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Soft materials that are subjected to large deformations
exhibit an extremely rich phenomenology, with
properties lying in between those of simple fluids and
those of elastic solids. In the continuum description of
these systems, one typically follows either the route
of solid mechanics (Lagrangian description) or the
route of fluid mechanics (Eulerian description). The
purpose of this review is to highlight the relationship
between the theories of viscoelasticity and of elasticity,
and to leverage this connection in contemporary soft
matter problems. We review the principles governing
models for viscoelastic liquids, for example solutions
of flexible polymers. Such materials are characterized
by a relaxation time λ, over which stresses relax. We
recall the kinematics and elastic response of large
deformations, and show which polymer models do
(and which do not) correspond to a nonlinear elastic
solid in the limit λ → ∞. With this insight, we split
the work done by elastic stresses into reversible and
dissipative parts, and establish the general form of
the conservation law for the total energy. The elastic
correspondence can offer an insightful tool for a broad
class of problems; as an illustration, we show how the
presence or absence of an elastic limit determines the
fate of an elastic thread during capillary instability.
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1. Introduction
The aim of this review is to expose systematically the relationship between the theories of
viscoelasticity and of elasticity, and to leverage what can be learned from this connection. Given
the very mature state of these fields, there exist many excellent review articles and monographs
that cover all aspects of elastic liquids and elastic solids in great detail [1–16]. With this review,
we therefore do not attempt a broad overview of these research areas, but very specifically focus
on how elasticity and viscoelasticity are related. This relationship is much more difficult to find in
the literature, but it can greatly contribute to the understanding of contemporary developments
involving soft materials at large deformations.

(a) Soft materials and large deformations

Exceedingly soft solids, such as gels, elastomers and biological tissues, are extremely versatile
and find numerous applications in nature and technology. Their mechanics is intricate: owing
to their large deformability, soft solids can no longer be described within the framework of
linear elasticity, but exhibit all the kinematic nonlinearities typical of the motion of fluids. This
is the domain of large-deformation theory, which leads to nonlinear equations even if the elastic
response of the material is perfectly linear.

Figure 1 provides various contemporary illustrations of soft matter at very large deformation.
Figure 1a shows an extremely tough hydrogel [17]. It is specifically designed to reversibly resist
very large stretches, up to a factor of approximately 20, without fracture. A second example,
given in figure 1b, consists of a liquid drop on a solid polydimethylsiloxane substrate [18].
The liquid–vapour interface creates a sharp elastic deformation, in the shape of a ridge around
the droplet’s edge [22–24]. Interestingly, the dynamical spreading of drops on elastomers is
dramatically slowed down by this deformation: during spreading, the ridge is transported along
with the droplet edge and induces very large dissipation inside the substrate [25–28]—without
any irreversible damage to the material. Indeed, highly deformable solids often exhibit strongly
viscoelastic behaviour, where the dissipation occurs during transients of deformation. Such
dissipation is actually exploited in the design of pressure-sensitive adhesives [29–31], and can
also, for example, explain the delayed snap-through instability of jumping toy poppers [32].

So both fluids and soft solids can exhibit dissipation, and both share the same nonlinear
kinematics under large deformations. The fundamental distinction between a (hyper)elastic solid
and a (Newtonian) fluid is that the former maintains a permanent memory of its initial or
‘reference’ state to which it relaxes, whereas in a simple fluid all configurations are equivalent
and only rates of deformation are important. Accordingly, the natural description of a solid is
a ‘Lagrangian’ viewpoint, which follows the path of each element of the continuum as labelled
by the reference state, and all forces are determined from this mapping from the reference to the
‘current’ state. Fluid motion can also be described using Lagrangian paths, which is a natural
point of view when considering mixing and advection problems [33,34], but has also proved to be
a fruitful way of looking at classical fluid mechanics problems [35,36]. However, fundamentally
Lagrangian trajectories are extremely intricate, even for very simple time-independent flows [33],
and thus it is much simpler to disregard the history of each particle. Instead, in the Eulerian point
of view one considers snapshots of the velocity field only, which is sufficient to calculate rates.

There are indeed numerous situations in which the material’s response exhibits both solid-
like and fluid-like behaviour. Our focus is the connection that exists between fluid and solid
mechanics in the limit of large relaxation times, and which persists in the case of large
deformations. Here we remark that another relation exists that is different from the one that we
address: it has been appreciated for a long time [37,38] that the linear equations for the velocity
field of a viscous fluid, the so-called Stokes equations, and the equations of linear elasticity, in the
incompressible limit of Poisson’s ratio being 1/2, are formally equivalent. For example, the theory
of cracks in an elastic material [39] can be applied to the shape of free-surface cusps on the surface
of a viscous fluid [40]. Taylor [41] noticed that the correspondence also applied to thin threads
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Figure 1. Soft matter at large stretch. (a) Tough solid: a sheet of a soft but very tough hydrogel that exhibits a reversible

deformationwhen stretching up to a factor of 17. Even the presence of a hole in the centre did not nucleate any fracture. Adapted

with permission from [17]. Copyright c© Springer Nature. (b) Viscoelastic solid: liquid drops spreading over an elastomeric

substrate cause large deformation at the contact line. The top panel reveals a ‘wetting ridge’ around amillimetric drop (courtesy

Mathijs Van Gorcum). The bottom panel is a magni�ed view of the wetting ridge at three phase contact lines. The scale bar

is 2µm. Adapted with permission from Park [18], under CC-BY 4.0 license. (c) Fracture in a viscoelastic liquid: the liquid is a

functionalizedmicro-emulsion, forming transient networks, and exhibits brittle fracture. The thread radius at fracture is around

0.3 mm. Adapted with permission from [19]. Copyright c© Royal Society of Chemistry. (d) Elastic thread: when suciently soft,

a cylinder of cross-linked agar gel undergoes a Rayleigh–Plateau instability (cylinder radius 0.24 mm). Adaptedwith permission

from [20]. Copyright c© American Physical Society. (e) Viscoelastic thread: beads-on-a-string formation during the pinch-o� of

dilute (0.01 wt%) aqueous polyacrylamide solution undergoing capillary thinning (jet radius 0.3 mm). Adaptedwith permission

from [21]. Copyright c© Cambridge University Press.

and sheets of viscous fluid, which on a short time scale are described by the nonlinear elastica
equations and the equations for elastic sheets, respectively. This analogy has subsequently been
derived more formally [42,43] and applied to many different physical situations.

As a particularly instructive example for the relationship between elasticity and viscoelasticity
made in the limit of large relaxation times, we consider the capillary instability of cylindrical
jets [20,44–46]. Figure 1d shows a cylinder of a fully cross-linked agar gel, which possesses a
well-defined reference state [20]. Despite its elasticity, the cylinder exhibits a Rayleigh–Plateau
instability that one usually associates with liquid jets [47]. The cross-linked network ultimately
prohibits break-up and leads to the formation of thin elastic threads. For comparison, figure 1e

shows a jet consisting of a dilute polymer suspension, a viscoelastic liquid; here break-up does
occur, and the tenuous liquid filaments become thinner over time [47,48]. Conversely, complex
liquids whose microstructure develops transient elastic networks can exhibit solid-like brittle
fracture [19,49], as shown in figure 1c. In this case, the deformation is initially liquid-like but
at some point breaks as if it were a solid.

It can be argued, as we will do, that viscoelastic liquids can be used as a universal modelling
paradigm for a broad class of soft matter systems such as in figure 1. In contrast to elastic solids,
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viscoelastic liquids such as polymer solutions or emulsions do not possess a permanent reference
state. Instead, they exhibit a fading memory of any prior deformation, which is characterized by
a relaxation time λ, which is the time scale over which elastic stresses relax during flow. Such
complex fluids are extremely common and important [2–4,50], as they occur whenever large and
flexible molecules or other similar structural elements are present in the flow, as is the case in a
vast range of biological and industrial contexts. In practice, soft materials with a complex internal
structure possess a broad distribution of time scales, and can exhibit a power-law response [51,52]
rather than the conventional exponential response.

Whenever a polymer is transported by a flow, it leaves its preferred reference state and
exerts a force back on the liquid. To make the extremely complicated interactions between liquid
and microstructure tractable, the polymer is often modelled as two beads, convected by the
flow and connected by an elastic spring [2]. If the spring is soft, the polymer experiences large
deformations, as the beads follow the complicated Lagrangian trajectories of the flow. As a result,
the response becomes very nonlinear even if the spring is Hookean. A fluid in which the stress
consists of a contribution of damped Hookean springs (damping due to friction with the solvent
complemented by the Newtonian stress of the solvent) is known as an Oldroyd-B fluid. Owing to
its conceptual simplicity it has become one of the most popular models of elastic liquids, although
it neglects any nonlinear response of the spring as well as interactions between constituents.

The relaxation time λ of the model polymer derives from the ratio of the frictional force
between a bead and the surrounding liquid divided by the spring constant, ensuring return to
an equilibrium state. In weak flows, such that the relaxation time multiplied by a typical rate of
deformation of the flow is small, the polymer remains close to its equilibrium shape, and only
makes a linear, Newtonian contribution to the stress. Even if the flow is strong, on a time scale
that is much larger than λ, the polymer will have ‘forgotten’ the deformations it experienced in
the past. Only in the limit λ → ∞ will each bead follow its Lagrangian path as a passive tracer
and produce an elastic response associated with large-deformation elasticity. In other words,
upon varying the time scale λ, viscoelasticity continuously bridges the gap between a Newtonian
liquid and a perfectly elastic solid. Various pioneering works are actually based on this idea,
using a continuum formulation of viscoelasticity that is based on the theory of elasticity with an
additional relaxation process [12,53–55].

We further illustrate the correspondence between elasticity and viscoelasticity using the
thinning of a viscoelastic cylinder under capillary action (cf. figure 1d,e). Figure 2 shows the
capillary thinning as modelled by the Oldroyd-B fluid. For λ = 0, the liquid has no memory and
the thread thickness hthr tends to zero like a power law [47,57], following a perfectly Newtonian
pinch-off. For finite λ, polymers become increasingly stretched by the elongational flow near any
potential pinch point, and the effective elongational viscosity increases exponentially. As a result,
a very uniform thread is formed whose radius decreases exponentially on a time scale set by λ.
At λ = ∞ one recovers a purely elastic behaviour, in this case that of a neo-Hookean solid. As
the solid becomes increasingly deformed by surface tension, elastic stresses build up until they
balance surface tension and a stationary thread of constant radius is formed.

(b) This review

As highlighted above, this review focuses on the specific issue of how the theories of elasticity
and of viscoelasticity are related, and to leverage what can be learned from this connection
in the context of recent research. This explicit relation is not frequently explored, but, in
fact, can be a very insightful and powerful tool for challenging problems, such as those in
figure 1. As an example, we recently solved a long-standing problem in the break-up of dilute
polymer suspensions by exploiting the elastic correspondence in the limit λ = ∞ [48]. Conversely,
viscoelastic liquids probed at high rates have been used as a model soft elastic solid at large
deformation [58].

The elastic correspondence offers a way to bridge the gap between different communities
working in various areas of soft matter (biophysics, chemistry, engineering, fluid physics),
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Figure2. Thinningdynamics of a viscoelastic liquid thread. The inset showsa liquid threadbetween twodrops of dilute polymer

suspension (courtesy A. Deblais and D. Bonn; see also [56]). The main panel shows the thinning dynamics of the thread as

described by an Oldroyd-B �uid, for di�erent values of the relaxation time λ. The thread thickness hthr is scaled by the initial

jet radius R0, while time is scaled by the capillary time τ =

√

ρR30/γ . The model continuously bridges between Newtonian

liquids (λ = 0) and elastic solids (λ = ∞). (Online version in colour.)

which often use different modelling approaches to mechanics. These approaches are very well
documented in established reviews and monographs [1–16]. However, there is a barrier to
crossing the disciplines because of differences in mathematical formulation; the purpose of this
review is to offer a unified exposition of elastic liquids and elastic solids. For example, while
fluid mechanicians are mostly familiar with an Eulerian description, solid mechanics is most
naturally expressed using the Lagrangian description. In addition, constitutive relations for
liquids are usually formulated in terms of the stress tensor, while hyperelastic solids are defined
by a (strain-dependent) free energy density [8]. We remark that a generalization of the concept
of hyperelasticity is known as implicit elasticity [13,15], in which the elastic internal energy is
dependent on both stress and strain, a situation we will not consider here.

