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The Relationships Among Working Memory,
Math Anxiety, and Performance

Mark H. Ashcraft and Elizabeth P. Kirk
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Individuals with high math anxiety demonstrated smaller working memory spans, especially when
assessed with a computation-based span task. This reduced working memory capacity led to a pro-
nounced increase in reaction time and errors when mental addition was performed concurrently with a
memory load task. The effects of the reduction also generalized to a working memory-intensive
transformation task. Overall, the results demonstrated that an individual difference variable, math
anxiety, affects on-line performance in math-related tasks and that this effect is a transitory disruption of
working memory. The authors consider a possible mechanism underlying this effect—disruption of
central executive processes—and suggest that individual difference variables like math anxiety deserve
greater empirical attention, especially on assessments of working memory capacity and functioning.

Affect is the least investigated aspect of human problem solving, yet
it is probably the aspect most often mentioned as deserving further
investigation. (Mandler, 1989, p. 3)

In this article, we continue a program of research that examines
the possible cognitive consequences and correlates of mathematics
anxiety. As discussed elsewhere (Ashcraft & Faust, 1994; Ash-
craft, Kirk, & Hopko, 1998), this work attempts to integrate two
rather independent lines of research that have coexisted since the
early 1970s. The first concerns studies of math anxiety per se,
beginning with the important article by Richardson and Suinn
(1972) and largely conducted within the psychometric tradition.
The second is the study of mathematical cognition itself, focusing
on the underlying mental representations and processes used in
arithmetic and mathematics performance, work stemming princi-
pally from Groen and Parkman's (1972) classic article.

It is surprising yet apparently true that up until this integrative
research was begun, no one had considered whether math anxiety
had any on-line effect on an individual's math performance, that is,
an effect on underlying cognitive processes as the individual
performs a math task. To be sure, the literature contains many
reports of the general negative effects that math anxiety has on
math performance and achievement (see the thorough meta-
analysis by Hembree, 1990). For example, individuals with high
math anxiety take fewer math courses, earn lower grades in the
classes they do take, and demonstrate lower math achievement and
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aptitude than their counterparts with low math anxiety. However
useful this information is, it does not address the underlying
cognitive processes involved in doing math, for example, mental
processes that access the memory representations of mathematical
knowledge. The same is largely true of the work reported in
McLeod and Adams (1989). Its focus on relatively slow problem-
solving tasks, especially when evaluated in classroom settings,
precludes a fine-grained examination of mental representations
and processes. Thus, the general focus of our research is to
examine performance in standard cognitive frameworks and on-
line tasks. We hope to examine the influence that math anxiety
exerts on mathematical cognition and to identify the processing
components that are so influenced.

Math Anxiety and Performance

Across several initial studies, we have found substantial evi-
dence for performance differences as a function of math anxiety.
These differences typically are not observed on the basic whole-
number facts of simple addition or multiplication (e.g., 7 + 9, 6 X
8) but are prominent when somewhat more difficult arithmetic
problems are tested. In particular, Ashcraft and Faust (1994; also
Faust, Ashcraft, & Fleck, 1996) have shown that high-math-
anxiety participants have particular difficulty on two-column ad-
dition problems (e.g., 27 + 18), owing largely to the carry oper-
ation. When such problems were answered correctly, the time
estimate for the embedded carry operation was nearly three times
as long for high-anxiety participants as it was for low-anxiety
participants (Faust et al., 1996). Thus, high-math-anxiety partici-
pants showed slower, more effortful processing on a procedural
aspect of performance, performing the carry operation (for sug-
gestive evidence on math affect and procedural performance in a
numerical estimation task, see LeFevre, Greenham, & Waheed,
1993). Furthermore, their higher error rates on these problems,
often showing classic speed-accuracy tradeoffs when confronted
with relatively difficult arithmetic, indicated a willingness to sac-
rifice accuracy on especially difficult trials, either to avoid having
to deal with the stimulus problem or merely to speed the experi-
mental session along.
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Math Competence

A rival interpretation, of course, is that high-anxiety participants
are simply less competent in math, unable to perform the necessary
calculations at the same level of accuracy as low-anxiety individ-
uals. The literature documents that there is indeed a significant
relationship between math anxiety and math competence or
achievement, a correlation of -.31 in Hembree's (1990) meta-
analysis. If the correlation holds across all levels of problem
difficulty, then competence and math anxiety are completely con-
founded, and performance differences cannot be uniquely attrib-
uted to either factor.

Results reported elsewhere, however, suggest that there is not a
complete confounding of math anxiety and math competence.
Faust et al. (1996), for instance, showed equivalent performance
across math-anxiety groups to simple one- and two-column addi-
tion and multiplication problems when those problems were tested
in an untimed, pencil-and-paper format. It is important to note that
the larger of these problems had shown math-anxiety effects in
laboratory tasks, suggesting strongly that the on-line anxiety reac-
tion had compromised participants' ability to demonstrate their
basic competence. Ashcraft and Kirk (1998) examined math com-
petence and math anxiety more thoroughly in a study that admin-
istered a standardized math achievement test. Simple whole-
number arithmetic problems showed no math anxiety effects at all,
whereas accuracy for the higher math-anxiety groups did decline
more on the later test lines at which more difficult arithmetic (e.g.,
mixed fractions) and mathematics problems (e.g., factoring) were
tested.

Finally, Hembree (1990) noted an interesting outcome in his
meta-analysis on math anxiety. Reports on the most effective
treatment interventions for math anxiety, behavioral and cogni-
tive-behavioral approaches, also presented evidence of posttreat-
ment increases in math achievement or competence scores to
levels "approaching the level of students with low mathematics
anxiety" (p. 43). Because the treatments did not involve instruction
or practice in mathematics, it is quite improbable that treatment
itself improved individuals' math competence. Instead, it seems
very likely that the low pretreatment achievement scores of high-
math-anxiety individuals were depressed by math anxiety during
the assessment itself and that relief from math anxiety then per-
mitted a more accurate assessment of math achievement and
competence.

On the basis of such evidence, it would appear that lower math
competence cannot be offered as a simple, wholesale explanation
for all the performance decrements associated with high math
anxiety (see Ashcraft & Kirk, 1998, for a full discussion of this
argument). Instead, these performance decrements seem to call for
an explanation involving on-line cognitive processing.

Math Anxiety and Working Memory

For several reasons, we suspected that an assessment of the
capacity and functioning of working memory (Baddeley, 1986;
Baddeley & Hitch, 1974) might provide a useful explanation of
results such as Faust et al.'s (1996) carry effect. A growing body
of evidence now attests to the centrality of working memory to
processes such as reading and reading comprehension (Just &
Carpenter, 1992), reasoning (Baddeley & Hitch, 1974; Jonides,

1995), and retrieval from long-term memory (Conway & Engle,
1994; Rosen & Engle, 1997; for a collection of articles, see
Richardson et al., 1996, and the contributions to this special issue).
The various components of these mental processes are often at-
tributed to one or another of the three major subcomponents—the
central executive, the auditory rehearsal loop, or the visuo-spatial
sketchpad—in Baddeley's (1986, 1992) well-known model.

There is a supportive although not extensive literature on the
role of working memory in mathematical cognition as well. Since
Hitch's (1978) early article on multistep arithmetic problem solv-
ing, there have been several reports on the critical role of working
memory in math performance. As an example, Geary and Wida-
man (1992) demonstrated that working memory capacity was
closely related to skill in arithmetic problem solving and, in
particular, to the speed of both fact retrieval and execution of the
carry operation. In both cases, the higher the capacity of working
memory, the faster were the component processes (see also Ash-
craft, 1992, 1995; Lemaire, Abdi, & Fayol, 1996; Widaman,
Geary, Cormier, & Little, 1989). So, for example, executing the
carry operation is thought to be controlled by working memory,
thus placing significant demands on the capacity of the working
memory system (Ashcraft, Copeland, Vavro, & Falk, 1999; Hitch,
1978; Logie, Gilhooly, & Wynn, 1994).

Accordingly, we hypothesized that a major contributor to the
performance deficits found for high-math-anxiety participants in-
volves working memory. In particular, such deficits are predicted
to stem from that portion of working memory, presumably the
central executive, that applies the various procedures of arithmetic
during problem solving (Ashcraft et al., 1999; but cf. Butterworth,
Cipolotti, & Warrington, 1996; see Darke, 1988, and Sorg &
Whitney, 1992, for additional evidence concerning anxiety and
working-memory processes).

