectiveness of a test in exposing an error is positively 
correlated with the two coverage measures. They ob- 
served complex relationships between test coverage 
growth and the probability of exposing an error for a 
test set. Since the 7 programs they used are very small 
and they only considered subtle errors, the result may 
not be directly applicable to practical software. 

The Leone test coverage model given in [21] is a 
weighted average of four different coverage metrics 
achieved during test phases: lines of executable code, 
independent test paths, functions/requirements, and 
hazard test cases. The weighted average is used as an 
indicator of software reliability. The model assumes 
that full coverage of all four metrics implies that the 
software tested is 100% reliable. In reality, such soft- 
ware may have some remaining faults. A similar ap- 
proach, but with different coverage metrics, was taken 

to provide a test quality report [23]. 
In this paper, we explore the connection between 

test coverage and reliability. We develop a model 
that relates test coverage to defect coverage. With 
this model we can estimate the defect density. With 
knowledge of the operational profile, we can predict 
reliability from test coverage measures. 

2 Coverage of Enumerables 

The concept of test coverage is applicable for both 
hardware and software. In hardware, coverage is mea- 
sured in terms of the number of possible faults cov- 
ered. For example, each node in a digital system can 
possibly be stuck-at 0 or stuck-at 1. A stuck-at test 
coverage of 80% means that the tests applied would 
have detected any one of the 80% faults covered. 

In contrast, the number of possible software faults 
in not known. Test coverage in software is measured in 
terms of structural or data-flow units that have been 
exercised. These units can be statements (or blocks), 
branches, etc. as defined below: 

0 Statement (or block) coverage: the fraction of 
the total number of statements (blocks) that have 
been executed by the test data. 

0 Branch (or decision) coverage: the fraction of the 
total number of branches that have been executed 
by the test data. 

0 C-use coverage: the fraction of the total num- 
ber of computation use (c-uses) that have been 
covered by one c-use path during testing. A c-use 
path is a path through a program from each point 
where the value of a variable is modified to each 
c-use (without the variable being modified along 
the path). 

0 P-use coverage: the fraction of the total number 
of p-uses that have been covered by one p-use 
path during testing. A p-use path is a path from 
each point where the value of a variable is modi- 
fied to each p-use, a use in a predicate or decision 
(without modifications to the variable along the 
path). 

When such a unit is exercised, it is possible that one 
or more associated faults may be detected. Counting 
the number of units covered gives us a measure of the 
extent of sampling. The defect coverage in software 
can be defined in an analogous manner; it is the frac- 
tion of actual defects initially present that would be 
detected by a given test set. 

In general, test coverage increases when more tests 
are applied, provided that the test cases are not re- 
peated and complete test coverage has not already 
been achieved. A small number of enumerables may 
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not be reachable in practice. We assume that the frac- 
tion of such enumerables is negligible. 

Figure 1 [31] shows the relationship among some 
well-known criteria as proven by Weyuker. If there 
is a directed path from criteria A to criteria B ,  then 
test sets that meet criteria A (achievement of complete 
coverage) are guaranteed to satisfy criteria B. Table 1 
shows the maximum number of tests [31] to satisfy 
these criteria and the observed complexities [30] for 
some specific cases. The upper bound for all-du-paths 
was reached in one subroutine out of 143 considered 

All-DU-Paths 

All-Paths 

by Bieman and Schultz [bisc89,bisc92]. 
2d 

2d 
CO AlCPsths 

B 
All-DU-Paths 

A I I - U ~ S  

AICC-Uses All-P-Uses 
SombP-Uses SomeC-Uses 

% & B  
AICP-Uses 

B 
All-Branches 

B 
AlCBlocks 

Figure 1: The subsumption relationships of different 
complete coverage criteria [31] 

To keep the following discussion general, we will use 
the term enumerab le .  For branch coverage, the enu- 
merables are branches, for defect coverage the enu- 
merables are defects and so on. We use the term 
“enumerable-type” to imply defects, blocks, branches, 
c-uses or p-uses. We use superscript i ,  i = 0 to 4, 
to indicate one of the five types in this sequence: 0: 
defects, 1: blocks, 2:branches, 3: c-uses, 4: p-uses. 