We will use the elastic strain energy density of the polymers to present a systematic way
of deriving an energy balance equation for viscoelastic fluids. While a mainstay of Newtonian
fluid mechanics, energetic arguments are not much used for elastic fluids. Yet they reveal
important characteristics of such fluids, as energy can now be stored temporarily in its elastic
form, transported to other parts of the flow and eventually injected back as kinetic energy of
the flow.

The review is organized as follows. In §2, we briefly summarize classical continuum theory,
presenting side by side the formulations of viscoelasticity and of large-deformation elasticity.
Section 3 explores what we call the ‘elastic correspondence’, by investigating viscoelastic liquid
models in the limit λ → ∞. In particular, we show which models converge (or do not converge)
to elastic solids when taking this limit. The elastic correspondence is then exploited in detail by
the example of capillary thinning in §4, highlighting the importance of whether or not the elastic
correspondence exists. This also offers a new modelling paradigm to viscoelastic solids, based
on models of viscoelastic liquids. Section 5 discusses a thermodynamic approach to viscoelastic
liquids, and we discuss the relation between stress, energy and dissipation. We close with a
discussion in §6.

2. Classical continuum theory

(a) Viscoelastic �uids

The equations of motion for viscoelastic fluids are most commonly expressed in the Eulerian
description, using a velocity field v(x, t) that is a function of space x and time t. Here we consider
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the fluid to be incompressible, ∇ · v = 0, and described by the momentum balance

ρ

(

∂v

∂t
+ v · ∇v

)

= ∇ · σ , (2.1)

where σ is the stress tensor. The stress tensor is split into a Newtonian contribution (coming, for
example, from a solvent) and a polymeric (viscoelastic) contribution σ p,

σ = −pI + ηsγ̇ + σ p ≡ −pI + τ , (2.2)

where the deviatoric stress τ is the contribution excluding the pressure. We defined the rate-of-
deformation tensor to be

γ̇ = (∇v) + (∇v)T (2.3)

and ηs is the solvent viscosity. Any isotropic contribution to the stress can be written as part of the
pressure p. The non-Newtonian contribution σ p originates from the presence of the microstructure
inside the fluid. Though we will refer to σ p as the ‘polymeric stress’, having in mind dilute
polymer suspensions, the concept equally applies to emulsions whose microstructure is described
by droplet deformations [59,60]. The stress σ p is governed by a separate evolution equation, the
constitutive equation, which encodes the non-Newtonian properties of the fluid. Specifically, for
viscoelastic liquids, the constitutive equation describes the relaxation of stress over a time scale λ.

Many different approaches to modelling σ p can be found in the literature [2–7,9,50]; these can
be roughly divided into two categories. The first approach is that the polymer stress σ p should be
a functional of the history of deformation [5,9]. These constitutive relations are expressed either as a
differential equation or in an integral form. In the latter case, one explicitly performs an average
over past deformations with a weight factor that encodes the fading memory. Many of these
constitutive equations are based on systematic expansions, where at each order one gradually
adds more information of the deformation history and/or more nonlinearity [5]. The advantage
of such an approach is that the calculation of stress is direct, though care must be taken that the
formulated model is thermodynamically consistent [6].

In the second approach, the polymer stress is not expressed directly in terms of the
deformation, but rather in terms of an order parameter field, A(x, t), that characterizes the state
of the polymer (or, more generally, of the microstructure). In this approach, the polymeric stress
is written as σ p = σ p(A). The coupling to the deformation history is then achieved by a separate
relaxation equation for A(x, t), which describes how the microstructure evolves over time. The
advantage of an order parameter description is that it can be embedded in a thermodynamically
consistent framework, as done, for example, in the bracket [6] and the GENERIC [7] formalisms.
For polymer solutions and emulsions, the natural order parameter A is the so-called conformation

tensor: it is a second-rank tensor that characterizes the amount of stretch of the polymer. The
tensorial nature arises since stretching will in general be different along different directions. It
has the property that the polymer stress vanishes when A = I, where I is the identity tensor,
and its principal values represent the stretches along principal directions. Another merit of the
conformation tensor description is that it can be derived by coarse-graining microscopic models
based on suspended bead-and-spring dumbbells [2].

As we will see below, the formulation in terms of a conformation tensor offers a natural
connection to the theory of elasticity—which is the central purpose of this review. Therefore, in
the remainder of the paper we focus primarily on constitutive modelling based on a conformation
tensor. In §3e, and in a few other places, we briefly discuss how the conformation tensor models
are connected to descriptions based on the history of deformation. Though the relation σ p(A)
and the evolution equation for A can often be derived from microscopic models, we here
follow a purely continuum approach, without referring to any microscopic model. Once again,
the continuum description has the advantage of exposing the correspondence to the theory of
elasticity—the ‘elastic limit’ is obtained by considering viscoelastic fluid models in the limit
λ → ∞. We will see that this elastic correspondence completely determines the dependence σ p(A).
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(i) The subtlety of the time derivative

Let us start by considering the simplest type of model based on the conformation tensor. In this
case, the relation σ p(A) is linear

σ p = µ (A − I) , (2.4)

where µ is the analogue of the elastic shear modulus. The state variable A must have the property
that it evolves towards its relaxed state A = I in the limit of long times. Once more, the simplest
way of doing this is through a linear relaxation law

Ȧ = −
1
λ

(A − I) ,

which is known as a Maxwell model. In such a model, an initial condition A relaxes exponentially
towards A = I on a time scale λ. However, it has been known for a long time [2,61] that, for the
dynamics of a second-rank tensor to be frame invariant [50], i.e. to be independent of the frame
of reference, the ordinary time derivative needs to be replaced by one of two frame-invariant
derivatives or a linear combination of the two. The so-called upper convected derivative

▽

A =
∂A

∂t
+ v · ∇A − (∇v)T · A − A · (∇v) (2.5)

is derived from the requirement that its components transform consistently as the components of
a contravariant tensor. The first two terms on the right are the convected derivative of a material
point, ensuring Galilean invariance; the last two terms make sure that A transforms correctly
under deformations by the flow. However, a covariant formulation does equally well from the
point of view of frame invariance, but yields a different derivative, known as the lower convected

derivative,
△

A =
∂A

∂t
+ v · ∇A + A · (∇v)T + (∇v) · A. (2.6)

As the names suggest, these derivatives have natural geometric interpretation in curvilinear
coordinates that are convected with the flow [50,61,62]. For completeness, the curvilinear
description is given in appendix A, where we discuss in detail the geometric interpretation.

From the point of view of frame invariance, one is thus left with a somewhat unpleasant

ambiguity. Namely, the derivatives
▽

A and
△

A, and linear combinations of the two, are equally
admissible when building a theory for viscoelastic fluids. The resulting mechanical behaviour,
however, is manifestly different depending on the choice of the derivative. In particular, when
using the upper convected derivative, the stress will grow exponentially in a strong extensional
flow, as expected from a bead-and-spring model [2], where the two beads will be separated by the
flow. However, the ambiguity of the time derivative can be lifted more generally, without relying
on any microscopic model. This becomes particularly clear when working out the correspondence
to the theory of elasticity.

Using the upper convected derivative, a linear relaxation law thus takes the form

▽

A = −
1
λ

(A − I) . (2.7)

It is instructive to combine (2.4) and (2.7), such that we have a single equation of motion for the
polymeric stress. Introducing the polymeric viscocity ηp = µλ, this gives

σ p + λ
▽

σ p = ηpγ̇ . (2.8)

This is a tensorial form of the upper convected Maxwell model. The stress tensor (2.2) with σ p

given by (2.8) is known as the Oldroyd-B model [2]; in the limit of vanishing rates of deformation,
it describes a Newtonian fluid of total viscosity η0 = ηs + ηp. Figure 3 provides a schematic of
the Oldroyd-B fluid, whose mechanical response consists of a Newtonian solvent in parallel with
a so-called upper convected Maxwell fluid. When omitting the solvent, one recovers the upper
convected Maxwell model.
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Figure 3. Qualitative representation of the Oldroyd-B �uid. The deviatoric stress is given by the sum of the Newtonian stress

of the solvent (viscosity ηs) and the viscoelastic stress of the upper convected Maxwell �uid. The latter is characterized by a

polymer viscosity ηp and an elastic modulusµ. The ratio of ηp/µ gives the polymer relaxation time λ. Note that the spring-

dashpot analogy is not to be taken quantitatively, certainly not at large deformations where one encounters strongly nonlinear

responses.

Equation (2.8) is an example of a constitutive relation where σ p is expressed in terms of the
history of deformation. Here this is in the form of a differential equation, where deformation is
encoded in γ̇ and in ∇v in the upper convected derivative. In fact, (2.8) is a special case of the
more general expansion by Oldroyd [5], known as the eight-constant model, in which all terms to
second order in stress and strain rate are retained, while respecting frame invariance. We return
to Oldroyd’s eight-constant model in §3e. For now, let us remark that, in such an expansion, there

is no mathematical ground to anticipate whether taking
▽

σ p or
△

σ p in (2.8) would do a better job in
describing polymeric fluids.

Although the Oldroyd-B model is very popular owing to its simplicity, there are many relevant
physical effects which are not captured. For example, it incorrectly describes the shear-thinning
behaviour of polymeric fluids, and in a strong extensional flow the stress will grow indefinitely.
This can be avoided by incorporating the fact that the spring can only reach a finite extension, by
making the spring constant increase as full extension is reached. There exist numerous extensions
of the Oldroyd-B equations in that spirit; for example, taking into account nonlinearity in both
(2.4) and (2.7), or in the solvent contribution in (2.2). In §5c, we supply a list of various models.
Apart from the question of frame invariance, models have to be consistent with the requirements
of thermodynamics [6,7,59,60,63].

(b) Elasticity

We now turn to a brief exposition of the theory of elasticity [8,64]. While fluid mechanics is usually
expressed in the Eulerian formulation, using the spatial coordinates x to describe the system,
nonlinear (finite deformation) elasticity is written in a Lagrangian formulation based on material
coordinates. This is because elastic solids exhibit a well-defined (undeformed) reference state, in
which elastic energy is minimal and the elastic stress vanishes. The material coordinates in this
reference state are denoted by X. Deformations are described by a mapping x = χ (X, t), where x

denotes the position of a material point after the deformation, which used to be at X before the
deformation. In fluid mechanics, the mapping is known as a Lagrangian path of a particle with
label X. Flow corresponds to the case where the mapping χ is time dependent, though even static
deformations are of interest in the context of solid mechanics.

The theory of (hyper)elastic solids is based on the idea that deformations are perfectly
reversible, without any dissipation, so that their constitutive behaviour can be formulated in
terms of an elastic free energy. Figure 1a offers a spectacular example of a solid with a perfectly
reversible response. If the medium is isotropic, the density of elastic energy W can only depend
on the change in distance between material points generated by a deformation [10]. To evaluate
this change of distance, we introduce the deformation gradient tensor F = ∂x/∂X. Namely, if ds

is the distance between two points which used to be a distance dS apart, we obtain [8], using
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dx = F · dX, that
ds2 − dS2 = dXT ·

(

FT · F − I
)

· dX. (2.9)

The deformation is thus encoded in Green’s deformation tensor C = FT · F, which is a symmetric
second-rank tensor that is defined on the reference configuration (the tensor (FT · F − I)/2 is called
the finite-strain tensor). The stored density of elastic energy must be a function of C, or, more
specifically, of the invariants of C. The energy function W = W(C) must also have the property
that it assumes a minimum for C = I, when the material is undeformed from its reference state.
This means that any deformation costs energy, which is a necessary condition for the unstressed
state to be stable.