More generally, Eysenck and Calvo (1992) have proposed an
overall model of the anxiety-to-performance relationship in cog-
nitive tasks, which is called the processing efficiency theory. Their
most relevant prediction for the present topic is that performance
deficits due to generalized anxiety will be prominent in exactly
those tasks that tap the limited capacity of working memory.1 In
their theory, the intrusive thoughts and worry characteristic of high
anxiety are thought to compete with the ongoing cognitive task for
the limited processing resources of working memory. The result of
such competition is either a slowing of performance or a decline in
accuracy—in other words, lower cognitive efficiency. Because
high-anxiety individuals must expend greater cognitive effort to
attain the same level of performance achieved by low-anxiety indi-
viduals, processing efficiency is lower for high-anxiety individuals.

Most of Eysenck's work (see Eysenck, 1992, for an integrative
summary) is based on results with either generalized anxiety
disorder individuals or individuals who exhibit high trait anxiety.
For the present studies, we extended Eysenck's predictions to math
anxiety. If this extension is valid, then an assessment of working
memory capacity and functioning should reveal differences as a

1 Eysenck (1992) discusses a whole range of anxiety-related phenomena,
for instance, increased physiological arousal, selective attention, and dis-
tractibility. For the tasks under consideration here, however, the conse-
quences of anxiety that affect working memory processes are the most
relevant.
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function of math anxiety, especially on tasks that require intensive
processing within working memory. We do not test the specifics of
Eysenck and Calvo's (1992) prediction here, which states that it is
intrusive thoughts and worry (in this case, about math) that detract
from available working memory capacity. Instead, we assess the
more general prediction that math anxiety disrupts working mem-
ory processing when the cognitive task involves arithmetic or
math-related processes. In this sense, our prediction is not appre-
ciably different from simpler models of attentional or working
memory disruption, for instance, Kahneman's (1973) prediction
that stress will disrupt processing that depends on attentional
(working memory) factors.

Experiment 1

Experiment 1 evaluated the hypothesized relationship between
math anxiety and working memory capacity. This assessment was
embedded in a broad-based assessment of possible relationships
among these and other factors, especially math computational skill
and math attitudes. For a full report on the attitude and computa-
tional skill assessments, see Ashcraft and Kirk (1998).

Method

Participants

A total of 66 participants, recruited from lower level undergraduate
psychology classes, received course credit for participating. After complet-
ing informed consent procedures, they were administered the math-anxiety
and working memory tests described below (along with the computational
skill and attitudes assessments) and then were debriefed and excused.
Sessions lasted approximately 90 min.

Instruments

Participants responded to a short (10-item) information sheet, which
asked various demographic and math background questions. They also
received a test of working memory capacity and a math-anxiety question-
naire, described below.

Demographic information. The one-page information sheet asked for
age, gender, year in school, and ethnic group, as well as self-reported
number of math courses and grades for both high school and college. We
also asked for subjective ratings, on a 1-5 scale (1 = not at all), regarding
how much participants enjoyed math and how math-anxious they were.

Math anxiety. The sMARS (short Mathematics Anxiety Rating Scale;
Alexander & Martray, 1989) is a 25-item version of the most widely used
measure of this construct, the 98-item MARS (Richardson & Suinn, 1972).
The sMARS assesses an individual's level of apprehension and anxiety
about math on a 1-5 Likert scale, asking for participants' responses about
how anxious they would be made by various settings and experiences (e.g.,
"Taking the math section of a standardized test"). Fleck, Sloan, Ashcraft,
Slane, and Strakowski (1998) tested several shortened forms of the MARS
and found the 25-item sMARS to yield a very high correlation with
participants' overall MARS scores (r = .96) and acceptable test-retest
reliability (r = .746 at a 2-week retest interval).

Working memory capacity. Salthouse and Babcock's (1990) listening
span (L-span) and computation span (C-span) tasks assessed participants'
working memory capacity by requiring them to store increasing numbers of
words or digits in working memory while processing simple verbal or
arithmetic tasks. In the L-span task, participants hear a number of simple
sentences, one by one, and must answer a simple question about the current
sentence before hearing the next (e.g., "Last fall the farmers had a good
harvest. When?"; "The children in the car wanted to stop for ice cream.

Where were the children?"). At the end of the set, the participant must then
recall the final word in each of the presented sentences (e.g., harvest, ice
cream), in serial order. Three trials are presented at each span length, with
testing continuing until the participant fails to respond correctly to at least
two of these trials (note that each sentence or problem in the block must
also be answered correctly). For the C-span test, simple arithmetic prob-
lems replace the sentences (e.g., 5 + 2 = ?, 9 — 6 = ?). Participants give
the answer to each problem (7, 3), one by one, and then must recall the last
number (2, 6) in each of the several problems within that trial, in order.
Thus the span tasks require both on-line processing for sentence compre-
hension or problem solution simultaneous with storage and maintenance of
information in working memory for serial recall.

Procedure

Groups ranging in size from 7 to 24 participants were tested in a group
setting. After the informed consent procedure, participants completed the
demographic sheet and then were given the four categories of tests (in-
cluding the two categories reported in Ashcraft & Kirk, 1998), sequenced
randomly for each session. To ensure comparability of sessions, the span
task stimuli and instructions were presented on a tape recording.

Results

Demographic Data

Table 1 presents summary statistics on the eight demographic
characteristics of the sample. For clarity, the high school and
college grades variables are reported on the standard 4-point scale
(i.e., A = 4.0, etc.), as is class year (i.e., freshman, sophomore,
etc.). Note that the n is reduced on college grades because 15 of the
participants had either not yet enrolled in or not yet completed a
college math course. The means and standard deviations for the
self-reported enjoyment and math-anxiety questions are also in-
cluded in Table 1. The values in this table suggest that the sample

Table 1
Summary Values, Sample Means, and Standard Deviations for
Demographic Variables for Experiments 1-3

Experiment

Variable 1 (N = 66) 2 (N = 45) 3 (N = 45)

Gender (M/F)
Age
Class year
No. of high school courses
High school math grades
No. of college courses
College math grades'
Rated math anxietyb

Rated enjoyment of mathb

Ethnic group (% of total
sample)

African American
Asian-Pacific
Caucasian
Hispanic

33/33
22.6 (4.57)
2.09(1.10)
3.66 (0.96)
2.60 (0.83)
2.28(1.97)
2.78 (0.78)
2.89(1.28)
3.00(1.21)

18
5

68
8

15/30
24.4(6.11)
2.04(1.44)
3.28 (0.83)
2.53 (0.92)
1.68(1.37)
1.85(1.42)
2.47(1.39)
2.50(1.34)

22
7

67
2

10/35
25.3 (7.68)
2.87 (1.07)
3.62(1.15)
2.73 (0.89)
2.84(1.85)
2.53(1.12)
3.31 (1.44)
2.78(1.36)

13
7

76
2

Note. Standard deviations in parentheses. M = male; F = female.
" n = 51 in Experiment 1; n = 40 in Experiment 2; n = 45 in Experiment 3.
b 1-5 scale, 1 = not at all.
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of 66 participants was a relatively conventional undergraduate
sample for an urban university.2

Mathematics Anxiety

Columns 1 and 2 of Table 2 present the overall sample means on
the sMARS, the demographic variables that showed significant
correlations with math anxiety, and the two working memory
assessments. The mean sMARS score of 36.3 (SD = 16.3) was
slightly higher than the normative values in Richardson and Suinn
(1972) but very close to the values reported by Fleck et al. (1998),
a mean of about 35.0, with a standard deviation of approxi-
mately 16.0. The very small difference in sMARS scores between
men (35.6) and women (37.1) was nonsignificant (F < 1.0).

