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Abstract: A formal relationship is established between the traditional bulk fatigue criteria such as
the Goodman rule and the Sines criterion, and the recent crack initiation criterion of Dang Van. The
constants implied by the Dang Van procedure may be formally connected to the fatigue limit and
mean stress dependence given by the Goodman rule, under conditions of uniaxial loading. The biaxial
fatigue criterion of Sines is also compared with the Dang Van procedure. The similarity in the
approaches may be further extended to permit finite initiation times to be estimated by the Dang Van
criterion when the fatigue limit is exceeded.
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NOTATION

a real constant
A real constant
Ai amplitude of temporal variation in the

macroscopic stress component Si

b real constant
B real constant
I1stat first invariant of the static component of

the stress tensor
J2 second invariant of the deviatoric stress

tensor
J2alt second invariant of the alternating

component of the deviatoric stress tensor
R ratio defined as the minimum stress to the

maximum stress
si microscopic deviatoric stress principal

component i
s microscopic deviatoric stress tensor
Si macroscopic deviatoric stress principal

component i
S macroscopic deviatoric stress tensor
t time

a real constant
b real constant
� real constant
q* time-independent residual stress tensor
s hydrostatic pressure

s* real constant
sa alternating stress
si principal stress i in the context of the

Lode parameter
sm mean (static) stress
sUTS ultimate tensile strength
r microscopic stress tensor
sstat hydrostatic pressure of the static stress

component
s0 real constant
sY yield stress
Si macroscopic principal stress i
Sialt alternating macroscopic principal stress i
Smax
1 ,Smin

1 maximum and minimum values
respectively of the macroscopic stress in
the uniaxial case

R macroscopic stress tensor
tmax maximum shear stress
tmaxalt maximum shear stress of the alternating

component

1 INTRODUCTION

The traditional ‘bulk’ approaches to fatigue attempt to
correlate the fatigue strength of a material with the
stress state present at the critical point, where a crack
initiates and grows. An experimentally determined
relationship is found between the pre-existing stress pre-
sent, and the number of cycles of loading experienced,
up to the point of failure. This approach, leading to
the so-called S–N diagrams, was started by Wöhler in
the 1850s, and modest developments were made over the
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subsequent 75 years. The approach is still used today in
some industries, but the rise of crack propagation
studies, and the powerful connection established
between crack tip stress intensity factor range and
propagation rate, meant that design against fatigue
switched to this approach in the last quarter of the
twentieth century. Now, work has progressed further;
increasingly strong materials have brought higher work-
ing stresses and, with these, relatively high rates of crack
propagation so that, once a crack has initiated, the
number of cycles to failure is rather short in many
safety-critical applications. This has meant that a crack
initiation criterion is now regarded as an essential
development. Research in this field was originally
focused on the short-crack regime, in an attempt to
extrapolate fracture mechanics ideas backwards [1, 2].
This technique is helpful, but the alternative approach is
to consider some combination of pre-existing stresses
at the critical point, and to decide whether they are
sufficient to cause a crack to nucleate. There are the
critical plane approaches, such as the Fatemi–Socie [3]
and Smith–Watson–Topper [4] methods, and a variation
on these themes, due to Dang Van et al. [5]. The Dang
Van criterion has a more physically based underpinning
and is based on the idea that plasticity at the grain level
may be present, even when the bulk macroscopic stress
is elastic, because of the localization effect of individual
grains. Dang Van et al. noted that shakedown can occur
at the grain level and stated that a crack will initiate only
when, in the steady state, plasticity still exists at the
grain level. Conversely, no crack will initiate if shake-
down occurs at the grain level.

