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INTRODUCTION 

  
In recent papers Caldwell, Bibby and Brown (2002, 2003) 
(hereafter referred to as CBB) have introduced a new and 
elegant method for analysing magnetotelluric (MT) data 
which can be applied directly to galvanically distorted data in 
a regional conductivity structure of any dimension. It is there-
fore more general and direct than previous methods (e.g. Bahr, 

1988; Groom and Bailey, 1989; Smith, 1995) which involve a 
decomposition of the MT tensor based on the assumption that 
the regional conductivity structure is 2D. The procedure of 
CBB, on the other hand, is founded on their innovative defini-
tion of a real 2 × 2 ‘phase tensor’ which is independent of any 
real (galvanic) distortion that may be present (in fact it is iden-
tical for both the distorted and the regional data), and does not 
require any assumption about the dimensionality of the under-
lying regional conductivity.  
 
Szarka and Menvielle (1997) and Weaver, Agarwal and Lilley 
(2000) (or WAL in the following) took a somewhat different 
approach by characterising the MT tensor in terms of different 
sets of seven independent invariants. WAL gave physical 
interpretations of each invariant in their chosen set, with the 
aim of finding necessary (but not sufficient) conditions for 
distinguishing between distorted and undistorted data and 
determining the dimensionality of the regional conductivity.  
 
In this paper we examine how the MT tensor invariants of 
WAL that are associated with galvanically distorted data, are 
related to the properties of the CBB phase tensor. It is found 
that the seventh invariant of WAL, whose vanishing is neces-
sary for the regional structure to be 2D, and whose magnitude 
otherwise indicates the degree of three-dimensionality, 
emerges quite naturally from the phase tensor in identical 
form. The conditions for the regional structure to be 1D, 
specified by WAL in terms of the vanishing of their sixth 
invariant and a supplementary dependent invariant, are also 
very similar when derived from the phase tensor. Only the 
normalisation of these two invariants is different in this case. 
The results are expressed concisely by writing the phase ten-
sor as a sum of three matrices, each of which is obtained from 
the identity matrix by elementary operations and is multiplied 
by a factor proportional to one of the three the relevant invari-
ants. These three matrices are then clearly associated with 1D, 
2D and 3D conductivity structures respectively, and the rela-
tive magnitudes of their multiplying factors indicate the nature 
of the regional structure. 
 
In contrast to CBB, who displayed the phase tensor graphi-
cally as an ellipse in the plane of the earth, we follow our 
previous practice with the MT tensor, by representing the 
phase tensor by its Mohr circle in the plane of the components 
in its first column. The three invariants of the real phase tensor 

SUMMARY 
 
We examine the relationship between the seven invari-
ants of the complex MT tensor, which we previously 
proposed as a vehicle for testing the dimensionality of the 
regional conductivity structure prior to an analysis of MT 
data, and the three invariants of the real ‘phase tensor’, 
recently introduced as an innovative aid in the treatment 
of MT data. It is found that the relevant invariants, and 
the necessary conditions on them for galvanically dis-
torted data to be consistent with 1D, 2D or 3D regional 
structures, agree in almost every detail for the two ap-
proaches. The new method does lead, however, to an 
improved normalisation of the eighth (dependent) invari-
ant previously introduced. It is shown that the phase ten-
sor can be expressed as a sum of three simple matrices, 
clearly associated with 1D, 2D and 3D regional conduc-
tivity structures respectively. It is further shown that it 
can be depicted graphically as a single Mohr circle that 
retains the principal properties of the separate real and 
imaginary Mohr circles associated with the MT tensor. 
The simplicity and elegance of the phase tensor method 
is achieved by dispensing with the capability of distin-
guishing between galvanically distorted and undistorted 
data in 1D and 2D regions, a distinction that is ultimately 
unimportant and unnecessary with real data. The paper 
concludes with a simple illustrative example of the the-
ory applied to a real MT dataset from NE Australia. A 
shallow 1D regional conductivity structure associated 
with a sedimentary basin is revealed, and a 2D anomaly 
with calculated strike angle is also identified. 
 
Key words: Magnetotelluric tensor, phase tensor, earth 
conductivity, Mohr circles.  
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are immediately identifiable in the Mohr circle diagram, with 
the conditions for 1D and 2D regional structures requiring the 
circle to shrink to a point, and to be centred on the horizontal 
axis, respectively. While these general properties are similar 
to those that hold for the separate real and imaginary Mohr 
circles associated with the MT tensor, indentification of the 
seventh invariant of WAL is much more straightforward in the 
diagram for the phase tensor.  It is proportional to the dis-
placement of the centre of the Mohr circle from the horizontal 
axis, rather than being related in a rather complicated way to 
the coupling of the real and imaginary Mohr circles represent-
ing the MT tensor.   
 