Column 3 of Table 2 presents the correlations between sMARS
and the remaining variables, and Columns 4-8 present group
means and analysis of variance (ANOVA) results on these vari-
ables, using math-anxiety group (low, medium, high) as a
between-subjects variable.3 Cutoff scores for categorizing partic-
ipants into the three anxiety groups were determined empirically
by the overall sample mean and standard deviation, such that
low-math-anxiety scores were at least 1 standard deviation below
the overall sample mean on the sMARS, and high-math-anxiety
scores were at least 1 standard deviation above the mean. Scores
for the medium-math-anxiety group fell in the 1 standard deviation
range centered on the sample mean, from 0.5 standard deviation
below to 0.5 standard deviation above the mean. Twelve, 23,
and 15 participants had scores that placed them in the low-,
medium-, and high-math-anxiety groups, respectively—50 of the
original 66 participants.

Grouping participants by their level of math anxiety yielded one
significant group difference on the demographic variables, con-
cerning number of high school math courses taken, and two
differences that approached significance, on high school grades
and self-rated math anxiety (1-5 scale). Note that the full corre-
lations between sMARS and these three demographic variables
were all significant.

Math Anxiety and Working Memory Span

As shown at the bottom of Table 2, individuals at higher levels
of math anxiety showed significantly lower working memory
capacity scores than those at lower anxiety levels. To see if the
decline in capacity differed as a function of type of span task, we
conducted a two-way ANOVA on the span scores. The analysis
revealed significant main effects for anxiety group, F(2, 47) =
11.22, MSB = 1.23, and for type of span task, F(\, 47) = 10.17,
MSB = 0.77, both ps < .01. The F value for the interaction,
however, was nonsignificant, F(2, 47) = 1.71, computed p = .193.4

The result, taken at face value, indicates that individuals at
higher levels of math anxiety have a reduced working memory
capacity when tested with either a computation-based or language-
based span task. This runs counter to the prediction that a decline
in span scores due to math anxiety should be math specific and
should not be apparent in nonmath testing situations. Because of
the overlap between the two span tasks (e.g., the full sample
correlation between the two span tasks was .38), we conducted
several multiple regression analyses to partial out the contributions

of one span task to examine the math-anxiety effect on the other
span task.

In brief, anxiety group was more predictive of an individual's
C-span score than the individual's own L-span score was. The
original correlation between C-span and math anxiety (-.44)
remained significant and essentially unchanged (-.40), even after
the common variance with L-span was statistically partialed out. In
contrast, the original correlation between L-span and math anxiety
(—.36) became nonsignificant (-.22) when the common variance
with C-span was statistically removed. These results suggest that
the decline in computation-based working memory span was
clearly related to math anxiety, above and beyond the similarities
in performance between computation- and verbal-based span tasks.
Variations in verbal-based span, however, were less clearly related
to math anxiety (see also Dark & Benbow, 1990, 1991), although
the two original correlations did not differ significantly from each
other (z = —.64). We postpone further discussion of this issue
until Experiment 3, in which these relationships are tested again.

Discussion

The correlational results of this study were straightforward and
replicated several of the global effects of math anxiety reported by
Hembree (1990); high-math-anxiety individuals enroll in fewer
math courses and earn lower grades in the math classes they do
take. The most important new finding was that working memory
capacity was negatively associated with math anxiety. Given the
importance of working memory functioning to a variety of cogni-
tive and intellectual tasks (e.g., Just & Carpenter, 1992; Logie et
al., 1994), it becomes genuinely important to explore the relation-
ship between working memory and math anxiety more fully.

This is especially the case given the positive relationship re-
ported elsewhere between working memory and math performance
(Ashcraft & Kirk, 1998; Geary & Widaman, 1992; Hitch, 1978). In
particular, the possibility exists that the lower working-memory
capacity that seems characteristic of high-math-anxiety individuals
may be at least partially responsible for the performance decre-
ments commonly found with math anxiety. It may be, further, that
this reduced working-memory capacity is an on-line effect, one
that disrupts information processing in arithmetic and math tasks.
The argument here is that those aspects of math performance that
rely especially on working memory will be the aspects most
affected by math anxiety. If this disruption can be demonstrated on
a rather straightforward arithmetic task, one on which competence
differences can be ruled out, then this would be evidence of an
on-line math-anxiety reaction. More generally, we would expect to
find such evidence whenever the math task places heavy demands
on the capacity of working memory. The following two experi-
ments were designed to follow up on this prediction.

2 Unless otherwise noted, all findings reported as significant here
achieved at least the .05 significance level.

3 The full correlation matrix for Experiment 1 is available upon request.

"We note in passing that the superiority of our participants on the
C-span task (M = 3.4 vs. 2.8 for L-span) is reversed from the data in
Salthouse and Babcock (1990; in that report, M = 2.87 for the C-span task
and 3.37 for the L-span task), possibly owing to our group presentation
method or the lengthy test sessions.
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Table 2
Means (and Standard Deviations), Correlation Coefficients, and Math-Anxiety
Group Means for Experiment 1

Anxiety group

Variable

sMARS
Demographics

No. of high school courses
High school math grades
Rated math anxiety

Working-memory capacity
L-span
C-span

M

36.3 (16.3)

3.66 (0.96)
2.60 (0.83)
2.89 (1.28)

2.80(1.01)
3.44(1.16)

r with sMARS

1.0

-.28
-.29

.42

-.36
-.44

Low

12.3

4.08
3.0
2.25

3.7
4.3

Med.

37.1

3.56
2.50
3.17

2.4
3.4

High

57.4

3.53
2.40
3.20

2.6
2.8

F(2, 47)

255.20

3.72
2.13
2.60

7.83
7.33

P<

.001

.05

.13

.08

.01

.01

Note. rcril(66) = .254 at/> = .05; rcrit(66) = .330 atp = .01. sMARS = short Mathematics Anxiety Rating
Scale; Med. = medium; L-span = listening-span task; C-span = computation-span task; crit = critical.

Experiment 2

We explored the hypothesis that math anxiety disrupts working
memory by using an on-line mental addition task, in which par-
ticipants see the problem and are timed as they produce its answer
verbally. Problem difficulty ranged from basic addition facts (e.g.,
4 + 3) up through two-column additions with carrying (e.g., 47 +
18). Importantly, this range of problems corresponds to difficulty
levels that showed no math anxiety effects in math achievement
testing (Ashcraft & Kirk, 1998). Performance differences here
should therefore be attributable to the on-line disruption of math
processing rather than to preexisting group differences in compe-
tence and skill.

Mental addition was embedded here within a dual task. The
reasoning behind the dual-task procedure (e.g., Baddeley, 1986) is
that a demanding secondary task will compete with the primary
task for working memory capacity, to the extent that each task
requires the working memory system for successful performance.
As the tasks increase in difficulty, their combination begins to
overload the working memory system, with the interference visible
as an increase in either reaction times (RTs) or errors. The relevant
manipulations in the primary task were difficulty of the addition
problem and whether the problem involved carrying from the units
to the tens column; few, if any, other independent variables are
more reliably associated with increasing difficulty in arithmetic
processing than these (e.g., Ashcraft, 1992; Widaman et al., 1989).
The secondary task here was a memory load task, holding either
two or six random letters in working memory for later recall. The
intent was to determine the point at which available working
memory capacity becomes insufficient to maintain normal speed
and accuracy on the two tasks.

Results with this combination of tasks (Ashcraft et al., 1999)
have indicated a strong interaction between task (control vs. dual
task) and the problem difficulty factors. In those results, the more
difficult problems, especially those with carrying, showed in-
creased solution latencies and dramatically higher error rates under
high-memory-load conditions. This effect was interpreted to mean
that more difficult addition problems rely significantly on working
memory because performance to them was compromised when the
system was also taxed with the memory load task.

We go one step further here in predicting that this interference
pattern should be exaggerated at the higher levels of math anxiety.

Participants at higher levels of math anxiety show lower working-
memory capacity when processing numbers, as demonstrated in
Experiment 1. Thus, the interference experienced under our dual-
task procedure should be even more pronounced at higher levels of
math anxiety. Indeed, the on-line math-anxiety effect may be
conceptualized as functionally similar to a secondary task in that it
drains working-memory capacity that otherwise would be avail-
able for task-relevant processing, as suggested earlier. In a real
sense, high-math-anxiety participants may face a triple-task situ-
ation, with arithmetic and memory load performance further com-
promised by the on-line anxiety effect.

