
Journal of Computer and System Sciences 57, 3�19 (1998)

The Relative Complexity of NP Search Problems

Paul Beame*

Computer Science and Engineering, University of Washington, Box 352350, Seattle, Washington 98195-2350

E-mail: beame�cs.washington.edu

Stephen Cook-

Computer Science Department, University of Toronto, Canada M5S 3G4

E-mail: sacook�cs.toronto.edu

Jeff Edmonds�

Department of Computer Science, York University, Toronto, Ontario, Canada M3J 1P3

E-mail: jeff�cs.yorku.ca

Russell Impagliazzo9

Computer Science and Engineering, UC, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0114

E-mail: russell�cs.ucsd.edu

and

Toniann Pitassi�

Department of Computer Science, University of Arizona, Tucson, Arizona 85721-0077

E-mail: toni�cs.arizona.edu

Received January 1998

Papadimitriou introduced several classes of NP search problems
based on combinatorial principles which guarantee the existence of
solutions to the problems. Many interesting search problems not
known to be solvable in polynomial time are contained in these classes,
and a number of them are complete problems. We consider the question
of the relative complexity of these search problem classes. We prove
several separations which show that in a generic relativized world the
search classes are distinct and there is a standard search problem in
each of them that is not computationally equivalent to any decision
problem. (Naturally, absolute separations would imply that P{NP.)
Our separation proofs have interesting combinatorial content and go to
the heart of the combinatorial principles on which the classes are based.
We derive one result via new lower bounds on the degrees of poly-
nomials asserted to exist by Hilbert's nullstellensatz over finite fields.
] 1998 Academic Press

1. INTRODUCTION

In the study of computational complexity, there are many
problems that are naturally expressed as problems ``to find''
but are converted into decision problems to fit into standard
complexity classes. For example, a more natural problem
than determining whether or not a graph is 3-colorable
might be that of finding a 3-coloring of the graph if it exists.
One can always reduce a search problem to a related
decision problem and, as in the reduction of 3-coloring to
3-colorability, this is often by a natural self-reduction which
produces a polynomially equivalent decision problem.

However, it may also happen that the related decision
problem is not computationally equivalent to the original
search problem. This is particularly important in the case
when a solution is guaranteed to exist for the search
problem. For example, consider the following problems:

1. Given a list a1 , ..., an of residues mod p, where
n>log p, find two distinct subsets S1 , S2 �[1, ..., n] so
that >i # S1

a i mod p=>i # S2
a i mod p. The existence of

such sets is guaranteed by the pigeonhole principle, but the
search problem is at least as difficult as discrete log module
p. It arises from the study of cryptographic hash functions.

Article No. SS981575

3 0022-0000�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

* Research supported by NSF Grants CCR-8858799 and CCR-9303017.
- Research supported by an NSERC operating grant and the Informa-

tion Technology Research Centre.
� Supported by an NSF postdoctoral fellowship and by a Canadian

NSERC postdoctoral fellowship.
9 Research Supported by NSF YI Award CCR-92-570979, Sloan

Research Fellowship BR-3311, Grant 93025 of the joint U.S.�
Czechoslovak Science and Technology Program, and USA�Israel BSF
Grant 92-00043.

� Research supported by an NSF postdoctoral fellowship and by NSF
Grant CCR-9457782.

2. Given a weighted graph G, find a travelling sales-
person tour T of G that cannot be improved by swapping
the successors of two nodes. This problem arises from a
popular heuristic for TSP called 2-OPT. Again, the exis-
tence of such a tour is guaranteed, basically because any
nonempty finite set of numbers has a least element, but no
polynomial-time algorithm for this problem is known.

3. Given an undirected graph G, where every node has
degree exactly 3, and a Hamiltonian circuit H of G, find a
different Hamiltonian circuit H$. A solution is guaranteed to
exist by an interesting combinatorial result called Smith's
lemma. The proof constructs an exponential size graph
whose odd degree nodes correspond to circuits of G and
uses the fact that every graph has an even number of odd
degree nodes.

In [JPY88, Pap90, Pap91, Pap94, PSY90], an approach
is outlined to classify the exact complexity of problems such
as these, where every instance has a solution. Of course, one
could (and we later will) define the class TFNP of all search
problems with this property, but this class is not very nice.
In particular, the reasons for being a member of TFNP seem
as diverse as all of mathematics, different combinatorial
lemmas being required for different problems, it seems
unlikely that TFNP has any complete problem.

As an alternative, the papers above concern themselves
with ``syntactic'' subclasses of TFNP, where all problems in
the subclass can be presented in a fixed, easily verifiable
format. These classes correspond to combinatorial lemmas:
for problems in the class, a solution is guaranteed to exist by
this lemma. For example, the class PPA is based on
the lemma that every graph has an even number of odd-
degree nodes; the class PLS is based on the lemma that
every directed acyclic graph has a sink; and the class PPP
on the pigeonhole principle. The third example above is
thus in PPA, the second in PLS, and the first in PPP. The
class PPAD is a directed version of PPA; the combinatorial
lemma here is this: ``Every directed graph with an imbalanced
node (indegree different from outdegree) must have another
imbalanced node.'' It is shown in [Pap94] that all these
classes can be defined in a syntactic way.

As demonstrated in the papers listed above, these classes
satisfy the key litmus test for an interesting complexity class:
they contain many natural problems, some of which are
complete. These problems include computational versions
of Sperner's lemma, Brouwer's fixed point theorem, the
Borsuk�Ulam theorem, and various problems for finding
economic equilibria. Thus they provide useful insights into
natural computational problems. From a mathematical
point of view they are also interesting; they give a natural
means of comparison between the ``algorithmic power'' of
combinatorial lemmas. Thus, it is important to classify
the inclusions between these classes, both because such
classification yields insights into the relative plausibility

of efficient algorithms for natural problems, and because
such inclusions reveal relationships between mathematical
principles.

Many of these problems are more naturally formulated as
type-2 computations in which the input, consisting of local
information about a large set, is presented by an oracle.
Moreover, each of the complexity classes we consider can be
defined as the type-1 translation of some natural type-2
problem. We thus consider the relative complexity of these
search classes by considering the relationships between their
associated type-2 problems. Our main results are several
type-2 separations which imply that in a generic relativized
world, the type-1 search classes we consider are distinct and
there is a standard problem in each of them that is not
equivalent to any decision problem. (Naturally, absolute
type-1 separations would imply that P{NP.) In fact, our
separations are robust enough that they apply also to the
Turing closures of the search classes with respect to any
generic oracle. Such generic oracle separations are par-
ticularly nice because generic oracles provide a single view
of the relativized world; two classes are separated by one
generic oracle iff they are separated by all generic oracles.

The proofs of our separations have quite interesting com-
binatorial content. In one example, via a series of reductions
using methods similar to those in [BIK+94], we derive our
result via new lower bounds on the degrees of polynomials
asserted to exist by Hilbert's nullstellensatz over finite fields.
The lower bound we obtain for the degree of these polyno-
mials is 0(n1�4), where n is the number of variables, and this
is substantially stronger than the 0(log * n) bound that was
shown (for a somewhat different system) in [BIK+94].

2. THE SEARCH CLASSES

2.1. Type-1 and Type-2 Problems

A decision problem in NP can be given by a polynomial
time relation R and a polynomial p such that R(x, c) implies
|c|� p(|x|). The decision problem is ``given x, determine
whether there exists c such that R(x, c).'' The associated NP
search problem is ``given x, find c such that R(x, c) holds, if
such c exists.'' We denote the search problem by a multi-
valued function Q, where Q(x)=[c | R(x, c)]; that is, Q(x)
is the set of possible solutions for problem instance x. The
problem is total if Q(x) is nonempty for all x. FNP denotes
the class of all NP search problems, and TFNP denotes the
set of all total NP search problems.

The subclasses of TFNP defined by Papadimitriou all
have a similar form. Each input x implicitly determines a
structure, like a graph or function, on an exponentially large
set of ``nodes,'' in that computing local information about
node v (e.g., the value of the function on v or the set of v's
neighbors) can be done in polynomial-time given x and v.
A solution is a small substructure, a node or polynomial size

4 BEAME ET AL.

set of nodes, with a property X that can be verified using
only local information. The existence of the solution is
guaranteed by a lemma ``every structure has a substructure
satisfying property X.'' For example, an instance of a
problem in the class PPP of problems proved total via the
pigeon-hole principle, consists of a poly(n) length descrip-
tion x of a member fx=*y . f (x, y) of a family of (uniformly)
polynomial-time functions from [0, 1]n to [0, 1]n&0n.
A solution is a pair y1 , y2 of distinct n bit strings with
fx(y1)= fx(y2), which of course must exist.

It is natural to present such search problems as second-
order objects Q(:, x), where : is a function (``oracle'' input)
which, when appropriate, can describe a graph by giving
local information (for example, :(v) might code the set of
neighbors of v). Thus Q(:, x) is a set of strings: the possible
solutions for problem instance (:, x). As before we require
that solutions be checkable in polynomial time, and the
verifying algorithm is allowed access to the oracle :.

Proceeding more formally, we consider strings x over the
binary alphabet [0, 1], functions : from strings to strings,
and type-2 functions (i.e., operators) F taking a pair (:, x)
to a string y. We follow Townsend [Tow90] in defining
such an F to be polynomial-time computable if it is com-
putable in deterministic time that is polynomial in |x| with
calls to : at unit cost. Note that since the time bound
depends on |x| and not :, a machine computing F may not
have time to read a long value :(y) returned by the oracle.
We can define a type-2 search problem Q to be a function
that associates with each string function : and each string x
a set Q(:, x) of strings that are the allowable answers to the
problem on inputs : and x. Such a problem Q is in FNP2 if
Q is polynomial-time checkable in the sense that y # Q(:, x)
is a type-2 polynomial-time computable predicate and all ele-
ments of Q(:, x) are of length polynomially bounded in |x|.

