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The relationship between the local temperature and the local heat flux has been estab-

lished for the homogeneous hyperbolic heat equation. This relationship has been written

in the form of a convolution integral involving the modified Bessel functions. The scale

analysis of the hyperbolic energy equation has been performed and the dimensionless

criterion for the mode of energy transport, similar to the Reynolds criterion for the flow

regimes, has been proposed. Finally, the integral equation, relating the local temperature

and the local heat flux, has been solved numerically for those processes of surface heating

whose time scale is of the order of picoseconds.

1. Introduction

The direction of development of nowadays technology is towards the smaller scales. Many

commonly used devices of today already operate on nanoseconds time scale with energy

transport happening between parts whose linear size is of the size of a single atom. This

modus operandi can be seen, for instance, in many electronic devices (personal comput-

ers, cellular phones, etc.) involving microelements. A deeper penetration and the use of

the most elementary (fundamental) natural scales require a better understanding and a

finer analysis of those laws that govern physical processes on those scales. Indeed, at those

levels where the classical assumptions made for energy transport (e.g., Fourier’s law) be-

come no longer applicable due to the fact that the continuum hypothesis fails at those

scales, the mathematical description of the physical laws governing the process of energy

transport also assumes different forms. In particular, one has to take into account that

the speed of the thermal energy transport cannot be considered infinite (the intrinsic as-

sumption hidden behind Fourier’s law). Therefore, it becomes necessary to account for

the time lag between the temperature gradient and the heat flux induced by it, that is,

q′′ + τ(∂q′′/∂t) = −k∇T , which substitutes Fourier’s law in the case of a finite speed of

heat propagation. Although the conservation law remains valid at all scales, being com-

bined with the new constitutive relation, it no longer leads to the classical parabolic heat
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equation, but to the energy equation that is mathematically identical to the wave equa-

tion with damping due to the energy diffusion (see [5] for details). Thus, the energy

equation is no more parabolic and becomes hyperbolic at those time or spatial scales

where Fourier’s law is not applicable. It is therefore clear that the solutions to the heat

transfer problems at those scales will be by the very nature of the energy equation dif-

ferent from parabolic solutions of the classical heat equation, albeit the geometry, initial

and boundary conditions might be the same.

The present study focuses on the one-dimensional homogeneous hyperbolic energy

equation, restricting its analysis to the heat transfer problem in a semi-infinite domain.

This choice is well motivated since, for many processes whose characteristic time is as

short as considered below, the domain of heat propagation can be considered as semi-

infinite with a very high level of accuracy.

2. Mathematical model

Consider the one-dimensional thermal wave equation (hyperbolic diffusion equation)

τ
∂2T

∂t2
+
∂T

∂t
= α

∂2T

∂x2
, (2.1)

where α is the thermal diffusivity and τ is the relaxation time in phonon collisions, de-

fined as

τ = 3α

c2
, (2.2)

where c is the speed of sound [5].

Equation (2.1) is now applied to solve an initial value problem in a semi-infinite do-

main under the condition of initial thermal equilibrium of the domain (T = T0 every-

where at time t = 0 and ∂T/∂t|t=0 = 0).

By introducing the new variable ξ = x/α1/2, the new timelike variable ϑ = t/τ1/2, and

the excess temperature θ = T −T0, (2.1) becomes

∂2θ

∂ϑ2
+ τ−1/2 ∂θ

∂ϑ
= ∂2θ

∂ξ2
(2.3)

with the initial conditions θ = 0 at ϑ= 0 and ∂θ/∂ϑ|ϑ=0 = 0.

Upon taking the Laplace transform of (2.3) and rearranging the terms, one obtains

d2Θ

dξ2
− s
(

s+ τ−1/2
)

Θ= 0, (2.4)

where Θ is the Laplace transform of the excess temperature.

Equation (2.4) has a general solution

Θ(ξ;s)= C1(s)exp
{

− ξ
[

s
(

s+ τ−1/2
)]1/2

}

+C2(s)exp
{

ξ
[

s
(

s+ τ−1/2
)]1/2

}

. (2.5)
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The physics requires this solution to be bounded as ξ →∞ and, therefore, C2(s) must be

identically zero. Denoting C(s)≡ C1(s), one gets

Θ(ξ;s)= C(s)exp
{

− ξ
[

s
(

s+ τ−1/2
)]1/2

}

. (2.6)

It is now possible to eliminate the arbitrary “constant” C(s) in exactly the same way as

it has been done in [3], that is, by taking the derivative of (2.6) with respect to ξ.