Finally, we illustrate the theory by applying it to a set of MT 
data obtained in the Mount Isa and Eromanga Basin region of 
NE Queensland in Australia. The invariant analysis clearly 
reveals a shallow 1D structure in the region of the sedimentary 
basin, and a 2D strike running roughly 26° east of north at one 
of the sites, which may be associated with the Carpentaria 
anomaly.  
  

INVARIANTS OF THE MT TENSOR  
 
The notation of WAL is introduced in this section. Later the 
ideas of CBB will be expressed in this notation, in order to 
facilitate comparison of their results with the magnetotelluric 
(MT) tensor invariants of WAL. 
 
In a rectangular coordinate system with x and y horizontal 
axes directed north and east respectively, and z vertically 
downwards into the earth, the MT tensor is represented by the 
2× 2 complex-valued matrix M defined by e = Mb or 
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where e = (e1, e2)T and b = (b1, b2)T are (complex-valued) 
column vectors representing the spatial parts of the horizontal 
electric and magnetic fields on the earth's surface. The time-
dependence of these vectors is represented by a factor 
exp(iωt) which cancels out in the equation above. Real pa-
rameters ξj and ηj defined by 
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are introduced so that the matrix takes the form M = P + iQ 
where 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
++

=
3142

4231

3142

4231
ηηηη
ηηηη

,
ξξξξ
ξξξξ

QP .             (3) 

 
When the axes of measurement are rotated through an angle θ 
in a right-handed sense about the positive z-axis, as defined by 
the rotation matrix 
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the matrix of the MT tensor in the rotated system is given by 
R(θ)MRT(θ) = M′ = P′ + iQ′ , where 
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and S = sin 2θ and C = cos 2θ. 
 
It was shown by Szarka and Menvielle (1997) that Im(det M) 
is an invariant under such rotations, which, as noted by WAL, 
is the same as stating that I, defined by 
 

02)/(detIm44332211 ≠≡+−−= MηξηξηξηξI              (6) 
  
is invariant. It can be safely assumed that I ≠ 0, for otherwise 
Im(det M) vanishes, which renders the MT tensor physically 
meaningless. Szarka and Menvielle (1997) chose Im(det M) as 
a fundamental member of their set of seven independent, rota-
tional invariants defining the MT tensor. In the alternative 
scheme proposed by WAL, the first four invariants are 
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The three remaining invariants, defined in terms of the dimen-
sionless parameters 
 

,Iηξηξs,Iηξηξd ijjiijijjiij )()( +=−=   (9) 
 
 are given by 
 

0234172141621415 )(,)()( IddIIIIdI,IIIsI −===    (10) 
 
where I0, equivalent to (QI1I2)/I in the notation of WAL, is a 
dependent invariant expressed by 
 

212
2413

2
34120 ])()[( /ddddI ++−= .                (11) 

 
It is important to note that the definitions of dij and sij in (9) 
differ from the corresponding definitions of WAL, where the 
normalisation was by I1I2 rather than I. This accounts for the 
factor I/(I1I2) appearing in the definitions of I5 and I6. All of 
the independent invariants except I1 and I2, which are based on 
the `central impedances' introduced by Lilley (1993), were 
expressed as sines of real angles by WAL, so that their abso-
lute values are bounded by 0 and 1. 
 
The measured electric field can sometimes be regarded as an 
in-phase (or real) distortion of the regional electric field e . 
Such galvanic distortions are caused by charges accumulating 
on the boundary of a localized, near-surface, conductivity 
anomaly. The magnetic field of the electric currents associated 
with galvanic distortion is usually negligible compared with 
the regional magnetic field .b Thus we may assert that 

bbeAe == ,                   (12) 
where A is a (real) distortion matrix. Since the regional MT 
tensor QPM i+=  is defined by ,bMbMe ==  it follows 

that ,bMAeAeMb ===  whence MAM = , or 
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QAQPAP == ,                     (13) 
 
since A is assumed real.  