A problem Q is total if Q(:, x) is nonempty for all : and
x. TFNP2 is the subclass of total problems in FNP2. An
algorithm A solves a total search problem Q if and only if
for each function : and string x, A(:, x) # Q(:, x). FP2

consists of those problems in TFNP2 which can be solved by
deterministic polynomial time algorithms.

2.2. The Classes Defined
Each of Papadimitriou's classes can be defined as a set of

type-1 problems reducible to a fixed type-2 problem.
We say that a type-2 problem Q1 is many-one reducible to

a type-2 problem Q2 (written Q1�m Q2) if there exist type-2
polynomial-time computable functions F, G, and H, such
that H(:, x, y) is a solution to Q1 on input (:, x) for any
y that is a solution to Q2 on input (G[:, x], F (:, x)),
where G[:, x]=*z .G(:, x, z). (The special case in which
H(:, x, y)# y is referred to as strong reducibility in the
Appendix.) It is straightforward to check that many�one
reducibility is transitive. Below we apply the definition of
many�one reducibility to the case in which Q1 is type-1,

which can be done by treating Q1 as a type-2 problem which
ignores its function input :. The definition then becomes:
H(x, y) is a solution to Q1 on input x for any y that is
a solution to Q2 on input (G[x], F (x)), where G[x]=
*z .G(x, z). If Q2 is also type-1, then the definition is the
same with G and its arguments omitted.

Associated with each type-2 problem Q in TFNP2 we
define the type-1 class CQ of all problems in TFNP which
are many�one reducible to Q. Thus each class CQ is closed
under many�one reducibility within TFNP. We summarize
Papadimitriou's classes in this format in Fig. 1. Each class is
of the form CQ for some Q # TFNP2 which we name and
briefly describe. The notation [0, 1]�n denotes the set of
nonempty strings of length n or less. We assume that n is
given in unary as the standard part of the input to Q.

For example, in the problem LEAF the arguments (:, x)
describe a graph G=G(:, |x|) of maximum degree two
whose nodes are the nonempty strings of length |x| or less,
and :(u) codes the set of 0, 1, or 2 nodes adjacent to u. An
edge (u, v) is present in G iff both :(u) and :(v) are proper
codes and :(u) contains v and :(v) contains u. A leaf is a
node of degree one. We want the node 0 } } } 0=0n to be a
leaf (the standard leaf in G). The search problem LEAF is:
``Given : and x, find a leaf of G=G(:, |x|) other than the
standard one, or output 0 } } } 0 if it is not a leaf of G.'' That
is, LEAF (:, x) is the set of nonstandard leaves of G(:, |x|),
together with, in case 0 } } } 0 is not a leaf of G, the node
0 } } } 0.

It should be clear that LEAF is a total NP search problem
and, hence, a member of TFNP2. Further, since the search
space has exponential size, a simple adversary argument
shows that no deterministic polynomial time algorithm
solves LEAF. Hence LEAF is not in FP2.

Continuing with this example, we see from Fig. 1 that
Papadimitriou's Class PPA is the class of problems in TFNP
which are many�one reducible to LEAF. Thus, a member Q
of PPA is presented by a trio of polynomial-time functions
F, G, and H. For each input x to Q, G[x] codes a graph of
maximum degree 2 whose nodes are the nonempty strings of
length |F (x)| or less. For each node u in this graph, G(x, u)
is a string encoding the set of nodes adjacent to u. For each
nonstandard leaf u of this graph, H(x, u) must be a member
of Q(x). Possibly Q(x) contains additional strings not of
this form, but since Q # TFNP, the relational ``y # Q(x)''
must be recognizable in polynomial-time.

The classes defined from these problems are interesting
for more than just the lemmas on which they are based.
There are many natural problems in them. Here are
some examples in the first-order classes PPAD, PPA, and
PPP from [Pap94]. Problems in PPAD include, among
others: finding a panchromatic simplex asserted to exist by
Sperner's lemma, finding a fixed point of a function asserted
to exist by Brouwer's fixed point theorem, and finding the
antipodal points on a sphere with equal function values

5COMPLEXITY OF NP SEARCH PROBLEMS

Class Name of Q Instance of Q Solutions for Q

PPA LEAF Undirected graph on [0, 1]�n Any leaf c{0n

with degree �2 0n, if 0n is not a leaf

PPAD SOURCE .OR .SINK Directed graph on [0, 1]�n Any source or sink c{0n

with in-degree, out-degree �1 0n, if 0n is not a source

PPADS SINK Directed graph on [0, 1]�n Any sink c{0n

with in-degree, out-degree �1 0n, if 0n is not a source

PPP PIGEON Any pair (c, c$), c{c$Function f
with f (c)=f (c$){0nf : [0, 1]�n � [0, 1]�n

Any c" with f (c")=0n

FIG. 1. Some complexity classes of search problems.

asserted to exist by the Borsuk-Ulam theorem (where in
each case the input structure itself is given implicitly via a
polynomial-time Turing machine, but could be given by an
oracle). Several of these are complete. Problems in PPA
not known to be in PPAD include finding a second solution
of an underdetermined system of polynomial equations
module 2 that is asserted to exist by Chevalley's theorem
and finding a second Hamiltonian path in an odd-degree
graph given the first. The problem ``Pigeonhole Circuit '' is a
natural complete problem for PPP: given a Boolean circuit
with n input bits and n output bits, find two distinct input
strings yielding the same output string, or find an input
string yielding all zeros as output.

The class PPADS is called PSK in [Pap90], where it is
incorrectly said to be equivalent to PPAD. We note here
that a natural problem complete for PPADS is positive
Sperner's lemma (for dimensions three and above), which
is exactly like Sperner's lemma, except that only a pan-
chromatic simplex that is positively oriented is allowed as a
solution.

2.3. Relativized Classes and Turing Reducibility

By an oracle A we mean simply a set of strings. We can
use our second-order setting to define relativized classes by
replacing a function argument : by an oracle A, where now
we interpret A as a characteristic function: A(x)=1 if x # A
and A(x)=0 otherwise. Thus we define TFNPA to be the set
of all type-1 problems Q(A, V) for Q # TFNP2. Note that
this is more restrictive than simply requiring Q to be in
FNP2 and Q(A, V) to be total.

Define the relativized class (CQ)A to be the subclass of
TFNPA consisting of all problems Q1(A, V), where Q1 is
any problem in TFNP2 many�one reducible to Q. Equiv-
alently, (CQ)A is the set of all problems in TFNPA many�
one-A reducible to Q, where now the suffix A means that the
reduction is allowed to query the oracle A; precisely, A
replaces : as arguments to the functions F, G, and H used
in the definition of many�one reducibility in the previous
subsection. Notice that (CQ)A=CQ when A # P.

The following theorem shows that the problem of
separating relativized NP search classes is equivalent to
separating them relative to any generic oracle [BI87], and
is also equivalent to showing that there is no reduction
between the corresponding type-2 problems.

Theorem 1. Let Q1 , Q2 # TFNP2. The following are
equivalent: (i) Q1 is many�one reducible to Q2 ; (ii) for all
oracles A, (CQ1)A�(CQ2)A, (iii) there exists a generic
oracle G such that (CQ1)G�(CQ2)G.

The proof appears in [CIY97].
In order to state the full power of our separation results,

we now define a more general form of reduction among
total search problems: We say Q1 is polynomial-time Turing
reducible to Q2 (or simply Q1 is reducible to Q2 , written
Q1�Q2), if there is some polynomial-time machine M that
on input (:, x) and an oracle for Q2 outputs some
y # Q1(:, x). (Recall that M 's input : is a string function
which it accesses via oracle calls.) (See Figs. 2 and 3.) For
each query to the Q2 oracle, M must provide some pair
(;, z) as input where ; is a string function. For M to be
viewed as a polynomial-time machine, the ; 's that M
specifies must be computable in polynomial time given the
things to which M has access: :, x, and the sequence t of
answers that M has received from previous queries to Q2 .
We thus view the reduction as a pair of polynomial-time
algorithms: M, and another polynomial-time machine M*
which computes ; as a function of :, x, and t. M must
produce a correct y for all choices of answers that could be
returned by Q2 .

Notice that Q1 is many�one reducible to Q2 iff Q1 reduces
to Q2 as above, but M makes exactly one query to an
instance of Q2 .

A statement similar to Theorem 1 holds for the case of
Turing reductions with the many�one closures replaced by
Turing closures for the type-1 classes. All reductions we
exhibit are many�one reductions, so with this theorem they
give inclusions or alternative characterizations of the classes
defined in [Pap94]. All separations we exhibit hold even

6 BEAME ET AL.

FIG. 2. Reducing Q1 to Q2 .

against Turing reductions, so they show oracle separations
between the Turing closures of the related type-1 search
classes and these separations apply to all generic oracles.

2.4. Some Simple Reductions

It is easy to see that SOURCE .OR .SINK�m LEAF, by
ignoring the direction information on the input graph. Also
it is immediate that SOURCE .OR .SINK�m SINK.

It is not hard to see that SINK�m PIGEON: Let G be the
input graph for SINK. The corresponding input function f
to PIGEON maps nodes of G as follows. If v is a sink of G
then let f (v)=0 } } } 0; if there is an edge from v to u in G then
let f (v)=u; and if v is isolated in G, let f (v)=v. Then the
possible answers to PIGEON coincide exactly with the
possible answers to SINK.

FIG. 3. Detail showing ; 's computation.

Our main results are that all three of these reductions fail
in the reverse direction even when allowing more general
Turing reductions. The containments of the corresponding
type-1 classes (with respect to any oracle) are shown in
Fig. 4.

2.5. Equivalent Problems

We say that two problems are equivalent if each is
reducible (under �) to the other, and they are many�one
equivalent if each is many�one reducible (under �m) to the

FIG. 4. Search class relationships in a generic relativized world.