3 Detectability Profiles of Enumer- 
ables 

The coverage achieved by a set of tests depends 
not only on the number of tests applied (or, equiva- 
lently, the testing time) but also on the distribution 
of t e s tab i l i t y  values of the enumerables. A statement 
which is reached more easily is more testable. Such 

Table 1: The complexity (test length) for achieving 
different coverage criteria [31] 

Coveraee Criterion I UDDer  bound I Observed I 
I All-Blocks i d +  1 I I 
All-Branches I d + l  1 
All- P- U ses I f(d2 + 4d + 3) I0.38d + 3.17 

statements are likely to get covered (i.e. exercised at 
lease once) with only a small number of tests. Testa- 
bility also depends on the likelihood that a fault that 
is reached actually causes a failure [27]. A statement 
that is executed only in rare situations has low testa- 
bility. It may not get exercised by most of the tests 
that are normally applied. As testing progresses, the 
distribution of testability values will shift. The easy- 
to-test enumerables are covered early during testing, 
and are removed from consideration. The remaining 
enumerables include a larger fraction of hard-to-test 
enumerables. Thus, the growth of coverage will be 
slower. 

Definition: Detectability of an enumerable d{ is 
the probability that the I-th enumerable of type j will 
be exercised by a randomly chosen test. 

The detectabi l i ty  profi le is the distribution of de- 
tectability values in the system under test. The de- 
tectability profiles were introduced by Malaiya and 
Yang [15]. They have been used to characterize test- 
ing of hardware [29] and software [19]. A continuous 
version of the detectability profile was defined by Seth, 
Agrawal and Farhat [25]. For convenience, we use the 
normalized detectability profile (NDP) as defined be- 
low. 

Definition: The discrete NDP for the system un- 
der test is given by the vector, 

pi = {dl,d2, ..., di, ...,d,’, 

where di is the fraction of all enumerables of type j 
which have detectability equal to di .  Thus p i , 3  rep- 
resents the fraction of all branches with detectability 
of 0.3. In Equation 1, du is the detectability value of 
unity (l), the highest value possible. cii=op$i = 1 
since all fractions added will be unity. 

A detectability value of 0 is possible, since a branch 
might be infeasible, or a defect might not be testable 



due to redundancy in implementation. Researchers 
have compiled detectability profiles of several digital 
circuits [15, 291 and software systems [26, 71. 

If the number of enumerables is large, a continuous 
function can approximate the discrete NDP. 

Definition: The continuous NDP, for the system 
under test is the function p ' ( x ) ,  0 5 x 5 1 

( 2 )  
nr-enumerabled  ( x ,  x + d x )  

all-enumerablesj 
p l ( x ) d x  = 

where n r _ e n u m e r a b l e d ( x ,  x + d x )  denotes all enumer- 
ables of type j with detectability values between x and 
x + d x .  

s,' p J ( x ) d x  = 1, just like the discrete NDP case. 

4 A one-parameter Model 

The detectability profile gives the probability of ex- 
ercising each enumerable. Hence, it can be used to 
calculate expected coverage when a given number of 
tests have been applied. Here, we assume that testing 
is random, i.e. any single test is selected randomly 
with replacement. Malaiya and Yang [15],  and Wag- 
ner et a1 [29] show that the expected coverage of the 
enumerables of type j is 

n 

Cj(n)  = 1 - c ( 1  - d { ) " d  (3) 
i= l  

provided testing is random. The same result holds for 
continuous NDP [25] 

Cj(n)  = 1 - l1(l - X Y P ( X ) d X  (4) 

Actual testing of software is more likely to be 
pseuderandom, since a test once applied will not be 
repeated. In such cases, random testing is an approx- 
imation. This approximation is reasonable, except 
when coverage approaches 100%. 

In a 
specific case, the coverage can be different. The central 
limit theorem suggests that results obtained should be 
close to these given by Equations 3 and 4 when a large 
number of vectors are applied. 

The use of Equations 3 and 4 requires knowledge 
of detectability profiles. Obtaining exact detectabil- 
ity profiles requires a lot of computation. Discrete 
detectability profiles have been calculated for several 
small and large combinational circuits. Continuous 
detectability profiles for some benchmark circuits have 
been estimated [25]. However software systems are 
generally much more complex. 

Fortunately, it is possible to obtain reasonable ap- 
proximation for the detectability profiles. When one 
test is applied, the probability that an enumerable 

Equations 3 and 4 give expected coverage. 

with detectability d: will not be covered is ( 1  - d i ) .  
The probability that an enumerable will not be cov- 
ered by n tests and thus remain a part of profile is 
( 1  - d: )" . Thus if the initial profile was given by Equa- 
tion l ,  the profile after having applied n tests, will be 
given by 

Equivalently the continuous profile is given by 

A(.) = P n ( x ) ( l -  x)" 

Thus enumerables with high testability are likely to 
get covered earlier. The profile will "erode" as test- 
ing progresses (see Figure 2).  Enumerables with low 
testability get removed at a much lower rate, and thus 
will soon dominate. During much of the testing, the 
shape of the profile will appear like the bottom curve 
in Figure 2, regardless of the initial profile. 