 
THE PHASE TENSOR 

 
In a recent paper, CBB introduced a ‘phase tensor’ repre-
sented here by the 2 × 2 real matrix T, and defined by 
 

.QPT 1−=                  (14) 
 
An important property of this tensor is that in the presence of 
in-phase distortion 
 

TQPQAAPQAPAQPT ===== −−−−− 11111 )( .        (15) 
  
In other words, the phase tensor is the same for both the re-
gional field and the locally distorted field. Moreover, CBB 
showed that when the regional conductivity structure is two-
dimensional (2D), so that the diagonal elements of P and Q  
vanish in the strike frame whose axes are aligned along and 
perpendicular to the direction of the regional strike, then T is 
necessarily symmetric. For when the axes are rotated into the 
strike frame, QPT ′′=′ −1)(  becomes diagonal, taking the 
form 
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and since symmetry is preserved under a rotation (4), T is also 
symmetric in the frame of measurement. It follows at once 
from (15) that T is symmetric in the frame of measurement as 
well. Thus symmetry of the phase tensor is an immediate and 
simple indication that MT data, whether locally distorted or 
not, are consistent with a 2D regional conductivity structure. 
Furthermore, it follows from (16) that when T is symmetric, 

TT ′=′  becomes diagonal in the strike frame, thereby ena-
bling an expression for the regional strike angle to be derived. 
 
If the regional structure is 1D, i.e. the conductivity varies only 
with depth, then we require  
 

,PPP =−= 2112  QQQ =−= 2112  
  
(say) for all angles of rotation. Hence (15) and (16) give 
 

φtanITT ==                  (17) 

where I is the identity matrix and )/(arctan PQφ =  is the 
familiar impedance phase of the 1D regional structure. 
 

COMPARISON WITH THE MT INVARIANTS 
 
As shown by CBB, the phase tensor can be readily expressed 
directly in terms of the components of the MT tensor itself. 
However, in order to facilitate a comparison with previous 
results, the notation and invariants of WAL introduced earlier 
are preferred here. Substituting from (3) into (14), and invert-
ing P, we note that 
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Introducing an invariant quantity J1 defined by 
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and performing the matrix product with the aid of definitions 
(9), we obtain 
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Under a rotation of axes (4), the matrix T in (19) transforms 
into 
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where we have substituted from the last equation in (10), and 
for convenience, have defined klijijkl ddd +≡ .  
 
It follows from (20) that the condition for T to be symmetric 
is I0I7 = 0 (or d41 = d23), and furthermore that T becomes di-
agonal when the axes are rotated through an angle θ  = θs, 
satisfying d1243C = d1324S,  i.e.,  
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Equation (19) can now be expressed more concisely in terms 
of θs, as follows: 
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If the regional structure is 1D then, in accordance with (17), T 
must reduce to the identity matrix multiplied by some scalar. 
Thus the required conditions are I0I7 ≡ d41 − d23 = 0 and I0 = 0,  
since they reduce equation (22) to (17) with tan ϕ = J1. The 
measured data are then consistent with a 1D regional structure 
with impedance phase given by this value of ϕ. It also follows 
from (22) that I0I7 = 0 (I0 ≠ 0) is the necessary condition for a 
2D regional structure and that the strike angle is θs defined by 
(21), the same result obtained by WAL and earlier by Bahr 
(1988). 
 
Defining  
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and J = K1cos2θs + K2sin2θs, we can make these observations 
more transparent by rewriting (22) in the form 
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.JJJ KJIT 321 ++=                                                       (24) 
 
where 
  

.JIJ,JIJ 273102 ==                         (25)  
 
The first, second and third terms in (24) can then be regarded 
as the 1D, 2D and 3D contributions to the phase tensor respec-
tively, and their magnitudes are in the ratios 1: I0 : I0|I7|. 
 
From its definition (11), it is obvious that I0 = 0 if and only if 
d12 – d34 = 0 and d13 + d24 = 0. Indeed, these conditions ensure 
that both numerator and denominator of (21) vanish when I0 = 
0, thereby rendering θs indeterminate, as required when the 
structure is 1D. It follows that the left-hand side of the identity 
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(WAL, equation (31)) vanishes when I0 = 0, and since by defi-
nitions (6) and (9) we have s44 + s11 – s22 − s33= 2, the other 
condition for a 1D regional structure, d41 = d23, further implies 
that d41 = d23 = 0. Hence (I1I2/I )I6 ≡ d41 = d23 = 0. Thus, in 
complete agreement with the criteria specified by WAL, the 
conditions for local distortion in a 1D region are satisfied 
when I6 = I0 = 0, in which case I7 becomes indeterminate be-
cause d41 = d23 = 0 when I0 = 0. It was observed by WAL that 
the same conditions arise when there is local distortion in a 
2D region at a position where there is no phase splitting be-
tween the E-polarization and B-polarization fields. 
 
