
The Relative Contribution of Jumps to Total
Price Variance

Xin Huang

Duke University

George Tauchen

Duke University

abstract

We examine tests for jumps based on recent asymptotic results; we interpret the
tests as Hausman-type tests. Monte Carlo evidence suggests that the daily ratio
z-statistic has appropriate size, good power, and good jump detection capabil-
ities revealed by the confusion matrix comprised of jump classification probabil-
ities. We identify a pitfall in applying the asymptotic approximation over an entire
sample. Theoretical and Monte Carlo analysis indicates that microstructure noise
biases the tests against detecting jumps, and that a simple lagging strategy
corrects the bias. Empirical work documents evidence for jumps that account
for 7% of stock market price variance.
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Observers of financial markets have long noted that financial movements exhibit

unusual behavior relative to what would be expected from the Gaussian distribu-

tion. There are too many small changes (inliers) and too many large changes

(outliers). Clark (1973) is perhaps the first to formally investigate this behavior

using econometric methods. He provides an explanation based on an embryonic

form of the now familiar stochastic volatility model, as made formal in Taylor

(1982, 1986), and studied extensively in the vast literature that follows [see
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Shephard (2005)]. We now know that stochastic volatility can account for much of

the dynamics of short-term financial price movements.

Modeling financial price changes in a way that implies the price series is the

realization of a continuous-time diffusive process plays a central role in modern
financial economics. The assumption of local continuous Gaussianity, among

other things, simplifies the hedging calculations that underly modern derivatives

pricing. Furthermore, as is well known, the superposition of multiple diffusive

stochastic volatility processes can potentially accommodate the unusual

dynamics mentioned just above; some examples are Gallant, Hsu, and Tauchen

(1999) and Alizadeh, Brandt, and Diebold (2002), among others.

Although the diffusive models are of great analytical convenience, there

remains the open issue of whether such models are empirically consistent with
the extreme violent movements sometimes seen in financial price series. It is

natural to ask whether jump diffusions, with discontinuous sample paths, pro-

vide a more appropriate empirical model for financial price series. Jump diffu-

sions have a long and rich history in financial economics dating back at least to

Merton (1976).

Jump diffusion models present two practical problems which some might

view as nearly insurmountable while others might view as more minor nuisances.

First, jump models are difficult to estimate, at least by simulation-based methods.
The discontinuous sample paths create discontinuities in the econometric objec-

tive function that have to be accommodated by rounding out the corners, as in

Andersen, Benzoni, and Lund (2002) and Chernov et al. (2003). Still, the nonlinear

optimization remains difficult. It could well be the case that approximate like-

lihood methods based on Duffie, Pan, and Singleton (2000) or Ait-Sahalia (2004)

entail a better-behaved econometric objective function, but that empirical work

remains, to our knowledge, undone. Second, jumps introduce additional para-

meters into the derivatives pricing problem such as the price of jump risk and the
price of intensity risk if the intensity is state dependent. These risk parameters are

hard to interpret, not estimable in the time series alone, and difficult to pin down

in the cross section. A case in point is Andersen, Benzoni, and Lund (2002), who

estimate jump models and explore the implications of many of the possible

branches for candidate values of these risk parameters. Thus it seems reasonable

to attempt to preserve the simpler structure of purely diffusive models and

thereby retain their convenience.

Chernov et al. (2003) provide empirical evidence that there are alternative,
mildly nonlinear, purely diffusive models that provide, at the daily level,

dynamics comparable to those of jump diffusions. However, they are unable to

reach any firm conclusion on the empirical validity of one class of models over the

other, and it is self-evident that higher frequency data are needed to provide more

conclusive evidence on the empirical importance of jumps.

Barndorff-Nielsen and Shephard (2004b, 2006) develop a very powerful toolkit

for detecting the presence of jumps in higher frequency financial time series. An

appealing feature of their approach is that it does not require a fully observed state
variable as in Ait-Sahalia (2002). Their basic idea is to compare two measures of
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variance, one of which includes the contribution of jumps, if any, to the total

variance, while the second is robust to the jump contribution. A test of the statistical

significance of the difference, suitably adjusted to improve asymptotic approxima-

tion, provides evidence on the presence of jumps. They implement the test on a
high-frequency dataset of exchange rates, as do Andersen, Bollerslev, and Diebold

(2004) on a broader set of assets; both articles adduce evidence that seemingly

points to the presence of jumps on particular days of their datasets.

This article evaluates the properties of these newly developed jump detection

tests. For the Monte Carlo data generating process we mainly use the single-factor log

linear stochastic volatility model with jumps, which is the workhorse of applied

econometrics on financial data. We supplement the analysis with consideration of

the two-factor model of Chernov et al. (2003), a purely diffusive serious competitor to
a jump diffusion. We examine size, power, and, in order to assess the tests’ ability to

identify correctly trading days on which a jump has occurred, the confusion matrix,

whose elements are the probabilities of correct and incorrect classification. We also

consider tests designed to address the question of whether an entire dataset is one

generated from either a pure diffusion or jump diffusion model; to our knowledge,

the full-sample-type tests have not been previously considered or analyzed.

Jump detection tests are constructed from very high frequency financial price

data, which are potentially seriously contaminated by market microstructure
noise. We examine theoretically the robustness of a generic jump test to micro-

structure noise of the sort commonly considered in the literature, and we consider

the appropriateness of a correction strategy from Andersen, Bollerslev, and Die-

bold (2004). The theory delivers sharp predictions that are assessed by further

Monte Carlo analysis.

Our empirical work focuses on five-minute returns on the S&P Index, cash

1997–2002, and futures 1982–2002, with the objective of identifying the empirical

importance of jumps as a source of price variance.
The remainder of this article is organized as follows. Section 1 sets up the

notation and introduces the realized variance measures used for forming the

jump test statistics. Section 2 reviews the joint asymptotic distribution of the realized

measures. Section 3 summarizes the various jump detection tests. Section 4 reports

on extensive Monte Carlo experiments that examine the behavior of the test statis-

tics. Section 5 applies the tests to the S&P 500 Index cash and futures data. Section 6

introduces market microstructure noise and examines both analytically and by

Monte Carlo the effects of the noise on the jump tests. This section also examines
an adjustment for the noise and reports the outcome of applying the adjusted tests

to the S&P 500 futures data. Finally, Section 7 contains concluding remarks.

1 SETUP

We consider a scalar log-price p(t) evolving in continuous time as

dpðtÞ ¼ �ðtÞdtþ �ðtÞdwðtÞ þ dLJðtÞ, ð1Þ
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where m (t) and s(t) are the drift and instantaneous volatility, w(t) is standardized

Brownian motion, LJ is a pure jump Lévy process with increments

LJðtÞ � LJðsÞ ¼
P

s���t �ð�Þ, and �ð�Þ is the jump size. We adopt this notation

from Basawa and Brockwell (1982). In this article we focus on a special class of
the Lévy process called the compound Poisson process (CPP). It has constant

jump intensity l, and the jump size k (t) is independent identically distributed

(i.i.d.). Throughout, time is measured in daily units, and for integer t we define

the within-day geometric returns as

rt,j ¼ pðt� 1 þ j=MÞ � pðt� 1 þ ðj� 1Þ=MÞ, j ¼ 1,2, . . . ,M,

where M is the sampling frequency.

Barndorff-Nielsen and Shephard (2004b) study general measures of realized

within-day price variance, and two natural measures emerge from their work.
The first is the now familiar realized variance,

RVt ¼
XM
j¼1

r2
t,j,

and the other is the realized bipower variation,

BVt ¼ ��2
1

M

M� 1

� �XM
j¼2

jrt,j�1jjrt,jj ¼
�

2

M

M� 1

� �XM
j¼2

jrt,j�1jjrt,jj,

where

�a ¼ EðjZjaÞ, Z � Nð0,1Þ, a > 0:

We use a slightly different notation that absorbs ��2
1 into the definition of the

bipower variation and thereby makes it directly comparable to the realized variance.

As noted in Andersen, Bollerslev, and Diebold (2002), the realized variance

satisfies

lim
M!1

RVt ¼
Z t

t�1

�2ðsÞdsþ
XNt

j¼1

�2
t,j,

where Nt is the number of jumps within day t and �t;j is the jump size. Thus the

RVt is a consistent estimator of the integrated variance
R t
t�1 �

2ðsÞds plus the jump

contribution. On the other hand, the results of Barndorff-Nielsen and Shephard
(2004b), along with extensions in Barndorff-Nielsen et al. (2005a, b), imply that

under reasonable assumptions about the dynamics of Equation (1),

lim
M!1

BVt ¼
Z t

t�1

�2ðsÞds:

Thus BVt provides a consistent estimator of the integrated variance unaffected by

jumps. Evidently the difference RVt � BVt is a consistent estimator of the pure
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jump contribution and, as emphasized by Barndorff-Nielsen and Shephard

(2004b, 2006), can form the basis of a test for jumps. Andersen, Bollerslev, and

Diebold (2004) use these results to generate evidence suggesting that there are too

many large within-day movements in equity, fixed income, and foreign exchange
prices to be consistent with the standard continuous-time stochastic volatility

model with Markov volatility dynamics.