Given that we are interested in the connection to Eulerian theory for viscoelastic liquids, we
will not pursue further the Lagrangian formulation of elasticity—for that we refer to [8,64]. All we
need for the present discussion is that C shares the same eigenvalues as those of the Finger tensor
[8], defined as B = F · FT. This can be understood when expressing F along principal directions.
In that case F is diagonal and the eigenvalues {Λi} are the principal stretches, expressing the
corresponding ratio of ds and dS; the corresponding B and C are then also diagonal, with identical
components {Λ2

i }. So, why do we wish to use the Finger tensor? In contrast to C, the Finger tensor
B is an Eulerian tensor, defined on the current configuration,1 and is therefore more appropriate
when connecting to the Eulerian description of viscoelastic liquids. Given that the invariants of C

are the same as those of B, we can thus write W = W(B) for the elastic free energy density.
Though not necessary, from now we on focus on incompressible deformations (as is the case

for most polymeric solids), for which det(F) = 1. Once the free energy is specified, the (Cauchy)
stress tensor for incompressible media follows as [8,64]

σ p =
∂W

∂F
· FT = 2

∂W

∂B
· B, (2.10)

where in the second step we exploited the symmetry of B. This expression is a consequence
of the virtual work principle [9], which requires that any change in the elastic energy density
satisfies [10]

dW

dt
= σ p : (∇v)T =

1
2
σ p : γ̇ , (2.11)

where in the second step we used the symmetry of σ p. The derivation of (2.10) and (2.11) will be
spelled out in §5. As we argued before, W can only be a function of one of the invariants of B,
which can be written as

I1 = Bkk, I2 =
1
2

(

B2
kk − BijBij

)

and I3 = det(B), (2.12)

where we recall that I3 = det(F)2 = 1 for incompressible media. Hence, we can write the free
energy as a function of the first two invariants only: W(I1, I2). The constraint I3 = 1 will be ensured
by an isotropic pressure acting as a Lagrange multiplier. Using the relation between energy and
stress (2.10), and the definitions of the invariants (2.12), we obtain

σ p = 2W1B + 2W2 (tr(B)B − B · B), (2.13)

where W1 ≡ ∂W/∂I1 and W2 ≡ ∂W/∂I2. This can be simplified using the Cayley–Hamilton
theorem, which reads

det(B)B−1 = B2 − tr(B)B +
1
2

(

tr(B)2 − tr(B2)
)

I. (2.14)

Using det(B) = det(F)2 = 1, the stress can now be written as

σ p = 2W1 (B − I) + 2W2

(

I − B−1
)

, (2.15)

where for convenience we have absorbed an isotropic contribution into the pressure.

1More precisely, B is a tensor in the vector space defined by x, while C is a tensor in the vector space defined by X. These
aspects are made explicit in the curvilinear description given in appendix A.
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The derivatives W1 and W2 can be arbitrary nonlinear functions of the invariants I1 and I2. If
W1 = µ/2 and W2 = 0, one finds the neo-Hookean model. The corresponding neo-Hookean energy
reads W = (1/2)µ(I1 − 3), while using (2.15) one finds the stress to be σ p = µ(B − I). Elastic models
that contain both W1 and W2 as constants, so that the energy density is a linear combination of I1

and I2, go by the name of Mooney–Rivlin solids.
Interestingly, the neo-Hookean stress σ p = µ(B − I) is of the same form as the viscoelastic

expression for stress obtained in (2.4), for the Oldroyd-B fluid. The connection follows upon
replacing the Finger tensor B by the conformation tensor A. This correspondence is not a
coincidence. According to (2.9), the Finger tensor B measures the amount of stretching due to
deformation of the entire medium. Similarly, we had postulated that the conformation tensor A

provides a measurement of the amount of stretch—albeit not of the entire medium, but only of
the polymer inside the solvent. Let us now proceed towards making this correspondence more
rigorous.

(c) Kinematics: the Eulerian–Lagrangian connection

To make a connection between Eulerian models for polymeric liquids and the Lagrangian
formulation of elasticity, we need to find out what are the deformations generated through
transport by the velocity field v. The velocity field is connected to the motion of material points
by v = dx/dt, where d/dt is a time derivative at constant material point X. Then it follows from
the chain rule that [3,50,65]

dF

dt
= (∇v)T · F and

dF−1

dt
= −F−1 · (∇v)T , (2.16)

where (∇v)ij = ∂ivj. The relation (2.16) permits us to calculate the deformation gradient tensor
from v, and thus to pass from an Eulerian to a Lagrangian description.

Many kinematic relations can now be derived, but here we immediately turn to the main
point of interest: the convected time derivatives of an Eulerian tensor A(x, t), and its relation
to the Lagrangian mapping F(X, t), which is central to elasticity theory. To achieve that, we use
the following identity relating the upper convective derivative and the time derivatives of the
mapping [50]:

▽

A = F ·

[

d
dt

(

F−1 · A · F−T
)

]

· FT. (2.17)

Making use of (2.16), the explicit evaluation of the time derivative in (2.17) indeed gives the
original definition (2.5) of the upper convected derivative. The representation (2.17) of the upper
convected derivative has a natural interpretation. Since convection plays no role in the domain of
material coordinates, one first projects the Eulerian tensor A back to the Lagrangian domain,
using the inverse transformation F−1 · A · F−T. Then the time derivative is performed on the
Lagrangian domain without suffering from the effect of flow. Finally, the result is returned to
the Eulerian domain to yield a truly objective tensorial time derivative. Thus, we see that the
tensor F plays a curious double role. On the one hand, as seen from (2.9), it produces a measure of
elastic deformation, as defined by Green’s deformation tensor. On the other hand, as implied by
(2.17), it is also a ‘machine’ which transforms between reference and current state. This is because
F is a two-point tensor with one leg on the reference configuration and the other on the current
configuration.

However, the above procedure is not unique. Namely, instead of F−1 · A · F−T one can also
construct a Lagrangian tensor as FT · A · F. Following the same procedure as above, this gives an
alternative time derivative

△

A = F−T ·

[

d
dt

(

FT · A · F
)

]

· F−1, (2.18)

which again agrees with the lower convected derivative as defined in (2.6).
So how can one decide which one of the two transformations (or a mixture of both) is

appropriate? The answer is that this depends on the physical meaning of A. In the curvilinear
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description, developed in appendix A, it is shown that the two transformations, F−1 · A · F−T

and FT · A · F, give the transformations of the contravariant and covariant components of the
tensor A, respectively. In the curvilinear framework, the relaxation equation for the conformation
tensor—which measures the stretching of the polymer—is naturally expressed in contravariant
form.2 Hence, the upper convected derivative emerges, consistently with the results of the bead-
and-spring model. Rather than following the curvilinear description, we now proceed by a more
intuitive discussion of this result through the elastic limit λ → ∞ of viscoelastic models.

3. The limitλ → ∞: do all viscoelastic models converge to elastic solids?
The central purpose of the paper is to lay out the relationship between viscoelastic models and
the theory of elasticity. It is clear that this connection is to be found by investigating the limit
of infinite relaxation time, for which we expect a perfect memory of any preceding deformation.
Therefore, the precise question we wish to address is whether a given viscoelastic fluid model,
in the limit λ → ∞, converges to the constitutive relation of an elastic solid. The latter is defined
by (2.15) for an incompressible elastic solid. It will turn out that this elastic correspondence exists
only for a specific class of rheological models. With this perspective, we will revisit the so-called
Pipkin diagram that is used classically to summarize the regimes of viscoelastic responses, and
comment on the meaning of the elastic correspondence for viscoelastic solids.

(a) An example: ane motion

(i) The conformation tensor in the elastic limit

We start by considering rheological models that involve the upper convected derivative of the
conformation tensor, an example of which is given by the Oldroyd-B fluid (2.7). In the elastic
limit, λ → ∞, this class of models reduces to

▽

A = 0. (3.1)

This equation describes the evolution of the conformation tensor in the elastic limit, induced by a
flow v(x, t).

Upon inspection of (2.17), one easily verifies that the Finger tensor B = F · FT has the property

that
▽

B = 0 [3]. Hence, we have found a perfectly valid solution to (3.1), namely A = B. For the
Oldroyd-B fluid, where we had σ p = µ(A − I), we thus find that the polymer stress in the elastic
limit exactly reduces to that of a neo-Hookean solid, σ p = µ(B − I). When omitting the solvent
viscosity in the Oldroyd-B fluid, the model reduces to the upper convected Maxwell fluid. The
above analysis thus demonstrates that, in the limit λ → ∞, the upper convected Maxwell fluid is
strictly identical to a neo-Hookean solid. In some cases the formulation of fluid models was in
fact based on the observation that the Finger tensor vanishes [54], allowing a natural connection
between viscoelasticity and elasticity.

It is clear that this route provides the correspondence between viscoelasticity and elasticity we
were looking for. Equation (3.1) applies not only to the Oldroyd-B fluid, but also to any model

for which the relaxation is of the form λ
▽

A = f (A). It is therefore instructive to integrate (3.1) more
formally, and find the general solution. This can be done by multiplying (2.17) by F−1 from the left
and F−T from the right, which enables us to integrate in time to obtain F−1 · A · F−T ≡ D0 = const.
Correspondingly, we find

A = F · D0 · FT. (3.2)

Here D0 is a constant (time-independent) Lagrangian tensor, defined on the reference domain,
which is therefore independent of the mapping; D0 can be viewed as an integration constant and

2A more precise statement is that the relaxation equation for the conformation tensor is contravariant when the polymer is
convected affinely with the flow.
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can be determined from initial conditions. To illustrate this, we consider a case where there is a
pre-stress σ

(0)
p in the initial state for which F = I. For the case of a simple neo-Hookean relation

(2.4), it follows that

A = F · FT +
1
µ

F · σ
(0)
p · FT. (3.3)

In the particular case of a stress-free initial condition, we recover A = B, for which the reference
state coincides with the initial condition. This illustrates how the concept of a reference state,
central in the theory of elasticity, emerges in viscoelastic liquids as λ → ∞: it appears as an
integration constant that can be determined from the initial condition.

(ii) Kinematic interpretation

We are now in a position to give a kinematic interpretation to the relaxation equation λ
▽

A = f (A),
making use of the elastic limit λ → ∞. In this limit, we have seen that the upper convected
derivative implies that the conformation tensor A (stretching of the polymer) evolves in the exact
same way as the Finger tensor B (stretching by the flow F). Hence, the polymer stretches simply
by following the flow. This type of evolution of the conformation tensor due to deformation
is called affine, in the sense that it follows the flow perfectly. The concept of affine motion, in
conjunction with the upper convected derivative, appears naturally in microscopic bead–spring
models. There, the upper convected derivative appears when the vector describing the orientation
and length of the spring is transported in the same way as any vector moving along with the
fluid [3]. However, such kinematic considerations do not require any specific microscopic model
and can be inferred from purely continuum considerations (the general case for finite λ will be
discussed in §5).

If on the other hand the relaxation law is based on the lower convected derivative, such that

λ → ∞ implies
△

A = 0, using (2.18) we find A = B−1 ≡ F−T · F−1. This corresponds to a response in
a direction opposite the flow. Hence, if we had elected a conformation tensor that measures the
inverse of the polymer stretching, affine motion requires the use of the lower convected derivative.
Let us illustrate these two cases using the simple elongational flow

vr = −
1
2
ǫ̇r and vz = ǫ̇z. (3.4)

Integrating (2.16) with initial condition F = I one obtains

B =

(

e−ǫ̇t 0
0 e2ǫ̇t

)

and B−1 =

(

eǫ̇t 0
0 e−2ǫ̇t

)

. (3.5)

In other words, B describes stretching in the z-direction and contraction in the radial direction
that is generated by the flow v, while B−1 describes the inverse. More precisely, the eigenvalues
of B−1 represent the ratio of the change in surface areas normal to the stretching direction [3].

The important conclusion here is that the choice of the conformation tensor as a measure of
the polymer stretch (or its inverse) singles out the use of the upper (lower) convected derivative
as the natural operator to specify affine transport induced by the flow. Since for polymers it is
common that A measures the stretch, the affine transport implies the upper convected derivative.

(b) A counterexample: non-ane motion

By combining the upper and lower derivatives, one can describe a situation where the polymer
deformation partially follows the flow, making it non-affine to a certain degree. This type of
constitutive relation is of interest, e.g. to capture the formation of shear bands as observed in
worm-like micellar solutions [66–68]. It will turn out that this class of model does not converge to
any elastic solid, even when taking the limit λ → ∞.

To show this, we consider the derivative used, for example, in the Johnson–Segalman model
[69], which takes into account the possibility that the polymer does not follow the flow of the



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20200419
...........................................................

solvent in an affine fashion but slips with respect to the flow. This is accomplished by introducing
the polymer velocity va, which satisfies

∇va =
a

2

[

∇v + (∇v)T
]

+
1
2

[

∇v − (∇v)T
]

=
1 + a

2
∇v −

1 − a

2
(∇v)T, (3.6)

where a (the so-called slip parameter) satisfies −1 ≤ a ≤ 1. Indeed, for a = 1, ∇va and ∇v are the
same, and the polymer follows perfectly. This is no longer the case for a �= 1. The antisymmetric
parts of ∇va and ∇v are the same, which means that va and v have the same vorticity, so that
the polymer follows any solid body rotation of the flow perfectly. On the other hand, the rate
of deformation of the polymer (symmetric part) satisfies γ̇ a = aγ̇ . One can now define the upper
convected derivative with respect to the slipping polymer,

▽

(A)a ≡
dA

dt
− (∇va)

T · A − A · (∇va) =
1 + a

2

▽

A +
1 − a

2

△

A, (3.7)

where in the following d/dt denotes the material derivative. This resulting superposition of upper
and lower derivatives gives rise to the so-called Gordon–Schowalter derivative [70].