Conditions for 1D Structures in Practice 
 
With real data, the invariants will never vanish precisely; 
rather, they will become negligibly small in some sense. Thus 
for an interpretation of regional one-dimensionality we want 
the second and third terms in (24) to be always negligibly 
small compared with the first term. These conditions will hold  
provided that J1I0|cos2θs|, J1I0|sin2θs| and J1I0|I7| are all very 
much less than J1. In other words, we require 
 

.ddII,I 11 2341700 <<−≡<<                (26) 
 
Thus the practical criteria for assuming that MT data are con-
sistent with a 1D regional structure are |d41 − d23| < 0.1 to 
maintain the symmetry of T, and I0 < 0.1 to ensure that T is 
approximately a scalar multiple of the identity matrix. These 
conditions are similar to those prescribed by WAL except for 
the different normalisation of the parameters dij. This normali-
sation has led to a proper justification of the first criterion in 
(26), compared with the rather more speculative assertion Q < 
0.1 made by WAL in the original notation.  
 
Conditions for 2D Structures in Practice 
 
Likewise, for an interpretation of regional two-dimensionality 
we may assert that the elements of the antisymmetric part of 
T, which are clearly invariant under a rotation of the axes, 
must  always be small in magnitude compared with the corre-
sponding off-diagonal elements in the symmetric part, which 
are not invariant. It is immediately apparent from equation 
(22) that the required condition is 
 

1i.e2sin 70s070 <<≤<< I.,IIII θ                             (27) 
 
which, by (25), is equivalent to |J3| << |J2| in (24). Thus a rea-
sonable criterion in practice for a 2D interpretation of the 
regional conductivity structure is |I7| < 0.1. This is precisely 
the necessary condition obtained by WAL using different 
arguments. As mentioned in Section 1, it was also shown by 
WAL that if |I7| exists, then |I7| ≤ 1. When |I7| > 0.1, it is con-
cluded that the regional structure is 3D, the degree of three-
dimensionality increasing with |I7|. 
 

MOHR CIRCLE FOR THE PHASE TENSOR 
 
Following Bibby (1986), CBB displayed the phase tensor 
graphically as an ellipse in the xy-plane. An alternative ap-
proach, adopted here as an aid to the discussion of tensor in-
variants, is to represent the phase tensor by a Mohr circle 
(Lilley, 1993) drawn in the plane of T′11 and T′21.  
 
The three independent invariants J1, J2 and J3 defined in (18) 
and (25) are related, respectively, to the determinant, the 
trace, and the ‘skew’ (the difference of its off-diagonal ele-
ments) of the phase tensor, which are the three well-known 
independent invariants of a 2 × 2 matrix under rotations. Then 
we obtain from (22) and (25) 
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which is the circle with centre (J1, J3) and radius J2 traced out 
by the point (T′11, T′21), or P in Figure 1, as θ  varies. The  
starting point of P, denoted by P0 in Figure 1, represents the 
recorded values of the MT tensor components in the actual 
axes of measurement. When the axes (x, y) are rotated through 
an angle θ  in the right-handed sense about the positive z-axis, 
P moves from P0 clockwise around the circle through an angle 
2θ.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.     Mohr circle representation of the phase tensor. 
 
From the preceding analysis it is readily seen that if the re-
gional conductivity structure is 2D, then J3 = 0, i.e. the centre 
of the Mohr circle lies on the horizontal axis T′21 = 0. The 
strike direction is reached when P is on the horizontal axis as 
it rotates around the circle, the strike angle θs being given by 
half its angle of rotation. 
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The more realistic condition (27) translates into |J3| << J2, or 
|sin γ| < 0.1 where γ is the angle shown in Figure 1. If the re-
gional structure is 3D, then |J3 | / J2 > 0.1. Note that when γ is 
small, but non-vanishing, the strike angle given by (21) corre-
sponds to the point P on the Mohr circle where T′11 attains its 
extremum value J1 + J2, i.e. where CP is horizontal as de-
picted in Figure 1, not the point P1 where it intersects with the 
horizontal axis. Thus the off-diagonal elements of T′ are not 
equal to zero when θ  = θs in this case, nor do they vanish 
simultaneously at any point, but rather vanish individually for 
the two distinct angles of rotation  
 

.I 2)(arcsin 7s ±= θθ                  (29) 
 
Hence (arcsin I7)/2 can be regarded as a measure of the uncer-
tainty in the strike angle given by (21) with real data. 
 