We also consider the relative jump measure

RJt ¼
RVt � BVt

RVt
, ð2Þ

which is an indicator of the contribution (if any) of jumps to the total within-

day variance of the process. An equivalent statistic, �RJt, called the ratio
statistic, is proposed and studied by Barndorff-Nielsen and Shephard (2006).

We have a slight preference for the term relative jump, since 100 � RJ is a

direct measure of the percentage contribution of jumps, if any, to total price

variance.

Given a sample of T days, we denote the total realized variance as

RV1:T ¼
XT
t¼1

RVt,

and the total bipower variation as

BV1:T ¼
XT
t¼1

BVt:

The corresponding relative jump measure is

RJ1:T ¼ RV1:T � BV1:T

RV1:T

2 ASYMPTOTIC DISTRIBUTIONS

Under the assumption of no jump and some other regularity conditions,

Barndorff-Nielsen and Shephard (2006) first give the joint asymptotic distribution
of RVt and BVt, conditional on the volatility path, as M ! 1,

M
1
2

Z t

t�1

�4ðsÞds
� ��1

2 RVt �
R t
t�1 �

2ðsÞds
BVt �

R t
t�1 �

2ðsÞds

 !
!D Nð0,

�qq �qb
�qb �bb

� �
Þ,

where

�qq �qb
�qb �bb

� �
¼ �4 � �2

2 2ð�3�
�1
1 � �2Þ

2ð�3�
�1
1 � �2Þð��4

1 � 1Þ þ 2ð��2
1 � 1Þ

� �
,

and using �1 ¼ p 2
� ; �2 ¼ 1; �3 ¼ 2

p 2
� ; �4 ¼ 3,
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�qq ¼ 2,

�qb ¼ 2,

�bb ¼
�

2

� �2
þ�� 3:

The fact that asymptotically �qb ¼ �qq is no coincidence and reflects a situation

exactly analogous to that of the Hausman (1978) test. Asymptotically the situation

is one with Gaussian errors, and RVt is the most efficient estimate of the inte-

grated variance
R t
t�1 �

2ðsÞds. The bipower variation is a less efficient estimator

under the maintained assumption of no jumps, though it is also more robust.
Thus, following the logic of the Hausman test:

Proposition 1Under the maintained assumptions of no jumps, then asymptotically RVt �
BVt is independent of RVt conditional on the volatility path, and thus RJt in Equation (2) is

asymptotically the ratio of two conditionally independent random variables.

The proof is obvious by inspection. The above asymptotic distribution theory can

be generalized considerably as in Barndorff-Nielsen, Graversen, Jacod, Podolskij,

and Shephard (2005); Barndorff-Nielsen, Graversen, Jacod, and Shephard (2005);

see Barndorff-Nielsen and Shephard (2005b) for a survey.

The relative jump measure, RJt, has a natural notion of scale. If one is satisfied

with this sense of scale, then there is no need to estimate the integrated quarticityR t
t�1 �

4ðsÞds, as required for a standard deviation notion of scale.

To determine the scale of RVt � BVt in units of conditional standard devia-
tion, one needs to estimate the integrated quarticity

R t
t�1 �

4ðsÞds. Andersen,

Bollerslev, and Diebold (2004) suggest using the jump-robust realized tri-power

quarticity statistic, which is a special case of the multipower variations studied in

Barndorff-Nielsen and Shephard (2004b),

TPt ¼ M��3
4=3

M

M� 2

� �XM
j¼3

jrt,j�2j4=3jrt,j�1j4=3jrt,jj4=3, ð3Þ

and they note that

TPt !
Z t

t�1

�4ðsÞds,

even in the presence of jumps. There is a scale normalizing constant M in front of

the summation because each absolute return is of order
ffiffiffiffiffiffi
�t

p
, so the product is of

order ð�tÞ2, and the summation �t. M is 1
�t, which cancels out the summation

order, and the whole expression approaches a well-defined limit. As mentioned

before, the value normalizing term is now ��3
4=3, since each absolute return is raised

to power 4/3 and there are three such terms in one product. Notice that the power

of each absolute return should be strictly less than two for the statistics to be

robust to jumps. If it is equal to two, the statistics will behave just like RV, picking

up both the jump and the continuous-time parts, and if it is greater than two, the
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whole expression will blow up to infinity because of the interaction between the

scale normalizing constant and the jump component. Another estimator, based

on Barndorff- Nielsen and Shephard (2004b), is the realized quad-power

quarticity,

QPt ¼ M��4
1

M

M� 3

� �XM
j¼4

jrt,j�3jjrt,j�2jjrt,j�1jjrt,jj: ð4Þ

Given a sample of T days, the corresponding full-sample measures for TP and

QP are

TP1:T ¼
XT
t¼1

TPt,

QP1:T ¼
XT
t¼1

QPt:

3 SOME JUMP TEST STATISTICS

3.1 Daily Statistics

One strategy is to use the above theoretical results to compute a measure of

extreme movements on a day-by-day basis and then inspect for days where the

price movements appear abnormally large, which would be indicative of at least
one jump that day. Based on Barndorff-Nielsen and Shephard’s (2006) theoretical

results, Andersen, Bollerslev, and Diebold (2004) use the time series

zTP,t ¼
RVt � BVtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
MTPt

q ð5Þ

to test for daily jumps. For each t, zTP;t !
D
Nð0; 1Þ as M ! 1, on the assumption of

no jumps. Thus the sequence fzTP;tgTt¼1 provides evidence on the daily occurrence

of jumps in the price process. Another closely related measure is

zQP,t ¼
RVt � BVtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
MQPt

q ,

which uses the realized quad-power quarticity of Equation (4) in place of the realized

tri-power quarticity of Equation (3) in the computation of the conditional scale of
RVt � BVt.

Following Andersen, Bollerslev, Diebold, and Labys (2001, 2003); Andersen,

Bollerslev, Diebold, and Ebens (2001); and Barndorff-Nielsen and Shephard

(2005a), one might expect to be able to improve finite sample performance by

basing the test statistics on the logarithm of the variation measures. In the case of

Equation (5), the statistic is
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zTP,l,t ¼
logðRVtÞ � logðBVtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M

TPt

BV2
t

q , ð6Þ

which is also used in Andersen, Bollerslev, and Diebold (2004). Another modifi-

cation based on Barndorff-Nielsen and Shephard (2005a) entails the maximum
adjustment

zTP,lm,t ¼
logðRVtÞ � logðBVtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1, TPt

BV2
t

� �r : ð7Þ

Analogous to the logarithmic adjustment to zTP;t we also have the statistic

zQP,l,t ¼
logðRVtÞ � logðBVtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M

QPt

BV2
t

q ,

and with the additional maximum adjustment, as used in Barndorff-Nielsen and
Shephard (2004b), is

zQP,lm,t ¼
logðRVtÞ � logðBVtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1, QPt

BV2
t

� �r :

We also recall the measure of the relative jump (equivalent to negative of the ratio

statistic):

RJt ¼
RVt � BVt

RVt
,

and the statistics based on it are

zTP,r,t ¼
RJtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M

TPt

BV2
t

q , ð8Þ

zQP,r,t ¼
RJtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M

QPt

BV2
t

q ,

zTP,rm,t ¼
RJtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M max 1, TPt

BV2
t

� �r , ð9Þ

zQP,rm,t ¼
RJtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�bb � �qqÞ 1
M max 1, QPt

BV2
t

� �r :

The QP versions of these statistics are equivalent to the ratio jump statistics of

Barndorff-Nielsen and Shephard (2006). By visual inspection, one can see that the
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denominators of the log tests and the ratio tests are the same. In other words, the

numerators of the second and third pairs of the jump statistics have identical

asymptotic distributions conditional on the volatility path. The intuition is that

the first-order Taylor expansions of the numerators of the log and the ratio test
statistics around the asymptotic mean of RVt and BVt, that is, the integrated

variance
R t
t�1 �

2ðsÞds, are the same, thus the delta method generates the same

asymptotic distribution.

In Section 4 we examine, among other things, the quality of the asymptotic normal

approximation to each of these statistics under the null hypothesis of no jumps.

3.2 Full-Sample Statistics

We also consider the finite sample properties of the test statistics for jumps in a

given sample. In this case, the test statistics are computed over the entire sample
instead of on a day-by-day basis.