To illustrate the consequences of this non-affine motion, we consider a relaxation law based on
(3.7), as is used, for example, in the Johnson–Segalman model. In that case, the evolution equation
in the limit λ → ∞ takes the form

▽

(A)a = 0. (3.8)

Importantly, unless a = ±1, this equation in general does not have an explicit integral in terms of
F, as in (3.2). We will see that this points to the absence of an elastic correspondence. To illustrate
this, we consider the specific case of a uniform, steady shear flow v = γ̇ yex, and take the initial
conditions as A = I. Solving (3.8) for this velocity field, one obtains [3,71]

A =

⎛

⎜

⎜

⎜

⎝

1
(1 − a)

[

1 − a cos
(

√

1 − a2γ̇ t
)] a

√

1 − a2
sin

(

√

1 − a2γ̇ t
)

a
√

1 − a2
sin

(

√

1 − a2γ̇ t
) 1

(1 + a)

[

1 + a cos
(

√

1 − a2γ̇ t
)]

⎞

⎟

⎟

⎟

⎠

. (3.9)

Hence, A exhibits an oscillatory behaviour when a2 �= 1. Such an oscillatory response during a
simple shear deformation cannot correspond to any elastic model as defined by (2.15).

Physically, the oscillations can be understood from the non-affine kinematics described by
(3.6). The flow v = γ̇ yex can be written as a superposition of an elongational flow and a rigid
body rotation of equal amplitude. Any slip (a < 1) removes part of the elongation flow, while the
full rigid body rotation is retained. This effectively leads to an ‘excess’ rigid body motion, which

gives rise to a periodic ‘flow’ of the polymer with a frequency
√

1 − a2γ̇ . We remark that these
oscillations have a purely kinematic origin, and thus persist for a Johnson–Segalman fluid that is
sheared at finite values of λ [4].

From these observations we draw an important conclusion. Only in the cases where a2 = 1 do
the viscoelastic constitutive relations exhibit a well-defined elastic limit, in the sense that their
behaviours converge to that of an elastic solid in the limit of λ → ∞. The very same conclusions
were reached in the context of emulsions, whose drops deform into ellipsoids—in that case the
eigenvalues of A represent the square of the semi-axes of the deformed droplets [59,60]. Any other
time derivative, which implies non-affine motion, does not correspond to any limit of the theory
of elasticity. As an example, we have seen that simple shear leads to oscillations in A, which
cannot represent any rubber-like behaviour, even in the absence of any relaxation process.

(c) Large Deborah number versus large Weissenberg number

Up to now we have considered the limit λ → ∞, without specifying under what conditions
the time scale λ can be considered sufficiently large. A distinction should be made between a
high-frequency response at small amplitude of deformation and a low-frequency response at
large deformation [2,3,72]. The former is governed by the Deborah number, De = λω, where ω
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is a typical frequency at which the material is excited during unsteady dynamics. The latter is
governed by the Weissenberg number, Wi = λγ̇ , where γ̇ is a typical imposed shear rate (which
can be constant in time).

(i) Shear �ow in the Johnson–Segalman model

We now make explicit the different roles of large De and large Wi, and what it means to consider
λ → ∞. For this, we again consider the simple shear problem, but now at finite λ. As a model, we
take the Johnson–Segalman fluid, defined as

σ p = aµ(A − I),
▽

(A)a = −
1
λ

(A − I). (3.10)

The polymer stress has a neo-Hookean structure, with the relaxation based on the Gordon–
Schowalter derivative. Combining the two equations, the model can be recast in the form of a
Maxwell fluid based on a non-affine derivative,

σ p + λ
(

▽

σ p

)

a
= ηpγ̇ , (3.11)

where ηp = a2µλ. We remark that the effect of a only couples to the nonlinear term of the time
derivative (this follows from inspecting the definition). Hence, the Johnson–Segalman model at
small deformations is independent of the slip paramater a: this is commonly referred to as linear
viscoelasticity. Non-affine effects only appear at large deformations.

Considering a simple shear flow with a stress-free initial condition (and omitting fluid inertia),
the system (3.10) can be solved and gives for the shear component [66]

Axy =
a Wi

1 + (1 − a2)Wi2

(

1 − e−(t/λ)
[

cos(
√

1 − a2 γ̇ t) − Wi
√

1 − a2 sin(
√

1 − a2 γ̇ t)
])

. (3.12)

There are now two distinct ways of taking the limit λ → ∞. In the first, we consider t ≪ λ, such
that the polymer did not yet have any time to relax. Formally, this corresponds to Wi → ∞ at finite
t. In this case (3.12) indeed converges to Axy as given by (3.9). In the second limit, we first consider
large times t ≫ λ at finite Wi, and subsequently send Wi → ∞. In this case, one can omit the
exponential term in (3.12) and recover a steady-state response that depends on Wi. This steady-
state response of the polymer is non-monotonic with Wi and has therefore been used to describe
shear banding [66–68]. Transiently, when t ∼ λ, one observes damped oscillations that give rise to
an overshoot of stress, as is well known for the Johnson–Segalman model [71]. As far as we are
aware, however, these oscillations have not previously been recognized as a signature that such a
viscoelastic model cannot possess an elastic limit.

(ii) The Pipkin diagram: ane versus non-ane motion

In the present case of steady shear flow, we do not impose any oscillatory motion, so in a sense
it could be considered as a case of vanishing Deborah number. However, given that at t = 0 we
start from a stress-free initial condition, t−1 effectively provides a frequency of excitation of the
polymer: we therefore use De = λ/t to characterize the unsteady response. Then, the two distinct
limits discussed above correspond, respectively, to the limit Wi → ∞ at finite De and to the limit
De → ∞ at finite Wi. We proceed by summarizing the response during simple shear in the form
of a ‘Pipkin diagram’, in figure 4, resembling those found in [3,5].

The horizontal and vertical axes in figure 4, respectively, indicate the separate roles of
De = λ/t and Wi = λγ̇ . Since γ̇ t is a typical strain, the line Wi = De delineates small from large
deformations. Below the line, one finds linear elasticity (high De) and linear viscoelasticity
(intermediate De), both pertaining to small deformations. At low De, one reaches the limit
of steady flow, where at long times the deformations will become large. The corresponding
behaviour at small Wi is obviously Newtonian, while nonlinear viscoelastic effects (such as
normal stress differences) appear at intermediate Wi.
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Figure4. Pipkindiagram for thepolymer responseunder simple shear. The axes reportWi= λγ̇ andDe= λ/t,where t is the

time after starting the �ow from a stress-free initial condition. The appearance of damped oscillations for a2 �= 1 is associated

with the absence of an elastic limit. The �gure summarizes the regimes of the Johnson–Segalman model (3.12), but the result

is valid for arbitrary polymer models under shear.

In the traditional Pipkin diagram, no distinction is made between the affine and non-affine
responses. Here we emphasize that the behaviour in the elastic limit Wi, De → ∞, crucially
depends on the (non-)affine nature of the polymer motion. In particular, (3.12) shows that

oscillations emerge at a frequency γ̇
√

1 − a2, which are damped over a time scale λ. This
emergence of (transient) oscillatory motion is the hallmark of non-affine effects—and signals
the absence of an elastic limit. Only when a2 = 1, corresponding to perfectly affine motion, does
Wi, De → ∞ give the response of an elastic solid.

(d) Dynamics of viscoelastic solids

It is important to emphasize that figure 4 only pertains to the polymer stress σ p. In the presence
of a viscous solvent (as in the Oldroyd-B model) the high-frequency stress response is actually
dictated by the solvent viscosity, not by the polymer elasticity. Still, the limit λ = ∞ of the Oldroyd-
B fluid is very useful for describing viscoelastic solids. By this, we refer to materials that perfectly
recover their reference state once all stress is released, but at the same time exhibit dissipation
during transient deformations. A schematic of a viscoelastic solid is obtained from figure 3 by
omitting the dashpot in the upper branch, in which case one recovers the Kelvin–Voigt solid [73].
In the tensorial constitutive equation this corresponds precisely to taking the limit λ = ηp/µ → ∞,
while keeping a finite ratio ηs/µ. In this limit, the Oldroyd-B fluid thus reduces to a neo-Hookean
solid in parallel with a Newtonian solvent.

The effect of dissipation is indeed extremely relevant for soft rubbers and elastomers. As a
prime example we mention pressure-sensitive adhesives, whose adhesive strength is enhanced
through strong dissipation during debonding [29–31]. It should be noted that such adhesives
undergo irreversible deformations and do not recover their original reference state—as such they
are not described by viscoelastic models in the limit λ → ∞. However, there is a growing interest
in the so-called reversible adhesives [74–77]. These do remain intact after debonding and as such
fall into the class of viscoelastic solids that preserve their reference state. Another important
example involving viscoelastic solids is found when liquid drops spread over soft elastomeric



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20200419
...........................................................

substrates [27,28,78], which was shown in figure 1b. The spreading dynamics of such drops is
known to be extremely slow because of dissipation inside the solid. This phenomenon is called
viscoelastic braking [25,26], and much research is currently dedicated to finding appropriate models
for this coupled fluid–structure interaction problem [28,79,80].

The present analysis demonstrates that (reference state-preserving) viscoelastic solids can
indeed be captured by a fully Eulerian approach, through viscoelastic fluids (like Oldroyd-B)
in the limit λ → ∞. By now, it should be clear that this route only works for affine models, with
an upper convected derivative for the conformation tensor.

(e) A brief note on constitutive models without the conformation tensor

The discussion so far has been restricted to constitutive relations based on the conformation tensor
A, the reason being the elegant connection between A and the Finger tensor B in the theory of
elasticity. A natural question is whether the above considerations carry over to other viscoelastic
theories, which do not explicitly involve the conformation tensor. Specifically, many models are
based on the idea of expressing stress directly as a functional of the history of deformation [5,9].
Here we briefly touch upon such models, by expanding on the discussion of the upper convected
Maxwell model.

(i) Integral forms

We first discuss the integral formulation of viscoelasticity, which is based on a memory kernel
acting on past deformations. The approach is illustrated through a direct integration of the upper
convected Maxwell model, as given by (2.7). The integration was already achieved for λ = ∞

(see the discussion around (3.1)), but the integral exists also at finite λ [3]. For a stress-free initial
condition at t = 0, the solution reads3

A(t) = e−(t/λ)B(t) +
1
λ

∫ t

0
dt′ e−(t−t′)/λBt′ (t), (3.13)

where we introduced

Bt′ (t) = F(t) ·
[

F−1(t′) · F−T(t′)
]

· FT(t). (3.14)

The interested reader can find the derivation in appendix B. In this review, we focus on materials
with a single time scale only. This can easily be generalized to multiple modes [2], with separate
time constants λi. In the limit of a continuous, broad distribution of time scales, one arrives
at power-law materials [13,51,52] for which the exponential kernel of (3.13) is replaced by a
power law.

The object Bt′ (t) can be seen as a generalization of the Finger tensor: while B(t) ≡ B0(t) measures
the stretches compared with a ‘reference’ state at t = 0, the tensor Bt′ (t) measures the stretches at
time t compared with the state at another time t′. The elastic correspondence is easily recovered in
the integral formalism. Taking λ → ∞ at finite t, (3.13) reduces to A(t) = B(t) at all times t ≥ 0. For
viscoelastic fluids with a finite λ, the initial condition plays no specific role and it is more natural
to express (3.13) as

A(t) =
1
λ

∫ t

−∞

dt′ e−(t−t′)/λBt′ (t). (3.15)

Once multiplied by the shear modulus, to obtain σ p, this form goes by the name of the Lodge
equation [3]. This form nicely reveals that the stress can indeed be considered as an integral over
the entire history of deformation. The associated kernel exp(−(t − t′)/λ) accounts for the fading
memory over a time λ.

A more general integral formulation of viscoelasticity goes back to the Kaye–Bernstein–
Kearsly–Zapas model (KBKZ), which is directly inspired by the theory of elasticity [53,55]. In

3We define the reference state at t = 0, which implies that B(0) = I. A stress-free initial condition implies A(0) = I, which is the
case in (3.13).
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this model, the non-Newtonian contribution to the stress is written as

σ p =

∫ t

−∞

dt′
[

W1(t − t′)Bt′ (t) − W2(t − t′)
(

Bt′ (t)
)−1

]

. (3.16)

Here the connection to the elasticity theory is very explicit: the stress is of the same form as
(2.15), with time-dependent elastic moduli W1, W2 that serve as memory kernels. The Lodge
equation (3.15) is recovered by λW1 = µ exp(−(t − t′)/λ) and W2 = 0. Let us remark that, in the
general case where both kernels W1(t − t′) and W2(t − t′) are non-zero, the KBKZ model cannot
be reduced to a simple conformation tensor description. We can interpret the integral over Bt′ (t)
as the conformation tensor A using (3.15). However, the integral over [Bt′ (t)]−1 does not lead to
A−1, not even when both kernels have the exact same time dependence. Hence, the deformation
history in (3.16) gives rise to two independent ‘state variables’ (or two conformation tensors) that
determine the polymer stress.