Method

Participants

Undergraduates in lower level psychology courses volunteered their
participation in return for extra credit. We continued testing until the three
math-anxiety groups had 15 participants each; the sMARS cutoffs for
group membership were the same as in Experiment 1. The additional
participants who were tested had sMARS scores that fell outside of the
critical ranges or, toward the end of testing, had a score that placed them
in an already-filled group. During testing, 2 participants were dropped (and
replaced) because they were unable to trigger the voice relay reliably, as
were 8 who were unable to achieve an overall accuracy rate of 75% on
letter recall. Table 1 presents summary values for this sample.

Apparatus

The demographic sheet and the sMARS were in pencil-and-paper for-
mat. The experimental task was instrumented on ordinary laboratory per-
sonal computers, using the Micro Experimental Laboratory software pack-
age (MEL Professional 2.01, 1995; Schneider, 1988). The software
presented all task instructions on the screen and recorded RTs automati-
cally. At the end of each trial, the experimenter entered the participant's
response to the arithmetic problem, and the software scored responses for
accuracy. Spoken letter recall was recorded for later scoring.

Tasks

In the full dual-task condition, there were three main events per trial,
each event separated from the next by a blank screen. The three events
were (a) presenting the set of letters to be held in working memory, with
the interval terminated by the participant's key press (Event 1), (b) pre-
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seating the addition problem to be solved, with the interval terminated by
the participant's spoken response (Event 2), and (c) prompting for recall of
the letters, with the interval terminated by the experimenter after recall was
recorded (Event 3). Participants were encouraged (although not required)
to read the letter set aloud (Event 1) before moving on to the arithmetic
problem. The RT interval began when the addition problem appeared on
the screen (Event 2) and was terminated when the participant stated the
answer to the problem. This was followed by the prompted recall of the
letter set (Event 3). Thus, on each trial, participants (usually) read the letter
set aloud, spoke the answer to the addition problem, then recalled the letter
set orally. After the experimenter recorded letter recall and keyed in the
addition answer, a "Ready" signal appeared, followed by the beginning of
the next trial.

The appropriate controls for this dual task involve testing both the
primary (math only) and secondary (letter recall only) tasks alone. To
guard against the possibility that vocalizing per se in the dual task might
cause some interference, both control conditions held overall vocalizations
constant. That is, in the math-only task, participants still named the letter
set aloud when it was presented (Event 1), and after solving the math
problem, they named the letters when the prompt appeared (Event 3). To
eliminate the load on working memory, the letters were shown on the
screen during the prompt, and participants merely read them aloud. Like-
wise, during the letter-recall-only task, the answer to the addition problem
was shown along with the problem on the screen (Event 2), and the
participants merely read the answer aloud prior to recalling the letter set at
the recall prompt.

Stimuli

Sixty addition problems were evenly divided among the six stimulus
conditions, the result of the 3 X 2 manipulation of problem size and carry.
The three levels of problem size were basic fact, medium, and large, with
these labels denoting, respectively, problems with single-digit operands
(e.g., 4 + 3), with a double- and a single-digit operand (e.g., 15 + 2), and
with two double-digit operands (e.g., 23 + 11). Half of the problems in
each set were no carry problems (the examples just given), and half
involved a carry (e.g., 7 + 9,16 + 8,25 + 17). The set of 60 problems was
then permuted twice, yielding three comparable sets of problems to be used
in the three task conditions. In one permutation, one of the two problem
operands was randomly selected and changed by ±1 or 2; in the other
permutation, the other operand was changed in the same way. Thus, the
three different sets of addition problems were comparable in difficulty, yet
involved no stimulus repetition across tasks. All problems had either 1- or
2-digit sums; the largest problem was 45 + 31.

Letter sets for the secondary task were composed of either two or six
randomly selected consonants, selected with approximately equal frequen-
cies across the entire experiment. Letter sets were modified as needed to
avoid meaningful combinations, combinations that repeated a letter, and
combinations that contained any pair of letters in alphabetical sequence.
The letter combinations were also permuted, by changing one letter in each
combination (subject to the same restrictions), to yield the sets necessary
for the three tasks. As was the case with the three sets of addition problems,
the letter combinations were comparable across tasks while not involving
any exact repetition.

Procedure

Participants were tested individually in sessions that averaged 75 min.
They were told the general purpose of the experiment, gave their informed
consent, and then were given a short practice set that presented and tested
each of the three tasks. They then proceeded to the experiment itself, with
order of the three tasks counterbalanced across participants. The detailed
purpose of the study was explained at the end of the session. Previous
testing with this task (Ashcraft et al., 1999) indicated that the full set of 60

trials on the letter-recall-only task needlessly prolonged the session and
was unnecessary for a reliable estimate of memory load performance.
Thus, the letter-only task was reduced from 60 to 36 trials, with 3 trials in
each experimental condition, versus the 5 per condition in math-only task
and the dual task.

Results

All ANOVAs reported here used the same mixed design: math
anxiety (low, medium, high) as a between-subjects variable and
the remaining variables as within-subjects factors. As stated, the
factors of problem size (basic fact, medium, and large) and carry

status (no carry, carry) manipulated the difficulty of the addition
problems, and the memory load condition (two- versus six-letter
loads) manipulated difficulty in the secondary task. Thus, the
within-subjects factors formed a 3 X 2 X 2 design, with a total
of 12 stimulus conditions and five trials per condition.

Letter Recall Only

The number of correctly recalled letters was analyzed in the

letter-recall-only task as a function of the three within-subjects
independent variables (though, of course, no genuine arithmetic
processing was necessary in this task). The only effect that
achieved conventional significance was the main effect of memory
load, F(l, 42) = 76.68, MSE = 0.12, p < .001, in which recall of
the 2-letter sets averaged 100% correct, versus 96% correct recall
of the 6-letter sets. The results indicated no relationship between
math anxiety and letter recall in this control task; mean correct
recall across the anxiety groups was 5.89, 5.87, and 5.81 letters
(out of 6 possible; note that for all analyses, recall on 2-letter trials
was converted to the same 6-point scale). The three-way interac-
tion of anxiety, problem size, and memory load approached sig-
nificance (computed p = .059) but only because of a strong ceiling
effect in the 2-letter conditions (from 99% to 100% correct on

2-letter trials).
The letter-only results indicate that even the heavier memory

loads were well within participants' basic working memory capac-
ities. Furthermore, with the nonnumerical stimuli in this task, there
were no apparent differences in working-memory capacity across
the three anxiety groups. As such, anxiety-related effects in the
math-only and dual-task conditions cannot plausibly be attributed
to a general deficiency in working memory capacity for the higher
anxiety groups. Note, finally, that the virtually perfect performance
on the lighter memory loads suggests minimal involvement of
working memory for storing and recalling two letters.

Math Only

Both RTs and errors to the addition problems were analyzed
with the mixed ANOVA design described above. Of the origi-
nal 2,700 possible RTs (60 for each of 45 participants), 0.6% were
identified as outliers, 2% were spoiled owing to difficulties with
the voice relay (e.g., triggering by an extraneous noise), and 4% of
trials were answered incorrectly; RTs from these trials were ex-
cluded from the analyses.

Latency Results

Problem size and the carry status of the problem, as well as the
interaction of these two variables, had strong effects on RTs; for
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the interaction, F(2, 84) = 25.77, MSB = 201,473, p < .001. The
diverging pattern of this interaction, shown with accompanying
error rates in Figure 1, replicates very closely the pattern reported
in Ashcraft et al. (1999). There was a nonsignificant (computed
p = .10) tendency for the low-anxiety group (M = 1,957 ms) to be
marginally slower than the medium group (M = 1,825 ms) and for
the high-anxiety group to be slower than both of these (M = 2,288
ms). The low-medium group reversal seemed due to a slight
speed-accuracy tradeoff, with 3% errors for low-math-anxiety
versus 5% for the medium group (the high-anxiety group's overall
error rate was 6%). The RT data also showed a 186-ms speedup of
performance on six-letter trials on the part of high-math-anxiety
participants, versus a nonsignificant 30 ms difference for low and
medium groups, despite the fact that letters did not have to be
stored in and retrieved from memory in this task: Anxiety X
Memory Load interaction, F(2, 42) = 6.76, MSB = 84,401,
p< .01.