7COMPLEXITY OF NP SEARCH PROBLEMS

other. It is interesting (and also relevant to our separation
arguments) that there are several problems that are
many�one equivalent to LEAF, based on different versions
of the basic combinatorial lemma ``every graph has an even
number of odd-degree nodes.'' Strictly speaking, LEAF is
based on a special case of this lemma, where the graph has
degree at most two. A more general problem, denote it
ODD, is the one in which the degree is not two, but bounded
by a polynomial in the length of the input x. That is, :(v)
codes a set of polynomially many, as opposed to at most
two, nodes, and we are seeking a node v{0 } } } 0 of odd
degree (or 0 } } } 0 if that node is not of odd degree).

Another variant of the same lemma is this: ``Every graph
with an odd number of nodes has a node with even degree.''
To define a corresponding problem, denoted EVEN, we
would have :(v) again be a polynomial set of nodes, only
now :(0 } } } 0)=<. This last condition will essentially leave
node 0 } } } 0 out of the graph, thus rendering the number of
nodes odd. We are seeking a node v{0 } } } 0 of even degree
(or 0 } } } 0 if that node is not isolated).

In the special case where the graph has maximum degree
one, this version of the lemma is ``there is no perfect match-
ing of an odd set of nodes.'' An input pair (:, x) now codes
a graph GM(:, |x|) which is a partial matching. The nodes,
as before, are the nonempty strings of length |x| or less, and
there is an edge between nodes u and v iff (i) u{v,
(ii) :(v)=u, (iii) :(u)=v, and (iv) neither u nor v is the
standard node 0 } } } 0. Thus 0 } } } 0 is always unmatched, and
we are seeking a second unmatched (or lonely) node v. This
search problem is denoted LONELY.

Theorem 2. The problems LEAF, ODD, EVEN, and
LONELY are all many�one equivalent.

Proof. To show that LEAF� m LONELY consider an
input (:, x) to LEAF, representing a graph G=G(:, |x|).
We transform (:, x) to an input (;, x1) to LONELY. We
describe ; implicitly by describing the partial matching
G2=GM(;, |x1|).

Assume first that the standard node 0 } } } 0 is a leaf of G.
G2 has all nodes of G, plus a copy v$ of each such node v. We
place edges in G2 in such a way that the leaves of G are
precisely the unmatched nodes in G2. For each isolated
node v in G there is an edge in G2 matching node v and its
copy v$. For each edge [u, v] in G there is an edge in G2
matching one of u or u$ to one of v or v$. Which of the node
or its copy to use for the edge in G2 corresponding to [u, v]
in G is locally determined as follows. For a node v in G with
one incident edge [u, v], in graph G2 its copy v$ is used for
the corresponding edge and the node v is left unmatched.
For a node v in G with two incident edges, [u, v] and
[v, w], we decide which of v or v$ to use for each edge based
on the lexicographic ordering of the node names of its
neighbors, u and w. If u lexicographically precedes w then

in G2 the node v will be used in the edge corresponding
to [u, v] and the node v$ will be used in the edge corre-
sponding to [v, w]. If w lexicographically precedes u then in
G2 the node v will be used in the edge corresponding to [v, w]
and the node v$ will be used in the edge corresponding to
[u, v].

Note that for each node v in G2, the mate ;(v) can be
determined with at most four calls to :. It is easy to verify
that, as claimed, the leaves of G are precisely the unmatched
nodes in G2.

If the standard node 0 } } } 0=0m is not a leaf of G then
define G2 to have a standard node 0 } } } 0=0m+1, vertex x0
matched with x1 for each x{0m or 0m&1, and vertex 0m1
matched with 0m&11. In this case, the unmatched nodes
of G2 are its standard node and 0m, so the only choice
for the second lonely node of G2 is 0m, the standard
node of G. Thus, in either case we have LEAF(:, x)=
LONELY(;, x1).

That LONELY�m EVEN is obvious. To convert any
problem in EVEN into one in ODD, just add to the graph
all edges of the form [v0, v1] joining nodes with all bits the
same, except for the last, unless this edge is already present,
in which case remove it. This will make 0 } } } 0 into the
standard leaf and make all even-degree nodes into odd-
degree nodes and vice versa.

Finally, ODD� m LEAF follows from the ``chessplayer
algorithm'' of [Pap90, Pap94] which makes explicit the
local edge-pairing argument that is involved in the standard
construction of Euler tours. For completeness we give this
construction: Given an input graph G to ODD we transform
it to an input graph GL to LEAF. Let 2d be an upper bound
on the degree of any node in G. The nodes of GL are pairs
(v, i), where v is a node in G and 1�i�d, plus the original
nodes of G. Suppose that the neighbors of v in G are
v1 , ..., vm in lexicographical order and v is, respectively, the
i1-th, ..., im-th neighbor of each of them in lexicographical
order. Basically, the corresponding edges in GL are
[(v, W j�2X), (vj , Wij �2X)] for j=1, ..., m. In this way the
edges about each node in G are paired up consistently in
GL, creating a graph of maximum degree 2. It is easy to see
that m is odd if and only if the node (v, Wm�2X) is a leaf. To
make the reduction strong (see Appendix) we can make the
name of the leaf node the same as in the original problem by
replacing the node (v, Wm�2X) by the node v if m is odd. The
construction may be completed in polynomial time without
much difficulty. K

One could give directed versions of ODD which would
generalize SOURCE .OR .SINK to IMBALANCE and
SINK to EXCESS, where instead of up to one predecessor
and one successor, any polynomial number of predecessors
and successors is allowed. In these definitions, the search
problem would be to find a nonstandard node with an
imbalance of indegree and outdegree (respectively, an

8 BEAME ET AL.

excess of indegree over outdegree.) The Euler tour argument
given above shows that these new problems are equivalent
to the original ones.

3. SEPARATION RESULTS

3.1. PPAG Is Not Included in PPPG

Theorem 3. LONELY is not reducible to PIGEON.

Proof. Suppose to the contrary that LONELY�
PIGEON. Let M and M* be as in the definition of � in
Section 2.3 (see also Figs. 2 and 3). Consider an input (:, x)
to LONELY and the corresponding graph G=GM(:, n),
where n=|x|. On input (:, x), the machines M and M*
make queries to the oracles : and PIGEON and finally M
outputs a lonely node in G. Our task is to find : and x and
suitable answers to the queries made to PIGEON so that
M's output is incorrect.

Fix some large n and some x of length n. Then the nodes
of G are the nonempty strings of length n or less, and the
edges of G are determined by the values :(v) for v a node of
G. For any string v not a node of G we specify :(v)=* (the
empty string). (Such values are irrelevant to the graph
G and hence to the definition of a correct output.) Also
we specify :(0 } } } 0)=*, since the standard node should
be unmatched. For nonstandard nodes v we specify :(v)
implicitly by specifying the edges of G. We do this gradually
as required to answer queries. The goal is to answer all
queries without ever specifying any particular nonstandard
node v to be unmatched. In that way M is forced to output
a lonely node without knowing one, and we can complete
the specification of G so that its answer is incorrect.

In general, after i steps of M's computation, we will have
answered all queries made so far by specifying that certain
edges are present in G. These edges comprise a partial
matching _i , where the number of edges in _i is bounded by
a polynomial in n. Suppose that step i+1 is a query v to :.
If that query cannot be answered by _i and our initial
specifications, then we set :(v)=w, where w{0 } } } 0 is any
unmatched node, and form _i+1 by adding the edge [v, w]
to _i .

Now suppose step i+1 is a query (;, z) to PIGEON,
specifying a function f = f(;, |z|) . Here f is the restriction of
; to the set of nonempty strings of length |z| or less, except
f (c)=0 } } } 0 in case ;(c) is either empty or of length greater
than |z|. Then we must return either a pair (c, c$), with c{c$
and f (c)= f (c$){0 } } } 0, or c" with f (c")=0 } } } 0. Our task
is to show that a possible return value can be determined
by adding only polynomially many edges to the partial
matching _i (i.e. to G), and without specifying that any
particular node in G is unmatched.

The value f (c) is determined by the computation of M*
on inputs x, :, c, and t (which codes the answers to the

previous queries to PIGEON). We have fixed x, part of :
(i.e. part of G), and the answers to previous queries, so f (c)
depends only on the unspecified part of G. Thus f (c) can be
expressed via a decision tree T $(c) whose vertices query the
unspecified part of G. Each internal vertex of the tree T $(c)
is labelled with a node u in G (representing a query) and
each edge in T $(c) leading from a vertex labelled u is labelled
either with a node v in G (indicating that u is matched to v
in G) or < (indicating that u is a lonely node in G). If u has
already been matched in _i or if u=0 } } } 0 then we know the
answer to the query, so we assume that no such node u
appears on the tree, either as an edge label or vertex label.
Also we assume that no node u occurs more than once
on a path, since this would give either inconsistent or
redundant information. Each leaf of T $(c) is labelled by the
output string f (c) of M* under the computation determined
by the path to the leaf.

The runtime of M* is bounded by a polynomial in the
lengths of its string inputs, which in turn are bounded by a
polynomial in n (since M is time-bounded by a polynomial
in the length n of its string input x). This runtime bound on
M*, say k, bounds the height of each tree. If n is sufficiently
large, then the number of nodes in G minus the number of
nodes in the partial matching _i far exceed k.

For each string c in the domain of f, define T(c) to be
the tree T $(c) with all branches having outcome < on
any query pruned. That is, we shall be interested in the
behavior of this decision tree when : evades the answer
``lonely node.''

Notice that each path from the root to a leaf in a tree T(c)
designates a partial matching _ of up to k edges matching
up to 2k nodes in G. Thus we call each tree T(c) a matching
decision tree. We call two partial matchings _ and {
compatible if _ _ { is also a partial matching; i.e. they agree
on the mates of all common nodes. Notice that the partial
matching designated by any path in T(c) is compatible with
the original matching _i , since only nodes unmatched by _ i

can appear as labels in T(c).