(ii) Expansions

The upper convected Maxwell model can thus be expressed in various equivalent forms: the
conformation tensor description, (2.4) and (2.7), the integral (3.16), but also of course in the
more common differential from (2.8). This, however, is not the case for all viscoelastic models,
in particular when the models result from expansions. For example, the Oldroyd-B model can be
seen as a special case of Oldroyd’s eight-constant model [2,50],

σ + λ1
▽

σ + λ2
(

γ̇ · σ + σ · γ̇
)

+ λ3tr(σ )γ̇ + λ4(σ : γ̇ )I = η

[

γ̇ + λ5
▽

γ̇ + λ6γ̇ · γ̇ + λ7(γ̇ : γ̇ )I
]

. (3.17)

Equation (3.17) is an expansion that contains all quadratic terms in stress and strain rate, provided
they satisfy frame invariance. The Oldroyd-B and Johnson–Segalman fluids are particular
versions of it, with ηp, ηs, µ and a as the only non-zero constants. As far as we are aware, however,
the general eight-constant model cannot be reduced to a description in terms of a conformation
tensor, given by some expression σ p(A) and a relaxation equation for A. In its most general form,
the eight-constant model therefore does not converge to an elastic solid when λ → ∞.

Another special case of the Oldroyd eight-constant model is the so-called second-order fluid
[5,50], defined by the constitutive equation

σ p = b2
▽

γ̇ + b11γ̇ · γ̇ . (3.18)

This results from the so-called Rivlin–Ericksen expansion, which gradually builds in memory
of past deformations. The quadratic terms in (3.18) are the lowest order to give non-Newtonian
effects. Indeed, the second-order fluid cannot be represented in terms of a conformation tensor.
This can be seen by considering the case where the flow is suddenly stopped at some time t0, so
that γ̇ = 0 for t > t0. Evaluating the polymer stress in (3.18), we find that σ p = 0 for t > t0. Hence
any stress present at t0 is instantaneously relaxed, which is incompatible with a gradually relaxing
conformation tensor. By the same argument it is also clear that the second-order fluid has no limit
in which it can converge to solid-like behaviour.

Let us emphasize that the absence of an elastic correspondence should not be seen as a
shortcoming of a model. In the case of the second-order fluid, the perturbative expansion was
not designed to capture strongly unsteady effects, but rather to capture nearly steady flows.
For example, in spite of its simplicity, (3.18) exhibits normal stress differences in shear flow, and
successfully captures various viscoelastic phenomena [81–83]. Similarly, the Johnson–Segalman
model was never intended to describe elastic solids, but rather to capture non-monotonic stress
relaxation.
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4. Collapse of a cylinder under surface tension
We now illustrate the importance of the elastic correspondence through the collapse of a
(visco)elastic cylinder under surface tension. As was discussed in the Introduction, figure 1d

shows the capillary instability for an elastic solid that consists of a cross-linked agar gel [20].
It is cross-linked to such a degree that the gel possesses (and maintains) a reference state, which
ultimately prevents the break-up of the thin threads. The structures that appear, in particular the
thin threads, strongly resemble those seen during the capillary break-up of viscoelastic liquids
that do not possess a reference state [21,45,84]. Figure 1e shows the break-up of a water jet
containing a low concentration of a high molecular flexible polymer, with a relaxation time of
about 0.01 s. The break-up process repeats itself periodically in space but with a time delay in
between, so one can see an almost cylindrical thread at different stages of thinning. An alternative
geometry is that of a liquid bridge between two plates, which leads to a single thread. In each case,
the thread radius is observed to thin exponentially in time [21,84,85]. As another amusing example
of the interaction between elasticity and capillarity, albeit in a different context, we mention the
interaction of an elastic beam with a liquid drop [86].

Below we will first re-derive the classical result of exponential thinning of viscoelastic fluids,
and show how the elastic correspondence is actually a key element in solving the problem.
Subsequently, the usefulness of the elastic correspondence is underlined by numerical solutions of
viscoelastic solids, by means of an Oldroyd-B fluid in the limit λ → ∞. The result is compared with
a purely elastic simulation of a neo-Hookean solid. Finally, it is shown that the collapse changes
dramatically when the model does not exhibit an elastic correspondence, as is exemplified by the
Johnson–Segalman fluid.

(a) Viscoelastic �uid

The capillary thinning of an infinitely long liquid cylinder is due to an elongational flow, defined
by the Eulerian velocity field (3.4). From a Lagrangian perspective, this can be seen as a stretching
of the cylinder by a rate ǫ̇, and a lateral contraction dictated by volume conservation. Denoting
the cylinder radius by h(t), the radially inward flow implies ḣ = −(1/2)h, so that

h = h0 e−(1/2)ǫ̇t. (4.1)

The goal is to determine the value of ǫ̇ and the constant h0 (which is not equal to the initial thread
radius R0) for the process of capillary thinning.

(i) Stretch and relax

We consider the conformation tensor A in the Oldroyd-B fluid during the thinning, determined
by (2.7) with elongational flow. For a rubber band (λ → ∞) the conformation tensor would simply
follow the Finger tensor, which is given by (3.5). The general solution with finite relaxation time
was already given in integral form in (3.13). One verifies that Bt′

zz(t) = exp(2ǫ̇(t − t′)), representing
the exponential separation over a time lag t − t′. With this, the integral (3.13) gives the axial
component of the conformation tensor

Azz(t) =
2ǫ̇λ

2ǫ̇λ − 1
e(2ǫ̇−(1/λ))t −

1
2ǫ̇λ − 1

, (4.2)

and similarly one finds for the radial component

Arr(t) =
ǫ̇λ

ǫ̇λ + 1
e−(ǫ̇+(1/λ))t +

1
ǫ̇λ + 1

. (4.3)

The solution (4.2) very nicely brings out the competition between stretching and relaxation.
The term exp(2ǫ̇t) reflects the stretching of the polymer by the flow; at the same time, the
polymer relaxation reduces the stretch as exp(−t/λ). When ǫ̇λ > 1/2, as will be the case in capillary
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thinning, the exponential stretching dominates over the relaxation. When ǫ̇λ < 1/2, the relaxation
is strong enough that Azz saturates at some finite value.

The value of ǫ̇ can be found when demanding that the polymer stress σ p ∼ µAzz has the
same time dependence as the capillary pressure γ /h(t) ∼ exp(ǫ̇t/2). Equating this exponential
to that in (4.2), one finds ǫ̇λ = 2/3. One thus concludes that the thinning of the thread scales as
h ∼ exp(−t/3λ), a result that goes back to Entov [87].

(ii) The elastic correspondence

Figure 2 shows numerical simulations of the break-up in the Oldroyd-B fluid [48]. For finite λ, we
indeed observe the expected exponential thinning dynamics (blue line). However, the initial stage
of the break-up (on the scale of the capillary time τ ) is not exponential; in fact it closely follows the
Newtonian break-up, λ = 0, plotted as the purple line. In this early regime, the polymer is not yet
sufficiently stretched to compete with capillary forces, and we observe a near independence of λ.
In the elastic limit λ = ∞ (red line), the thread does not go to zero at all, but saturates at a finite
thickness. This corresponds to a neo-Hookean solid, and, for example, describes the cross-linked
agar gel of figure 2a.

So how can we compute the prefactor h0 of the thinning law (4.1)? For this, we make use of the
elastic correspondence. Upon inspection of figure 2, one can infer that h0 is essentially given by the
final thickness of the purely elastic thread (this becomes exact when τ ≪ λ). This final thickness
follows from an elasto-capillary stress balance. The elastic stress is simply that of a neo-Hookean
rubber band, with elongation stretch given by (R0/h)2, where R0 is the initial cylinder radius.
When sufficiently soft, the elastic stress scales as ∼ µ(R0/h)4. Balancing this with the capillary
stress γ /h, one obtains the elasto-capillary length [45]

ℓe =

(

µR4
0

γ

)1/3

. (4.4)

A detailed analysis matching the cylinder to a large drop shows that the exact prefactor in (4.1)
reads h0 = ℓe/21/3 [48].

The elastic correspondence goes much beyond computing h0. Using a lubrication description,
it was conjectured by Entov & Yarin [44] and confirmed in [21,84] that the entire shape of the
thinning thread—at finite λ—could be described by that of the corresponding elastic solid. This is
a scheme that we recently confirmed to be true in general, beyond the lubrication description [48].

(b) Viscoelastic solid

We argued in §3d that the elastic correspondence allows us to model viscoelastic solids as an
Oldroyd-B fluid, taking the limit λ → ∞. This idea is tested by two distinct numerical schemes
to compute the capillary collapse. We first consider an Eulerian simulation for the Oldroyd-B
fluid with infinite relaxation time, followed by a Lagrangian simulation of a neo-Hookean elastic
cylinder. The final state should be the same because of the elastic correspondence, but there is an
important difference: because of the solvent viscosity, the Oldroyd-B model is able to capture the
dynamics of the solid in the presence of viscous damping.

(i) The Oldroyd-B �uid as a viscoelastic solid

We simulate the Oldroyd-B equations (2.1), (2.2), (2.8) in the limit of λ → ∞, taken such that µ =

ηp/λ remains finite. Then the polymeric stress is governed by
▽

σ p = 0. The collapse is driven by
surface tension, and the stress boundary condition at the free surface is

n · σ = −γ κn, (4.5)

where

κ =
1

h(1 + h2
z)1/2

−
hzz

(1 + h2
z)3/2

, n =
er − ezhz

(1 + h2
z)1/2

(4.6)
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Figure 5. (a) Time evolution of the minimum thread radius for the viscoelastic solid, simulated by an Oldroyd-B �uid with

λ = ∞. Parameters are ǫ = 0.05, ηs/

√

ργ R30 = 0.79 andµR0/γ = 0.0119. (b–e) Polymeric stresses in the �nal state of

the �uid simulation: (b) σp,zz ; (c) σp,zr ; (d) σp,rr ; (e) σp,θθ . The purple to yellow (dark to light) colour gradient represents the

change fromminimum to maximum stress, respectively. (Online version in colour.)

are (twice) the mean curvature and the surface normal, respectively. If h(z, t) is the thread profile,
the kinematic boundary condition becomes

∂h

∂t
+ uz(z, h)

∂h

∂z
= ur(z, h), (4.7)

where v = urer + uzez in cylindrical coordinates. As an initial condition, we take the free surface
shape

h(z, 0) ≡ h0(z) = R0

[

1 − ǫ cos
(

z

2R0

)]

, (4.8)

and the velocity field vanishes initially; boundary conditions are periodic. First, we will consider
the case that stresses vanish initially. To illustrate the predictions of (3.3), we will then consider an
initial uniform axial stress.

We have carried out a simulation for a fluid cylinder of radius R0, which is slightly perturbed
according to (4.8) with ǫ = 0.05. Material parameters are fixed by dimensionless numbers

ηs/

√

ργ R3
0 = 0.79 and µR0/γ = 0.0119. In order to calculate the interface evolution accurately,

we apply the boundary fitted coordinate method, where the liquid domain is mapped onto
a rectangular domain through a coordinate transformation. The hydrodynamic equations are
discretized in this domain using fourth-order finite differences, with 22 equally spaced points
in the radial direction and 1000 equally spaced points in the axial direction. An implicit time
advancement is performed using the second-order backward finite differences with a fixed time

step 0.05
√

ρR3
0/γ ; details of the numerical procedure can be found elsewhere [88].

We begin with the case where there is no stress in the initial condition. In figure 5a, we show the
minimum thread radius hmin as a function of time. As the bridge collapses, elastic stress builds up
until it is balanced by surface tension and hmin approaches a constant value, as shown in figure 5.
At this point, the solution becomes stationary, time derivatives vanish and the velocity goes to
zero. As a result, the solvent viscosity does not affect the final state, which should be identical
to that of a neo-Hookean solid. However, the Oldroyd-B simulation also captures the transient
dynamics of the viscoelastic solid. For completeness, figure 5b–d shows the different components
of the stress tensor in the static final state. The axial stress σp,zz is highest inside the thread, where
fluid elements are stretched the most in the axial direction. Radial stresses σp,rr, on the other hand,
are most pronounced inside the drop, where fluid elements are stretched in the radial direction.
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(ii) The neo-Hookean solid

We now calculate the steady state of an elastic neo-Hookean material using nonlinear elasticity,
as described by

σ = µ (B − I) − pI, (4.9)

and subject to the incompressibility constraint J = det(F) = 1. First we discuss the case without
pre-stress. The pressure p is adjusted such that J = 1 is satisfied. Instead of a dynamical equation,
the condition for static equilibrium reads ∇ · σ = 0, i.e. (2.1) with v = 0, with the elasto-capillary
boundary condition (4.5).