Accuracy Results

The analysis of error rates revealed straightforward evidence of
a math anxiety effect on addition performance in the form of an
Anxiety X Carry interaction, F(2,42) = 6.04, MSB = 128.17, p <
.01. No-carry problems showed essentially no variation in error
rates across anxiety group (2%, 1%, and 0.4%, respectively),
contrasted with the marked increase on carry problems (4%, 8%,
and 11%, respectively). This pattern replicates earlier reports (e.g.,
Faust et al., 1996) of the particular difficulties experienced by
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Figure 1. Mean reaction time (RT) and percentage error rates to basic
fact (BF; n + m), medium (nn + m), and large (nn + mm) addition
problems, separately for no carry and carry problems: Experiment 2. Error
bars display 95% confidence interval based on MSw.

high-math-anxiety participants on problems involving the carry
operation.

The analysis also revealed processing difficulties due to prob-
lem variables. Beyond the significant main effects of problem size,
F(2, 84) = 4.13, MSB = 101.9, and carry status of the problems,
F(l, 42) = 42.00, MSB = 128.2, p < .001, there was a significant
interaction of problem size, memory load, and carry, F(2, 84) =
8.19, MSB = 88.40, p < .001. Error rates climbed to 14% for large
carry problems on six-letter trials, suggesting that articulating
the six-letter sets generated some within-trial interference with
difficult arithmetic processing, even without the memory load
requirement.

Dual-Task Analyses

Latencies and error rates were analyzed as a function of control
versus dual task, to determine how much performance deteriorated
when the two demanding tasks were performed concurrently. We
begin with an explanation of the analysis decisions dictated by the
dual-task procedure, then present the results of the analyses.

In the dual-task condition, it seemed clear that errors in either
task could be taken as evidence of interference in working mem-
ory. That is, particularly difficult addition might disrupt working
memory sufficiently to depress letter recall, or the working mem-
ory load for letter recall might disrupt concurrent addition perfor-
mance. As such, error rates in the dual task were the percentages
of trials in the 12 stimulus conditions that contained an error of
either type. Likewise, for the control observations, we summed
error percentages across letter-recall-only and math-only tasks,
separately for the 12 stimulus conditions. For all scoring, accurate
recall was defined as recalling both letters in the two-letter sets and
at least five of the six in the six-letter sets. Our rationale here was
that accurate recall of five letters still required a substantial in-
volvement of working memory, whereas insistence on perfect
six-letter recall depleted the number of usable RT trials in the dual
task to a greater degree than was acceptable. The RT analyses
considered only accurate trials, which in the dual task meant only
those trials scored as correct for both the math and the letter recall.

Latency Results

The analysis of RTs revealed several processing effects due to
problem difficulty and memory loads. For example, problem size
and the carry factor were significant as main and interaction
effects, as found in the math-only analysis (Figure 1). Furthermore,
this interaction depended on the control versus dual-task factor; for
the three-way interaction, F(2, 84) = 5.49, MSB = 110,756, p <
.01. The diverging pattern shown in Figure 1 was even more
pronounced in the dual-task condition; for example, the slowest
RT in Figure 1—3,280 ms for large carry problems—increased
to 3,554 ms in the dual task, whereas RTs to the smaller problems
and those without a carry remained essentially unchanged. The
same (nonsignificant) pattern of means across anxiety groups was
obtained again, and there was once again a significant speedup to
six-letter trials for only the high-anxiety participants, F(2, 42) =
5.95, MSB = 97,316, p < .01.

Accuracy Results

Far more informative were the results from the error analysis.
Here, all main effects (math anxiety at a computed p of .052),
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several double interactions, and three triple interactions were sig-
nificant. We first focus on the three-way interaction pertaining to
the task environment and then the two triple interactions that
included math anxiety.

The interaction of task, carry, and memory load, F(l, 42) =
6.28, MSE = 195.20, was quite straightforward. The pattern in the
control condition was of two main effects, showing a modest (6%)
increase in error rates for carry problems and a modest (4%)
increase with the heavy memory load. The source of the interaction
was the diverging pattern found in the dual task. Here, the increase
in errors for carry problems was 8% in the two-letter condition but
14% for carry problems done concurrently with the six-letter
memory load. In other words, it was the combination of carrying
performed under the heavy memory load that surpassed the capa-
bilities of working memory. This is precisely the pattern reported
for a sample of participants not selected on the basis of math
anxiety (Ashcraft et al., 1999). Having to maintain a heavy load in
working memory seems to selectively interfere with performance
to difficult additions involving the carry operation.

This diverging Carry X Memory Load pattern also varied across
the three math-anxiety groups, as shown in the Anxiety X Carry X
Memory Load interaction, F(2, 42) = 3.94, MSE = 116.92. The
four-way interaction of this effect with control versus dual task
narrowly missed conventional significance, F(2, 42) = 2.99,
MSE = 195.20, computed p = .061. We nonetheless present the
four-way interaction in Figure 2 because it both shows the pattern
of three-way effect as well as the exaggeration of this effect in the
dual task. In the control task, the increases in errors due to carrying
were moderate, increased slightly under the heavy memory load,
and showed modest increases at higher levels of anxiety. A similar
pattern was obtained in the dual task when only two letters had to
be held in working memory. The heavy memory load, however,
disrupted dual-task performance much more markedly. This dis-
ruption was particularly strong in the high-math-anxiety group,
which showed a 39% error rate.

Another way of conceptualizing these effects is to define the
cost of carrying as the difference in error rates between carry and
no carry problems. In these terms, although all four sections of the
figure show costs in accuracy due to carrying, these costs range
from minimal to moderate in the control condition (from 0.8% for
low anxiety, two-letter to 9% for high anxiety, six-letter). Costs
remained in the 8% range in the dual-task condition but only with
the light memory load. With the heavy memory load, however, the
cost of carrying increased sharply with math anxiety; for low-,
medium-, and high-math anxiety, the costs of carrying here were
10%, 17%, and 27%, respectively. No-carry problems therefore
appear to rely only moderately on working memory, showing only
moderate increases when memory load increases. When carrying
was required, however, the costs due to the memory load were
greater and increased substantially with the math-anxiety group.
Carrying thus seems especially reliant on working memory pro-
cesses and is especially prone to disruption among high-math-
anxiety individuals.

Finally, the Math Anxiety X Problem Size X Task interaction
was also significant, F(4, 84) = 3.33, MSE = 546.23, p < .01. In
the control observations, errors rose somewhat across problem size
for the medium- and high-anxiety groups, although not for the
low-anxiety group (confirmed by a breakdown analysis limited to
the control condition). Under the dual-task condition, the increases
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in error rates were clear for all three groups but were most
pronounced for the high-anxiety group. The four-way interaction
of this effect with memory load would have confirmed that this
high error rate was particularly due to the heavy memory load; this
interaction only approached significance, however (computed p =
.085).

These results correspond well with the patterns predicted earlier,
when we considered the lower working-memory capacity of high-
math-anxiety participants and the reliance on working memory
during difficult addition processing. All anxiety groups showed
increases in error rates under the increasing pressures of problem
size and dual-task requirements, indicating reliance on the working
memory system for difficult arithmetic processing. However, the
striking increase in errors for the high-math-anxiety group is
consistent with the interpretation that the high-anxiety group had
the least capacity to devote to concurrent processing, which itself
taxed working-memory capacity. In passing, we note that despite
their overall skill and achievement, low-math-anxiety participants
still demonstrated reliance on working memory for carry problems,
that is, problems involving procedural processes.

Discussion

Experiment 2 confirmed earlier indications that high-math-
anxiety individuals have particular difficulties with addition prob-
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lems involving a carry operation (Faust et al., 1996). Earlier
interpretation had suggested that this was due to the load on
working memory engendered by the carry operation. The results of
Experiment 2 demonstrated this quite clearly. When carrying was
performed concurrently with a task that placed heavy demands on
working memory, performance deteriorated sharply for the nigh-
math-anxiety group. This deterioration was not as pronounced at
lesser degrees of problem difficulty or on problems not requiring
the carry operation, and it was considerably weaker for participants
at the low-math-anxiety level. Importantly, there was no evidence
of anxiety-related deterioration in the letter-only task, in which
processing within working memory involved nonnumerical stim-
uli. In short, these results conform exactly to the predicted conse-
quences of lower working memory span for high-math anxiety
individuals: degradation of their working memory performance in
an on-line arithmetic task.