If the regional conductivity is 1D, then J2 = J3 = 0 and the 
Mohr circle shrinks to a point on the horizontal axis. In practi-
cal terms, the relevant conditions corresponding to (26) are J2  
<< | J1 | and | J3 | << | J1 |.  Since | J1 | ≤ (J1

2 + J3
2)1/2, the condi-

tions for a 1D interpretation of the data to hold can be ex-
pressed geometrically as |sin α| << 1 and |sin β| << 1, where α 
and β are the angles shown in Figure 1.  
 
It is concluded, therefore, that three invariants, |J3|/J2 ≡ |I7|, 
J2/|J1| ≡ I0, and |J3/J1| ≡ I0|I7| ≡ |d41 − d23|, which are based on 
just two (rather than seven) independent invariants, I0 and I7, 
of the original MT tensor, can be used as indicators of the 
dimensionality of the regional structure. All three are less than 
or equal to sines of angles in the Mohr circle diagram, are 
therefore bounded by 0 and 1, and can be considered small 
when they are less than 0.1 in magnitude. 
 
The Mohr circle representation and decomposition (24) can be 
compared with the corresponding procedures used by CBB to 
display the phase tensor graphically and reveal the role played  
by its invariants. By analogy with the method of Bibby (1986) 
for representing the DC apparent resistivity tensor, they por-
trayed the phase tensor as an ellipse in the xy-plane, given in 
polar coordinates (r,ψ) by 
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where J0 = (J1

2 + J3
2)1/2 and β is the angle shown in Figure 1, 

defined by tan β = J3/J1. Here the polar radius r in the direc-
tion defined by the unit vector n ≡ r/|r|, is related to T by the 
formula 1/r = |T–1 · n|. It is at once apparent from the form of 
(30) that the lengths of the semi-major and semi-minor axes of 
the ellipse are given by J0 + J2 and J0 − J2 respectively, and 
that the major axis is rotated through a positive angle θs + β/2 
from the x-axis in the observer’s frame. If the regional struc-
ture is 1D, the ellipse reduces to a circle of radius J1 ≡ tanϕ 
where ϕ is the impedance phase. If the region is 2D, then T is 
symmetric so that J3 = 0, i.e. β = 0, and the axes of the ellipse 
lie along and perpendicular to the direction of strike.  
 
Routine algebra verifies that the matrix representing T in (22) 
can be decomposed into the form 
 

)2()  ,()2( s2020s
T /βθJJJJ/βθ −−++= R diagRT       (31) 

 

where R is the rotation matrix (4) and diag (a, b) is the 2  ×  2  
diagonal matrix with elements a and b. This is essentially the 
singular value decomposition of T employed by CBB, albeit 
in a different notation. It expresses the dependence of T on the 
three invariants J1, J2 and J3 and the angle θs rather differently 
from that in the previous decomposition (24).  
 

DISCUSSION 
 
While the conclusions reached about the nature of MT data 
are generally similar whether they are based on the invariants 
of the MT tensor itself, or on the phase tensor of CBB, there is 
little doubt that the innovative and insightful approach of CBB 
leads to a more elegant and much simpler analysis, largely 
because the phase tensor is real whereas the MT tensor is 
complex. Thus there are only three tensor invariants to con-
sider compared with the seven invariants of the MT tensor, 
and they can be displayed geometrically with the aid of only 
one Mohr circle compared with the two coupled Mohr circles 
required for the MT tensor. An interesting outcome of the 
analysis is that the dependent invariant I defined in (6), has 
emerged as a more natural normalizing factor when defining 
the parameters d  ij and sij than the term I1I2 chosen by WAL. 
 