Case I. Some path p in a tree T(c) leads to a leaf
labelled with the standard node 0 } } } 0, indicating that
f (c)=0 } } } 0. Then we set _i+1=_ i _ _, where _ is the
partial matching designated by the path to this leaf. This
insures that c is a legitimate answer to our current query to
PIGEON, and we answer that query with c.

We say that a path p in tree T(c) is consistent with a path
p$ in T(c$) if p and p$ designate compatible matchings.

Case II. There are consistent paths p and p$ in distinct
trees T(c) and T(c$) such that p and p$ have the same leaf
label. Then we set _i+1=_i _ _ _ _$, where _ and _$ are the
partial matchings designated by p and p$. This insures that
f (c)= f (c$), so (c, c$) is a legitimate answer to our current
query to PIGEON, and we answer that query with (c, c$).

9COMPLEXITY OF NP SEARCH PROBLEMS

The lemma below ensures that for sufficiently large n,
either Case I or Case II must hold. Thus we have described
for all cases the partial matching _i associated with step i of
M's computation. When M completes its computation after,
say m steps, and outputs a node y in G, the partial matching
_m contains only polynomial in n edges, and whenever G
extends this partial matching and we answer queries to
PIGEON as described, the computation of M will be deter-
mined and the output will be y. In particular, we can choose
a G consistent with _m in which y is not a lonely node, so M
makes a mistake. K

Lemma 4. Suppose that the nodes comprising potential
queries and answers in the matching decision trees described
above come from a set of size K, and each tree has height k.
If K�4k2, then either Case I or Case II must hold.

Proof. Suppose to the contrary that neither Case I nor
Case II holds. We think of the strings in the domain of f as
pigeons and the leaf labels as holes. If there are N possible
pigeons 1, ..., N then we have N ``pigeon'' trees T1 , ..., TN

and N&1 possible holes 1, ..., N&1 (recall 0 } } } 0 is not
a possible leaf label). If the leaf label of path p in tree Ti

is j, then pigeon i gets mapped to hole j under any partial
matching consistent with p. All trees have height at most k.

We say that a path p extends a path p$ if the partial match-
ing designated by p extends the partial matching designated
by p$.

We will show how to construct a new collection of consis-
tent ``hole'' matching decision trees H1 , ..., HN&1 with
possible leaf labels 1, ..., N and ``unmapped.'' Intuitively, the
decision tree Hj attempts to find a pigeon mapping to hole
j or to prove that there is no such pigeon. Formally, Hj will
have the following properties: For any path p in Hj with leaf
label i, there is a (unique) path p$ in Ti with leaf label j so
that p extends p$. For any path p in Hj with leaf label
``unmapped,'' p is inconsistent with any path in any Ti with
leaf label j. The construction is very similar to an argument
due to Riis [Rii93] which is itself similar to the proof that
if a Boolean function and its negation both can be written
in disjunctive normal form with terms of size �d, then the
function has a Boolean decision tree of height �d 2. (This
last result was implicit in [HH87, HH91, BI87, Tar89], and
appears explicitly in [IN88].)

Fix j�N&1 and let Pj be the set of all paths in pigeon
trees with leaf label j. Since Case II does not hold, the paths
in Pj are mutually inconsistent. We describe Hj implicitly as
a strategy for querying the purported matching :. The
strategy proceeds in stages and makes at most 2k queries in
each stage. Let {s represent the set of known edges of G at
the beginning of stage s. Then in stage s, if possible, we find
a path ps in P j consistent with {s . If this is impossible, we
halt and output ``unmapped.'' If we find a path ps , we query
: for all endpoints of edges of G in ps that are not contained

in {s . We update {s+1 to include the newly found edges. If
{s+1 includes the edges of some path p with leaf label j from
some Ti $, we halt and output i $; otherwise we begin stage
s+1.

From the above description, it is clear that when Hj halts,
the known edges either extend a unique path p in one of the
pigeon trees with leaf label j or are inconsistent with every
such path. Since each path in P j has at most k edges, at most
2k nodes are queried per stage. To see that there are at most
k stages before Hj halts, we show by induction that in stage
s every path p in Pj consistent with {s has at least s edges in
common with {s . After k stages any remaining consistent
path in Pj must be entirely contained in {k in which case the
algorithm halts.

To prove the claim, observe that for any stage s, any two
paths in Pj consistent with {s must match some node not
touched by {s since they are inconsistent with each other. In
particular this means that the set of endpoints of ps includes
at least one node vp not touched by {s from each path p in
Pj consistent with {s . Since {s+1 contains an edge matching
each endpoint of ps , any path p in Pj that remains consistent
with {s+1 will have the additional edge touching vp in com-
mon with {s+1 as required to show the claim.

Since there are at most k stages and at most 2k nodes are
queried per stage, each path in tree Hj has length at most
2k2. We now extend all paths in H j by adding ``dummy
queries'' so that each path has length exactly 2k2. (The
outcome of each dummy query is ignored, and the leaf label
of each extended path is the former label of its an-
cestor.)

Now get new pigeon trees T $i by first simulating Ti to
get a path p in pigeon tree Ti with leaf label j and then
simulating Hj , but not asking queries already answered in p,
i.e., restrict Hj by p. Along such a path, T $i still outputs j.
Note that any path q in Hj which may be followed in this
manner must be consistent with p and thus it must extend
some path in Pj by the construction of H j . Since the paths
in Pj are mutually inconsistent, q must extend p itself. This
means that the new path T $i constructed while following q
gives rise to the same partial matching as q does.

Therefore any path p$ with leaf label j in the pigeon tree
T $i has the exact same edges as a path p with leaf label i in
some hole tree Hj . Thus all paths in both sets of trees have
the same length, 2k2. Further, since no two paths in T $i have
the exact same edges, this defines a 1�1 mapping from the
paths of the T $i 's into the paths of the Hj 's. But this is
impossible, because there is one more pigeon tree than hole
tree, and all trees with the same depth have the same num-
ber of paths. K

From Theorems 1, 2, and 3 we conclude

Corollary 5. PPAG �3 PPPG for any generic oracle G.

10 BEAME ET AL.

3.2. PPPG Is Not Included in PPADSG

Using the same technique, we can also show that
PIGEON is not reducible to SINK. Now we construct
inputs (:, x) to PIGEON in such a way that each can be
viewed as a mapping f from [0, N] to [1, N] with the
property that the mapping is one-to-one on all but one
element of the range. For each query to SINK, and for each
node c in the directed graph D, the computation of M* to
determine ;(c) can be expressed via a tree T (c) whose nodes
query the function f. The outcome of a query u is the unique
element v such that f (u)=v. As in the previous proof, the
paths in T (c) describe partial matchings from [0, N] into
[1, N]. (We are only interested in these paths, since they are
the ones that evade an answer to the PIGEON problem.)

The leaves of T (c) are labelled by the output of M*. For
vertex c, the notation [c$ � c, c � c"] means that there is an
edge from c$ to c, and an edge from c to c" in the underlying
graph D. Either c$ or c" may have the value <, indicating
that c is a source, or respectively, sink vertex. Note that
because the standard node 0 is a source, all leaves of T (0)
are labelled [< � 0, 0 � c"]. We want to show that either
the trees T (c) are inconsistent, or that there is some vertex
c and some path p in T (c) such that at the leaf label of path
p, vertex c is designated as a sink.

For every vertex c, except for the standard source vertex,
0, we will make two copies of T (c); the two copies will be
identical except for the leaf labellings. If a path p in T (c) is
labelled [c$ � c, c � c"], then the path p in the ``domain''
copy of T (c), T1(c), will be labeled by c � c", and the path
p in the ``range'' copy of T (c), T2(c), will be labelled by
c$ � c. For vertex 0, there is only one copy, the ``domain''
copy. Thus, we have one more tree representing ``domain''
elements than trees representing ``range'' elements. Assume
for the sake of contradiction that all trees are consistent and
that for every path in every domain tree, T1(c), the leaf label
is c � c", for some c" not equal to <. As in the previous
argument, we will extend the trees so that each tree has the
same height k, and furthermore, there is a 1�1 mapping from
paths in the domain trees to paths in the range trees. This is
done by first extending every path p in range tree T2(c) with
leaf label c$ � c, c${<, by the tree T1(c$) restricted by p.
Then, all range trees are extended to the same height by
adding dummy queries. Finally, every path p in domain tree
T1(c) with leaf label c � c", is extended by the tree T1(c")
restricted by p. But this violates the pigeonhole principle,
because there are more domain trees than range trees, and
the total number of paths in every tree is the same. Thus, the
machine cannot solve PIGEON.

3.3. PPADSG Is Not Included in PPAG

In Section 3.1 we reduced our separation problem to a
purely combinatorial question, namely showing that a

family of matching decision trees with certain properties
could not exist. In this section we again reduce our problem
to a similar combinatorial question with a somewhat
different kind of decision tree. This question is more difficult
than our previous one and we need to apply a new method
of attack, introduced in [BIK+94], that is based on lower
bounds on the degrees of polynomials given by Hilbert's
nullstellensatz.

More precisely, we show how we can naturally associate
an unsatisfiable system of polynomial equations [Qi (x�)=0]
over GF[2] with each family of decision trees with the
specified properties. By Hilbert's nullstellensatz, the unsatisfi-
ability of these polynomial equations implies the existence of
polynomials Pi over GF[2] such that �i Pi (x�) Qi (x�)=1.
However, our association shows something stronger, namely
that if the family of decision trees exists then these coefficient
polynomials must also have very small degree (logO(1) n,
where n is the number of variables.)

Finally, in the technical heart of the argument, we show
that for the family of polynomials we derive, PHPN+s

N , any
coefficient polynomials allowing us to generate 1 require large
degree, at least n1�4. This is an interesting result in its own
right since the bound for the coefficients of the system in
[BIK+94] was only 0(log * n). We give the proof of this
result in the next section.

Theorem 6. SINK is not reducible to LONELY.