Experiment 3

We wish to extend this relationship between compromised
working memory span and math anxiety by examining perfor-
mance in a task that is working-memory intensive while not
explicitly involving learned math. This demonstration is motivated
generally by Eysenck and Calvo's (1992) prediction that anxiety
will have its primary debilitating effects in tasks that place heavy

processing loads on working memory. If the math anxiety reaction
compromises participants' available working memory capacity
when doing math, as was the case in Experiment 2, then it is of
interest to explore the limits of this effect. In brief, must arithmetic
and math stimuli be used to trigger the math anxiety reaction, or
will tasks that merely rely on number-related processes also dem-
onstrate the effect?

To obtain evidence on this question we tested a transformation
task used by Eysenck (1985; originally reported in Hamilton,

Hockey, & Rejman, 1977); letter transformation here was basically
an "alphabet arithmetic" task (e.g., A + 3 = D; Logan & Klapp,
1991) with a recall requirement. We also repeated our assessment
of working memory span from Experiment 1 in hopes of obtaining
more definitive results on the relationship between math anxiety
and language-based span.

Method

Participants

Participants were recruited from several lower level undergraduate psy-
chology classes and given extra credit for their participation. After com-
pleting informed consent procedures, they completed the standard demo-
graphic sheet and the sMARS. Participants whose scores categorized them
as having low, medium, or high math anxiety were then recruited for
individual testing in the two working-memory tasks. A total of 51 partic-
ipants were tested in the individual sessions, 15 each from the three
math-anxiety levels described earlier. Four participants were dropped from
the sample because they were unable to complete the tasks with adequate
accuracy, and 2 more were replaced as described below. After the 90-min
testing session was completed, participants were debriefed about the pur-
pose of the experiment and then excused.

Working Memory Tasks

Participants were given the L-span and C-span working memory tasks
described in Experiment 1. Additionally, they were given a letter transforma-

tion task (Eysenck, 1985) to test working memory capacity and processing.
In this task, participants were given series of letter transformation trials and
series of number transformation trials. In both cases, the stimulus set had to be
transformed mentally, then reported to the experimenter for final recall.

Letter transformation. Participants saw either two or four letters of the
alphabet, one at a time. They were required to transform each letter mentally
by moving or counting forward either two or four steps through the alphabet,
then holding that outcome in working memory while transforming the next
letter in the set. In the simplest type of trial (two letters, transformation size
two), a participant would see 2, indicating that the letters had to be trans-
formed two steps down the alphabet. The participant then pressed a key on
the keyboard and saw the first letter, for example, E. The participant would
mentally transform E by moving two letters through the alphabet (F, G),
press the key again to see the next letter, for example, 5, then transform S
to U while simultaneously holding the earlier transformation outcome (G)
in working memory. After pressing the key to indicate the second trans-
formation was completed, the word Recall would appear on the screen, and
the outcome of the transformations (G, U) had to be reported in order.

After 10 practice trials, a total of 40 letter transformation trials were
presented, in randomized order. There were 10 trials in each of the cells of
a 2 X 2 design, with factors of transformation size (two or four), and
number of letters (two or four). Letters were selected randomly from the set
B through V and were ordered randomly within trials subject to two
restrictions. First, we eliminated any letter sequences that formed words or
meaningful acronyms. Second, we excluded letters that would duplicate
part of the transformation sequence required for another letter in that trial
(e.g., the transformation sequence for B—which is C, D, E, F—precluded
using the letters C through F for that trial).

Number transformation. We substituted randomly selected single or
double digit numbers in the range 5-25 for the letters and had participants
transform those numbers by adding either the value 7 or 13. Thus, for a
"transform 7" sequence, the numbers "15 3 25 19" might be presented,
again one at a time, and at the end of transformation, the participant would
report "22 10 32 26" at the Recall prompt. As in the letter task, participants
saw either two or four numbers to be transformed, to which they applied
either a "plus 7" or a "plus 13" transformation. Again, we presented 10
practice and 40 experimental trials, the latter in randomized order.

Dependent Measures

Accuracy and latency data were collected for both transformation tasks.
Participants' recall scores were the percentage of letters and numbers
correctly recalled on each trial. The computer recorded the latencies
between key presses on the keyboard, yielding a position-by-position
record of the time required to encode, transform, and rehearse the letters or
numbers to be recalled on each trial. Accuracy and span length on the L-
and C-span tasks were scored as described in Experiment 1.

Apparatus

The transformation experiment was conducted using the same apparatus
as in Experiment 2. The software presented all instructions and stimuli to
the participants and recorded latencies in milliseconds. The span tasks were
conducted as in Experiment 1.

Procedure

Participants were selected on the basis of math-anxiety scores obtained
in the preliminary screening session. They were given either the two span
tasks and then the two transformation tasks, or they were given these tasks
in reverse order. A few participants were retested on the sMARS at the end
of the experimental session when their performance seemed inordinately
out of line with their sMARS score. Two participants were dropped from
the sample and replaced because the retest scores would have reclassified
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Table 3
Means (and Standard Deviations), Correlation Coefficients, and Math-Anxiety
Group Means for Experiment 3

Anxiety group

Variable

sMARS
Demographics

No. of high school courses
High school math grades
College math grades
Rated math anxiety
Rated enjoyment of math

Performance measures
L-span
C-span
Letters transformation
Numbers transformation

M

37.6 (23.4)

3.62(1.15)
2.73 (0.89)
2.53 (1.12)
3.31 (1.44)
2.78(1.36)

2.80(1.12)
3.04(1.31)
80.8 (12.0)
81.5(11.3)

r with sMARS

1.0

-.45
-.67
-.35

.81
-.74

-.20
-.40
-.44
-.44

Low

10.6

4.20
3.4
3.1
1.87
4.2

3.13
3.60

85.0
85.6

Med.

36.7

3.67
2.80
2.6
3.40
2.4

2.73
3.27

84.0
85.8

High

66.0

3.00
2.00
1.9
4.67
1.7

2.53
2.27

73.5
73.0

F(2, 47)

345.11

4.77
15.54
4.50

37.91
31.15

1.12
4.94
4.25
6.26

P<

.001

.05

.01

.05

.01

.01

ns
.05
.05
.05

Note. rcrit(43) = .29 atp = .05; rcrit(43) = .39 atp = .01. Letters transformation category reports percentage
correct on difficult letter transformations; numbers transformation category reports percentage correct on
difficult number transformations. sMARS = short Mathematics Anxiety Rating Scale; Med. = medium;
L-span = listening-span task; C-span = computation span task; crit = critical.

them into a different math-anxiety group. The remaining retest scores were
not seriously discrepant so these participants were retained in the sample.

Results

Demographic Data

The far right column of Table 1 summarizes the sample of
participants in Experiment 3 in terms of demographic variables.
The sample here was somewhat older than in the previous exper-
iments, had taken more college math courses, and included a
higher percentage of female participants but was otherwise fairly
similar to those in the earlier experiments.

Mathematics Anxiety

Table 3 presents means and standard deviations of variables that
correlated significantly with sMARS, the correlation coefficients,
and group means as a function of math-anxiety group when those
means were significantly different in simple ANOVAs.

The patterns of correlations and significant group differences
were very similar to those obtained in Experiment 1. High math
anxiety was associated with fewer high school math courses, lower
high school and college math grades, higher self-rated math anx-
iety, and lower enjoyment of math than low math anxiety.

Working Memory: C- and L-Span Results

Table 3 also displays the significant correlation of the C-span
measure and sMARS, the group means on the C-span measure as
a function of anxiety group, and the nonsignificant correlation and
group means on the L-span measure; as in Experiment 1, these two
span-to-sMARS correlations did not differ significantly (z = —1.34).
Although the means were somewhat lower than those in Experi-
ment 1 and there was no significant difference between C-span and
L-span tasks, the overall effect of anxiety was the same, a signif-
icant decline in span length from low to medium to high math

anxiety, F(2, 42) = 3.67, MSE = 1.94. A breakdown ANOVA
confirmed that the C-span scores declined significantly with increas-
ing math anxiety but that the L-span scores did not. We conclude
that there is a clear decline in working-memory span that is specifi-
cally related to an individual's level of math anxiety when the span
task uses numerical information. The anxiety effect on working mem-
ory span is rather moderate when language stimuli are used, however.