A natural asymptotically normal test statistic, following Andersen, Bollerslev,

and Diebold (2004), is

zTP,1:T ¼ RV1:T � BV1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

MTP1:T

q : ð10Þ

Another, based on the results of Barndorff-Nielsen and Shephard (2004b), is

zQP,1:T ¼ RV1:T � BV1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

MQP1:T

q : ð11Þ

The log versions of these statistics are

zTP,l,1:T ¼ logðRV1:TÞ � logðBV1:TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M
TP1:T

BV2
1:T

q , ð12Þ

zQP,l:T ¼ logðRV1:TÞ � logðBV1:TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M
QP1:T

BV2
1:T

q : ð13Þ

With the additional maximum adjustment, the statistics become

zTP,lm,1:T ¼ logðRV1:TÞ � logðBV1:TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1
T , TP1:T

BV2
1:T

� �r , ð14Þ

zQP,lm,1:T ¼ logðRV1:TÞ � logðBV1:TÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1
T , QP1:T

BV2
1:T

� �r : ð15Þ

There are similar full-sample statistics based on RJ1:T using TP1:T and QP1:T

as well:
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zTP,r,1:T ¼ RJ1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M
TP1:T

BV2
1:T

q , ð16Þ

zQP,r,1:T ¼ RJ1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M
QP1:T

BV2
1:T

q , ð17Þ

zTP,rm,1:T ¼ RJ1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1
T , TP1:T

BV2
1:T

� �r , ð18Þ

zQP,rm,1:T ¼ RJ1:Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�bb � �qqÞ 1

M max 1
T , QP1:T

BV2
1:T

� �r : ð19Þ

A simple t-test on the relative jump measure is

tRJ,classic ¼
1
T

PT
t¼1 RJtffiffiffiffiffiffiffiffiffiffiffiffi
�classic

p , ð20Þ

where �classic is the classical estimate of the variance of the mean computed under

the assumption of no serial dependence. One can also form

tRJ,GMM ¼
1
T

PT
t¼1 RJtffiffiffiffiffiffiffiffiffiffiffi
�HAC

p , ð21Þ

where �HAC is a HAC estimator of the variance of the mean. A bootstrap version is

tRJ,boot ¼
1
T

PT
t¼1 RJtffiffiffiffiffiffiffiffiffi
�boot

p , ð22Þ

where �boot is a bootstrap estimate of the variance of the mean. Finally, by

bootstrapping tRJ;classic one can get a bootstrap confidence interval ðtlow; tupÞ for the

t-statistic and form a test that way. We have not computed these more complicated

t-statistics because the evidence and theory suggest that RJt are essentially serially

uncorrelated, if the jump part follows the compound Poisson process. Interested

readers are referred to Gonçalves and Meddahi (2005) for an in-depth study of the

test statistics based on the bootstrap variance of the realized variance measures.

4 MONTE CARLO ANALYSIS

4.1 Setup

We analyze the behavior of the various tests above under two classes of models for the

log price process pt . The first is a stochastic volatility jump diffusion model of the form

SV1FJ : dpðtÞ ¼ � dtþ exp½�0 þ �1�ðtÞ�dwpðtÞ þ dLJðtÞ
d�ðtÞ ¼ ���ðtÞdtþ dw�ðtÞ,

ð23Þ
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where the w’s are standard Brownian motions, corrðdwp; dw�Þ ¼ 	 is the leverage

correlation, �ðtÞ is a stochastic volatility factor, LJðtÞ is a compound Poisson

process with constant jump intensity l and random jump size distributed as

Nð0; �2
jmpÞ. The model SV1FJ has one stochastic volatility factor and a jump; it

has been widely studied. Barndorff-Nielsen and Shephard (2004b) term this a

stochastic volatility model with rare jumps. A special case without a jump term is

SV1F : dpðtÞ ¼ � dtþ exp½�0 þ �1�ðtÞ�dwpðtÞ
d�ðtÞ ¼ ���ðtÞdtþ dw�ðtÞ:

We also follow Chernov et al. (2003) and consider a two-factor stochastic volatility

model,

SV2F : dpðtÞ ¼ � dtþ s- exp½�0 þ �1�1ðtÞ þ �2�2ðtÞ�dwpðtÞ
d�1ðtÞ ¼ ��1�1ðtÞdtþ dw�1ðtÞ
d�2ðtÞ ¼ ��2�2ðtÞdtþ ½1 þ ��2�2ðtÞ�dw�2ðtÞ,

ð24Þ

where �1ðtÞ and �2ðtÞ are stochastic volatility factors. The process �1ðtÞ is a standard

Gaussian process, while �2ðtÞ exhibits a feedback term in the diffusion function.

The feedback is found to be important in Chernov et al. (2003). The function s-exp
means the usual exponential function with a polynomial function splined in at very

high values of its argument to ensure that the system of Equation (24) with �v2 6¼ 0

satisfies the growth conditions for a solution to exist and for the Euler scheme to

work. The s-exp function is considered more fully below. The leverage correlations

are corrðdwp; dw�1Þ ¼ 	1 and corrðdwp; dw�2Þ ¼ 	2.

The SV2F model has continuous sample paths, but it can generate quite

rugged appearance price series via the volatility feedback and the exponential

function, which is splined only at relatively high values of its argument. One of
our objectives is to examine whether the various jump test statistics will falsely

signal jumps under a process with continuous sample paths.

Table 1 shows the parameter settings used in the simulations for the SV1FJ

model, with, of course, SV1F representing the null hypothesis. The parameter

Table 1 Experimental design for SV1FJ models.

m 0.030

b0 0.000

b1 0.125

�� {�0.137e�2, �0.100, �1.386}

r �0.620

l {0.014, 0.058, 0.082, 0.118}

{0.50, 1.00, 1.50, 2.00}

�jmp {0.00 . . . 2.50 by 0.50}

ntick 60

nstep 390
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values are based on the empirical results reported in Andersen, Benzoni, and

Lund (2002), Andersen, Bollerslev, and Diebold (2004), and Chernov et al. (2003).
The three values of the volatility mean reversion parameter �� represent very

slow mean reversion, with a half-life of two years (2 � 252 trading days), medium

mean reversion, with a half-life just over one week, and very strong mean rever-

sion with a half-life of 0.50 days. The very slow and very strong values for the

mean reversion parameter are based on Chernov et al. (2003), while the medium

value is based on Andersen, Benzoni, and Lund (2002). There are four values for

the jump intensity (l). The smallest jump intensity is estimated by Andersen,

Benzoni, and Lund (2002) for the daily S&P 500 cash index, while the other three
come from Andersen, Bollerslev, and Diebold (2004) for the high-frequency data

on the deutschemark/dollar (DM/$) spot market, S&P 500 index futures, and

U.S. Treasury-bond futures markets. The parameter �jmp varies over a range that

includes Andersen, Benzoni, and Lund’s (2002) estimate of about 1.50%. The

value of the leverage parameter is from Andersen, Benzoni, and Lund (2002),

though our experiments suggest that the findings are not very sensitive to this

parameter. The scaling parameters, that is, the �’s, are selected on the basis of the

studies and some experiments guided by plots of simulated data. For computa-
tional reasons, the above-mentioned empirical studies use different normaliza-

tions, different timing conventions, and they simulated arithmetic, not geometric

returns, so it is difficult to match up the values exactly to those previously

estimated.

The simulation details are as follows: the basic unit of time is one day

throughout. Simulations of the diffusion parts of the SV1FJ and SV2F models

are generated using the basic Euler scheme with an increment of one second per

tick on the Euler clock. We first simulate the log price level, then compute the
1-minute, 3-minute, 5-minute, and 30-minute geometric returns by taking the

difference of the corresponding log price levels, with the objective to see how

sampling frequency affects the properties of the test statistics. In order to make

results comparable across sampling intervals, it is important to simulate a single

Brownian motion at a very fine time interval, use the Euler scheme to solve for a

simulation from the nonlinear model, and then sample that series at coarser

Table 2 Experimental design for SV2F model.

m 0.030

b0 �1.200

b1 0.040

b2 1.500

��1 �0.137e�2

��2 �1.386

��2 0.250

	p;�1 �0.300

	p;�2 �0.300
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intervals. The jump component is simulated by drawing the jump times from the

exponential distribution and the jump size from Nð0; �2
jmpÞ.

The simulation of the SV2F model requires some special attention to

satisfy the growth conditions [Kloeden and Platen (1992: 128)] of Ito’s theorem.
Following Chernov et al. (2003), we spline smoothly to the far right-hand

side of the exponential function the growth function itself, so the model

satisfies the regularity conditions by construction. The knot point for the spline

is a value of the argument of the exponential that implies a 100% annualized

volatility, which is unlikely to occur in the normal U.S. financial markets.

Inspection of very long simulations revealed the spline has no essential effect,

except for attenuating the influences of a very few really large values of the

argument.
Figure 1 and Figure 2 show the simulated realizations of length 10,000 days

(about 40 years) at the daily frequency from the SV1F and SV1FJ models, with

medium mean reversion, �jmp ¼ 1:50 and l = 0.014 in the latter case. The daily

returns seen in the second panel appear reasonable for a financial time series.

Likewise, Figure 3 shows a simulation at the daily frequency from the SV2F

model, which looks very similar to the plots of daily returns found in the financial

econometrics literature.
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Figure 1 Simulated realization from the SV1F model, daily frequency, for 10,000 days, using five-
minute returns under medium mean reversion (�v = �0.100).
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4.2 Monte Carlo Findings

4.2.1 Daily Statistics. We first consider the characteristics of the daily statistics

computed over long simulated realizations, fzTP;tgNt¼1 and fzQP;tgNt¼1, of length

N = 45,000.