Indeed,

dΘ

dξ
=−

[

s
(

s+ τ−1/2
)]1/2

C(s)exp
{

− ξ
[

s
(

s+ τ−1/2
)]1/2

}

=−
[

s
(

s+ τ−1/2
)]1/2

Θ, (2.7)

which can be rewritten as

−Θ=
[

s
(

s+ τ−1/2
)]−1/2 dΘ

dξ
. (2.8)

The inverse Laplace transform of [s(s+ τ−1/2)]−1/2 is simply I0(ϑ/2τ1/2)exp(−ϑ/2τ1/2)

(see [1, #29.3.49, page 1024]), where I0(z) is the modified Bessel function (see [1, pages

374–379]). Thus, taking the inverse Laplace transform of (2.8) and applying the convo-

lution theorem, one obtains

θ =−
∫ t/τ1/2

0

∂θ

∂ξ
I0

(

ϑ− ζ

2
√
τ

)

exp

(

− ϑ− ζ

2
√
τ

)

dζ. (2.9)

After fully restoring the original variables and rearranging the terms, (2.9) transforms

into

T(x, t)= T0−
(

α

τ

)1/2∫ t

0

∂T

∂x
I0

(

t− t∗

2τ

)

exp

(

− t− t∗

2τ

)

dt∗ (2.10)

which gives the relationship between the temperature and its spatial derivative at any

moment in time and at any location in the domain in question.

It is necessary to emphasize here that in the case of a finite relaxation time τ, the speed

of the thermal wave propagation cannot be considered infinite and, therefore, the Fourier

law is not applicable. In this case, it is necessary to use the constitutive relationship which

takes into account the lagging behavior of the thermal wave due to the finite value of the

relaxation time (the speed of the thermal wave). As pointed out in [5], such a relationship

between the temperature T and the heat flux q′′ is

q′′(x, t) + τ
∂q′′

∂t
(x, t)∼=−k ∂T

∂x
(x, t), (2.11)

where k is the thermal conductivity of the medium. Note that (2.11) holds if τ≪ t, that

is, in the case when the relaxation time is much shorter than the characteristic time of the

transient process.
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Substituting (2.11) into (2.10), one obtains

T(x, t)= T0 +
(

kρcpτ
)−1/2

∫ t

0

[

q′′
(

x, t∗
)

+ τ
∂q′′

∂ζ

(

x, t∗
)

]

I0

(

t− t∗

2τ

)

exp

(

− t− t∗

2τ

)

dt∗

(2.12)

which relates the temperature T and the heat flux q′′ at any moment in time and at any

location inside the domain.

3. Scale analysis of the thermal wave equation: a criterion

for solution applicability

We now rewrite (2.1) in terms of characteristic scales of the process, that is,

τ
T

t2
W

+
T

tD
∼ α

T

δ2
. (3.1)

If both terms on the left-hand side are of the same order of magnitude, one obtains ex-

pressions for the wave and diffusion time scales, namely, tW and tD, using the fact that

each of these terms has to be of the same order as the term on the right-hand side, that is,

tW ∝
δ

C
, (3.2)

tD ∝
δ2

α
, (3.3)

where δ is the scale of linear dimension and C = (α/τ)1/2 is the speed of thermal waves.

In fact, the wave component of the energy transport dominates if the term T/tD, re-

sponsible for the change due to diffusion, is much smaller than the term τT/t2
W , respon-

sible for the wave transport. In other words, the wave transport dominates if t2
W /tDτ≪ 1.

To put it in another way, when the intrinsic length of the heat diffusion

λD = (αt)1/2 (3.4)

is significantly smaller than the intrinsic length scale of the thermal wave

λW = Ct, (3.5)

where C = (α/τ)1/2 is the speed of thermal waves, the effect of wave transport can be

neglected. Otherwise, this effect must be taken into account.

It is now clear that if the characteristic time of energy transport is smaller than the

relaxation time, that is, t < τ, the transport by means of wave must be taken into account;

and when t > τ, the diffusion predominates.