(As an illustration of the difference between many�one and
strong reductions, the Appendix contains a substantially sim-
pler proof for the weaker separation that applies only to
strong reductions.)

Proof. Suppose to the contrary that SINK�LONELY.
We proceed as in the proof of Theorem 3, except now
the reducing machine M takes as input (:, x) which codes a
directed graph G=GD(:, n), where n=|x|, makes queries to
the oracles : and LONELY and finally outputs a sink node in
G. Our task this time is to find : and x and answers to the
queries to LONELY so that M's output is incorrect.

We will need a couple of convenient bits of terminology.
Recall that G is a directed graph of maximum in-degree and
out-degree at most 1. We will call such graphs 1-digraphs.
A partial 1-digraph ? over a node set V is a partial edge assign-
ment over V. It specifies a collection, E=E(?), of edges
over V, and a collection V source�V such that G(V, E) is a
1-digraph and for v # V source=V source(?) there is no edge of
the form u � v in E. The set E indicates ``included'' edges,
the set Vsource indicates ``excluded'' edges. The size of a
partial 1-digraph is |E _ V source|.

Fix some large n and some x of length n. The nodes of G are
the nonempty strings of length n or less, and the edges of G are
determined by the values of :(v) as before and :(0 } } } 0) tells
us that 0 } } } 0 is a source. The computation is simulated as in

11COMPLEXITY OF NP SEARCH PROBLEMS

the proof of Theorem 3, except that we build a partial
1-digraph _i containing only a polynomial number of edges
and we consider queries (;, z) to LONELY. In this case we
must return a lonely node, c, in the graph GM=GM(;, z)
(c=0 } } } 0 if 0 } } } 0 has a neighbor), where ; is defined in the
usual way by machine M*. We will show that a possible value
of c can be determined by adding only polynomially many
edges to _i and without specifying a sink node in G. Again,
there is a natural notion of consistency that we can assume
holds without loss of generality.

We first obtain a collection of trees in a similar manner to
that of the proof of Theorem 3. For node c in graph GM, the
computation of M* can be expressed as a function of the
graph G via a tree T (c) whose nodes query the graph G.
Without loss of generality, G can be accessed via queries of
the form (pred, v), and (succ, v), where v is a node of G. The
outcome of a query (pred, v) is an ordered pair w � v,
indicating that there is an edge in G from w to v; similarly,
the outcome of a query (succ, v) is an ordered pair v � w,
indicating that there is an edge in G from v to w. In either
case, w can be <, indicating that u is a source in the first
case, or a sink in the second case. For a given query there is
one outcome for each vertex w (or <), except when such a
label would violate the rule that the edge labels on a branch,
taken together, produce a 1-digraph. Each leaf in the tree
T (c) is labelled to indicate the output of M*, namely an
unordered pair [c, c$], indicating that node c is adjacent to
node c$ in the undirected graph GM, or <, indicating that
c is lonely. The height of each T (c) is bounded by the
runtime of M*, say l$, which is in turn bounded by some
polynomial in n.

For each node c, we first prune the tree T (c) defined
above by removing all branches with outcome u � < on
any query. That is, we restrict our interest to situations in
which the oracle : evades the answer ``u is a sink vertex.''
The rest of the argument of this section shows that, because
of the consistency condition on M*, there is some node c
such that tree T (c) must have a leaf designating that c is a
lonely node. This will complete the proof: Suppose there is
some branch _ with leaf label < in some tree T (c) with
c{0 } } } 0. It follows that _i+1=_i _ _ forces c to be a
lonely node of GM. This allows us to fix the computation of
the reduction in the (i+1)th step and by induction we can
force the reduction to make an error as in the proof of
Theorem 3.

We now argue by contradiction that such a branch must
exist in some T (c) with c{0 } } } 0. Assume that none of the
leaves of T (c) for any c{0 } } } 0 have label <. Let s=
|V source(_ i)|+1. (The 1 accounts for 0 } } } 0.) Let N be the
number of nodes in G minus the size of _i , minus s. Thus,
there are N+s nodes that can appear in internal labels on
the trees, s of which are guaranteed to be sources. The set of
edge labels along any branch of T (c) forms a partial
1-digraph of size at most l$ on these N+s nodes. Thus, we

call each such tree T (c) a 1-digraph decision tree. Let T be
the collection of trees T (c) for all nodes c in GM. We iden-
tify a branch in a 1-digraph decision tree T with the partial
1-digraph determined by its edge labels and define br(T) to
be the set of branches of T.

We call two partial 1-digraphs _ and { compatible if _ _ {
is also a partial 1-digraph. Notice that since ; is consistent,
the collection T is also consistent: That is, if _ is a branch
of T(c) with leaf label [c, c$] then all branches { in T(c$) that
are compatible with _ must have leaf label [c, c$].

Given a consistent collection T, we can define a
new collection of 1-digraph decision trees T*=[T*(c) |
c{0 } } } 0] that satisfies an evenstrongerconsistencycondition:

For each node c, define T*(c) to be the result of the
following operation: For each c$ and each branch _ of T(c)
with leaf label [c, c$] append the tree T(c$) rooted at the leaf
of _ and simplify the resulting tree. Remove all branches
inconsistent with _ and collapse any branches that are con-
sistent with _. (For example, if _ contains the edge u � v,
and an internal node of T(c$) is labelled with the query
(succ, u) or (pred, v), then we replace that query node by the
subtree reached by the edge labelled u � v.) Note that since
the original collection T was consistent, all new leaves
added below a leaf labelled [c, c$] will be correctly labelled
[c, c$]. Furthermore, if { is a branch in T*(c) with leaf label
[c, c$], then { is also a branch in T*(c$) with leaf label
[c, c$]. Note that all the trees in T* now have height at
most l=2l$ and that M=|T*| is odd. Such a collection
T* is very similar to the generic systems considered in
[BIK+94]. The rest of the proof is devoted to showing that
such a collection cannot exist.

Reducing the combinatorial problem to a degree lower
bound. Given the partial 1-digraph _i , we can rename the
nodes of the oracle graph G as follows: Remove all cycles in
E(_i) from G; remove all internal nodes on any path in E(_i)
and identify the beginning and end vertices of any such
path; rename all source nodes as N+1, ..., N+s with the
standard source as N+1; rename all remaining nonsource
nodes to 1, ..., N. We assume from now on that the internal
labels of the trees of T* have been renamed in this manner.

We will now show that if this collection of 1-digraph decision
trees T* exists then there is a particular unsatisfiable
system of polynomial equations whose nullstellensatz
witnessing polynomials have small degree. This system is
the natural expression of the sink-counting principle for
1-digraphs that guarantees the totality of SINK.

Definition 3.1. Let SN+s
N be the following system of

polynomial equations in variables x i, j with i # [0, N+s],
j # [1, N]:

\ :
j # [1, N]

x i, j +&1=0,

12 BEAME ET AL.

one for each i # [1, N+s], and

\ :
i # [0, N+s]

xi, j+&1=0,

one for each j # [1, N], and

xi, j } xi, k=0,

one for each i # [1, N+s], j{k, j, k # [1, N], and

xi, k } xj, k=0,

one for each i{ j, i, j # [0, N+s], k # [1, N].

The variables xi, j describe a directed graph on vertices
[1, N+s] with vertices [N+1, N+s] guaranteed to be
source vertices. The variable xi, j , i{0 describes whether or
not there is an edge from i to j. The variable x0, k indicates
whether or not vertex k is a source vertex. A solution to the
above equations would imply that there is a 1-digraph with
source vertices but no sink vertex. Since this is impossible,
there cannot exist a solution to SN+s

N .
Write SN+s

N =[Q$i (x�)=0]. We call any expression of the
form �i P$i (x�) Q$i (x�), where the P$i (x�) are polynomials,
a linear combination of the Q$i . The degree of such a linear
combination is the maximum of the degrees of the P$i poly-
nomials. (We say that the polynomial 0 has degree &1.) We
now show that if the collection T* exists then there is a
linear combination of the Q$i 's over GF[2] that equals
1 and has degree at most l&1. (Such a result, without
the degree bound, would follow directly from Hilbert's
nullstellensatz.)

Given a partial 1-digraph ? over [1, N+s] with
[N+1, N+s] as source vertices, the monomial

X?=\ `
i � j # E(?)

xi, j+ } \ `
j # Vsource(?)

x0, j+
is the natural translation of ? into the polynomial realm
(X?=1 if ? is empty.)

Lemma 7. Let T be a 1-digraph decision tree of height at
most l over [1, N+s] with [N+1, N+s] as source vertices
and suppose that 2l<N. Then the polynomial PT (x�)=
�? # br(T) X?&1 can be expressed as a linear combination of
degree at most l&1.

Proof. The proof proceeds by induction on the number
of internal vertices of T. If T has no internal vertices then it
has one branch of height 0, PT (x�)=0, and all coefficient
polynomials in the linear combination are 0 which is of
degree &1. Thus the lemma holds in this case.

Suppose now that T has at least one internal vertex and
has height l. Then it has some internal vertex v all of whose
children are leaves. Let ? be the partial 1-digraph that labels
the path from the root of the tree to v and let T $ be the
1-digraph decision tree with the children of v removed
(the leaf label of v in T $ will be immaterial.) Applying the
inductive hypothesis to T $ which has one fewer internal
vertex than T, we get that PT $(x�) is some linear combination
of the Q$i of degree at most l&1.

The difference between PT (x�) and PT $(x�) is that we have
removed the monomial for the branch ? in T $ and replaced
it by the sum of the monomials for all branches in T
extending ?. Note also that X? has degree at most the depth
of v which is at most l&1.