Transformation Task

Latency results. We first examined participants' latencies in
the transformation tasks, that is, the time spent in encoding, trans-
forming, and then maintaining the transformation result for recall.5

Participants occasionally spent an extraordinarily long or short
time on one or another item, usually because they "lost" the earlier
transformation results as they worked on a subsequent item (ac-
cording to volunteered reports). To avoid skewing the latency
results owing to such on-line lapses, we screened outliers from the

5 Eysenck (1985) asked his participants to perform the transformation
aloud. He then separated the total latency per position into three subpro-
cesses; long-term-memory access to retrieve the correct starting point in
the alphabet, transformation of the letter, and rehearsal and storage of the
transformation result. These were defined, respectively, as time from
stimulus presentation to onset of vocalization, the duration of the vocal-
izations while transforming the letter, and the time from the end of
vocalization until the keypress to reveal the next letter. According to this
analysis, increasing latency across list position was entirely due to the
rehearsal and storage component, which increased more sharply for high-
anxiety participants. We did not intend to conduct this kind of breakdown
analysis because it seems doubtful that the three subprocesses are com-
pletely independent and nonoverlapping. Given the serial recall require-
ment, however, we do not dispute the idea that increasing latencies are
probably due to rehearsal and storage. It is unclear, however, whether this
subprocess is more heavily dependent on the central executive, as Eysenck
concluded, or the articulatory loop, as might be expected for serial re-
hearsal.
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data, removing any latency larger or smaller than 2 standard
deviations away from the Participant X Condition X Position
mean.

The latency analysis revealed that letter transformation was
slower than number transformation, large transformations took
more time than small ones, and transformation latency increased
across positions. These three main effects, and their double inter-
actions, were significant in both the two- and four-item analyses.
There was also a three-way interaction in the four-item analysis,
with factors of letter versus number, transformation size, and
position, F(3, 126) = 7.66, MSB = 919,153, p < .001. Part of the
explanation of the interaction involved the larger separation in
latencies for the +4 transformations of letters than the parallel
+13 transformation for numbers. Beyond that, in all but the large
number transformation condition, there was a tendency for laten-
cies to drop off at Position 4, essentially the result reported in
Eysenck (1985). Participants seem to have relied on a classic
short-term memory strategy in such self-timed study, knowing that
the fourth position was the last item, so spending relatively little
time rehearsing at that position.

Figure 3 reveals how the transformation latency patterns de-
pended on level of math anxiety. Math anxiety was a significant
main effect in the two-item latency analysis, as was the interaction
of math anxiety and position, F(2, 42) = 7.08, MSB = 1,579,721,
p < .01. The main effects of anxiety, F(2, 42) = 6.44,
MSB = 54,311,073, p < .01, and position, F(3, 126) = 47.27,
MSB = 5,612,390, p < .001, were significant on the four-item
trials, although their interaction was not (computed p = .18).

Accuracy results. High-math-anxiety participants spent signif-
icantly more time transforming the letters and numbers in the tasks
than did the low- and medium-anxiety groups, just as Eysenck
(1985) reported for high trait anxious individuals. One might
suspect that this greater effort on the part of high-anxiety partici-
pants would lead to equivalent accuracy when the letters or num-
bers had to be recalled. This was not the case, however. In all
conditions, the high-math-anxiety participants had poorer recall
scores in the transformation tasks, as depicted in Figure 4. Math
anxiety was significant as a main effect in the accuracy analysis,
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Figure 3. Mean transformation latencies across positions in list, sepa-
rately for math-anxiety groups (low anxiety [circles], medium anxiety
[triangles], high anxiety [squares]): Experiment 3.

Figure 4. Mean percentage correct recall in the transformation task, as a
function of math anxiety (low anxiety [circles], medium anxiety [triangles],
high anxiety [squares]), two- versus four-item lists, and small (Sm) versus
large (Lg) transformations: Experiment 3.

F(2, 42) = 10.17, MSB = 232.39, p < .001, and interacted with
transformation value (small vs. large), F(2, 42) = 4.05, MSE =
54.14. The three-way interaction among anxiety, transformation
value, and number of items being transformed (two vs. four),
depicted in the figure, was significant, F(2, 42) = 3.73,
MSE = 36.09, but seemed to depend on the somewhat unusual
pattern obtained for the medium-anxiety group; F < 1.0 for the
interaction when the medium-anxiety group was excluded. None-
theless, the accuracy scores for high-anxiety individuals were
uniformly lower than the comparable scores for the other two
groups. Despite their longer transformation latencies, high-math-
anxiety participants recalled fewer transformed items correctly,
whether for small transformations on short lists or large transfor-
mations on long lists.

Thus, there is clear evidence of a math-anxiety-related differ-
ence in the processing of information through working memory.
The task itself is working memory intensive, in that previous
transformation results have to be held and rehearsed while simul-
taneously performing further transformations. High-math-anxiety
participants were significantly slower at this, suggesting more
laborious processing. Even with this additional effort, however,
they were still less able to recall the transformations accurately.
The results directly confirm and extend Eysenck and Calvo's
(1992) prediction about processing efficiency and anxiety, that is,
that under conditions in which anxiety is aroused, highly anxious
individuals must expend additional working memory resources to
achieve comparable levels of performance. It remains to be seen
whether even greater effort during transformations would have
achieved comparable accuracy in recall for the high-math-anxiety
group.

We note two further effects in passing. First, transforming
letters versus numbers made a consistent difference in the latency
analyses but virtually no difference on the accuracy analysis. The
closest this factor came to significance in accuracy scores was as
a main effect, F(l, 42) = 3.00, p < .10; the means, however, were
very close (M = 88% for letters, 90% for numbers). Second, there
was no differential effect of anxiety on recall accuracy as a
function of letter versus number transformation (computed
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F = 0.00 to two decimals). All three anxiety groups were consis-
tently 2% poorer in letter recall than number recall. Thus, the drop
in accuracy depicted in Figure 4 was characteristic of high-math-
anxiety participants regardless of whether letters or numbers were
being transformed (f for the overall interaction = 0.13).

Attitudes and
Math Anxiety

-

Competence
Learning,
Mastery,
Skill at Math-

Performance
e.g., WRAT

Discussion

It is not necessary to use conventional arithmetic and math
problems to trigger the math-anxiety reaction. Instead, it is appar-
ently enough that the task requires a counting-like process, as in
Logan and Klapp's (1991) alphabet arithmetic task. With such a
task, we found clear evidence of increased effort on the part of
high-math-anxiety participants during input, effort which never-
theless did not equate them with the low-math-anxiety group on
output accuracy. Because the task—counting-based transforma-
tions with an added recall requirement—is especially demanding
of working memory, it highlights the performance decrements
predicted for the high-math-anxiety group. Individuals already
devoting some of their working memory's capacity to the on-line
anxiety reaction show especially compromised performance when
the experimental task is itself demanding of working memory.

General Discussion

The math-anxiety literature across the past 20 years attests to
pervasive, long-term, damaging consequences of math anxiety
(Hembree, 1990). What the literature has lacked until recently,
however, is evidence that math anxiety is related to the actual
doing of math, to the mental processes involved in working with
numbers. The present work (also Ashcraft & Faust, 1994; Faust et
al., 1996) has demonstrated that there are indeed such on-line
effects, detected when procedures like carrying in multicolumn
addition are required.

There are at least two possible reasons for finding such effects.
One possibility is that because of their long-term avoidance of
math, and their lesser mastery of the math that couldn't be avoided,
high-math-anxiety individuals are simply less competent at doing
math. This lesser degree of competence could presumably apply
even to elementary carrying, introduced almost universally in the
U.S. in the second grade math curriculum. It would surely apply at
higher levels of math difficulty. This competence explanation is in
fact the gist of Fennema's (1989) autonomous learning behavior
model: Affect, including both attitudes and math anxiety, influ-
ences the behaviors one engages in as learning takes place. These
behaviors, in turn, affect performance. We have diagrammed the
gist of Fennema's model, as applied to our research, in the top half
of Figure 5, in which attitudes and math anxiety influence com-
petence, which then determines performance as measured by
standardized tests such as the Wide Range Achievement Test
(WRAT).