4.2.1.1 Size. Figure 4 shows QQ plots of the raw, log-max, and ratio-max adjusted

versions of zTP;t defined in Equations (5), (7), and (9). Since the log and ratio

adjusted versions are similar, they are not shown here. The data generation

process is the null case in Table 1, �jmp ¼ 0:00, with medium mean reversion ð�� ¼
�0:100Þ and 5-minute returns. Since large values of the z-statistics discredit the

null hypothesis of no jumps, we are only interested in the right-hand tail. As is

clear from the figures, the raw statistic has a size distortion toward overrejecting
in the range 2.00 to 3.00, about the 0.99 to 0.999 significance level, which is the

usual range considered for these daily z-statistics. However, the log transforma-

tion and the statistic based on RJ correct the size distortions, except perhaps in the

extreme right-hand tail. Although the boundary in the maximum adjustment is

hit a lot, the QQ plots do not appear to change much when we add the maximum

adjustment. A similar situation shows up when we study the full-sample statis-
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Figure 2 Simulated realization from the SV1FJ model, daily frequency, for 10,000 days, using
five-minute returns under medium mean reversion (�v = �0.100), �jmp = 1.50, and 
 = 0.014.
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tics. Apparently the deviations from the boundary are not serious, thus they do

not affect the value of the z-statistics significantly.

As seen from Figure 5, the raw statistic zQP;t has the same size problem and the

effects of the log, ratio, and max adjustments are the same as with zTP;t. It appears

that the choice between TPt and QPt does not matter in any important way for the

estimation of
R t
t�1 �

4ðsÞds. Interestingly, Figure 6 indicates that the relative jump

statistic, RJt, is very well approximated by a Gaussian distribution.
With the exception of the zTP,rm,t statistic, the sampling frequency has a

significant impact on the size. As the sampling frequency decreases, that is, the

sampling interval increases, the actual sizes of all statistics except zTP,rm,t increase

above the Monte Carlo confidence band, which can be seen in Figure 7 for the

medium mean reversion case. The behavior of the size for the slow mean rever-

sion and the fast cases are the same, so they are not shown here.

Figure 8 shows a simulation of length 1400 days of the five versions of zTP;t
statistics under the null of no jumps and �� ¼ �0:100. We choose 1400 because
that is very close to the sample size for the cash index in the empirical application

below. The size problem is apparent in the top panel as is the correction due to the

log adjustment and ratio adjustment. Note that zTP,rm,t in the bottom panel

appears to have the best size property among the five statistics.
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Figure 3 Simulated realization from the SV2F model, daily frequency, for 10,000 days, using five-
minute returns.
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4.2.1.2 Jump Detection. For evidence on the ability of the tests to detect jumps

under the SV1FJ setting, Figure 9 shows a simulation of the versions of zTP;t under

the same conditions as in Figure 8, except with �jmp ¼ 1:50 and l = 0.014. As is

clear, the statistics do a very good job of picking out the jumps.

To see how the parameter settings affect the detection ability of the test

statistics, we report the confusion matrix under different parameter settings.

The matrix consists of four cells: the upper left cell is the proportion of the statistic

smaller than the 99% standard Gaussian critical value among days without
jumps, the upper right cell is the proportion greater than the 99% critical value

among the no-jump days, the lower left cell is the proportion smaller than the 99%

critical value among the days that jump occur, and the lower right one is the

proportion greater than the 99% critical value among the jump days. The diagonal

elements of this matrix represent the ability of the test statistic to tell correctly

whether or not there is a jump in a particular day, and the off-diagonal represent

the proportion of days when the statistic signals the wrong answer. The row sums

of this matrix equal unity. Under the asymptotic theory presented in the previous
sections, we expect the (1,1) element of this matrix to be close to 99%, as the
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Figure 4 QQ plots, zTP daily statistics, for 45,000 days, using five-minute returns under medium
mean reversion (�v = �0.100).
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sampling interval goes to zero; however, the (2,2) element of this matrix needs not

approach unity, as explained in subsection 4.2.1.3.
Table 3 contains the confusion matrices for the three test statistics—

zTP;t; zTP;lm;t, and zTP,rm,t—over different jump intensities and sampling frequencies

under medium mean reversion ð�� ¼ �0:100Þ and jump size 1.50. The mean

reversion does not significantly impact the daily statistics, and the jump size

positively affects the rejection frequency in the expected manner, so we do not

report variations in these two parameters here. By comparing the first rows of the

matrices for the three test statistics, we can see that zTP;t tends to signal more false

jumps when there is no jump in a particular day, and the problem becomes more
severe with longer sampling intervals. On the other hand, zTP,rm,t is most robust,

with a false rejection rate close to the nominal size of 1%. By examining the second

rows of the matrices, we see that as the sampling interval increases from 1 minute

to 30 minutes, the test statistics signal fewer instances of jumps when jumps occur

because of the time averaging effect. An increase in jump intensity, l, has a positive

effect on the detection rate. The reason is that the statistics detect jumps through the
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Figure 5 QQ plots, zQP daily statistics, for 45,000 days, using five-minute returns under medium
mean reversion (�v = �0.100).
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proportion of the total price variation attributable to jumps. When l increases, the

expected number of jumps per day increases. This increases the expected accumu-

lated jump contribution per day, making it more likely that the statistics detect the
jumps.

4.2.1.3 Power. The above jump detection results are most likely to be important

for daily application purposes, but from the statistical viewpoint, we are also

interested in the power of the tests. Table 4 reports the power of the three test

statistics, zTP;t; zTP;lm;t, and zTP,rm,t, over different jump intensities and jump sizes

under medium mean reversion using five-minute simulated returns. Jump inten-

sity and jump size have positive effects on power. These results are intuitive.
Table 5 shows the power property of zTP,rm,t over different jump intensities, jump

sizes, and sampling frequencies. Just like the effect on the jump detection rate, the

sampling frequency impacts power positively. So combining the results in size,

jump detection rate, and power, we can see that, in the absence of market

microstructure noise, for lower sampling frequency, the statistics not only neglect

true jumps when there are jumps (lower jump detection rate and lower power),
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Figure 6 QQ plot and kernel density plot, RJt daily statistic for 45,000 days, using five-minute
returns under medium mean reversion (�v = �0.100).
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but also signal more false jumps when there is no jump (larger size). So high-
frequency data are necessary for jump detection when we use these types of statistics.

In addition to the effects of different parameters on the test statistics, an

important phenomenon is apparent in these two tables. The test is inconsistent;

that is, its power will not approach one as the sample size goes to infinity. The

reason is that, for any finite jump intensity, the underlying jump-diffusion process

does not have jumps every day. The time interval between two jumps is exponen-

tially distributed, and the probability of having no jump for a day is e�
, which is

not zero for any l < 1. Even when l is as high as two (unlikely to occur in the
empirical data), such a probability is still 0.135. Since the test statistics signal jumps

for only a very small portion of the no-jump days, their power, defined as the

proportion of signaled jump days over the whole sample, will not approach one.

4.2.1.4 The SV2F Model. The above results show that the test statistics have

excellent size property under the SV1F(J) model. In contrast, however, Figure 10

shows a simulation of the zTP;t statistics under the SV2F model described above.

1 3 5 10 15 30
0.04

0.06

0.08

0.1

0.12

0.14

0.16

sampling interval

size

ztp
ztpl
ztplm
ztpr
ztprm

1 3 5 10 15 30
0

0.02

0.04

0.06

0.08

0.1

0.12

sampling interval

size

ztp
ztpl
ztplm
ztpr
ztprm

1 3 5 10 15 30
0

0.02

0.04

0.06

0.08

0.1

sampling interval

size

ztp
ztpl
ztplm
ztpr
ztprm

1 3 5 10 15 30
0

0.02

0.04

0.06

0.08

sampling interval

size

ztp
ztpl
ztplm
ztpr
ztprm

Figure 7 The size of the jump statistics over different sampling intervals under the medium
mean reversion (�v = �0.100). The nominal size is 0.05 for the upper-left subplot, 0.005 for the
lower-left subplot, 0.01 for the upper-right subplot, and 0.001 for the lower-right subplot. The two
horizontal lines are the 95% Monte Carlo confidence bands corresponding to the nominal size.
The sample size is 45,000 days and the return horizon is five minutes.
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The underlying model does not contain jumps, though the simulation indicates

detection of spurious jumps. The figure suggests the test statistics have incorrect

size. Table 6 for five-minute returns further illustrates this point. The 95% confi-

dence interval for the nominal size of 5% over 45,000 simulation days is [0.04799,

0.05201], for the size of 1% is [0.00908, 0.01092], for the size of 0.5% is [0.00435,
0.00565], and for the size of 0.1% is [0.00071, 0.00129]. However, all the empirical

sizes are outside these confidence intervals, although the size of the zTP,rm,t is least

affected. The finding of overrejection is in contrast to that of Barndorff-Nielsen and

Shephard (2006), who utilize the superposition of two square-root [Cox, Ingersoll,

and Ress (CIR)] volatility processes. It suggests that the curvature of the volatility

functions influences the properties of the test statistics somewhat, although the size

distortions in Table 6 are not very large from a practical point of view.

4.2.2 Monte Carlo Assessment of Full-Sample Statistics. We now consider the

test of the null hypothesis that a given dataset has been generated from a data

generating process without jumps versus the alternative of one with jumps. This
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Figure 8 Simulated time series of zTP,t’s under the SV1F model. The five panels show simulations
of the basic statistic, the log version, the max-log version, the ratio version, and the max-ratio
version for �jmp = 0 under medium mean reversion. The horizontal lines are the upper 0.99 and
0.999 critical values of the standard Gaussian distribution. The sample size is 1400 days and the
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question is different from the one just considered, where the issue was whether or

not a jump occurred on a particular day. Tests of this null hypothesis are based on

the full sample, rather than being computed day by day. The candidate test

statistics are displayed in Equations (10)–(22).