To determine the final state of the collapsed cylinder, we solve a nonlinear set of equations
corresponding to the above conditions, based on a (stationary) mapping x = x(X), as illustrated
in figure 6. To this end, we write the mapping in cylindrical coordinates: r = r(R, Z), z = z(R, Z).
The coordinates R and Z are the radial and axial coordinates of the cylinder in the reference state.
Using general formulae for F in cylindrical coordinates [89], incompressibility amounts to

det F =
r

R

(

∂r

∂R

∂z

∂Z
−

∂r

∂Z

∂z

∂R

)

= 1, (4.10)

while the stress can be computed from the Finger tensor

B = F · FT =

⎛

⎜

⎜

⎜

⎜

⎝

(

(

∂r
∂R

)2
+

(

∂r
∂Z

)2
)

0
(

∂r
∂R

∂z
∂R + ∂r

∂Z
∂z
∂Z

)

0
(

r
R

)2 0
(

∂r
∂R

∂z
∂R + ∂r

∂Z
∂z
∂Z

)

0
(

(

∂z
∂Z

)2
+

(

∂z
∂R

)2
)

⎞

⎟

⎟

⎟

⎟

⎠

. (4.11)

The solution depends on the dimensionless number R0µ/γ . In the ‘soft’ limit where the thread
becomes very thin, r ≪ R0, the thickness of the thread scales as the elasto-capillary length scale ℓe

given by (4.4).
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To solve the problem numerically, we define the reference state by

R = h0(ξ )η and Z = ξ ,

with the elastic domain defined by η ∈ [0, 1] and ξ ∈ [0, 2πR0]; h0 is once again defined by (4.8)
and ǫ = 0.05. We are looking for two unknown functions f and g, where r = r(R, Z) = f (η, ξ ) and
z = z(R, Z) = g(η, ξ ), as well as the pressure p(η, ξ ). These three unknowns are found from solving
the three equations (4.10), (2.1) at steady state and with boundary conditions (4.5). The free surface
h(z) then is given by the parametric representation h(g(1, ξ )) = f1(1, ξ ), from which the curvature
κ can be evaluated. In figure 6, the domain is discretized using fourth-order finite differences
with 301 equally spaced points in the ξ direction and 11 Chebyshev collocation points in the η

direction. For the results presented in figure 7, a finer mesh was used with 2001 equally spaced
points in the ξ direction. The resulting system of nonlinear equations is solved using a Newton–
Raphson technique [88]. We solve the problem by starting with the reference state as the initial
guess and µR0/γ sufficiently large (µR0/γ = 100) to ensure the convergence of the Newton–
Raphson iterations. Once we get a solution, we use this solution in a new run with a smaller value
of µR0/γ .

The result is shown in figure 6, which describes the deformation of the mesh as well as
of the free surface, for various values of µR0/γ . The resulting shapes closely match those in
figure 2 at moderate stiffness, and agree with simulations in [46]. In figure 7, we compare the
elastic equilibrium state (red crosses) with the stationary state reached in the simulation of the
Oldroyd-B model for µR0/γ = 0.0119 (green circles). The agreement is perfect—illustrating that,
for this problem where a stationary state is approached, the Oldroyd-B fluid in the limit of λ → ∞

converges to a neo-Hookean solid. A detailed similarity analysis of this problem is provided
in [48].

To further test (3.3) in the case of a pre-stressed material, we repeat the same analysis for both
the fluid and the elastic case, but assuming an initial purely axial stress. This means that the fluid
equations are solved with the initial condition σp,zz = σ0, and are solved until a new stationary

state is reached. As for the elastic simulation, (3.3) is used with σ
(0)
p,zz = σ0. As seen in figure 7 (cyan

diamonds, fluid simulation; blue crosses, elastic simulation), the equilibrium is now reached at a
much larger value of hmin, because less of a build-up of elastic stresses is needed to counter surface
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tension. Once more, there is perfect agreement with the Oldroyd-B fluid simulation, illustrating
the general formula (3.3) for arbitrary initial conditions.

Thus, we have demonstrated two very different numerical solutions to the same problem
of finding the equilibrium shape of an elastic thread constricted by surface tension, one being
Eulerian and the other Lagrangian. This represents a satisfying confirmation of the equivalence
of fluid flow and nonlinear elasticity in the limit of infinite relaxation time, and presents a valuable
check on the stability and reliability of the underlying numerical methods.

(c) The absence of an elastic limit: the Johnson–Segalman �uid

The above comparison was an illustration of our result, which assigns a unique elastic limit
to the Oldroyd-B model for large relaxation times. The scenario changes dramatically in the
presence of non-affine motion, for which there is no elastic correspondence. This will be explored

for a Johnson–Segalman fluid with infinite relaxation time, characterized by
▽

(A)a = 0. The other
equations remain the same. Previous analysis of the long-wavelength limit has shown [45,90] that
there can be no static solution for a < 1/2. Owing to the presence of non-affine slip, the amount
of polymer stretch is not enough for the elastic stress to balance the capillary stress in a thinning
cylinder. This means that the motion will not be arrested by surface tension, and the thread breaks
up in finite time [45,90]. By contrast, the slender analysis predicts that for a > 1/2 the thread will
not break up.

Johnson–Segalman fluid simulations are carried out by integrating (3.10) with λ = ∞. We
consider different values of a with the same numerical technique as described at the beginning of

the section, using the same parameters ǫ = 0.05, ηs/

√

ργ R3
0 = 0.79 and µR0/γ = 0.0119 as before.

Figure 8a shows hmin as a function of time for three different values of the slip parameter a. As can
be seen in the figure, the solution reaches a steady state only for the affine case a = 1 (black dotted
line), as seen before in figure 5. In line with the lubrication analysis of [90], for a = 0.1 the thread
thickness approaches zero linearly, and at a finite time (red dashed line). Remarkably, however,
the case a = 0.9 also leads to break-up (blue solid line), a feature that was not predicted in the
lubrication framework.

Figure 8b highlights further the behaviour of the pinching threads. Figure 8b(i) shows that
for a = 0.1 the thread profile remains slender, and break-up is described by the similarity
theory of Fontelos [90]. Figure 8b(ii) shows the case a = 0.9, which exhibits break-up despite
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the lubrication prediction that it should not. Indeed, the corresponding interface now develops
a more complicated structure, with pinching near the drops, which violates the assumption of
slenderness. We thus conclude that non-affine motion, for which the elastic limit does not exist,
has a dramatic effect on the dynamics, in this case on the capillary collapse of a cylinder.

5. Energy and dissipation
There are striking dissimilarities in the approach to viscoelastic liquids and to elastic solids.
We have seen in §2 that the constitutive relations in elasticity theory are defined by a free
energy functional W, while the constitutive relations for viscoelastic liquids are most commonly
expressed in terms of the stress tensor σ p. A fully conservative formulation of viscoelasticity is
not possible, of course, since the process of relaxation involves dissipation. Still, a thermodynamic
approach is very feasible, as described in Beris & Edwards [6]. This thermodynamic route was
previously proposed by Leonov [54], and was formalized using the bracket [6] and the GENERIC
formalisms [7]. We refer to Pasquali & Scriven [65] for a detailed discussion on how these theories
are related.

The idea is again to describe the microstructure of complex fluids by a thermodynamic state
variable, or order parameter, say A(x, t) in the case of the conformation tensor. The key element of
the thermodynamic route is to associate an elastic free energy density with this field, W(A), which
represents the free energy stored in stretched polymers. The formulation is then very similar to
the theory of elasticity, which was based on W(B), except that one allows for dissipative processes

via relaxation, expressed by
▽

A �= 0. An important advantage of the thermodynamic formulation
of viscoelasticity is that, by construction, the constitutive relations are consistent with the laws of
thermodynamics.

Here we further elaborate these ideas, and derive the explicit form of the energy equation
for viscoelastic fluids. This serves two purposes. (i) It is surprisingly difficult to find general
expressions for dissipation in common models of viscoelastic fluids [91]. In particular, we did
not succeed in finding an energy equation for viscoelastic fluids that would generalize the usual
energy conservation law for Newtonian flows. (ii) The thermodynamic formulation offers a very
natural connection between elasticity and viscoelasticity, with the viscoelastic free energy W(A)
playing the exact same role as the elastic free energy W(B). Rather than following the formalisms
of statistical physics [6,7], we here offer a direct mechanistic route by separating the reversible
and dissipative parts of the energy equation.

(a) Flow versus relaxation

The order parameter formulation of viscoelasticity has the following ingredients:

(i) A symmetric rank-2 tensor-order parameter field A(x, t), which quantifies the stretched
state of the polymer.

(ii) An elastic free energy density W(A), which is minimal for A = I.
(iii) A relaxation equation towards A = I, governing dissipation.

Since the conformation tensor now plays the role of a thermodynamic state variable, it is
important to give it a proper definition. For microscopic bead–spring models, the conformation
tensor can be expressed in terms of the (averaged) end-to-end vector of the dumbbell. To mimic
the theory of elasticity, however, we here look for a purely continuum definition.

The quantification of the amount by which the polymer is stretched requires a comparison of
the current state with a relaxed (isotropic) state at which the system is stress free. In a purely
continuum description, the definition of A therefore requires a concept that can be characterized
as an ‘instantaneous reference state’—this describes at each instant in time the state in which
the polymer would be stress-free [5]. In a purely elastic material, devoid of relaxation, the
reference state is the same at all times and can, for example, be chosen as the initial condition. For
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viscoelastic liquids, however, the memory of the initial condition is gradually fading. For instance,
let us consider a case where, by applying appropriate constraint forces, we instantaneously stop
the flow. The final state of the liquid will ultimately become stress-free, but this takes some time.
In this situation, however, the current state of the liquid no longer evolves since the flow has
stopped: it is the instantaneous reference state that will relax towards the liquid’s final state.

These ideas can be formalized upon introducing curvilinear material coordinates that describe
the dynamics of material points following the flow. The curvilinear description allows us to
properly define the conformation tensor and to distinguish its time evolution into a part due
to ‘flow’ and a part that represents ‘relaxation’. We refer the reader to appendix A for details.
Below we exploit this separation of flow and relaxation, which enables us to separate the storage
of energy (stretching by flow) and its dissipation (via relaxation).

(b) Stress, energy and dissipation

(i) Splitting the work: energy storage versus dissipation

With a continuum definition of A in place, we can find the correct structure of W(A) by borrowing
the elastic energy W(B), as found on nonlinear elasticity. The energy must be a function of the
invariants

I1 = Akk, I2 =
1
2

(

A2
kk − AijAij

)

and I3 = det(A), (5.1)

with A taking the role of B in (2.12). There should be no confusion from using the same notation
for the invariants of A. The choice of W(A) naturally determines the elastic limit, while the
relaxation equation for A accounts for irreversible dissipation.

We now proceed to derive the expression for the stress and the dissipation, focusing first on
affine polymer models. Given that we chose the conformation tensor A to express the stretching

of the polymer, it must relax according to λ
▽

A = f (A). The idea is that the reversible part of the
deformation has the same form as the reversible change in free energy (2.11), so the remainder
corresponds to dissipation. Writing the work in symmetric form (1/2)σ p : γ̇ , and introducing the
volumetric dissipation rate ǫp, energy conservation requires that

1
2
σ p : γ̇ =

dW

dt
+ ǫp, (5.2)

where we have performed a split into reversible and irreversible parts: any work done during the
deformation must be either stored in elastic energy or dissipated. With this convention, ǫp must
be positive in order to be consistent with thermodynamics.