2 THE GOODMAN RULE AND THE DANG VAN

CRITERION: SIMILARITIES AND

DIFFERENCES

In an investigation carried out on the experiments
available to calibrate the Dang Van criterion [6], it was
noted that a behaviour similar to that described by the
Goodman rule is predicted; for the component to have an
infinite life, as the R ratio increases, the allowable stress
range decreases. TheGoodman rule is of course empirical
but nevertheless well established; it has been used widely
and with great success since its appearance in the 1930s
and indeed still features prominently in fatigue applica-
tions. Variations on the Goodman theme are available,
e.g. those bySoderberg* orGerber{ [7]. Thepresent paper
demonstrates the equivalence of the Dang Van criterion
and the Goodman rule. The implied relationship between
theDangVan and theGoodman parameters is examined,

in an attempt to link the two and thus to provide a passage
from one to the other. The issue of separating initiation
life from total life should be noted here. Dang Van et al.
dealt only with crack initiation times in high-cycle fatigue
applications, where the number of cycles to cause
propagation to failure is often negligible compared with
the number of cycles needed to complete initiation, and
hence the use of the criterion for total life is valid. The
Goodman rule, on the other hand, deals with total life and
hence does not give specific information about the two
phases of fatigue damage. To give a simple example, if
there were two round bars each having the same surface
stress, one subjected to oscillatory bending and the other
to fluctuating bulk tension, a straightforward application
of theGoodman rulewouldpredict the same life to failure.
It is clear that, in reality, although the initiation times for
the twoproblemswill be similar, thepropagation times for
the two problemswill be very different, and this would not
be reflected in a ‘total life’ approach.
A second observation concerns multiaxiality. The

Goodman rule is uniaxial, but there exists a criterion
given by Sines and Ohgi [8] concerned with two and
possibly three dimensions. This criterion was historically
one of the first multiaxial fatigue criteria to follow the
Goodman rule. The great advantage of the Dang Van et
al. approach is that it is equally suited to uniaxial and
complex multiaxial stress states. A link between the
Sines criterion and the Dang Van criterion therefore not
only would further demonstrate the equivalence of the
two approaches as seen in the uniaxial case but also
would enable simplifications in both. It would also
provide the opportunity to test the critical quantities for
crack initiation assumed by Dang Van et al. (maximum
shear stress and hydrostatic pressure) against data such
as that presented in reference [8]. At first sight there
appears to be a discrepancy: Sines and Ohgi used the
von Mises stress as the controlling parameter, whereas
Dang Van et al. used the maximum shear stress. Further
investigation presented below, however, indicates that
the two quantities give very similar results.
The third observation concerns finite life predictions.

The Dang Van criterion only deals with the boundary
between infinite and finite life. The Goodman rule and
the Sines criterion, however, are applicable to any finite
life. The mapping, therefore, between the two provides a
way of extending the Dang Van et al. approach to
predict specific cyclic lives as well, thus broadening the
use of the criterion [9].

3 RELATIONSHIP BETWEEN THE DANG VAN

CRITERION AND THE GOODMAN RULE:

UNIAXIAL STRESS STATE

In their approach, Dang Van et al. avoided the difficult
task of attempting to find the stress localization tensor

* The Soderberg line is a straight line identical with that of Goodman
apart from the use of sY instead of sUTS.
{Gerber used a segment of a parabola which has the same end points
as the Goodman line.
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or the individual yield properties of the grain in order to
investigate shakedown at the grain level and instead
calibrated their criterion using simple experiments [5].
Starting from the bulk elastic stress state, they found the
residual stresses which minimize the tendency to yield at
the point experiencing the severest state of stress
(pseudo-shakedown calculation) and then compared
the properties of this resultant stress state with an
experimentally obtained fatigue limit. There is experi-
mental evidence that the crack initiation environment is
sensitive to both the range of shear stress tmax
experienced, at the key point, and the hydrostatic stress
�ss present. They therefore assumed that a crack will
initiate when some linear combination of these quan-
tities measured at the grain level reaches a critical value.
The optimized microscopic (grain level) load path at the
critical point is thus traced in tmax�s space and then
checked against the fatigue line which has been
calibrated using simple experiments. The form of the
fatigue limit assumed is

tmax þ as ¼ b, a, b [R ð1Þ

Here, it is argued that ‘no initiation’ on the Dang Van
criterion corresponds to infinite life on a classical bulk
criterion, as it is assumed that a crack which initiates
when there are only moderate stress gradients present
will propagate to failure. At its simplest, therefore, no
crack initiation means that the stress state lies below the
fatigue limit, if one exists, on a traditional criterion.
As part of the investigation carried out in reference