Perhaps the most interesting tests are those based zTP;1:T and zQP;1:T and their

transforms as defined in Equations (10)–(19). Table 7 shows the rejection frequen-
cies under the one-factor SV1FJ and two factor SV2F models for 1000 repetitions

of a time series with 1400 days. The tests appear to have excellent size and power

properties under the SV1FJ model with the strong and medium mean reversions,

while, as might be expected, the power of each test under the slow mean rever-

sion is somewhat lower because the diffusive part of the model accounts for a

relatively larger share of the variance. However, the tests seem to have incorrect

size under the SV2F model for this sample size.

The finding that, under the SV2F model, the full-sample statistics incorrectly
reject the null of no jump more often than the daily statistics is notable, but needs
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Figure 9 Simulated time series of zTP,t’s under the SV1FJ model. The five panels show simula-
tions of the basic statistic, the log version, the max-log version, the ratio version, and the max-
ratio version for �jmp = 0 and 
 = 0.014 under medium mean reversion. The horizontal lines are
the upper 0.99 and 0.999 critical values of the standard Gaussian distribution. The bottom panel
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to be interpreted properly. The realized bipower variation and realized variance,
though consistent, are not unbiased for the integrated variance. That is, for any

finite sampling frequency M, it can be the case that, if the expectations exist,

EðRVt � BVtÞ ¼ BðMÞ 6¼ 0, ð25Þ

although one expects BðMÞ to be rather small. However, relative to the daily

statistics, the full-sample statistics increase the time span without shrinking the

sampling interval, so in effect the small bias gets inflated to T � BðMÞ and the

z-statistics can become very large. Therefore the larger the sample size, the more

apparent the difference between RV1:T and BV1:T, and hence the greater the
rejection frequency of the full-sample z-statistics.

There are other strategies for forming full-sample test statistics. For exam-

ple, one can add the sum of squared daily z-statistics and treat it as a chi-square

Table 3 Confusion matrices.


 = 0.014 
 = 0.118 
 = 1.000 
 = 2.000

Interval (NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

1 minute zTP,t (NJ) 0.980 0.020 0.981 0.019 0.989 0.011 0.995 0.005

(J) 0.205 0.795 0.178 0.822 0.132 0.868 0.080 0.920

zTP,lm,t (NJ) 0.986 0.014 0.986 0.014 0.993 0.007 0.996 0.004

(J) 0.208 0.792 0.184 0.816 0.136 0.864 0.084 0.916

zTP,rm,t (NJ) 0.988 0.012 0.989 0.011 0.994 0.006 0.997 0.003

(J) 0.214 0.786 0.187 0.813 0.139 0.861 0.086 0.914

3 minutes zTP,t (NJ) 0.968 0.032 0.969 0.031 0.982 0.018 0.992 0.008

(J) 0.273 0.727 0.261 0.739 0.198 0.802 0.125 0.875

zTP,lm,t (NJ) 0.981 0.019 0.982 0.018 0.989 0.011 0.996 0.004

(J) 0.286 0.714 0.274 0.726 0.208 0.792 0.132 0.868

zTP,rm,t (NJ) 0.988 0.012 0.988 0.012 0.993 0.007 0.997 0.003

(J) 0.292 0.708 0.285 0.715 0.219 0.781 0.141 0.859

5 minutes zTP,t (NJ) 0.960 0.040 0.963 0.037 0.980 0.020 0.991 0.009

(J) 0.302 0.698 0.314 0.686 0.239 0.761 0.160 0.840

zTP,lm,t (NJ) 0.977 0.023 0.978 0.022 0.988 0.012 0.994 0.006

(J) 0.347 0.653 0.337 0.663 0.257 0.743 0.175 0.825

zTP,rm,t (NJ) 0.986 0.014 0.987 0.013 0.993 0.007 0.997 0.003

(J) 0.360 0.640 0.358 0.642 0.274 0.726 0.191 0.809

30 minutes zTP,t (NJ) 0.894 0.106 0.899 0.101 0.943 0.057 0.974 0.026

(J) 0.558 0.442 0.543 0.457 0.489 0.511 0.432 0.568

zTP,lm,t (NJ) 0.954 0.047 0.957 0.043 0.975 0.025 0.988 0.012

(J) 0.620 0.380 0.641 0.359 0.590 0.410 0.540 0.460

zTP,rm,t (NJ) 0.986 0.014 0.987 0.013 0.992 0.008 0.996 0.004

(J) 0.744 0.257 0.749 0.251 0.706 0.294 0.671 0.329

Fixed parameters: level of significance = 0.01, �jmp ¼ 1:50; �� ¼ �0:10. The columns represent the jump days

signaled by the statistics and the rows are the actual days on which jumps occur in the simulation.

Huang & Tauchen | Relative Contribution of Jumps 477



random variable. Another is to compute over the stimulated sample of length T

the proportion of days on which the individual z-statistics are statistically

significant at some given level a, and then form the usual pivotal statistic

Table 4 Power for different jump statistics.

� jmp


 0.5 1.0 1.5 2.0 2.5

zTP,t 0.500 0.14718 0.25651 0.30640 0.33291 0.34789

1.000 0.24060 0.42038 0.49578 0.53458 0.55727

1.500 0.31969 0.54704 0.63264 0.67322 0.69687

2.000 0.39227 0.64382 0.73042 0.77042 0.79278

zTP,lm,t 0.500 0.12260 0.23538 0.28713 0.31613 0.33236

1.000 0.21082 0.39747 0.47767 0.51931 0.54389

1.500 0.28569 0.52367 0.61540 0.65993 0.68567

2.000 0.35569 0.62182 0.71567 0.75967 0.78309

zTP,rm,t 0.500 0.10493 0.21949 0.27309 0.30480 0.32216

1.000 0.18669 0.37782 0.46264 0.50660 0.53282

1.500 0.25767 0.50193 0.59967 0.64758 0.67436

2.000 0.32433 0.59936 0.70044 0.74709 0.77291

Fixed parameters: level of significance = 0.010, �� = - 0.100, and five-minute returns.

Table 5 Power of zTP,rm,t for different sampling frequencies.

�jmp


 0.5 1.0 1.5 2.0 2.5

1 minute 0.500 0.20420 0.29744 0.33033 0.34693 0.35651

1.000 0.36213 0.50140 0.54920 0.57158 0.58462

1.500 0.48840 0.64236 0.69351 0.71711 0.72993

2.000 0.58822 0.74833 0.79222 0.81340 0.82502

3 minutes 0.500 0.13633 0.24873 0.29624 0.32167 0.33607

1.000 0.24687 0.42813 0.49971 0.53400 0.55520

1.500 0.33969 0.56329 0.64049 0.67773 0.69902

2.000 0.42362 0.66578 0.74324 0.77909 0.79756

5 minutes 0.500 0.10493 0.21949 0.27309 0.30480 0.32216

1.000 0.18669 0.37782 0.46264 0.50660 0.53282

1.500 0.25767 0.50193 0.59967 0.64758 0.67436

2.000 0.32433 0.59936 0.70044 0.74709 0.77291

30 minutes 0.500 0.02500 0.06642 0.11384 0.15609 0.18787

1.000 0.03451 0.10747 0.19082 0.25720 0.30787

1.500 0.04102 0.13958 0.24260 0.32618 0.38818

2.000 0.04893 0.16556 0.28342 0.37276 0.43624

Fixed parameters: level of significance = 0.010, �� ¼ �0:100.
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based on the Gaussian approximation to the binomial. We experimented with these

strategies and always found the same conclusions as just described above. When

replicated over many samples of length T, the tests can incorrectly overreject the

null of no jumps, because a tiny daily bias gets inflated by the factor T.

Full-sample tests can potentially become consistent tests for jumps with

proper size, if a way can be found to eliminate the bias. There are possible
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Figure 10 Simulated time series of zTP,t’s under the SV2F model. The five panels show simulations
of the basic statistic, the log version, the max-log version, the ratio version, and the max-ratio
version. The horizontal lines are the upper 0.99 and 0.999 critical values of the standard Gaussian
distribution. The sample size is 1400 days and the return horizon is five minutes.

Table 6 SV2F model results, daily.

size (5%) size (1%) size (0.5%) size (0.1%)

zTP,t 0.13589 0.07616 0.06209 0.04056

zTP,l,t 0.12024 0.05931 0.04544 0.02664

zTP,lm,t 0.11709 0.05642 0.04284 0.02436

zTP,r,t 0.10171 0.04167 0.03016 0.01471

zTP,rm,t 0.09829 0.03867 0.02747 0.01276

Fixed parameters: five-minute returns; see Table 2 for the others.
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strategies to knock it out based on the behavior of T � BðMÞ for different M, but

they all appear to us to entail additional assumptions and models that would

be inconsistent with the nonparametric character of the jump detection strategies.