We have two cases to consider. If v is labelled with
the query (pred, j) for some j # [1, N] then j has no
predecessors in E(?), j � V source(?), and

PT (x�)=PT $(x�)+X? } \ :
i # [0] _ S

xi, j &1+ ,

where S is the set of all i # [1, N+s] that have no successors
in E(?). It is easy to see that for any i # [1, N+s]"S,
X? } xi, j is a multiple of some xi, k } xi, j (with k{ j) of
degree at most l&2 so X? } �i # [1, N+s]"S xi, j is a linear
combination of degree at most l&2. Then

X? } \ :
i # [0] _ S

xi, j &1+
=X? } \ :

i # [0, N+s]

xi, j &1+&X? } :
i # [1, N+s]"S

x i, j

is a linear combination of degree at most l&1 since
�i # [0, N+s] xi, j &1 is one of the Q$ polynomials. Thus
PT (x�) also is a linear combination of degree at most l&1.

Similarly, if v is labelled with the query (succ, i) for some
i # [1, N+s] then i has no successors in E(?) and

PT (x�)=PT $(x�)+X? \ :
j # S$

xi, j &1+ ,

where S$ is the set of all j # [1, N] that have no predecessors
in E(?) and are not in V source(?). Again X? } � j # [1, N]"S$ xi, j

is a linear combination of degree at most l&2 and

X? } \ :
j # S$

x i, j &1+
=X? } \ :

j # [1, N]

xi, j &1+&X? } :
j # [1, N]"S$

x i, j

is a linear combination of degree at most l&1 since
�j # [1, N] x i, j &1 is one of the Q$ polynomials. Again it

13COMPLEXITY OF NP SEARCH PROBLEMS

follows that PT (x�) is a linear combination of degree at most
l&1.

The lemma follows by induction. K

Lemma 8. Suppose that T* exists as defined above.
Then �T # T* �? # br(T) X?=0 over GF[2].

Proof. By the definition of T*, for T=T*(c) # T any
? # br(T) has some leaf label [c, c$] and such that we also
have ? # br(T*(c$)) with leaf label [c, c$]. This association
pairs two copies of every branch in T* so every X? appears
an even number of times in the desired sum. Thus over
GF[2] the sum is 0. K

Lemma 9. If T* exists as defined above then, over
GF[2], there are P$i (x�) of degree at most l&1 such that
�i P$i (x�) Q$i (x�)=1.

Proof. Defining PT (x�) as in the statement of Lemma 7
we have

:
T # T*

PT (x�)= :
T # T*

\ :
? # br(T)

X?&1+
=\ :

T # T*

:
? # br(T)

X?+&|T*|

=\ :
T # T*

:
? # br(T)

X?++1

over GF[2] since |T*| is odd.
Now by the definition of T*, for T=T*(c) # T* any

? # br(T) has some leaf label [c, c$] such that we also have
? # br(T*(c$)) with leaf label [c, c$]. This association pairs
two copies of every branch in T* so every X? appears an
even number of times in �T # T* �? # br(T) X? . Therefore this
sum equals 0 over GF[2] and thus �T # T* PT (x�)=1 over
GF[2].

By Lemma 7, �T # T* PT (x�) is a linear combination of
degree at most l&1 and we obtain our desired result. K

It remains to show that there cannot exist small degree
P$i such that �i P$i Q$i=1 over GF[2]. We first argue that
there is a simpler subset of the equations in SN+s

N ,
PHPN+s

N =[Qi (x�)=0], such that for any d�1, any linear
combination of the Q$i of degree at most d that equals 1 can
be transformed into a linear combination of the Qi of degree
at most d that equals 1. We then argue our degree lower
bound in terms of the Qi . The equations in PHPN+s

N are
the natural encoding of the pigeonhole principle stating that
there is no function from a set of size N+s to a set of
size N.

Definition 3.2. PHPN+s
N is the following system of

polynomial equations in variables x i, j with i # [1, N+s],
j # [1, N]:

\ :
j # [1, N]

x i, j +&1=0,

one for each i # [1, N+s], and

xi, j } xi, k=0,

one for each i # [1, N+s], j{k, j, k # [1, N], and

xi, k } xj, k=0,

one for each i{ j, i, j # [1, N+s], k # [1, N].

Lemma 10. Write SN+s
N =[Q$i (x�)=0] and PHPN+s

N

=[Qi (x�)=0]. For any d�1, there is a linear combination of
the Q$i of degree at most d that equals 1 if and only if there
is a linear combination of the Qi of degree at most d that
equals 1.

Proof. One direction is immediate. For the other
direction, assume there exist polynomials P$i of degree at
most d�1 such that �i P$i (x�) Q$i (x�)=1. Now apply the
substitution x0, i=1&(x1, i+ } } } +xN+s, i) to this linear
combination. First notice that it does not change the degree
of any coefficient monomials. There are two types of poly-
nomials among the Q$i that are not explicitly present among
the Qi : The first type is any ``range polynomial,'' i.e.,
x0, i+x1, i+ } } } +xN+s, i&1. But this becomes 0 under the
substitution. The second type is of the form x0, i } xk, i , for
k>0. However, under the substitution, the resulting
combination is of degree 1 over the reduced system:
[1&(x1, i+ } } } +xN+s, i)] } xk, i is equal to xk, i&x2

k, i plus a
degree-0 combination of xj, i } xk, i for 0< j{k. Now
xk, i&x2

k, i is a degree-1 combination of the domain poly-
nomial for k in the reduced system and some of the other
polynomials since &xk, i (xk, 1+xk, 2+ } } } +xk, n&1) equals
xk, i&x2

k, i plus a degree-0 combination of xk, j } xk, i for j{i.
Thus the degree of the combination in the reduced system is
at most d. K

By Theorem 12 proven in the next section we can now
complete the proof of Theorem 6. Combining Theorem 12
with Lemma 9 and Lemma 10 we have that the existence of
T* implies that l�- 2N. However, l is also polynomial in
n<log N which contradicts l�- 2N for n sufficiently large.
Thus the collection T* as defined above cannot exist. K

Corollary 11. PPADSG �3 PPAG for any generic
oracle G.

4. A NULLSTELLENSATZ DEGREE LOWER BOUND
FOR PHPN+S

N

In this section we prove the following theorem which is of
independent interest.

Theorem 12. Write PHPN+s
N =[Qi (x�)=0]. Over

GF[2], if � i Pi (x�) Qi (x�)=1 for polynomials Pi then one of
them must have degree at least - 2N&1.

14 BEAME ET AL.

Let Pi (x�) be polynomials over GF[2] of degree at most
d. We consider the class of assignments to the variables x� that
correspond to bi-partite matchings in U N+s

N =[1, N+s]_
[1, N], and examine the behavior of �i Pi (x�) Qi (x�) under
such assignments.

Given a bi-partite matching M=[(i1 , j1), ..., (im , jm)]/
UN+s

N we naturally obtain the monomial XM=>(i, j) # M xi, j ,
as well as the assignment such that xi, j � 1 if and only if
(i, j) # M. (If M=< then XM=1.) Any monomial that is
not of the form XM for some bi-partite matching M will be
0 under all assignments we consider, so we ignore such
terms without loss of generality. In particular, we will not
need to consider the Qj that give the degree-2 equations in
PHPN+s

N . Therefore, we can assume that we have the poly-
nomial �N+s

i=1 Pi (x�) Qi (x�), where Qi (x�)=�N
j=1 xi, j&1 and

all monomials not of the form XM for some matching M
have been removed. Let the coefficient in Pi of the
monomial XM corresponding to matching M be a i

M .

Definition 4.1. Matching M matches i if (i, j) # M for
some j # [1, N]. We write this formally as i # M. If i # M, we
write M&i for the matching M&[(i, j)], where j is
the unique value such that (i, j) # M. Let dom(M)=
[i # [1, N+s] | _j . (i, j) # M] be the projection of M onto
the first co-ordinate.

Since we only consider assignments over GF[2], we
can assume that a i

M=0 if i # M. The reason is that if
M=[(i, k)] _ (M&i), then XM=XMi } xi, k and

XM } Qi =XM&i } x i, k } \ :
j # [1, N]

xi, j &1+
=XM&i } (x2

i, k&xi, k)=0

since x2&x=0 for all x # GF[2].
By considering assignments corresponding to each bipar-

tite matching M of size up to d+1 in turn, we inductively
obtain an equation over GF[2] for the coefficient of XM

in �N+s
i=1 Pi } Qi so that the combination equals 1 over

GF[2]:

(1) � i # [1, N+s] a i
<=1

(2) � i # M a i
M&i&� i � M a i

M=0 for all matchings
M{< on U N+s

N with |M|�d

(3) � i # M a i
M&i=0 for all matchings M on U N+s

N with
|M|=d+1.

We will now show that the above system of equations
(1)�(3) has a solution over GF[2] if and only if there does
not exist a particular combinatorial design.

Definition 4.2. Let M be a collection of matchings on
U N+s

N so that all matchings M # M match i # [1, N+s].
Define M&i to be the set of matchings �M # M [M&i],
where � operates like _ , except that it only includes
elements that appear in an odd number of its arguments.

Definition 4.3. A k-design for (1)�(3) is a collection of
matchings, M, on U N+s

N such that each matching in M has
size at most k and such that the following conditions hold.

(a) The empty matching M=< is in M.

(b) The sets MS=[M # M | dom(M)=S] for S/
[1, N+s], |S|�k, satisfy MS&[i]=MS&i.

Lemma 13. Equations (1)�(3) have a solution over
GF[2] if and only if there does not exist a (d+1)-design for
(1)�(3).

Proof. We give the proof of the above lemma in the
direction that we will need, although using basic linear
algebra the converse direction can also be proven.

Suppose we have a (d+1)-design M for (1)�(3) and a
solution for equations (1)�(3). We view the matchings
M # M as selecting a subset of the equations in (1)�(3),
since there is one equation for each matching on U N+s

N of
size at most d+1. We consider the GF[2] sum of the
selected equations. Condition (a) in the definition of a
(d+1)-design requires that equation (1) is selected so the
right-hand side of the sum is 1.