Available results for hardware components suggest 
that initial detectability profiles may be of the form 

( 5 )  

where m j  is a parameter. The factors ( m j  + 1 )  ensure 
that the area under the initial profile curve is unity. 
By substituting the right hand side of Equation 5 in 
Equation 4, we get 

Cj(n)  = 1 - ( m j  + 1 )  1' ( 1  - x)mj+ndx  

(6) 
m j + 1  - n = I -  - 

m j + n + l  m j + n + l  

The curve given by Equation 6 matches the shape 
of experimental data. However it does not provide a 
good fit. One problem is that Equation 6 includes only 
a single parameter which can be adjusted for fitting. 
We can assume a more general initial detectability in 
Equation 5 ,  involving two parameters, but even that 
may not be accurate, as we discuss in the next section. 
The approach considered next, yields a much better 
model. 

5 A New Logarithmic Coverage Model 

Random testing implies that a new test is selected 
regardless of the tests that have been applied thus far, 
and that tests are selected based only on the opera- 
tional distribution. In actual practice, a test case is 
selected in order to exercise a functionality or enumer- 
able that has remained untested so far. This process 
makes actual testing more directed and hence more 
efficient than random testing. 
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Figure 2: Distribution of detectability 

Malaiya, von Mayrhauser and Srimani [18] show 
that this non-random process leads to a defect find- 
ing behavior described by the logarithmic growth 
model [17]. Their analysis gives an interpretation for 
the model parameters. The coverage growth of an 
enumerable-type depends on the detectability profile 
of the type and the test selection strategy. If the defect 
coverage growth in practice is described by the loga- 
rithmic model, it is likely that the coverage growth for 
other enumerable-types is also logarithmic. We sug- 
gest the following model. 

N' 
cyt) 5 1 (7) 

1 '  
~ ' ( t )  = -,B; l n ( l+  pi t ) ,  

where Nf is the total number of enumerables of type i ,  
Po and PI are model parameters. If a single application 
of a test takes T, seconds, then the time t ,  needed to 
apply n tests is nT,. Substituting in 7, 

Defining bb as (3) and b'; as (P;T,), we can rewrite 

C'(n) = b6 ln(1 + bfn),  C i ( n )  5 1 (8) 

When C' = 1, there are no more additional enumer- 
ables of that type to be found. With non-random test- 
ing a finite, although possibly large, number of tests 
are required to achieve 100% coverage of the feasible 
enumerables. 

For defects (i = 0), the parameters and have 
the following interpretation [19]. 

the above as, 

(9) 

and 

where Ko(0)  is the exposure ratio at time t = O ,  TL is 
the linear execution time and u0 is a parameter that 
describes the variation in the exposure ratio. 

Equation 8 relates coverage C' to the number of 
tests applied. We use it to obtain an expression giving 
defect coverage CO in terms of one of the coverage 
metrics C',  i = 1 to 4. Using Equation 8, we solve for 
n, 

p," = u0 (10) 

i = l  t o  4 
1 C' 

- [ e z p ( - )  bb - I], n = b', 

Substituting for Col again using Equation 8, 

i = l  t o  4 
bo C' 

CO = bo0 ln[l + + ( e z p ( F )  - l)], 
b ,  bo 

Defining ut = b!, U'; = 8 and U$ = k, we can 
write the above using three parameters as, 

C O  = a6 ln [ l+  af(ezp(u$C')  - 111 i = 1 to  4 
(11) 

Equation 11 gives a convenient three-parameter 
model for defect coverage in terms of a measurable test 
coverage metric. Equation 11 is applicable for only 
CO 5 1. It is possible to approximate Equation 11 us- 
ing a linear relation, but it would be accurate for only 
a small range. 

6 Analysis of Data 

We evaluate the proposed model, as given by Equa- 
tions 8 and 11, using four data sets. The first data 
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set, DS1, is from a multiple-version automatic airplane 
landing system [14]. It was collected using the ATAC 
tool developed at Bellcore. The twelve versions have 
a total of 30,694 lines. The data used is for integra- 
tion and acceptance test phases, where 66 defects were 
found. One additional defect was found during oper- 
ational testing. The second data set, DS2, is from a 
NASA supported project implementing sensor man- 
agement in inertial navigation system [28]. For this 
program, 1196 test cases were applied and 9 defects 
were detected. The third data set, DS3, is for a sim- 
ple program used to illustrate test coverage measures 
[l]. The fourth data set, DS4, is from an evolving soft- 
ware system containing a large number of modules. 