So, for now, the daily statistics are perhaps more reliable than the full-sample
statistics, at least in terms of their size, though the full-sample statistics offer some

tantalizing longer term possibilities for development of consistent tests. For the

related asymptotic results as both T and M go to infinity, see Corradi and

Table 7 Rejection frequencies, full sample.

zTP zTP;lm zTP;rm zQP zQP;lm zQP;rm

�jmp 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

SV1FJ: �v ¼ �1:3860; fast mean revision

0.00 0.015 0.056 0.015 0.055 0.015 0.055 0.015 0.057 0.015 0.057 0.015 0.056

0.50 0.106 0.306 0.106 0.306 0.105 0.303 0.106 0.307 0.106 0.307 0.105 0.303

1.00 0.885 0.948 0.882 0.947 0.882 0.947 0.885 0.948 0.883 0.947 0.883 0.947

1.50 0.994 0.995 0.994 0.995 0.994 0.995 0.994 0.995 0.994 0.995 0.994 0.995

2.00 1.000 1.000 1.000 1.000 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SV1FJ: �v ¼ �0:100; medium mean reversion

0.00 0.009 0.059 0.008 0.059 0.008 0.058 0.009 0.059 0.008 0.059 0.008 0.058

0.50 0.067 0.209 0.064 0.209 0.064 0.206 0.068 0.212 0.066 0.210 0.064 0.206

1.00 0.743 0.878 0.740 0.878 0.739 0.878 0.743 0.878 0.742 0.878 0.739 0.878

1.50 0.983 0.990 0.983 0.990 0.983 0.990 0.983 0.990 0.983 0.990 0.983 0.990

2.00 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

2.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SV1FJ: �v ¼ �0:137e� 02; slow mean reversion

0.00 0.004 0.032 0.003 0.031 0.003 0.031 0.003 0.033 0.003 0.032 0.003 0.032

0.50 0.081 0.137 0.079 0.136 0.079 0.134 0.080 0.139 0.080 0.138 0.079 0.134

1.00 0.229 0.288 0.228 0.288 0.228 0.286 0.228 0.288 0.288 0.288 0.228 0.287

1.50 0.295 0.355 0.293 0.354 0.292 0.352 0.295 0.353 0.294 0.352 0.291 0.351

2.00 0.361 0.426 0.361 0.425 0.357 0.424 0.361 0.427 0.357 0.425 0.357 0.424

2.50 0.430 0.478 0.429 0.478 0.427 0.477 0.433 0.481 0.430 0.479 0.426 0.478

SV2F: Two-factor continuous model

zTP zTP,lm zTP,rm zQP zQP,lm zQP,rm

Interval 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

30 minutes 0.495 0.670 0.475 0.658 0.452 0.639 0.548 0.716 0.534 0.696 0.519 0.681

5 minutes 0.084 0.200 0.079 0.195 0.074 0.188 0.089 0.206 0.084 0.204 0.079 0.198

3 minutes 0.036 0.129 0.035 0.127 0.035 0.124 0.039 0.132 0.038 0.128 0.038 0.127

1 minute 0.045 0.124 0.044 0.123 0.044 0.119 0.045 0.125 0.044 0.124 0.043 0.122

Fixed parameters: five-minute returns and 
 = 0.014 for SV1FJ model.

480 Journal of Financial Econometrics



Distaso (2004) in the framework of testing the specification of stochastic volatility

models.

5 Empirical Application

The dataset consists of five-minute observations on the S&P index; the cash data

are from April 21, 1997, to October 22, 2002, and the futures data are from April

21, 1982 (the beginning of the S&P futures contract), to December 9, 2002. We

eliminated a few days where trading was thin and the market was open for a
shortened session. Figure 11 shows plots of the daily price level and the daily

geometric returns of the cash index and the index futures. For the within-day

computations, we used five-minute data after applying a standard adjustment for

the deterministic pattern of volatility over the trading day.

To investigate jumps, we first consider Figures 12 and 13, which show in each

panel a time series plot of the five versions [Equations (5), (6), (7), (8), and (9)] of

the zTP;t statistic computed over this dataset, along with the upper 0.99% and

0.999% critical values of the standard Gaussian distribution. From the Monte
Carlo evidence generated in Section 4, the second to the last panels provide the

more reliable evidence on days when large jumps occurred conditional on the
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Figure 11 The top two panels show the daily closing price and the daily geometric return of the
S&P cash index, April 21, 1997–October 22, 2002. The bottom two panels show the daily closing
price and the daily geometric return of the S&P index futures, April 21, 1982–December 9, 2002.

Huang & Tauchen | Relative Contribution of Jumps 481



SV1FJ model [Equation (23)]. Evidently the statistics indicate far more jumps

than would be expected under a purely diffusive model satisfying the rather

mild regularity conditions of Barndorff-Nielsen and Shephard (2006). Simi-

larly there appear to be many more jumps than could possibly be generated
as false jumps under the continuous SV2F model, which casts doubt on the

validity of that model in describing the very high frequency character of stock

prices.

We now consider the relative contribution of jumps to total price variance.

Table 8 shows that the proportion of days that the daily z-statistics identify as

having jumps is larger for the cash index than those for the index futures in the

corresponding periods or in the full sample. Moreover, Table 9 shows that about

4.4% to 4.6% of the total realized variance comes from the jump component in the
index futures, and, somewhat surprisingly, smaller than the value (7.328%) in the

cash index. A similar relationship holds for the full-sample statistics ðRJ1:TÞ as

well. On the other hand, RV1:T and BV1:T for the index futures are larger than

those for the cash index for both the shorter (1997–2002) and the longer samples

(1982–2002).
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Figure 12 The five panels show observed values of the five daily jump statistics—zTP,t, zTP,l,t,
zTP,lm,t, zTP,r,t, and zTP,rm,t—computed using the five-minute returns on the S&P cash index, April
21, 1997–October 22, 2002. The horizontal lines are the upper 0.99 and 0.999 critical values of the
standard Gaussian distribution.
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Taken together, the results reported in Figures 12 and 13, along with those in

Tables 8 and 9, indicate that jumps are a statistically important component of

aggregate stock price movements. This evidence is generated using statistical
techniques validated in the Monte Carlo work of Section 4, which makes the

case for jumps all that more compelling. The jumps appear to contribute about

4.4% to 7.3% to the total variance of daily stock price movements.

6 Market Microstructure Noise

Our empirical evidence on the jumps in the financial price process is consistent

with the findings in Andersen, Bollerslev, and Diebold (2004). Eraker, Johannes,

and Polson (2003) also find similar proportions of return variance due to jumps in

S&P 500 and NASDAQ 100 index returns using their jumps in volatility and

returns models. These sets of findings suggest more instances of jumps and a

higher jump contribution to total return variance than most of the existing

literature. However, since we are using high-frequency data, the observed return

Figure 13 The five panels are the time series plots of the observed values of the daily statistics—
zTP,t, zTP,l,t, zTP,lm,t, zTP,r,t, and zTP,rm,t—computed using the five-minute returns on the S&P index
futures, April 21, 1982–December 9, 2002. The horizontal lines are the upper 0.99 and 0.999 critical
values of the standard Gaussian distribution.
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series can be contaminated by market microstructure noise. That raises the issue

of whether the jumps detected by the above statistics are true jumps or spurious

ones induced by the market microstructure noise. To address this question, we

conduct the following analysis of the effects of the market microstructure noise on

jump detection.

6.1 The Noise Structure

We now assume the observed log price at time tj is

pðtjÞ ¼ p�ðtjÞ þ ut,j, ð26Þ

where p�ðtÞ is the true continuous-time log price assumed to satisfy the

conditions given in Section 1, and ut;j is the microstructure noise. We follow

Aı̈t-Sahalia, Mykland, and Zhang (2005), Zhang, Mykland, and Aı̈t-Sahalia

(2004), and Bandi and Russell (2005b), among others, and assume that the

ut;j’s are i.i.d.; for tractability, we additionally assume the ut;j’s are Nð0; �2
mnÞ:

We discuss below the (important) deviations from this setup. For detailed

studies on the realized volatility measures under non-i.i.d. market microstruc-

ture noise, see the above literature as well as Bandi and Russell (2005a), and
Hansen and Lunde (2004a,b); a comprehensive survey is Barndorff-Nielsen

and Shephard (2005b).

Table 8 Proportion of days identified as jumps by the daily statistics.