We will show that condition (b) in the definition of a
(d+1)-design implies that the left-hand side of this sum is
0 which is a contradiction. Consider the coefficient of a i

M in
the sum. It occurs once (with coefficient &1) if M # M. It
also occurs once (with coefficient +1) for each j such that
M _ [(i, j)] # M. We rewrite this in terms of S=dom(M):
There is a contribution of &1 if M # MS and a contribution
of +1 if there are an odd number of j such that M _ [(i, j)]
MS _ [i] . The latter is true if and only if M # MS _ [i]&i.
By condition (b) of the definition of a (d+1)-design,
MS=MS _ [i]&i so the net coefficient of aM

i is 0. K

We now state the conditions under which we can produce
designs.

Theorem 14. For any d such that N�(d+2
2) there exists

a (d+1)-design for (1)�(3).

By Theorem 14 if N�(d+2
2)=(d+1)(d+2)�2, there is

(d+1)-design for (1)�(3) and thus by Lemma 13 there is no
solution to Eqs. (1)�(3) and no polynomials P i of degree d
such that �i Pi } Qi=1. This proves Theorem 12. K

The proof of Theorem 14 occupies the remainder of this
section.

Definition 4.4. Let [N](k)/[N]k denote the set of
k-tuples from [1, N] that do not contain any repeated
elements. For any set S/[1, N+s], we can define a set

15COMPLEXITY OF NP SEARCH PROBLEMS

of matchings MS by giving an associated set VS �[N] (|S|)

with the interpretation that if S=[i1 , ..., i |S|], where
i1<i2< } } } <i |S| , then

MS=[((i1 , j1) , ..., (i |S| , j |S|)) | (j1 , j2 , ..., jS) # VS].

We use the notation MS=M(S, VS).

The design that we produce will be symmetric in the
following sense. For any two sets S, S$/[1, N+s] with
|S|=|S$| we will have VS=VS$. We will use the notation Vk

to denote VS for |S|=k. In order to describe our design it
will be convenient to define the following somewhat bizarre
operation.

Definition 4.5. Let v # [N] (k) and I�[1, k], I=
[i1 , ..., i |I |] such that i1<i2< } } } <i |I | . Let A�[N](|I |) be
such that no element of v appears in any element of A.
Define

v�I A=[x # [N] (k) | _w # A \j�|I | .xij=w;

and \i # [1, k]"I .xi=vi]

This operation creates the set of tuples made by ``spread-
ing out'' some tuple in A into the positions indexed by I and
filling the remaining positions with the corresponding
entries from v. Note that if I=< then v�I A=[v] and if
I=[1, k] then v�I A=A.

Definition 4.6. Let V0=[()], the set containing the
empty tuple. For k>0 let vk=((k

2)+1, ..., (k+1
2)) and define

Vk= .
I/[1, k]

vk �I V|I | .

In order to understand this definition it will be convenient
to represent each set Vk as an array, each of whose columns
is a tuple in Vk , and listed so that the columns are in order
of decreasing size of the set I used in their construction.
Using this representation, we have

V0=()

V1=(1)

V2=\2 1 2
1 3 3+
4 4 4 2 1 2 2 1 2 4 4 1 4

V3=\2 1 2 5 5 5 1 3 3 5 1 5 5+1 3 3 1 3 3 6 6 6 1 6 6 6

and so on.

Definition 4.7. Let A�[N](k) and 1�i�k. We
define A&i to be the projection of A onto the k&1
co-ordinates other than i, where we cancel repeated tuples
in pairs. That is,

A&i=[(x1 , ..., xi&1 , xi+1 , ..., xk) # [N] (k&1) |

*[y # A: \j{i .yj=x j] is odd].

By the definition, if A is the disjoint union of sets A1 , ..., Ar

then A&i=�r
j=1 (Aj&i).

The following is the key property of the sets Vk .

Lemma 15. For k�1 and any i # [1, k], Vk&i=Vk&1 .

Proof. The proof is by induction on k. For the base case,
V1=(1) so V1&1 is [()] which equals V0 .

Now suppose that Vl&i=Vl&1 for all 1�l<k and
i # [1, l]. Consider Vk&i where i # [1, k]. It is clear that the
union in the definition of Vk is a disjoint union so

(4) Vk&i=�I/[1, k] [(vk �I V|I |)&i].

Claim. Suppose that i � I and I _ [i]/[1, k]. Then
(vk �I V|I |)&i=(vk �I _ [i] V|I |+1)&i.

Before proving the claim we first see that it is sufficient to
complete the induction. Consider the natural pairing
between the subsets I�[1, k] that do not contain i and
those subsets that do contain i, namely I is paired with
I _ [i]. Equation (4) has terms for both elements of every
pair, except for the pair with I=[1, k]&[i] since there is
no term for I=[1, k]. By the claim, the contributions to
Vk&i from the elements of any of these pairs cancel each
other out so we have Vk&i=(vk �[1, k]&[i] Vk&1)&i
=Vk&1 which is what we needed to show.

Now to prove the claim, define v i
k to be vk with its i th

component removed. Also, for i � I, define

I | i=[j | j # I, j<i] _ [j&1 | j # I, j>i].

Since i � I, by the definition of �I we have
(vk �I V|I |)&i=v i

k �I |i V|I | because all tuples in vk �I V|I |

have the same i th component, namely the i th component of
vk . On the other hand, by the definition of �I _ [i] we have
(vk �I _ [i] V|I |+1)&i=v i

k �I |i (V|i |+1& j), where i is the
j th element of I _ [i]. This follows because we are first
inserting the j th component of each tuple in V|I |+1 into
the i th component of our new tuples (ignoring the i th
component of vk) and then removing that ith component.
(All duplicates created in this process must be from tuples in
V|I |+1 that disagree on the jth component but agree
everywhere else.)

16 BEAME ET AL.

Since i � I and I _ [i]/[1, k], we have |I |+1<k.
Therefore, by the inductive hypothesis, V|I |+1& j=V|I | and
thus

(vk �I _ [i] V|I | +1)&i=v i
k �I |i

(V|I |+1& j)

=v i
k �I |i

V|I |

=(vk �I V|I |)&i

which proves the claim. K

Lemma 16. Assume that N�(d+2
2). For every S/

[N+s] with |S|�d+1, define MS=M(S, V|S|). Then
M= _ S MS is a (d+1)-design for (1)�(3).

Proof. We first observe that for any k, Vk contains
entries from [1, (k+1

2)] so N�(d+2
2) implies that Vk is well

defined for k�d+1.
For condition (a) of the definition of a (d+1)-design for

(1)�(3), observe that M<=M(<, V0)=M(<, [()])=
[<], where < is the empty matching and so < # M.

Let S/[N+s], |S|�d+1, and i # S. Write
S=[i1 , ..., ik] for k�d+1, where i1<i2< } } } <ik and
suppose that i=ij . Interpreting the definitions and applying
Lemma 15 we have

MS&i=M(S, Vk)&i=M(S&[i], Vk& j)

=M(S&[i], Vk&1)=MS&[i] ,

where the second equality follows because both the
definitions M&i and V& j use the same � operator. Thus
condition (b) of the definition of a (d+1)-design holds and
the lemma follows. K

This proves Theorem 14. K

5. SEARCH VS DECISION

We now show that our focus on search problems, as
opposed to decision problems, is necessary. We say that two
problems are computationally equivalent if each is reducible
to the other. It is well known that the problem SAT-
SEARCH (find a satisfying assignment to a set of clauses, if
one exists) is computationally equivalent to the decision
problem SAT (determine whether a given set of clauses has
a satisfying assignment).

Although a total search problem does not always have an
obvious decision problem equivalent to it, nevertheless
every single-valued total NP search problem is computa-
tionally equivalent to the decision problem ``is the i th bit of
the unique answer equal to one?'' An interesting example
comes from the Fellows and Koblitz paper [FK92], which
shows how to provide every prime number with a unique
certificate that can be used to verify in polynomial-time that
the number is prime. (The certificates provided by Pratt

[Pra75] are not unique.) The single-valued NP search
problem coming from Fellows and Koblitz is: Given a
number m, list its prime divisors in order, together with
their unique certificates.

The theorem below shows that none of the type-2 search
problems introduced in Section 2 is computationally equiv-
alent to any decision problem. In fact, from the proof, one
can see this will be true for basically any nontrivial problem
in TFNP2. It follows that the same will be true relative to
a generic oracle for any complete problem for the corre-
sponding search classes.

Theorem 17. None of the problems SOURCE .OR .
SINK, SINK, LEAF, or PIGEON is polynomial-time Turing
equivalent to any decision problem.

Proof. Define NP2 and coNP2 to be the type-2 analogs
of NP and coNP (in the same way that FNP2 is the type-2
analog of FNP.) It is easy to see that if a decision problem
D is polynomial-time Turing reducible to some Q in TFNP2

then one can guess and verify answers to the oracle queries
to Q made by the reducing machine, so D is in
NP2 & coNP2. Therefore, to show that a problem in TFNP2

is not equivalent to any decision problem, it suffices to show
that it is not reducible to a problem in NP2 & coNP2.

Lemma 18. None of the problems SOURCE .OR .SINK,
SINK, LEAF, or PIGEON is polynomial-time Turing
reducible to any decision problem in NP2 & coNP2.

Since SOURCE .OR .SINK reduces to all of the other
problems mentioned in the statement of the theorem, it
suffices to show this for SOURCE .OR .SINK. A slightly
weaker version of the following proposition is implicit in
[HH87], [BI87], [Tar89]; the proposition as stated is
implicit in [IN88].

Proposition 19. NP2 & coNP2�(P2)TFNP.