The gains in simplicity achieved by employing the phase ten-
sor of CBB can only be won, of course, with sacrifices made 
elsewhere. What has been lost is the ability to distinguish 
between distorted and undistorted data in 2D and 1D regions, 
although this information is still available, of course, in the 
full complex MT tensor. This is a minor penalty to pay, how-
ever, because real data are always distorted in some sense, and 
strictly 2D or 1D configurations are only found in idealized 
mathematical models, not in the real world. In fact, some of 
the results for truly 2D or 1D conductivity structures are al-
ready included in the corresponding results for distorted data. 
Thus, if the regional structure is 2D and the data are undis-
torted, then there exists an angle θs such that P′11 = P′22 = Q′11 
= Q′22 = 0, i.e. from (5)  
 

2323s11 2tan0 ηηξξθηξ −=−=== ,                (32) 
 
as stated by WAL. The first of these conditions reduces the 
formula (21), and the condition I0I7 = 0 for the phase tensor to 
be symmetric, to tan(2θs) = −d34/d24 and d23 = 0 respectively. 
It 
follows by simple algebra that (21) then simplifies to the ex-
pression in (32). For a 1D structure without distortion, we 
have additionally P′12 = − P′21 and Q′12 = − Q′21, whence ξ2 = 
η2 = ξ3 = η3 = 0 as well. Thus the phase tensor (19) reduces to 
T = J1I = (η4/ξ4)I = (I2/I1)I, which by comparison with (17), 
shows that the impedance phase of the 1D region is given by 
arctan(I2/I1), in agreement with a result quoted by WAL. The 
associated apparent resistivity was also stated by WAL to be  
µ0(I1

2 + I2
2)/ω, where µ0 is the permeability of free space, but 

this information is not recoverable when dealing with the 
phase tensor alone. 
 

A SIMPLE ANALYSIS OF DATA  
 

Following the scheme illustrated in Figure 2, we have applied 
the ideas described above to a rudimentary analysis of MT 
data collected in a region of NE Australia. Note that the flow 
chart rejects those measurements that appear not to be 3D (i.e. 
|I7| < 0.1) and yet violate the conditions det(Re M) > 0 and 
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det(Im M) > 0 suggested by Lilley (1998) as necessary for 
physical MT data to be treatable. Such data do occasionally 
occur in practice, and are possibly associated with a high de-
gree of local (as distinct from regional) anisotropy.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.     Flow chart for analysis of MT data.  
 
The data were collected in NW Queensland at MT sites along  
line from Mount Isa in the west to the Eromanga Basin in the 
east. The line traverses the Carpentaria anomaly (Chamalaun 
et al., 1999), which runs roughly north-south and may mark 
the boundary between the pre-Cambrian Mount Isa block and 
the younger rocks of the basin. The data were supplied as 
components of the impedance tensor µ0M measured in 
mV/km/nT for periods T in the range 6.0×10-3 s to 1.11×103 s.  
 
Mean values of the tensor components with their standard 
errors were available for each site and period. For this pre-
liminary demonstration of the preceding theory applied to 
field data, we have simply computed the invariants and strike 
angles (where relevant) for a range of periods at 10 selected 
sites, from the mean values of the tensor components. Three 
distinctive symbols are used in Table 1 to show the interpreta-
tion of the data at each site as suggested by the values of the 
tensor invariants. Horizontal and vertical lines represent 1D 
and 2D structures respectively, while a combination of the two 
(a plus sign) represents a 3D region. The relevant symbols for 
each site are displayed in a column in order of increasing  
period from top to bottom, and the columns themselves are 
arranged alongside each other from left to right corresponding 
to the order of sites from west to east along the profile. The 
resulting diagram as such is only schematic; the columns and 
rows are equally spaced, even though neither the distance 
between the actual sites nor the interval between the square 
root of the measured periods are uniform. Nevertheless it is 

useful in providing an immediate visualization of the regional 
structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.     Schematic diagram showing the interpretation 
of the conductivity structure, 1D ( − ), 2D ( | ) or 3D ( + ), 
at selected sites and for each period, as given by the tensor 
invariants. A blank cell indicates a rejected datum. The 
sites are numbered from west to east, with geographical 
coordinates: 1 (20.70°S, 140.30°E), 2 (20.72°S, 140.62°E), 3 
(20.67°S, 140.82°E), 4 (20.64°S, 140.93°E), 5 (20.64°S, 
141.00°E), 6 (20.63°S, 141.10°E), 7 (20.62°S, 141.20°E), 8 
(20.65°S, 141.41°E), 9 (20.64°S, 141.54°E), 10 (20.66°S, 

 

Yes 

No 

 
3D structure 

No 

No 

Yes 

 
Reject data 

START 
Calculate 

I0, I3, I4, I7 

I0 < 0.1  
and   

I0|I7| < 0.1? 

I3 ≥1or I4 ≥1 
       and   
  |I7| < 0.1? 

Yes 
2D structure, 
strike angle 

θs in eq. (21) 

 
|I7| < 0.1? 