Level of

significance 0.500 0.950 0.990 0.995 0.999

S&P 500 cash index (04/21/1997–10/22/2002)

zTP,t 0.74215 0.28488 0.18335 0.14609 0.10299

zTP,l,t 0.74215 0.26150 0.14536 0.12199 0.07159

zTP,lm,t 0.74215 0.24543 0.12929 0.09715 0.05698

zTP,r,t 0.74215 0.23886 0.11907 0.08836 0.04383

zTP,rm,t 0.74215 0.22060 0.09204 0.06866 0.03214

S&P 500 index futures (04/21/1997–10/22/2002)

zTP,t 0.66108 0.20918 0.11152 0.09402 0.05175

zTP,l,t 0.66108 0.18440 0.09329 0.06851 0.03717

zTP,lm,t 0.66108 0.17566 0.07726 0.05831 0.03061

zTP,r,t 0.66108 0.16618 0.06778 0.04227 0.02041

zTP,rm,t 0.66108 0.14942 0.05758 0.03499 0.01603

S&P 500 index futures (04/21/1982–12/09/2002)

zTP,t 0.64886 0.20960 0.11705 0.09583 0.05997

zTP,l,t 0.64886 0.18801 0.09526 0.07231 0.04319

zTP,lm,t 0.64886 0.17875 0.08427 0.06479 0.03779

zTP,r,t 0.64886 0.16815 0.07038 0.05110 0.02680

zTP,rm,t 0.64886 0.15523 0.06190 0.04223 0.02140
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Under these assumptions, the observed return is

rt,j ¼ r�t,j þ "t,j, ð27Þ

where r�t;j is the true geometric return based on p�ðtjÞ and "t;j is an MA(1) process

with varð"t;jÞ ¼ 2�2
mn and covð"t;j; "t;j�1Þ ¼ ��2

mn: As above, we assume equally

spaced sampling, where � ¼ tj � tj�1 denotes the sampling interval and is equal

to 1
M : Let �2

d denote the unconditional daily variance of the true returns, so, as
noted by Aı̈t-Sahalia, Mykland, and Zhang (2005),

�mnð�Þ ¼
2�2

mn

�2
d� þ 2�2

mn

ð28Þ

is the proportion of the variance of the return over the interval ½tj � �; tj� attribu-

table to the microstructure noise.

6.2 Staggered Returns

Recall from Section 1 the definition of bipower variation,

BVt ¼ ��2
1

M

M� 1

� �XM
j¼2

jrt,j�1jjrt,jj:

The effect of the microstructure noise introduced in Subsection 6.1 is to

induce correlation in the two adjacent returns, rt;j�1 and rt;j; appearing in this

summation. Anderson, Bollerslev, and Diebold (2004) suggest breaking the cor-

relation by using staggered returns as in jrt;j�2jjrt;jj, or more generally as in

jrt;j�ð1þiÞjjrt;jj, where the nonnegative integer i denotes the offset. The asymptotics

of various bipower measures using staggered returns are studied in depth by

Table 9 Summary of RV, BV, and RJ.

Statistics RV BV RV – BV RJ

S&P 500 cash index (04/21/1997–10/22/2002)

Sample mean 1.26702 1.18084 0.08618 0.07328

SD of mean 0.04086 0.03746 0.00340 0.00294

Full-sample statistics 1734.55618 1616.57673 117.97945 0.06802

S&P 500 index futures (04/21/1997 – 10/22/2002)

Sample mean 2.10718 2.01193 0.09525 0.04445

SD of mean 0.06690 0.06266 0.00424 0.00279

Full-sample statistics 2891.05330 2760.37224 130.68106 0.04520

S&P 500 index futures (04/21/1982 – 12/09/2002)

Sample mean 1.63393 1.46074 0.17319 0.04562

SD of mean 0.21083 0.12375 0.08708 0.00152

Full-sample statistics 8473.55466 7575.38272 898.17194 0.10600
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Barndorff-Nielsen and Shephard (2004a). Here we consider the generalized

bipower measure based on staggered returns,

BVi,t ¼ ��2
1

M

M� 1 � i

� � XM
j¼2þi

jrt,j�ð1þjÞjjrt,jj, i � 0: ð29Þ

The above reduces to the bipower variation defined in Section 1 if i = 0. Likewise,

we consider the generalized tri-power quarticity measure,

TPi,t ¼ M��3
4=3

M

M� 2ð1 þ iÞ

� � XM
j¼1þ2ð1þiÞ

jrt,j�2ð1þiÞj4=3jrt,j�ð1þiÞj4=3jrt,jj4=3, i � 0,

ð30Þ

and the quad-power quarticity measure,

QPi,t¼M��4
1

M

M�3ð1þ iÞ

� � XM
j¼1þ3ð1þiÞ

jrt,j�3ð1þiÞjjrt,j�2ð1þiÞjjrt,j�ð1þiÞjjrt,jj, i�0: ð31Þ

With BVi;t;TPi;t;QPi;t used in place of BVt;TPt;QPt, the asymptotic theory of

Section 2 for the various z-test statistics of Section 3 is exactly the same for each

fixed i and M ! 1.

6.3 Some Analytics

To analyze the relationship between the realized variance and the bipower

variation in the presence of microstructure noise, we retain the simple stan-

dard Gaussian i.i.d. structure of Subsection 6.1 above; later we discuss the

implications of deviations from this setup. With these assumptions for
the noise, assuming no leverage, working conditional on the volatility pro-

cess, and with the t subscript suppressed, we can write the jth within-day

return as

rj ¼
Dð�2

j � þ �2
mnÞ

1
2Zj, ð32Þ

where the Zj’s are standard Gaussian random variables and �2
j is the integrated

variance averaged over the sampling interval of widthd. The correlations of theZj’s are

	j,k 	 corrðZj, � Zj�kÞ ¼
��2

mnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

j
�þ�2

mnÞð�2
j�k

�þ�2
mnÞ

p jkj ¼ 1,

0 jkj � 1:

(
ð33Þ

All of the jump test z-statistics displayed in Section 3 have the common

structure of a studentized measure of discrepancy

z ¼ DðRV, BVÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Avar½DðRV, BVÞ�

p , ð34Þ
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where the numerator of the z-statistic, D(�,�), is a measure of the discrepancy

between the realized variance RV and the bipower variation BV, and the denomi-

nator is the square root of the asymptotic variance of the discrepancy under the

Barndorff-Nielsen and Shephard theory. The asymptotic variance of D(�,�)
depends on the integrated quarticity, which is estimated by either the realized

tri-power quarticity or the realized quad-power quarticity.

To gain insight into the behavior of z-statistic [Equation (34)], we consider the

conditional expectations, given the volatility process, of the numerator and the realized

tri-power quarticity term for the denominator in Equation (34) for the basic case where

the discrepancy D(�,�) is simply the difference, as in Equation (5). For simplicity, we

ignore the small sample adjustment M/(M–1) along with end effects due to lagging,

and we presume the same number of terms M = 1/� in the summations.
The relevant conditional expectation for the numerator is thus

E�

XM
1

r2
j

 !
� E�

�

2

XM
1

rj�ð1þiÞ
�� �� rj�� ��

 !
, ð35Þ

where, as before, i � 0 is the offset, and E� denotes the expectation computed

conditional on the trajectory of volatility. From Equation (32) we have that

Equation (35) is

XM

1
�2
j � þ �2

mn

� �1
2

�2
j � þ �2

mn

� �1
2� �2

j�ð1þiÞ� þ �2
mn

� �1
2

� �

þ
XM

1
�2
j � þ �2

mn

� �1
2
�2
j�ð1þiÞ� þ �2

mn

� �1
2 2

�
� gð	j,1þiÞ

� �
�

2
, ð36Þ

where

gð	Þ ¼ E j 1�	2
	 
1

2Za þ 	ZbjjZbj
� �

, Za, Zb , independent Nð0,1Þ, ð37Þ

is the expected value of the product of the absolute values of two correlated

standard Guassian random variables. The function g(	) is symmetric about zero

with g(0) = 2/�, g(1) = 1, and it is easily numerically evaluated. For an explicit

expression for g(	) and its properties, see Barndorff-Nielsen and Shephard

(2004a) Theorem 3 and Remark 5. Application of the mean value theorem to

the square-root function ð�Þ
1
2 appearing in the first square bracket in Equation

(36) gives

E�

XM

1
r2
j

� �
� E�

�

2

XM

1
rj�ð1þiÞ
�� �� rj�� ��� �

¼
XM

1

1

2

�2
j � þ �2

mn

�2
j � þ �2

mn þ �j �2
j � �2

j�ð1þiÞ

� ��
2
64

3
75

1
2

�2
j � �2

j�ð1þiÞ

� �
�

þ
XM

1
�2
j � þ �2

mn

� �1
2
�2
j�ð1þiÞ� þ �2

mn

� �1
2 2

�
� g 	j,1þi

	 
� �
�

2
,

Huang & Tauchen | Relative Contribution of Jumps 487



where �j

�� �� < 1. Hence the conditional expectation of the numerator of the

z-statistic [Equation (34)] is the sum of two terms,

E�

XM
1

r2
j

 !
� E�

�

2

XM
1

rj�ð1þiÞ
�� �� rj�� ��

 !
¼ A1 þ A2, ð38Þ

where

A1 ¼ 1

M

XM
1

1

2

�2
j � þ �2

mn

�2
j � þ �2

mn þ �j �2
j � �2

j�ð1þiÞ

� ��
2
64

3
75

1
2

�2
j � �2

j�ð1þiÞ

� �
, ð39Þ

A2 ¼
XM

1

�2
j � þ �2

mn

� �1
2
�2
j�ð1þiÞ� þ �2

mn

� �1
2 2

�
� g 	j,1þi

	 
� �
�

2
, ð40Þ

and recall � ¼ 1
M. For any fixed i� 0, the first term A1 converges to zero as � goes to

zero, so it is robust with respect to the microstructure noise. As for the second

term, if returns are not staggered so i = 0, it does not converge to zero, and the

numerator is biased in the negative direction against finding jumps. In contrast, if

returns are staggered, i > 0, then, because of the i.i.d. assumption, 	j,l+i = 0 and the

term A2 vanishes, leaving only the term A1. It is important to keep in mind that the