[6], the effect of varying the R ratio (where
R ¼ Smin

1 =Smax
1 ) of the loading was examined. It was

discovered that, as the R ratio increases, the allowable
stress range has to be reduced in order for the load path
to remain within the fatigue limit. This is shown
schematically in Fig. 1 for a cyclic variation in a uniaxial
stress state, where the locus traced by the load path in
tmax–s space is a set of V shapes. The overall size of the
V shapes is controlled by the stress amplitude, whereas
the position of their vertex on the s axis is determined by
the R ratio. As the R ratio increases, the stress amplitude
has to decrease in order for the right-hand side tip of the

V to fall on the fatigue line. A similar behaviour has
long been observed and quantified using the Goodman
rule, according to which the alternating stress sa of the
oscillation has to decrease as the mean stress sm
increases. Figure 2 presents the Goodman diagram.
The sm-axis intercept is customarily chosen to be equal
to either the yield stress sY of the material (Soderberg
line) or the ultimate tensile strength sUTS (Goodman
line). It can, therefore, be seen that both the Dang Van
and Goodman approaches clearly predict similar
behaviours. The following analysis provides a simple
means of deducing the parameters of one of the two
criteria if those of the other are known.

3.1 The Dang Van and the Goodman parameters

Consider the problem of a uniaxial bulk stress state of
the form ½S1, 0, 0� fluctuating between Smin

1 and Smax
1 ,

with R as defined above. The Dang Van et al. analysis
begins by considering the passage from the macroscopic
(bulk) to the microscopic (grain level) stress state. A
sinusoidal temporal variation is assumed:

S1 ¼
A1

2

1þ R

1� R
þ sinðotÞ

� �
ð2Þ

The first stage of the passage is to find a time-
independent residual stress state q*, which when super-
imposed on the macroscopic stress state R, minimizes
the tendency of the grain to yield. The resultant stress
state is termed the microscopic stress state r:

r ¼ R þ q* ð3Þ

Only the deviatoric components need be considered, as
only they affect yield. The hydrostatic components are
hence preserved, and the residual stress field may be
considered to be purely deviatoric:

r ¼ R þ devðq*Þ ð4Þ

As has been explained in more detail in reference [5], the
determination of the optimal residual stress state isFig. 1 Mean stress effect in the Dang Van et al. space

Fig. 2 The Goodman line and variations
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achieved by finding the centre of the smallest hyper-
sphere in six-dimensional deviatoric stress space
s11=

ffiffiffi
2
p

, s22=
ffiffiffi
2
p

, s33=
ffiffiffi
2
p

, s12, s13, s23
� �

, which com-
pletely encompasses the load path. The load path,
being straight in this case, is simply a diameter of the
hypersphere. The hydrostatic pressure is given by

sðtÞ ¼ A1

6

1þ R

1� R
þ sinðotÞ

� �
ð5Þ

and so the macroscopic deviatoric stresses are

S1 ¼
A1

3

1þ R

1� R
þ sinðotÞ

� �

S2 ¼ S3 ¼ �
A1

6

1þ R

1� R
þ sinðotÞ

� �
ð6Þ

The residual stresses are therefore given by

devð q*Þ ¼ �A1

3

1þ R

1� R
,
A1

6

1þ R

1� R
,
A1

6

1þ R

1� R

� �
ð7Þ

The microscopic deviatoric components now are

s1 ¼
A1

3
sinðotÞ

s2 ¼ s3 ¼ �
A1

6
sinðotÞ

ð8Þ

and hence the resulting maximum shear stress and
hydrostatic pressure are

sðtÞ ¼ A1

6

1þ R

1� R
þ sinðotÞ

� �

tmaxðtÞ ¼
1

2
Tresca ðsÞ ¼ A1

4
sinðotÞ

����
����

ð9Þ

which define parametrically the V shapes depicted in
Fig. 1. The resulting maximum shear stress and hydro-
static pressure at the peak (right-hand side tip of the V)
of an oscillation of amplitude S and stress ratio R are
therefore

s ¼ A1ð1þ RÞ
6ð1� RÞ

tmax ¼
A1j j
4

ð10Þ

The fatigue limit according to Dang Van et al. is defined
by the straight line

tmax þ as ¼ b ð11Þ
while the Goodman line is given by

sa ¼ s0 1� sm
s*

 !
ð12Þ

The value of s* can be set to sY or sUTS (or to an
intermediate value; see the earlier footnote) according to
the demands of the design. The relationships between
the alternating and mean stresses, and the stress range
and R ratio are simply

sa ¼
A1

2

sm ¼
A1ð1þ RÞ
2ð1� RÞ

ð13Þ

Now, from equations (10), (11) and (13) the relation-
ship between the alternating and mean stresses implied
by the Dang Van criterion may be found:

sa ¼
6b

3þ 2a
1� sm

3b=a

	 