 

1D structure 
(2D with no 
phase shift) 

Site
T (s)

1 2 3 4 5 6 7 8 9 10

.006 | + ⎯ ⎯ + + + ⎯ ⎯ ⎯

.008 | | ⎯ ⎯ + ⎯ + ⎯ ⎯ ⎯

.012 | | | ⎯ + ⎯ ⎯ ⎯ ⎯ ⎯

.018 + + + ⎯ + ⎯ ⎯ ⎯ ⎯ +

.026 + + | ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ +

.029 + + | ⎯ | ⎯ ⎯ ⎯ ⎯ ⎯

.041 + + | ⎯ | ⎯ ⎯ ⎯ ⎯ ⎯

.058 + + | ⎯ | | + ⎯ ⎯ ⎯

.068 + + | | + + | ⎯ ⎯ ⎯

.083 + + | + | + + ⎯ ⎯ ⎯

.114 + + + + + + + + ⎯ +

.120 + + | + | | | ⎯ ⎯ ⎯

.177 + + | + + | | ⎯ ⎯ ⎯

.263 + + | + + | | ⎯ ⎯ ⎯

.293 + + + + + + + ⎯ + ⎯

.410 + + | + + + + ⎯ + +

.580 + + + + + + + + + ⎯

.683 + + + ⎯ + + | + + ⎯

.819 + | | + + + + + + +
1.14 + + + + + + + + ⎯ +
1.67 + + | + + + + + ⎯ +
2.41 + + ⎯ + + + + + ⎯ +
3.53 + + | + + + | + + +
5.25 + + + + + + + + + +
7.43 + + + + + + + +
8.19 + + | + + + + + + +
10.4 + + + + + + + + + +
13.7 + + + + + + + + + +
20.6 + + + | + | + + +
29.0 + + + + + + + + |

41.0 + + + | + + + + +
83.3 + + + | + + + + |

175 + + + + + + + + + +
416 + + + + + + + + + +
1110 + + + + + + + + +
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141.71°E). The rows are ordered from top to bottom with 
increasing period T in seconds.  
 
The sedimentary basin is revealed as a 1D region near the 
surface on the right of the profile, whereas the Mount Isa 
block on the left has a mainly 3D interpretation. The data at 
Site 3, and to a lesser extent at Site 5, are consistent with a 
shallow 2D structure over a range of periods, and probably 
reflect the presence of the Carpentaria anomaly. Table 2 dis-
plays the values of strike angle at these two sites as calculated 
from formula (21), along with their theoretical uncertainties as 
given by (29). The calculated strike angles are, of course, 
ambiguous to the extent of ±90°. Where the value of |I7| unex-
pectedly suggests a 3D structure at a single period within a 
range that is otherwise 2D (e.g. period 0.114 s at Site 3), we 
have calculated a strike angle anyway, because the cut-off 
value of 0.1, which distinguishes 2D from 3D regions, is 
somewhat arbitrary. The larger value of |I7| in such cases is 
always reflected in the increased uncertainty in the calculated 
value of the strike angle.  
 
For the 10 periods in the range 1.2×10-2 s to 1.2×10-1 s, the 
average strike angle at Site 3 is N26.2°E with a standard de-
viation of 1.1°. If the last two results for Site 3, up to the pe-
riod 2.63×10-1 s, are taken into account, the average strike 
angle becomes N24.9°E with a much larger standard deviation 
of 3.1°. The average strike direction determined from 9 peri-
ods in the same period range at Site 5 is N30.0°E with stan-
dard deviation 3.6°. These results compare quite well with the 
strike angle determined by Groom-Bailey decomposition for 
short periods on the west of the profile (Lilley et al., 2003).  
 

Period T (s) Site 3 Site 5 

0.012 24.9° ± 1.2°  

0.018 27.5° ± 3.8°  

0.026 24.7° ± 0.4°  

0.029 26.3° ± 2.2° 30.8° ± 0.5° 
0.041 27.3° ± 2.4° 29.1° ± 1.8° 
0.058 27.7° ± 1.9° 28.7° ± 1.1° 
0.068 26.5° ± 2.2° 23.9° ± 4.3° 
0.083 26.8° ± 0.1° 29.2° ± 1.1° 
0.114 25.0° ± 4.0° 38.5° ± 7.1° 
0.120 24.9° ± 2.3° 30.4° ± 1.5° 
0.177 19.9° ± 0.7° 29.8° ± 4.8° 
0.263 17.1° ± 1.7° 29.4° ± 4.7° 

 
Table 2.     Strike angles and their uncertainties.  
 