The present results along with related data argue that this simple
competence explanation is insufficient to account for math-anxiety
effects. First, we find speed and accuracy effects of math anxiety
on multicolumn addition problems when standard on-line labora-
tory tasks are used (Ashcraft & Faust, 1994; Faust et al., 1996; the
present Experiment 2). When the same stimuli were tested in a
paper-and-pencil format designed to minimize the anxiety effect,
there was no difference in performance across levels of math

LTM
Knowledge,
Competence,
Skill, etc. -

Working
Memory — +

Performance
e.g., WRAT,
RTs, errors

\
On-Line /

Math Anxiety /
Reaction

Figure 5. Top: A representation inspired by Fennema's (1989) autono-

mous learning behavior model of math anxiety. Bottom: A representation
of the on-line math anxiety proposal. WRAT = Wide Range Achievement
Test; LTM = long-term memory. RT = reaction time.

anxiety (Ashcraft & Kirk, 1998). Further, in that same report, we
also found no relationship between competence and math anxiety
on the simpler, whole number math problems of a standardized
math achievement test.

To be sure, a significant competence differential appears when
more complex arithmetic and math are tested (mixed fractions,
algebraic equations, etc.; see, e.g., the complex subtraction results
in Ashcraft & Kirk, 1998). Thus, as noted elsewhere (Ashcraft,
1995), it may be very difficult to separate math anxiety and
competence effects when more advanced math is tested. However,
for the simpler math tested here, the lack of a basic competence
difference among the anxiety groups, along with the prominence of
anxiety effects on timed laboratory tasks, begs for a more accept-
able interpretation than is provided by a simple competence model.

We propose a second reason for math-anxiety effects, the on-
line math anxiety influence shown in the bottom half of Figure 5.
We propose that there is an on-line reduction in the available
working-memory capacity of high-math-anxiety individuals when
their anxiety is aroused. This reduction should depress levels of
performance in any math or math-related task that relies substan-
tially on working memory, including not only addition with car-
rying but presumably any counting-based task (e.g., alphabet arith-
metic; Logan & Klapp, 1991). It specifically includes math in
which procedural knowledge is essential, for example, situations
requiring carrying, borrowing, or sequencing and keeping track in
a multistep problem. Our evidence here is consistent with this
working-memory-based explanation; the obtained patterns are ex-
actly what would be expected if the available capacity of working
memory were reduced by an anxiety reaction.

As a first approximation to the specific working memory mech-
anism affected by math anxiety, we suggest adapting Eysenck and
Calvo's (1992) explanation of the effect of generalized anxiety on
cognition. According to this position, the anxiety reaction is one of
attention to or even preoccupation with intrusive thoughts and
worry. Because such thoughts and worry are attended, they there-
fore consume a portion of the limited resources of working mem-
ory. This reduces the available pool of resources to be deployed for
task-relevant processing. If this model holds here, then math
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anxiety, when aroused, functions exactly like a dual-task proce-
dure (e.g., Baddeley, 1986); that is, performance to the primary
task is degraded because the secondary task, the anxiety reaction,
compromises the capacity of working memory. The draining of
resources implies continued, inappropriate (and self-defeating)
attention to the cognitive components of the math-anxiety reaction
and to intrusive thoughts, worry, preoccupation with performance
evaluation, and the like. Although not definitive, Faust's (1992)
high-math-anxiety participants reported significantly more intru-
sive or off-task thoughts during math than verbal anagram pro-
cessing, and they also reported more of them than those reported
by a low-math-anxiety group. As such, it may be appropriate to
examine explanations involving a failure to inhibit attention to
anxiety-induced distractions (e.g., Eysenck, 1992; Hopko, Ash-
craft, Gute, Ruggiero, & Lewis, 1998).

We hypothesize that the locus of this effect is in the central
executive component of working memory. This is the component
most likely to implement the procedures of doing arithmetic and
math and presumably is also the component in which intrusive
thoughts and worry are registered and attended. A pressing need,
therefore, is research on working memory's specific role in mental
arithmetic and, in particular, research on the implementation of
procedural knowledge.

We offer no theory here of the onset and development of
mathematics anxiety. Little if any empirical work addresses the
issues of precursors or contributors to math anxiety, and there have
apparently been no studies examining math anxiety earlier than the
sixth grade (Hembree, 1990). Because the evidence relating math
anxiety, attitudes, and competence is correlational, issues concern-
ing directionality or causality cannot be addressed.

The present results on working memory capacity, however,
allow us to make some theoretical progress in this situation. It
seems implausible to suggest that lower working memory capacity
is a permanent consequence of either math anxiety or low math
competence. Equally implausible in our view is the notion that
lower working memory capacity is a precursor to math anxiety. If
it were, then math anxiety should also affect cognitive perfor-
mance in other domains, a prediction generally disconfirmed by
the available evidence (e.g., the correlation between math anxiety
and verbal achievement or aptitude is —.06, and —.17 with IQ).
Instead, we suggest that the working memory disruption is tem-
porary—an on-line effect in the context of math testing—whether
conducted in the laboratory or the classroom.

We thus propose that two distinct mechanisms affect the per-
formance of high-math-anxiety individuals. The first is adequately
captured by Fennema's (1989) model, as diagrammed in the top
half of Figure 5: Attitudes, including math anxiety, affect one's
opportunities to gain math competence, and an individual's overall
competence is one of two major influences on performance. In
cases of favorable attitudes and low math anxiety, individuals
would enjoy, seek out, and succeed at opportunities to achieve
mastery and competence, with positive effects on their perfor-
mance. In the reverse situation, with poor attitudes and high math
anxiety, individuals exhibit global avoidance and attain lower
competence, again with obvious effects on performance.

There is a separate on-line influence of math anxiety, however,
one with a direct consequence for performance, as shown in the
bottom half of Figure 5. Higher levels of math anxiety are related
to lower available working memory capacity, not as a stable

characteristic but as a temporary, functional reduction in process-
ing capacity. The effect may be the result of an inability to inhibit
attention to intrusive thoughts or distracting information or, per-
haps equivalently, a failure to focus attention and effort on the task
at hand. In either case, the available processing capacity of work-
ing memory is compromised, with transitory but important effects
on cognitive performance.

A second, somewhat speculative pathway is also diagrammed in
Figure 5, from the on-line math-anxiety reaction to a long-term
memory component. We suggest that on-line math anxiety has an
impact during original learning of difficult arithmetic and mathe-
matics, probably beginning in the early years of middle school.
Just as math anxiety compromises the functioning of working
memory in on-line tasks, it probably exerts the same influence on
students in the math classroom, reducing the working memory
capacity needed for learning and mastery. This is a second possible
explanation for the overall negative effect math anxiety has on
higher math competence, an on-line disruption during learning due
to transient working memory disruption.

We conclude with two more general remarks. First, math anx-
iety is not an epiphenomenon—it is not a cognitive appraisal about
oneself that is unrelated to the nature of mental processing. For
example, statistics students who do poorly on an exam claim that
they become confused, are unable to focus on the task at hand, or
keep thinking about how poor they are at math. Regardless of the
subjectivity of these claims, they are entirely consistent with our
main result: Math anxiety disrupts the on-going, task-relevant
activities of working memory, slowing down performance and
degrading its accuracy.

Second, we note the positive effects of following the advice with
which this article began: that affect is an aspect of problem solving
that deserves empirical attention (Mandler, 1989). Cognitive in-
vestigations that include individual difference characteristics like
math anxiety are rare, yet may prove useful in gaining an under-
standing of domain-specific cognitions. Furthermore, it now ap-
pears that customary assessments of working memory span, espe-
cially those using arithmetic stimuli, are sensitive to at least two
classes of influences: the central capacity and processing charac-
teristics of the individual, to be sure, but also the transitory effects
of anxiety in the testing situation. Given current and important
efforts that relate working memory mechanisms to processes such
as reading comprehension, memory retrieval, and the like, it would
be sensible to consider the possibility that anxiety or other indi-
vidual difference factors may be influencing both the assessments
of individuals' working memory span and their on-line performance.
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