The time derivative dW/dt can be calculated using the definition of
▽

A, yielding

dW

dt
=

∂W

∂A
:

dA

dt
=

∂W

∂A
:
[

(∇v)T · A + A · (∇v) +
▽

A

]

=

(

∂W

∂A
· A

)

: γ̇ +
∂W

∂A
:

▽

A, (5.3)

where in the last line we made use of the symmetry of A. As anticipated in (5.2), this nicely
separates into a term due to flow, proportional to γ̇ , and a term associated with the relaxation

law, proportional to
▽

A. Comparing (5.3) and (5.2), we obtain the expression for the stress

σ p = 2
∂W

∂A
· A. (5.4)

The same expression for stress is obtained in the GENERIC formalism based on continuum
considerations [7] or for specific cases of microscopic bead–spring models [3]. As expected, this
is exactly the form of the elastic stress (2.10), with A replacing B. The second term in (5.3) can be
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identified as the dissipation

ǫp = −
∂W

∂A
:

▽

A. (5.5)

Combined with λ
▽

A = f (A), and an explicit expression for W(A), this offers a compact expression
for the dissipation that is independent of the flow: it depends only on the local value of A.

(ii) The energy equation

We are now in a position to formulate the energy balance for a polymeric liquid. Multiplying (2.1)
by v, using (2.2), we obtain

1
2

∂ρv2

∂t
+ ∇ ·

[(

ρv2

2
+ p

)

v − ηsγ̇ · v − σ p · v

]

= −ǫ −
1
2
σ p : γ̇ , (5.6)

where

ǫ =
ηs

2
γ̇ : γ̇ (5.7)

is the viscous dissipation due to the solvent. Using σ p : γ̇ /2 = dW/dt + ǫp, this can be rewritten as

d
dt

(

ρv2

2
+ W

)

+ ∇ ·
[

pv − ηsγ̇ · v − σ p · v
]

= −ǫ − ǫp, (5.8)

which has the form of a conservation law for the sum of kinetic energy ρv2/2 and elastic energy
W. The term in square brackets is the energy flux. The right-hand side represents the dissipation,
which has a viscous contribution from the solvent ǫ, and a polymeric contribution ǫp, which
according to (5.5) is associated with the relaxation of A. The conservation law (5.8) together with
the expressions for the stress (5.4) and the dissipation (5.5) are the main results of this section.

Evaluating the elastic stress (5.4) is a repeat of the elastic calculation (2.10) and (2.15). For
incompressible solvents, it is sufficient to consider the elastic energy W(I1, I2), without any
dependence on the third invariant.4 Then using Jacobi’s formula as well as the Cayley–Hamilton
theorem, and that A is symmetric, one finds

∂W

∂A
= W1I + W2 (tr(A)I − A) . (5.9)

Hence (5.4) takes the form

σ p = 2W1 (A − I) + 2W2

(

I − det(A)A−1
)

, (5.10)

which resembles (2.15), but now based on the conformation tensor A rather than on the Finger
tensor B. The relaxation of the conformation tensor gives rise to dissipation ǫp, which using
W(I1, I2) and (5.5) becomes

ǫp = − [W1I + W2 (tr(A)I − A)] :
▽

A. (5.11)

It is evident that dissipation vanishes in the absence of relaxation
▽

A = 0; in that case A = B, and
therefore det(A) = det(B) = 1, so that we recover the full structure of elasticity theory.

4We remark that in general I3 �= 1 for incompressible flows. However, its effect on σ p is that it adds an isotropic contribution

proportional to W3 = ∂W/∂I3, which can be absorbed in the pressure. Namely, given that σ p = 2
∂W

∂A
· A, the contribution of

I3 to the stress tensor is 2W3
∂I3

∂A
· A. Owing to Jacobi’s formula,

∂I3

∂A
= det(A)A−1, so that the corresponding contribution

becomes 2W3 det(A)I, the effect of I3 on the stress is indeed isotropic. Similarly, one can demonstrate that, for incompressible
flows, the contribution of W3 to ǫp is a total derivative d/dt, and is therefore not ‘dissipative’ and can thus be absorbed by a
redefinition of W. Hence, it suffices to consider W(I1, I2). For compressible flows, W3 must indeed be included explicitly [91].
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We note that the dissipation (5.11) can be written in a more elegant form, using the lower
convected derivative:5

ǫp = −W1tr(
▽

A) − W2tr

(

△
(

det(A)A−1
)

)

. (5.12)

With this, the full energy balance becomes

d
mt

(

ρv2

2
+ W

)

− ∇ · [σ · v] = −ǫ + W1tr(
▽

A) + W2tr

(

△
(

det(A)A−1
)

)

. (5.13)

This form of the energy equation nicely brings out the symmetry between upper and lower
convected derivatives, in relation to A and its inverse A−1. This mirrors the discussion in §3,
but now expressed in the context of dissipation.

(iii) Non-ane models

So far we have dealt with the physical situation that the constituents follow the flow exactly. As
discussed in §3c, using a derivative which is a linear superposition of upper and lower convected
derivatives, one can model a situation where the material ‘slips’ relative to the flow. In that case,
dissipative processes are described by the relaxation equation in the slipping frame, leading to a

form λ
▽

(A)a = f (A), where
▽

(A)a is defined in (3.7), which is the upper convected derivative in the
polymer frame.

We can follow the same procedure as above, and split dW/dt into a part that depends on the

flow and a part that depends on the relaxation. However, we now invoke
▽

(A)a instead of
▽

A to
obtain

dW

dt
=

∂W

∂A
:

dA

dt
=

(

a
∂W

∂A
· A

)

: γ̇ +
∂W

∂A
:

▽

(A)a. (5.14)

We therefore find the stress and dissipation, respectively, as

σ p = 2a
∂W

∂A
· A and ǫp = −

∂W

∂A
:

▽

(A)a, (5.15)

where σ p has the same form as (2.10), but with a factor a in front of the expression for the stress.
This reflects the slip: the polymer is stretched less than expected, making the response ‘softer’ by
a fraction a. By consequence, the stress can be further expressed as

σ p = 2aW1 (A − I) + 2aW2

(

I − det(A)A−1
)

, (5.16)

while the dissipation reads

ǫp = −W1tr
(

(
▽

A)a

)

− W2tr

(

△
(

det(A)A−1
)

a

)

. (5.17)

For completeness, we again give the energy equation

d
dt

(

ρv2

2
+ W

)

− ∇ · [σ · v] = −ǫ + W1tr
(

(
▽

A)a

)

+ W2tr

(

△
(

det(A)A−1
)

a

)

. (5.18)

This is the same as (5.13) but with convected derivatives taken in the slipping frame.

5Here we made use of the identity

tr(A)I :
▽

A − A :
▽

A = tr(A)tr(
▽

A) − A :
▽

A = tr

(

△
(

det(A)A−1
)

)

,

which can be verified directly upon invoking the Cayley–Hamilton theorem (2.14).
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(c) Rheological models

We conclude by listing a number of frequently considered rheological models, which are usually
defined in terms of a constitutive relation for the stress σ p. In the thermodynamic formalism,
however, the models are defined by specifying an elastic energy W(A), complemented by a
relaxation equation for A. The connection to the polymeric stress as well as the dissipation can be
calculated from (5.4) and (5.5) in the affine case and (5.15) in the non-affine case.

(i) Oldroyd-B/upper convected Maxwell model

The upper convected Maxwell model (or: the polymeric part of the Oldroyd-B fluid) is
defined by

σ p = µ (A − I) and
▽

A = −
1
λ

(A − I) . (5.19)

One verifies that the elastic energy and dissipation are

W =
µ

2
(tr(A) − 3) =

µ

2
(I1 − 3) and ǫp =

W

λ
. (5.20)

Note that W is the same as for neo-Hookean solids. Since W must be positive (it acquires
its minimum for A = I, where W = 0), this implies that ǫp ≥ 0, as required. For λ → ∞, the
dissipation vanishes and one recovers the neo-Hookean solid.

According to (2.2), the deviatoric stress τ is the sum of the solvent and polymer
contributions. In the Oldroyd-B model, both can be combined into the single equation

τ + λ
▽

τ = ηγ̇ + ληs

▽

γ̇ . (5.21)

In the limit of vanishing shear rate, (5.21) describes a Newtonian fluid of total viscosity
η = ηs + ηp, the sum of polymeric and solvent contributions. In the limit λ → ∞, (5.21)
can be integrated to

τ = µ(A − I) + ηsγ̇ , (5.22)

describing a (neo-Hookean) viscoelastic solid.
(ii) Oldroyd A/lower convected Maxwell model

Same as above, but with a relaxation based on the lower convected derivative,

σ p = −µ (A − I) and
△

A = −
1
λ

(A − I) . (5.23)

The elastic energy and dissipation are the same as for the upper convected Maxwell
model,

W =
µ

2
(I1 − 3) and ǫp =

W

λ
. (5.24)

While energy W is neo-Hookean in terms of I1,A = tr(A), the corresponding elastic solid
in the limit λ → ∞ is not neo-Hookean. Namely, the upper convected derivative gives an
elastic limit A = B−1, and the corresponding invariants are related as I1,A = I2,B.

(iii) Johnson–Segalman model

Same as above, but with a relaxation based on the Gordon–Schowalter derivative

σ p = aµ (A − I) and (
▽

A)a = −
1
λ

(A − I) . (5.25)

The elastic energy and dissipation are the same as for the upper convected Maxwell
model,

W =
µ

2
(I1 − 3) and ǫp =

µ

2λ
(I1 − 3) =

W

λ
. (5.26)

Note that, owing to the non-affine kinematics of the relaxation law when a �= 1, the model
does not converge to any elastic solid in the limit λ → ∞.
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(iv) FENE-P model

In the upper/lower convected Maxwell models, both the energy and the dissipation
are linear in I1. However, both W and ǫp can in general be nonlinear functions of the
invariants I1, I2. The most popular of such models is the FENE-P model [2,4]. Like other
models of the same kind, it is based on the concept of an elastic spring attached to
two beads in solution. While a Hookean, non-interacting spring leads to the Oldroyd-
B equation, here the spring is nonlinear, so that it cannot be extended beyond a limiting
length L. This avoids the deficiency of the Oldroyd-B model: that the polymeric stress
grows exponentially to infinity in a strong flow (as we already encountered in (4.2)).

In the nonlinear case, the microscopic model can no longer be solved exactly, so various
approximations are used, of which FENE-P is one. The finite extensibility is introduced
so that I1 ≡ tr(A) reaches a maximum value L2, via the stress relation

σ p = µf (I1) (A − I) , with f (I1) =
L2 − 3

L2 − I1
; (5.27)

clearly, the stress diverges when I1 = L2. This stress relation is complemented by a
nonlinear relaxation law

▽

A = −
1
λ

(

f (I1)A − I
)

. (5.28)

One verifies that the associated free energy and the dissipation are

W =
µ

2
(L2 − 3) ln

(

f (I1)
)

and ǫp =
µ

2λ
f (I1)

(

I1f (I1) − 3
)

, (5.29)

and once more ǫp ≥ 0. We remark that the FENE-CR model [92] has the same energetic
structure as the FENE-P model, but with a slightly different relaxation law, namely
▽

A = −f (I1)(A − I)/λ.
Importantly, we note that the elastic energy is the same as that of the Gent model,

accounting for finite extensibility in rubber elasticity [93]: the elastic limit λ → ∞ of the
FENE-P model is the Gent model.

(v) Giesekus model

This is a phenomenological model [2,4] which introduces a term quadratic in σ p into
the equation of motion, which also limits the maximum value of the stress; however, the
stress may become arbitrarily large for sufficiently strong flow,

σ p + λ
▽

σ p + α
λ

ηp
σ p · σ p = ηpγ̇ . (5.30)

This can be written as

σ p = µ (A − I) and
▽

A = −
1
λ

[

A − I + α (A − I)2
]

, (5.31)

so that the elastic energy is once more neo-Hookean and the dissipation is

W =
µ

2
(I1 − 3) and ǫp =

µ

2λ
(I1 − 3) +

µα

2λ
(A : A − 2tr(A) + 3) . (5.32)

6. Discussion
In summary, we have provided a detailed overview of the relation between the theories of
viscoelasticity and of elasticity. In particular, we have explored the ‘elastic correspondence’, by
asking which rheological models do (and which do not) converge to an elastic solid, as one
considers the limit of infinite relaxation times. The motivation behind this was to highlight
universal aspects of soft matter at large deformations, for a broad class of materials. Indeed,
the elastic correspondence connects many problems of current interest, such as those shown
in figure 1, and offers an original perspective to problems in either fluid or solid mechanics.
For example, in §4 we discussed the capillary instability of liquid and solid jets, as shown
in figure 1d,e: the elastic correspondence forms a key element in analysing the break-up of
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polymeric liquids [48]. Likewise, the fracture of the bridged microemulsion in figure 1c is
quantitatively similar to the fracture of a purely elastic material [49]. In the same vein, we expect
that revisiting classical elastic instabilities such as buckling, wrinkling and creasing from the
viscoelastic viewpoint might provide new insight into the dynamical evolution and relaxation of
these instabilities. Indeed, experiments have exploited the elastic structure of viscoelastic liquids
to characterize surface instabilities in soft materials [58].