Since the conditions for determining the dimensionality of the 
regional conductivity are necessary, but not sufficient, we 
have ignored the occasional isolated examples in Table 1 indi-
cating a 1D or 2D structure. If the region were truly 1D or 2D 
then we would expect this to be seen over a range of periods, 
especially if only in-phase distortion is present, as assumed in 
the theory. 
 
Finally, we emphasise that the above example of treating real 
data is primarily illustrative to demonstrate an application of 
the theory in practice, not to present a detailed, thorough in-
vestigation of the Australian data.  A full treatment would 

include an error analysis based on the given standard errors of 
the MT tensor components.  It is hoped eventually to present 
such an analysis of these and other MT data elsewhere. 
 

CONCLUSIONS 
 

By employing the phase tensor of Caldwell, Bibby and Brown 
(2002, 2003), we have greatly simplified and clarified our 
earlier investigation of the MT tensor invariants and their 
application to an interpretation of MT data. In place of the 
seven independent invariants (plus one additional dependent 
invariant which proved useful in the previous study), only 
three are needed to characterise the real phase tensor, which 
nevertheless retains the salient properties of the more familiar, 
but complex, MT tensor with virtually no loss of insight. It 
has been shown that the necessary conditions on these three 
invariants for the regional conductivity structure to be 1D, 2D 
or 3D are essentially equivalent to those we derived in our 
previous paper for galvanically distorted data. The previous 
dependent invariant, however, has now been renormalised and 
is related to one of the three independent invariants, J2. This 
leads to a more satisfactory understanding of its role in the 
interpretation of MT data, and graphically it is clearly seen to 
be proportional to the radius of the Mohr circle for the phase 
tensor. Likewise, I7 is now readily identified as being propor-
tional to the off-axis displacement of the Mohr circle, whereas 
in our earlier paper it was related in an obscure way to an 
angle that served as the coupling between the two Mohr cir-
cles representing the separate real and imaginary parts of the 
MT tensor.  
 
The simplicity of the new approach is embodied in equation 
(24), which separates the phase tensor into three simple matri-
ces associated with 1D, 2D and 3D structures, respectively. 
The 2D and 3D terms are multiplied by factors involving 
those invariants that were shown in our earlier work to be 
necessarily vanishing when the regional structure is 1D, while 
the factor in the third term was similarly shown to vanish 
alone when the regional structure is 2D.  Thus the decomposi-
tion summarised by equation (24) is somewhat different from 
that favoured by CBB who diagonalised the phase tensor by a 
singular value decomposition involving the strike angle θs and 
a ‘skew angle’ given by −β/2 ≡ [arctan (−I0I7)]/2 in our nota-
tion.  
 
Although the map of regional dimensionality in Table 1 is 
very similar to that obtained when we examined the Austra-
lian data (Agarwal, Weaver and Lilley, 2000) according to the 
criteria given by WAL, some of the strike angles computed at 
‘2D sites’ are quite different. This is because the previous 
analysis distinguished between apparently distorted and undis-
torted data at 2D sites, and prescribed different formulae, (21) 
for the former and a modified form of (32) for the latter, for 
calculating the strike angle in the two cases. When using 
equation (32) we make the tacit assumption that d23 ≈ 0. Theo-
retically the vanishing of d23, which is equivalent to I7 = I6 =0, 
is indeed a requirement for a 2D structure. A re-examination 
of the data, however, showed that even when both conditions 
I7 < 0.1 and I6 < 0.1 were satisfied, it did not always follow 
that d23 was negligible. In such cases, the angles given by the 
two alternative formulae in (32) can be significantly different, 
and their average value −s23/s22, which was actually used by 
WAL to calculate the strike angle, then becomes unreliable. 
An advantage of a method based on the phase tensor of CBB 
is that distorted and undistorted data are treated alike, so that 
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the formula for the strike angle given in (21) is always used. 
As we have shown, this formula reduces algebraically to (32) 
when d23 = 0. 
 
The analysis of noisy synthetic data undertaken by WAL 
showed that computed values of the strike angle given by (21) 
and the invariant I7 defined in (10), were less stable than the 
values obtained for the other invariants. A detailed treatment 
of the Australian and other MT data must therefore include an 
error analysis based on the standard errors of the MT tensor 
components in order to place some confidence limits on calcu-
lated strike angles.  
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