Table 2: Summary table for DS1 
(total 21,000 tests applied) 

I Blocks I Decisions I c-uses I puses I Defects I 

Find cov. 91.8% 83.9% 91.7% 73.5% 98.4% 
0.031 0.049 0.036 0.041 0.184 
2E+8 1234 3.4E+6 2439 0.01 

LSE 5 . 7 E 4  3.53-5 5.83-4 8 . 1 6 5  7 . 3 E 7  

bf 
LSE 

Table 3: Summary table for DS2 
(total 1196 tests applied) 

6.95 

8.435 769 561 162 
2E-5 1.7E-3 1 . 6 E 3  2.33-3 

The first data set and the results from it are sum- 
marized in Table 2. The first row gives the total num- 
ber of enumerables for all versions. The second row 
gives the average coverage when 21,000 tests had been 
applied. The values of the estimated parameters 6; 
and bi and the least square error are given in the rows 
below. The model given by Equation 8 fits the data 
well. The data shows that C' > C2 > C4. This 
relationship is expected. Complete decision coverage 
implies complete block coverage, and complete p-uses 
coverage implies complete decision coverage [2, 8, 201. 
The c-uses coverage has no such relation relative to 
the other metrics. Indeed the data shows that while 
C3 < C' at the beginning of testing, near the end of 
testing C3 is almost equal to c1. 

Table 3 summarizes the result for DS2. Nine faults 
were revealed by application of 1196 tests; we assume 
that one fault (i.e. 10%) is still undetected. In spite of 
the small number of faults, the model given in Equa- 
tions 11 fits the data well. 

Figure 3 shows the correlation of other test cover- 
age measures Cz, C3 and C4 with block coverage C' . 
As we expect, branch coverage, and to a lesser ex- 

tent p-use coverage, are both strongly correlated with 
block coverage. The correlation with c-use coverage is 
weaker. Figure 4 shows actual and computed values 
for fault coverage. The computed values have been 
obtained using branch coverage and Equation 11. At 
50% branch coverage the fault coverage is still quite 
low (about IO%), however with only 84% branch cov- 
erage, 90% fault coverage is obtained. The branch 
coverage shows saturation at about 84%. This sup- 
ports the view that 80% branch coverage is often ad- 
equate [IO]. 

Figure 5 is a scatter plot of computed values of 
defect coverage against actual values. The computed 
values are from the number of tests and Equation 8 
(traditional reliability growth modeling), and test cov- 
erage measures C', C2, C3 and C4 using Equation 11.  
The calculated values are all quite close, showing that 
coverage based modeling can replace time-based mod- 
eling. 

Table 4: Summary table for DS3 
(total 16 tests applied) 

i= 1 

I I I I 

I 0.061 0.111 0.111 0.121 

Table 4 shows similar results for a very small illus- 
trative program. No defects were involved. However, 
this again demonstrates the applicability of our mod- 
eling scheme. We see that C1 2 C2 > C4. The c-use 
coverage again behaves differently. 

In evolving programs, significant changes are be- 
ing made while testing is in progress. Because new 
modules are being added, new defects as well as non- 
covered enumerables are also being added. The cover- 
age obtained by a test set can actually go down in some 
cased. From DS4, (see Figure 6) ,  the linear correla- 
tion between coverage measures can still be applica- 
ble. The data used here covers an intermediate phase 
of the process. The analysis of evolving programs is 
more complex and is the subject of future research. 

7 Model Parameters 

Researchers find that the logarithmic model works 
best among other two-parameter models [16], however 
interpretation of its parameters is difficult. One in- 
terpretation given by Malaiya et a1 [18] is described 
by Equations 9 and 10. The same interpretation may 
be applicable for enumerables other than defects. The 
first parameter of Equation 8 is, 

191 



0.9 

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 
Block Coverage 

Figure 3: Scatter plot of C2, C3 and C4 against C1 
0.9 

0.8 

0.7 

0.8 

0.5 

0.4 

0.3 

0.2 

0.1 

I 
0.45 0.5 0.55 0.8 0.65 0.7 0.75 0.8 0.85 

Branch Coverage 

Figure 4: Actual and fitted (using Equation 11) values of defect coverage 

and a i  is as an initial estimate for numerically fit- 
ting Equation 11, the initial estimate itself provides 

aaTrNi a'Tr (12) a least-square fit. If the initial estimates are signif- 
. K'(0)N' - - K ' ( 0 )  = - 

&. Y 

icantly different, then the least square fit may iield 
somewhat different parameter 

A-priori estimation of model parameters remains a 
partly unsolved problem. Currently we must rely on 

The linear execution time is given by the number of 
lines of code multiplied by the average execution time 