Based on the scale analysis of (2.1), one can now introduce the criterion to distinguish

between the possible types of transport processes. Such a criterion is the relaxation fre-

quency number Nr = t/τ = C2t/α. If one now notices that the length scale of the process
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is δ = Ct, one obtains

Nr =
δC

α
< 1, transport by means of waves,

∼ 1, transport by means of both waves and diffusion (transition),

> 1, transport by means of diffusion.

(3.6)

It is amazing how this criterion resembles the famous Reynolds number. This resem-

blance, however, is by no means coincidental. As it has been shown in [2], a similar scale

analysis performed for a buckling of streams in a fluid flow leads to the definition of

the Reynolds number seen as the factor of competition between the buckling waves and

viscous diffusion.

From (3.6), one can observe that for metals with α ∼ 10−5 m2/s and C ∼ 103 m/s, the

transport by thermal waves must be taken into account as δ ∼ 10−8 m and below. It is

equivalent to the time scale of t ∼ 10−11 second or smaller (see (3.2) or (3.3)).

4. Numerical results

Equation (2.12) has been solved numerically, given the representative physical properties

of metals, that is, α= 10−5 m2/s, ρcp = 106 J/m3K, and C = 103 m/s, in order to compute

the surface temperature for a given heat flux at the boundary. The heat flux was repre-

sented by the Gaussian, namely,

qb(t)= exp

[

−
(

t− b

σ

)2
]

(4.1)

with b = 10 picoseconds and σ = 5.0 picosecond which mimic the incidence power flux of

a laser. The time evolution of the normalized surface temperature, θ = (Ts−T0)/(Tmax−
T0), is shown in Figure 4.1.

On the same figure, this solution is shown in comparison with that one obtained by

means of the classical (Fourier) assumption [4].

From Figure 4.1, one can see that the solution behaves in a manner similar to that

reported in [4] and found by the methods of the fractional calculus for the processes at

nanosecond time scale. However, although the behavior of both solutions is qualitatively

similar, it is obvious that the relaxation of the surface temperature is much faster in the

hyperbolic case than in the parabolic, classical, case. This can be explained by the fact that,

in the classical case, there is only one mechanism of energy transport diffusion (heat con-

duction). In the hyperbolic case, on the other hand, two mechanisms are involved, that

is, transport by means of waves is added to the transport by diffusion, making relaxation

faster.

Figure 4.2 shows a comparison of the results obtained for different values of the relax-

ation time. The value of the relaxation time was varied in the range of ±10 percent with

respect to the exact value, that is, τ = 0.7438 picosecond. From the figure, one can see

that the solution is stable with respect to small variations of the relaxation time.
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Figure 4.1. Comparison between the solutions obtained for a thermally thick sample of a metal in the

case of the hyperbolic (wave) transport (B) and the classical (Fourier) diffusion (D).
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Figure 4.2. Time evolution of the surface temperature for different values of the relaxation time: (D)

τ = 0.7438ps, (B) τ = 0.6694ps, (F) τ = 0.8182ps.

5. Conclusion

The relationship between the local temperature and the local heat flux has been estab-

lished for the homogeneous hyperbolic heat equation. This relationship can be written

in the form of a convolution integral involving the modified Bessel functions, and is ob-

tained by the same method as described in [4]. The scale analysis of the hyperbolic energy

equation leads to the dimensionless criterion for the mode of energy transport. This crite-

rion (relaxation frequency number) is similar to the Reynolds criterion (Reynolds number)

to distinguish between laminar and turbulent flow regimes and identify the transition be-

tween both. An amazing explanation of the Reynolds criterion is given by means of the
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buckling theory of viscous fluid flows in [2]. The similarity between these two criteria

seems to be by no means accidental and reflects competition between the energy transports

by waves and by diffusion that is dictated by the dual, wave-corpuscular, nature of the

matter. Between the two possible ways of transport one is chosen, which appears to be

the most effective way for a given time scale, in a strict accordance with the least-action

principle.

Finally, the integral equation, relating the local temperature and the local heat flux, has

been solved numerically for those processes of surface heating whose time scale is of the

order of picoseconds. Although experimental results for such a process are not currently

available, the authors believe that the obtained result will provide a good explanation of

such results in the future, when the development of microscale technologies and the level

of experimental tools makes this result necessary and possible.
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