ð14Þ

This means that in order for the Dang Van criterion and
the Goodman rule to coincide, the necessary relation-
ships between the constants are

s0 ¼
6b

3þ 2a

s* ¼
3b

a

ð15Þ

The solution to the converse problem can also be
found; i.e. solve for the Dang Van fatigue line constants
in terms of the Goodman parameters. From equations
(10), (12) and (13), the fatigue line is obtained as

tmax þ
3s0

2ðs* � s0Þ
s ¼

s*s0
2ðs* � s0Þ

ð16Þ

and the constants as

a ¼ 3s0
2ðs* � s0Þ

b ¼
s*s0

2ðs* � s0Þ
ð17Þ

4 RELATIONSHIP BETWEEN THE DANG VAN

CRITERION AND THE SINES CRITERION:

BIAXIAL STRESS STATE

The case of a biaxial stress state of the form ½S1,S2, 0�
where the principal directions do not rotate is now
considered. In general, sinusoidal variations in the
principal stress components, each with its own ampli-
tude, frequency, R ratio and phase difference, would
need to be considered. This case would cover biaxial
tension–compression and combined tension–torsion.
For the purposes of the Sines criterion, however, no
phase difference between the two components is
considered, the frequencies of oscillation are equal and
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the R ratios are equal too. The formulation needed is
thus

S1 ¼
A1

2

1þ R

1� R
þ sinðotÞ

� �

S2 ¼
A2

2

1þ R

1� R
þ sinðotÞ

� �
ð18Þ

4.1 The Dang Van analysis

As before, the analysis begins by finding the macro-
scopic deviatoric stress components. The hydrostatic
pressure is given by

sðtÞ ¼ A1 þ A2

6

1þ R

1� R
þ sinðotÞ

� �
ð19Þ

and hence the macroscopic deviatoric stresses by

S1 ¼
A1

3

1þ R

1� R
þ sinðotÞ

� �
� A2

6

1þ R

1� R
þ sinðotÞ

� �

S2 ¼ �
A1

6

1þ R

1� R
þ sinðotÞ

� �
þ A2

3

1þ R

1� R
þ sinðotÞ

� �

S3 ¼ �
A1

6

1þ R

1� R
þ sinðotÞ

� �
� A2

6

1þ R

1� R
þ sinðotÞ

� �
ð20Þ

The residual stresses are therefore given by

dev ðq*Þ ¼
�
�A1

3
þ A2

6

	 

1þ R

1� R
,

A1

6
� A2

3

	 

1þ R

1� R
,

A1 þ A2

6

1þ R

1� R

�
ð21Þ

The microscopic deviatoric components now are

s1 ¼
A1

3
� A2

6

	 

sinðotÞ

s2 ¼ �A1

6
þ A2

3

	 

sinðotÞ

s3 ¼ �
A1 þ A2

6
sinðotÞ

ð22Þ

and hence the resulting maximum shear stress and
hydrostatic pressure are

sðtÞ ¼ A1 þ A2

6

1þ R

1� R
þ sinðotÞ

� �
tmaxðtÞ ¼ 1

2
maxðjs1 � s2j, js1 � s3j, js2 � s3jÞ

¼ max
jA1 � A2j

4
,
jA1j
4

,
jA2j
4

	 

sinðotÞj j

ð23Þ

In tmax�s space this represents a set of V shapes, the
position and size of each V depending on the stress
amplitudes and R ratio. As in the uniaxial case, the
intersection of the right-hand side extremities of these V
shapes with the fatigue limit provides the relationship
between allowable stresses and R ratio. The fatigue limit
is given by

tmax þ as ¼ b ð24Þ

and so its intersections with the extremities are given by
setting sinðotÞ ¼ 1 in equation (23) above:

max
jA1 � A2j

4
,
jA1j
4

,
jA2j
4

	 