An empirical method to estimate the 
initial fault exposure ratio Ko(0)  has been suggested 
by Li and Malaiya 1121. Estimation of a' remains an 

Of each line. 
curve fitting based approaches. 

open problem. The second parameter is given by, 

6' = aoT, (13) 8 Defect density and reliability 
The single test execution time T, depends on the 

program size and its structure. The product bgbi then 
should be independent of the program size. 

of bb and bf above. When this definition for ab, a;,  

Since the failure intensity is proportional to the 

Ii' 
TL 

number of defects, we have [1g, 191, 

The parameters U;, a i ,  and a i  are defined in terms A = - N  . .  
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Equation 14 can also be used for operational period us- 
ing the appropriate value for the fault exposure ratio. 

Let NO be the total number of faults initially Notice that K will depend on the operational profile 
used. 

Where K is the overall value of fault exposure ratio. 

present in the program and there is no new fault in- 
troduced during testing process. Then N can be com- 
puted as: 

N = No(1 -CO) 9 Conclusions and Discussions 

Substituting CO using Equation 11, We developed a modeling scheme that relates de- 
fect density to measurable coverage metrics. Defects 
have a detectability distribution like other coverage 
enumerables, and the same model may govern them. 
TWO advantages of using a logarithmic model to de- 
scribe test effort and enumerables covered are: 

N = NO(I - ut In[ l+  uf(ezp(uiC1) - 111) 

Hence, the expected duration between successive 

1 TL 1 
A 

failures can be obtained as 

1. The logarithmic model is superior to other models 
(14) for predicting the number of defects. 

- 
K NO(1 - u t  h[l+ u i ( e z p ( u i C i )  - I)]) 
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2. The logarithmic model can account for 100% cov- 
erage achieved in finite time. For high reliability 
applications, 100% block coverage night not be 
sufficient. A more strict coverage measure such 
as branch or p-use coverage can be used to fur- 
ther estimate the defect density. 

The data sets used suggest that the model works 
well. The results are consistent with the analytical 
coverage inclusion relationships. Our model is simple 
and easily explained, and is thus suitable for industrial 
use. 

The model given by Equation 11 can be used in two 
different ways. Extrapolation requires collecting data 
for part of the testing process, which is then used to 
estimate the applicable parameter values. These are 
used for making projections for planning the rest of 
the test effort. A priori  parameter estimation requires 
empirical estimation of parameters even before testing 
begins. We have some observations on what factors 
control the parameter values. Further work is needed 
to fully develop these techniques and would include a 
careful study of enumerable exposure ratios. 

As we show, any test coverage measure can be used 
to estimate the defect density, by using applicable pa- 
rameter values. This raises an important question. 
Should several coverage measures be used or just one? 
Which individual measure (or selected set) provides 
the best estimate? 

We need further studies to determine which cov- 
erage measure provide the best estimates of the 
number of defects. For DS2, we find that block 
coverage C’ provides the best and c-uses coverage 
C3 the worst fit. This result may be true for only 
specific data sets, or for specific coverage/defect 
density ranges. Since the different coverage mea- 
sures can be strongly correlated, perhaps they 
may work equally well in many situations. 

For very high reliability, we may need a “scale” 
that works in that region. If the requirements 
are such that 100% block coverage is not enough, 
branch or p-use coverage may be more appropri- 
ate. Branch coverage may be an adequate mea- 
sure in many cases, since about 80% branch cover- 
age often produces acceptable results [IO]. How- 
ever for testing of individual modules or for highly 
reliable software p-use may be better. 

Researchers suggests the use of a weighted risk 
measure [l, 23, 211. Weights are chosen on the 
basis of relative significance of each measure. As 
we find, structural coverage measures tend to be 
strongly correlated, and thus a weighted average 
may not provide more information than a single 
measure. We need to identify more independent 
measures. Other types of coverage measures like 
functional coverage may be suitable. 

Our results can serve as a basis for further data 
collection and analysis. We need to examine the be- 
havior a t  different fault densities, especially at very 
low defect densities (for highly reliable applications). 
We also need to validate the model for different, testing 
strategies on the modeling scheme and the parameter 
values. In general, deterministic (coverage driven) is 
more efficient than true random testing. Testing using 
special values or use of equivalence partitioning can 
significantly compress the test time. Since test cover- 
age measures provide direct sampling of the state of 
the software, we expect Equation 11 to hold because 
time is eliminated as a variable. Additional data will 
allow us to validate and refine our modelling scheme. 
In addition we need to develop schemes for evolving 
programs where new faults and other non-covered enu- 
merables are being added. 
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