Thus, if SOURCE .OR .SINK were reducible to a
problem in NP2 & coNP2, it would be in (FP2)A for some
type-1 oracle A (moreover, A could be a search problem in
TFNP, but this is not important for the argument.) Thus,
there would be a polynomial-time oracle machine which
asks queries to A and to the underlying directed graph and
which returns a source or a sink other than 0 of the directed
graph. This machine would yield a decision tree making
predecessor�successor queries of depth poly-logarithmic in
the number of nodes in the directed graph, which finds a
source or a sink of the graph. For sufficiently large sizes of
n, the number of queries asked is smaller than 2n&1&2, and
each query fixes the predecessor or successor of at most two
nodes. Thus, any consistent path in this tree leaves at least
three nodes whose predecessors and successors are not yet
fixed. If the path produces a node c as output, two of these
three nodes (removing c if c is one of the three) can be used
to consistently define the value of c's predecessor and�or

17COMPLEXITY OF NP SEARCH PROBLEMS

successor, if they have not been fixed by the path. Thus,
there is a graph consistent with p where c is neither a source
nor a sink, a contradiction to the assumed correctness of the
decision tree. K

The above argument holds for any problem in TFNP2

that does not have a poly-logarithmic depth decision tree
that solves it. The above outline was used in the proof of
[IN88] (Proposition 4.2) which shows that for a generic
oracle G, TFNPG is not contained in FPG. There, the
problem in TFNP2 without poly-log depth decision trees
was to find either a logarithmic-size clique or anti-clique in
an undirected graph given as the type-2 input, the existence
of a solution being guaranteed by Ramsey's theorem.

APPENDIX: A WEAK SEPARATION

Theorem 6, showing that SINK is not reducible to
LONELY (equivalently, not to LEAF) has a difficult proof
involving the nullstellensatz degree bound. Here we present
a simpler proof, based on a probabilistic argument, of a
weaker result which applies only to ``strong'' reductions.

We say that problem Q1 is strongly reducible to problem
Q2 if there exist type-2 polynomial-time computable
functions F and G such that Q2(G[:, x], F(:, x))�Q1(:, x)
for all : and x, where G[:, x]=*z .G(:, x, z). This is the
same as the definition of many�one reducibility given in
Section 2.2, with the restriction that the function H, which
maps solutions for Q2 to solutions for Q1 , is required to be
trivial (i.e., H(:, x, y)#y). All of the many�one reductions
given in Sections 2.4 and 2.5 are in fact strong reductions.
The proof techniques below could easily be strengthened
to apply to the case of many�one reductions in which
H satisfies the restriction that for all :, x, and z, at most
polynomially many (in |x|) different strings y satisfy
H(:, x, y)=z.

Theorem 20. SINK is not strongly reducible to LEAF.

Proof. Suppose to the contrary that SINK is strongly
reducible to LEAF using functions F and G$. We proceed as
in the proof of Theorem 3, except now the reducing machine
M has a very simple form. It takes (:, x) coding a directed
graph GD as input, makes a single query to LEAF*, and the
query answer must be a sink in GD. (The last is because we
only consider input graphs GD in which the nonstandard
node 0 } } } 0 is a source.) The query is made to LEAF*=
LEAF(;, z), where (;, z) describes (using functions F and
G$) an undirected graph G of maximum degree 2. Since only
a single query is made, we can ignore z and assume that ;
is computed by a polynomial time machine M; with inputs
:, x, and c, where c is a node in G. As before, we fix a long
string x and represent the computation of M; on input c by
a decision tree T(c) whose nodes query the input graph GD.
The outcome of each query of node u is the ordered pair

(v, w) , indicating that there is an edge in GD from v to u
and one from u to w. Here either v or w can be empty, in case
u is a source or sink. Each leaf in the tree T(c) is labelled
with the information coded by the output of M; , namely an
unordered pair [c$, c"] of configurations indicating that c$
and c" are the neighbors of c in G. Once again, either or
both of c$ and c" can be empty.

We now describe a random process for constructing three
instances of the input graph GD, denoted GD0 , GD1 , and
GD2 (see Fig. 5). We denote the standard source 0 } } } 0 in
GD by 0.

(1) Pick five random distinct nodes r, r$, s, t, t$, all dis-
tinct from the standard node 0, and let GD1 consist of a
random chain (uniformly distributed) from 0 to s, subject
to the constraints that r$ is the successor of r, t$ is
the successor of t, and r$ precedes t. That is, GD1 has the
form (w0, r , wr$, t , wt$, s) , where wi, j is a chain of nodes
beginning with i and ending with j.

(2) Let GD2 consist of GD1 with the second and third
segments transposed, as shown in Fig. 5, so that GD2 is a
chain from 0 to t. That is, GD2 has the form
(w0, r , wt$, s , wr$, t) .

(3) If the path determined by GD1 in the tree T(s)
queries any of the nodes r, r$, t, t$, then FAIL.

(4) If the path determined by GD2 in the tree T(t)
queries any of the nodes r, r$, s, t$, then FAIL.

(5) Let GD0 consist of segments of GD1 rearranged into
two chains, with sinks s and t, respectively, where the first
chain is (w0, r , wt$, s) , and the second chain is (wr$, t). See
Fig. 5.

Let G0 , G1 , and G2 denote the undirected graphs corre-
sponding to GD0 , GD1 , and GD2 respectively. The neighbors
of a node c in Gi are described by the decision tree T(c).
Since s is the only sink of GD1 and t is the only sink of
GD2 , s must be a leaf in G1 and t must be a leaf of G2 , by
correctness of the reduction. If the process above survives
steps (3) and (4), then both of the trees T(s) and T(t) follow
the same paths under GD0 as they did before respectively

FIG. 5. Oracle graphs GD1 , GD2 , and GD0 .

18 BEAME ET AL.

under GD1 and GD2 , so both s and t are leaves of G0 . Since
0 is also a leaf of G0 , it follows that G0 must have a fourth
leaf, which is not a sink of GD0 , so the reduction is incorrect.
Hence we are done if we can argue that the probability of
failure in steps (3) and (4) is small.

To argue the case for (3), note that an equivalent process
modelling (3) would be to choose s at random and a
random chain from 0 to s. This determines a path p in
T(s). Now choose r and t at random, let r$ and t$ be their
successors, and FAIL if the path p queries any of these four
nodes. Since p queries only a tiny fraction of the 2n possible
nodes, the probability of failure is tiny.

The probability of failure in (4) is exactly the same as in
(3). This is because there is an obvious one-one corre-
spondence (namely transpose segments) between chains
and nodes generated according to the process for GD1 and
chains and nodes generated according to the process for
GD2 . The process preserves the failure set. K

ACKNOWLEDGMENTS

The authors thank Christos Papadimitriou for sharing his insights on
these problems and for a number of discussions that led to this work, and
Steven Rudich for helpful discussions.

REFERENCES

[BI87] M. Blum and R. Implagliazzo, Generic oracles and oracle
classes, in ``Proceedings 28th Annual IEEE Symposium on
Foundations of Computer Science, Los Angeles, CA, October
1987,'' pp. 118�126.

[BIK+94] P. Beame, R. Implagliazzo, J. Kraj@� c� ek, T. Pitassi, and
P. Pudla� k, Lower bounds on Hilbert's nullstellensatz and
propositional proofs, in ``Proceedings 35th Annual IEEE
Symposium on Foundations of Computer Science, Santa Fe,
NM, November 1994,'' pp. 794�806.

[CIY97] S. A. Cook, R. Impagliazzo, and T. Yamakami, A tight rela-
tionship between generic oracles and type-2 complexity
theory, Inform. 6 Comput. 137(2) (1997), 159�170.

[FK92] M. Fellows and N. Koblitz, Self-witnessing polynomial-time
complexity and prime factorization, in ``Proceedings, Structure
in Complexity Theory, Seventh Annual IEEE Conference,
Boston, MA, June 1992,'' pp. 107�110.

[HH87] J. Hartmanis and L. A. Hemachandra, One-way functions,
robustness, and nonisomorphism of NP-complete sets, in
``Proceedings, Structure in Complexity Theory, Second
Annual IEEE Conference, Cornell University, Ithaca, NY,
June 1987,'' pp. 160�174.

[HH91] J. Hartmanis and L. Hemachandra, One-way functions,
robustness, and non-isomorphism of NP-complete sets, Theor.
Comput. Sci. 81 (1991), 155�163.

[IN88] R. Impagliazzo and M. Naor, Decision trees and downward
closures, in ``Proceedings, Structure in Complexity Theory,
Third Annual IEEE Conference, Washington, DC, June
1988,'' pp. 29�38.

[JPY88] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, How
easy is local search?, J. Comput. System Sci. 37(1) (1988),
79�100.

[Pap90] C. H. Papadimitriou, On graph-theoretic lemmata and com-
plexity classes, in ``Proceedings 31st Annual IEEE Symposium
on Foundations of Computer Science, St. Louis, MO, October
1990,'' pp. 794�801.

[Pap91] C. H. Papadimitriou, On inefficient proofs of existence and
complexity classes, in ``Proceedings of the 4th Czechoslo-
vakian Symposium on Combinatorics, 1991.''

[Pap94] C. H. Papadimitriou, On the complexity of the parity argu-
ment and other inefficient proofs of existence, J. Comput.
System Sci. 48 (1994), 498�532.

[Pra75] V. R. Pratt, Every prime has a succinct sertificate, SIAM J.
Comput. 4 (1975), 214�220.

[PSY90] C. H. Papadimitriou, A. A. Scha� ffer, and M. Yannakakis, On
the complexity of local search, in ``Proceedings of the Twenty-
Second Annual ACM Symposium on Theory of Computing,
Baltimore, MD, May 1990,'' pp. 438�445.

[Rii93] S. Riis, Independence in Bounded Arithmetic, Ph.D. thesis
Oxford University, 1993.

[Tar89] G. Tardos, Query complexity, or why is it difficult to separate
NPA & coNPA by a random oracle A?, Combinatorica 9
(1989), 385�392.

[Tow90] M. Townsend, Complexity of type-2 relations, Notre Dame
J. Formal Logic 31 (1990), 241�262.

19COMPLEXITY OF NP SEARCH PROBLEMS