þ a
A1 þ A2

6

1þ R

1� R
þ 1

	 

¼ b

ð25Þ

4.2 The Sines criterion

The Sines criterion is directly concerned with the
relationship between stress amplitudes and R ratio.
Stresses are split into their alternating and static
components, and the proposed relationship for infinite
life in conventional notation is [8]ffiffiffiffiffiffiffiffi

J2alt
p

4A� BI1stat , A,B [R ð26Þ

where J2alt and I1stat are the second deviatoric stress
invariant and hydrostatic pressure over the entire load
path respectively. A first obvious difference between the
two criteria is the use of J2 instead of tmax; in the Dang
Van et al. case a linear relationship between tmax and
hydrostatic pressure is assumed, whereas in the Sines
case a linear relationship is similarly assumed betweenffiffiffiffiffi
J2
p

and hydrostatic pressure. It can be demonstrated,
however, that the use of either of these two quantities
gives rise to very similar results. This is best done by
making use of the Lode parameter, which was originally
used to demonstrate the difference between the Tresca
and the von Mises yield criteria.
The parameter is defined as follows:

� ¼ 2s2 � s1 � s3
s1 � s3

ð27Þ

where s1, s2 and s3 are the principal stresses in order of
magnitude. The parameter is based on the effect of the
intermediate principal stress and thus takes values from
�1 to 1 as s2 varies from the smallest principal stress s3
to the largest s1. By assuming a linear relationship
between tmax and hydrostatic pressure as in the Dang
Van et al. case,

tmax þ as ¼ b ð28Þ

the parameter may be used to find the corresponding
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relationship between
ffiffiffiffiffi
J2
p

and hydrostatic pressure:

ffiffiffiffiffi
J2

p
¼ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3b2 � 6absþ 3a2s2 þ b2�2 � 2ab�2sþ a2�2s2

q
ð29Þ

By choosing a wide range of values for the constants a and

b, it can be seen from Fig. 3 that the curve obtained by

plotting
ffiffiffiffiffi
J2
p

against s is remarkably close to the straight

line defined by equation (28). This demonstrates that the

use of
ffiffiffiffiffi
J2
p

and tmax in the context of the Sines criterion can
be interchanged without any significant difference. In

order, therefore, to compare the Sines criterion with the

Dang Van criterion, the fatigue limit predicted by the

former will be written as

tmaxalt þ asstat ¼ b, a, b [R ð30Þ

For the biaxial loading case [equation (18)], this becomes

1

2
max jS1alt � S2alt j, jS1alt j, jS2alt jð Þ þ a

A1 þ A2

6

1þ R

1� R
¼ b

) max
jA1 � A2j

4
,
jA1j
4

,
jA2j
4

	 

þ a

A1 þ A2

6

1þ R

1� R
¼ b

ð31Þ

Comparing equations (31) and (25), it is noted that they

are indeed very similar, the only difference being that Sines

and Ohgi used the static hydrostatic component, whereas

Dang Van et al. employed the total value. This gives rise to

an additional factor of 1 in ð1þ RÞ=ð1� RÞ þ 1 in the

Dang Van et al. case; that aside, the criteria are identical.

This factor will cause greater discrepancies when

ð1þ RÞ=ð1� RÞ is comparable in magnitude with 1, i.e.

when R tends to �1, which represents the fully reversing

case.

5 CONCLUSIONS

Brief overviews of the Dang Van criterion, the Good-
man rule and the Sines criterion have been given. The
similarities and differences between them have been
summarized, and each one’s applicability to fatigue
problems briefly discussed. The Dang Van criterion for
uniaxial tensile–compressive loading has been compared
with the Goodman rule, and the predictions found to be
identical. The relationship between the constants for the
two approaches has been found. The Dang Van
criterion has also been compared with the Sines criterion
for biaxial loading. It has been found that the two
approaches are very similar in nature, although some
discrepancy between the two may be observed at or near
fully reversing conditions.
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