By analysing the kinematics of viscoelastic materials in the limit of large relaxation times, we
have identified a systematic route to express the energy balance in viscoelastic flows. This is based
on the separation of the reversible elastic energy from the dissipation associated with relaxation
phenomena. We hope that this will prove useful in the analysis of viscoelastic flows, for example
their stability. Indeed, there are many more sources of instability in viscoelastic flows as elastic
energy can be stored and transported, to be released elsewhere.

The elastic correspondence relates problems in either fluid or solid mechanics, and thus throws
a different light on fluid–structure interactions. Figure 1b shows an example of such an interaction,
as the liquid drop induces sharp deformations of the (visco)elastic substrate. This article shows
how, in principle, the solid can be modelled as a viscoelastic liquid with infinite relaxation time.
The general form of the proposed energy equation could help to estimate dissipation, going
beyond the usual restrictions of small deformations. From a numerical perspective, the analysis
developed here provides a new approach towards computational challenges. For example, the
neo-Hookean simulation of §4b for elastic threads has proven to be very efficient, and we have
demonstrated how such schemes can also be extended to Newtonian fluids. Conversely, using
viscoelastic liquids with infinite relaxation time could offer an attractive, fully Eulerian approach
to fluid–structure interaction problems.
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Appendix A. Curvilinear formulation of viscoelasticity

(a) Kinematics of deformation

The purpose of this appendix is to rephrase the results of the main text in terms of curvilinear
coordinates. This allows for a rigorous analysis of the physical assumptions underlying the
equation of motion for the conformation tensor, A. For a detailed description of the kinematics
discussed below, the reader can refer to the book by Green & Zerna [94].

We define curvilinear coordinates qi, which are material points that move along affinely with
the flow, as specified more precisely in (A 11). The current position vector is defined as x(qi, t),
while the position of the reference (or initial) configuration reads X(qi) = x(qi, t = 0). The latter is
independent of time. The distance ds between two neighbouring points qi and qi + dqi reads

ds2 =

(

∂x

∂qi
·

∂x

∂qj

)

dqi dqj = gij dqidqj, (A 1)



31

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

476:20200419
...........................................................

where gij is the current metric tensor. Similarly, the reference distance dS follows as

dS2 =

(

∂X

∂qi
·

∂X

∂qj

)

dqidqj = Gij dqidqj, (A 2)

where Gij is the reference metric. Stretching of material elements follows from changes in length

ds2 − dS2 =
(

gij − Gij

)

dqidqj, (A 3)

so strain is encoded in the difference between the current and reference metric.
We now construct the current vector space, using the covariant and contravariant basis vectors

ei =
∂x

∂qi
and ej =

∂qj

∂x
, (A 4)

derived from the current position x. The covariant basis vectors ei are local tangents to the material
lines in the deformed configuration. The contravariant vectors ei form a reciprocal basis, owing

to the property ei · ej = dqj/dqi = δ
j
i . Using this basis, we can define the metrics

gij = ei · ej, gij = ei · ej, (A 5)

so that gij can be used to lower indices, while the inverse gij raises indices. Similarly, one can
construct the reference vector space, using ‘reference’ basis vectors

Ei =
∂X

∂qi
and Ej =

∂qj

∂X
. (A 6)

The associated metric for this basis as well as its inverse are defined by

Gij = Ei · Ej, Gij = Ei · Ej; (A 7)

the Ei are local tangents to the material lines in the reference configuration.
We now wish to express the metrics in terms of the mapping F = ∂x/∂X. In particular, we

wish to show that Green’s deformation tensor C = FT · F and the Finger tensor B = F · FT can be
written as

C = gijE
i ⊗ Ej, B = Gijei ⊗ ej. (A 8)

To demonstrate this, we write (A 1) as

ds2 =

(

∂x

∂X
·

∂X

∂qi

)T

·

(

∂x

∂X
·

∂X

∂qj

)

dqidqj = Ei ·
(

FT · F
)

· Ej dqidqj. (A 9)

Comparing with (A 1), we indeed see that gij are the covariant components of C = FT · F when

expressed using the basis Ei. Hence, we obtain the first identity in (A 8). It is important to keep
track of the basis used to express the tensor [95]; for example, pairing gij with the basis ei, one

recovers the identity tensor, I = gije
i ⊗ ej.

Similarly, we rewrite (A 2) as

dS2 =

(

∂X

∂x
·

∂x

∂qi

)T

·

(

∂X

∂x
·

∂x

∂qj

)

dqidqj = ei ·
(

F−T · F−1
)

· ej dqidqj. (A 10)

Now we see that Gij are the covariant components of B−1 = F−T · F−1 when expressed using

the basis ei. Since the inverse of the reference metric is defined as GikGkj = δ
j
i , we obtain the

second identity in (A 8). Again, pairing Gij with the basis Ei, one recovers the identity tensor,

I = GijE
i ⊗ Ej.
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(b) Flow

Now, we investigate the effect of flow on the metric. First, we define the velocity as

v =

(

dx

dt

)

qi

= viei, (A 11)

expressed using the basis defined by (A 4), where from now on d/dt means the time derivative at
constant material points qi. Using (A 5) and (A 4), the time derivative of the metric tensor is

dgij

dt
=

⎛

⎝

∂
(

vkek

)

∂qi
· ej

⎞

⎠ +

(

ei ·
∂

(

vmem
)

∂qj

)

≡
(

vk
;iek

)

· ej + ei · (em) vm
;j

= gkjv
k
;j + gmiv

m
;j = vj;i + vi;j ≡ γ̇ij, (A 12)

where we used the definition of the covariant derivative, denoted by (..);j. Hence, the rate of strain
tensor γ̇ directly gives the change of the metric of material coordinates by the flow. Remembering
that Bij = Gij (cf. (A 8)), we see that the Finger tensor evolves according to

dBij

dt
=

d
dt

(

∂qi

∂X
·
∂qj

∂X

)

= 0 (A 13)

during flow. This time derivative vanishes because the reference state X(qi) is independent of time.
Note, however, that the covariant components Bij are not constant in time, since

dBij

dt
=

d
dt

(

gikgjmBkm
)

= 2γ̇ikBk
j . (A 14)

For a general tensor A, the derivatives dAij/dt and dAij/dt, respectively, correspond to the
components of the upper and lower convected derivatives [61,96], i.e.

▽

A =
dAij

dt
ei ⊗ ej,

△

A =
dAij

dt
ei ⊗ ej. (A 15)

The equivalence with the definitions (2.17) and (2.18) follows from transforming Aij and Aij,

respectively, from the Lagrangian (co-moving) material coordinates qi to an Eulerian coordinate
system q̄i that is fixed in space. In this fixed coordinate system, the tensor components denoted
by Āij can be obtained using the transformation Fk

i = ∂ q̄k/∂qi. Transforming dAij/dt to the fixed
frame then gives

F
p
i

(

dAij

dt

)

F
q
j = F

p
i

d
dt

[

(F−1)i
kĀkm(F−1)

j
m

]

F
q
j . (A 16)

On the right-hand side, we recognize the definition (2.17) for
▽

A, now in the form of the
components of the fixed Eulerian system q̄i. In a similar fashion, one derives (A 15) for the lower
convected derivative. Hence, dBij/dt = 0 implies that the upper convected derivative of the Finger

tensor vanishes, i.e.
▽

B = 0.

(c) Elasticity

In the theory of elasticity, the energy density W is a function of the invariants of B. Assuming
incompressibility I3 = det(B) = 1, the energy is of the form W(I1, I2), where the first and second
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invariants are defined as

I1 = Bi
i = gijB

ij, I2 =
1
2

(

[

gijB
ij
]2

− BijB
ij

)

=
1
2

(

[

gijB
ij
]2

− gimgjnBmnBij

)

. (A 17)

The expression for stress is obtained from time derivatives, according to the virtual work principle

1
2
σ ijγ̇ij =

dW

dt
= W1

dI1

dt
+ W2

dI2

dt
. (A 18)

Using dBij/dt = 0, we find

dI1

dt
=

dgij

dt
Bij = γ̇ijB

ij,
dI2

dt
=

dgij

dt

∂I2

∂gij
= γ̇ij

(

I1Bij − Bi
nBnj

)

, (A 19)

both of which are proportional to γ̇ij. Hence, from (A 18) we can read off the stress as

σ ij = 2
∂W

∂gij
= 2W1Bij + 2W2

(

I1Bij − Bi
nBnj

)

. (A 20)

(d) Viscoelasticity

When an elastic liquid is suddenly arrested, the polymer will relax towards an isotropic
equilibrium confirmation. The system slowly forgets about the history of deformation prior to the
arrest, and all stress and polymer stretches are ultimately relaxed. When expressing the polymer
deformation in terms of the elementary lengths between qi and qi + dqi, we can still write

ds2 − dS2 =
(

gij − Gij

)

dqidqj, (A 21)

and we associate an elastic energy with the polymer strain. Owing to the fading memory of
the initial state x(qi, t = 0), however, the object Gij can no longer be identified with the time-
independent metric of this initial condition. Instead, Gij reflects the metric of the ‘instantaneous

reference state’ X(qi, t) that progressively tends to evolve towards the current state.
From the above, we have a very clear definition of flow and relaxation: at fixed material point

qi, flow refers to the time dependence of x, while relaxation implies the time dependence of X. We
now exploit this further using (A 7) and (A 6), and obtain

Gij =
∂X

∂qi
·

∂X

∂qi
, Gij =

∂qi

∂X
·
∂qj

∂X
. (A 22)

We can then define the conformation tensor A, whose eigenvalues give the stretches of the
polymer. This is in direct analogy to the Finger tensor B, the only difference being that the
stretches need to be measured with respect to the instantaneous reference state X(qi, t), rather
than x(qi, t = 0). Hence,

A =

(

∂qi

∂X
·
∂qj

∂X

)

ei ⊗ ej = Gijei ⊗ ej. (A 23)

At the start of §5, we referred to X(qi, t) = X∗, so that we there defined A = F∗ · F∗T. The
components Aij in (A 23) do not involve any flow, but only relaxation, as relaxation includes time-
dependent effects only of X(qi, t). Hence, if we wish to express a relaxation law directly in terms
of the conformation tensor A, we necessarily arrive at

dAij

dt
=

1
λ

f ij(A), (A 24)

which in the fixed frame corresponds to the upper convected derivative. By contrast, the covariant
components Aij = gikgjmAkm do exhibit a time dependence due to the flow, via dgij/dt. Hence, to
quantify the relaxation in terms of the conformation tensor A, one automatically singles out the
upper convected derivatives as the appropriate time derivative.
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In analogy with elasticity theory, we introduce an elastic energy W(I1, I2) associated with the
first and second invariants of A. Once again we employ the virtual work principle, but now
including dissipation ǫp,

1
2
σ ijγ̇ij =

dW

dt
+ ǫp. (A 25)

The dissipation is necessary since the elastic energy exhibits an extra time dependence associated
with relaxation,

dW

dt
=

∂W

∂gij
γ̇ij +

∂W

∂Aij

dAij

dt
. (A 26)

Again, the terms proportional to γ̇ij provide the stress, so that stress and dissipation can be
separated as

σ ij = 2
∂W

∂gij
, ǫp = −

∂W

∂Aij

dAij

dt
. (A 27)

Appendix B. Integrating the upper convected Maxwell model
In order to integrate the upper convected Maxwell model, we write (2.7) using (2.17) as

F ·

[

d
dt

(

F−1 · A · F−T
)

]

· FT = −
1
λ

(A − I) , (B 1)

so that, upon defining D = F−1 · A · F−T, we can write

dD

dt
= −

1
λ

(

D − F−1 · F−T
)

. (B 2)

Note that A is defined on the Eulerian domain, while D is defined on the reference domain.
Therefore, its time derivative does not contain any convective terms, and one can treat (B 2) as an
ordinary differential equation. The term g(t) = F−1(t) · F−T(t) can be treated as some function of
time that is imposed externally by the flow. One verifies that the solution to (B 2) reads

D(t) = e−t/λD0 +
1
λ

∫ t

0
dt′ e−(t−t′)/λg(t′), (B 3)

where D0 = D(0) is a constant of integration. Transforming the result back to the Eulerian domain,
by the operation F(t) · (· · · ) · FT(t), we obtain

A(t) = e−(t/λ)F(t) · D0 · FT(t) +
1
λ

∫ t

0
dt′ e−(t−t′)/λF(t) · g(t′) · FT(t). (B 4)

For a stress-free initial condition, D0 = I, this gives (3.13).
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