Gaussian assumption determines the characteristics of the function g(	) in Equa-

tion (37), and so that assumption plays a key role in our results regarding the

behavior of the term A2.
We now consider the denominator of Equation (34), and we examine the case

where the realized tri-power quarticity is used to estimate the asymptotic var-

iance in Equation (34). The relevant conditional expectation is

��3
4=3E�

XM
j¼1

rj�2ð1þiÞ
�� ��4=3

rj�ð1þiÞ
�� ��4=3

rj
�� ��4=3

0
@

1
A: ð41Þ

Using the representation of Equation (32), the above becomes

XM
j¼1

�2
j�2ð1þiÞ�þ�2

mn

� �2=3
�2
j�ð1þiÞ�þ�2

mn

� �2=3
�2
j �þ�2

mn

� �2=3
��3

4=3h 	j�ð1þiÞ,1þi,	j,1þi

	 

ð42Þ

where 	j,k is defined in Equation (33), and the function h is given by

hð	a, 	bÞ¼E j 1� 	2
a

1�	2
b

� �1
2

Zaþ
	affiffiffiffiffiffiffiffiffiffiffiffi

1�	2
b

q Zbj4=3 � j 1�	2
b

	 
1

2
Zbþ	bZcj4=3 � jZcj4=3

0
B@

1
CA:

The function h is equivalently written as
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hð	a, 	bÞ ¼ EðjYaj4=3jYbj4=3jYcj4=3Þ,

where Ya, Yb, Yc are three standard Gaussian random variables with pairwise

correlations corr(Ya, Yb) = 	a, corr(Yb, Yc) = 	b, corr(Ya, Yc) = 0. The function is

easily numerically evaluated.

Equation (42) indicates that the effect of the microstructure noise is to inflate

the realized tri-power quarticity for two reasons, although the inflation can be

substantially mitigated by staggering returns. First, the noise variance �2
mn inflates

terms like �2
j � þ �2

mn

� �1
2
. Second, if there is no staggering, then adjacent returns are

negatively correlated, so their magnitudes are positively correlated in Equation

(41), and therefore

��3
4=3h 	j�1,1, 	j,1

	 

> 1: ð43Þ

Table 10 shows the value of the factor ��3
4=3h for different values of the correlations,

and it suggests the inflation of the realized tri-power quarticity can be substantial,

as high as 25% to 39%. On the other hand, if the returns are staggered via i � 1,

then the inflation due to the correlation of adjacent returns is absent.
The upshot of our analytical analysis is that without staggering, our results

suggest the jump test statistics to be biased downward, that is, in favor of finding

fewer jumps in the presence of market microstructure noise. The reason is that the

numerator of the test statistic is negatively biased. At the same time, the noise inflates

the estimate of the integrated quarticity used to form the estimate of scale in the

denominator of Equation (34). The two effects together bias the zTP statistic against

rejection. We expect the same logic to work for the other forms of the z-statistics.

If returns are staggered, i � 1, in forming the requisite power measures of
Equations (29)–(31), then the term A2 is knocked out of the numerator, and

��3
4=3h ¼ 1. In this case, the asymptotic approximation of the Barndorff-Nielsen

and Shephard theory is expected to be more accurate. Nonetheless, one must keep

in mind the presumption of i.i.d. Gaussian microstructure noise. If the micro-

Table 10 Values of ��3
4=3hð	a; 	bÞ.

	b

	� �0.50 �0.40 �0.30 �0.20 �0.10 0.00

�0.50 1.39 1.32 1.27 1.23 1.21 1.21

�0.40 1.32 1.25 1.19 1.15 1.13 1.13

�0.30 1.27 1.19 1.13 1.08 1.07 1.06

�0.20 1.23 1.15 1.08 1.04 1.02 1.02

�0.10 1.21 1.13 1.07 1.02 1.01 1.00

0.00 1.21 1.13 1.06 1.02 1.00 1.00

This table is computed by numerical integration using Gauss-Hermite quadrature.
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structure noise is non-Gaussian, then the decomposition of Equations (39) and (40)

is unavailable, although the results are still suggestive; we defer non-Gaussian

noise to future work. If the microstructure noise is Gaussian, but serially correlated,

such as an MA(k) process, then one can reasonably expect an appropriately long lag
i for the staggering to work, but again we defer formal verification to later work.

Clearly our separate analysis of the conditional expectations of the numerator

and denominator of the z jump statistic can only provide some guidance of what

to expect for the z-statistic in the presence of microstructure noise. A formal

theoretical analysis of the z-statistic itself would entail complicated higher order

approximations, so we turn to a Monte Carlo assessment instead.

6.4 Monte Carlo Assessment of the Effects of Microstructure Noise

We need to run the simulations over a plausibly wide range of values for the standard

deviation �mn of the microstructure noise that appears in Equation (26). To calibrate

�mn, we use Equation (28) with a presumed return volatility of 1% per day, so that

�mnð5=390Þ ¼ 2�2
mn

1 � ð5=390Þ þ 2�2
mn

ð44Þ

is the proportion of the variance of the five-minute return attributable to micro-

structure noise for a market open 6.50 hours per day. We consider values of
�mn(5/390) ranging from 0.00 to 0.50 in the increment of 0.10, which thereby

determines the grid of values of �mn and also values of �mn(�) for all other

sampling frequencies as well; see Table 11. The upper value of �mn(5/390) =

0.50 implies that 50% of the variance of the five-minute return is accounted for

by the noise, which appears to be more than adequate for an index cash or an

index future like those usually found in most empirical work [e.g., Kaul and

Nimalendran (1990), Conrad, Kaul and Nimalendran (1991), Hasbrouck (1993)

and Madhavan, Richardson, and Roomans (1997), among others].
The following subsections summarize the Monte Carlo findings with the

market microstructure noise.

6.4.1 Size. Table 12 shows the size of the three ztp statistics under different noise

sizes (�mn) and sampling intervals, with i = 0, 1, and 2. It is clear from this table

Table 11 Proportions of noise contribution under different sampling intervals in
Monte Carlo.

Interval �mn

1 minute 0.000 0.357 0.556 0.682 0.769 0.833

3 minutes 0.000 0.156 0.294 0.417 0.526 0.625

5 minutes 0.000 0.100 0.200 0.300 0.400 0.500

30 minutes 0.000 0.018 0.040 0.067 0.100 0.143

smn 0.000 0.027 0.040 0.052 0.065 0.080
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Table 12 Size of different jump statistics under market microstructure noise.

�mn

Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)

1 minute zTP,t 0.020 0.007 0.002 0.001 0.000 0.000

zTP,lm,t 0.014 0.005 0.002 0.000 0.000 0.000

zTP, rm,t 0.012 0.004 0.001 0.000 0.000 0.000

3 minutes zTP.,t 0.032 0.027 0.020 0.014 0.009 0.005

zTP,lm,t 0.019 0.017 0.013 0.008 0.005 0.003

zTP,rm,t 0.012 0.011 0.008 0.005 0.003 0.002

5 minutes zTP,t 0.041 0.038 0.034 0.029 0.022 0.017

zTP,lm,t 0.023 0.022 0.019 0.015 0.012 0.009

zTP,rm,t 0.014 0.014 0.011 0.009 0.007 0.005

30 minutes zTP,t 0.107 0.107 0.107 0.107 0.107 0.107

zTP,lm,t 0.047 0.047 0.047 0.046 0.046 0.046

zTP,rm,t 0.014 0.015 0.015 0.015 0.014 0.014

(i = 1)

1 minute zTP,t 0.021 0.020 0.021 0.021 0.022 0.022

zTP,lm,t 0.015 0.015 0.015 0.015 0.015 0.015

zTP,rm,t 0.012 0.012 0.011 0.012 0.012 0.012

3 minutes zTP,t 0.031 0.034 0.033 0.032 0.032 0.032

zTP,lm,t 0.020 0.020 0.021 0.020 0.019 0.019

zTP,rm,t 0.014 0.014 0.014 0.013 0.013 0.013

5 minutes zTP,t 0.042 0.041 0.041 0.042 0.041 0.041

zTP,lm,t 0.024 0.023 0.024 0.024 0.024 0.022

zTP,rm,t 0.014 0.014 0.015 0.014 0.014 0.014

30 minutes zTP,t 0.129 0.128 0.128 0.127 0.127 0.126

zTP,lm,t 0.058 0.057 0.058 0.059 0.058 0.057

zTP,rm,t 0.021 0.020 0.020 0.020 0.020 0.020

(i = 2)

1 minutes zTP,t 0.022 0.021 0.021 0.022 0.023 0.023

zTP,lm,t 0.016 0.015 0.015 0.016 0.016 0.017

zTP,rm,t 0.013 0.011 0.011 0.012 0.013 0.013

3 minutes zTP,t 0.034 0.035 0.034 0.035 0.035 0.035

zTP,lm,t 0.022 0.021 0.021 0.022 0.021 0.022

zTP,rm,t 0.015 0.014 0.014 0.015 0.015 0.015

5 minutes zTP,t 0.044 0.042 0.043 0.043 0.043 0.042

zTP,lm,t 0.025 0.024 0.024 0.024 0.024 0.024

zTP,rm,t 0.016 0.014 0.014 0.015 0.015 0.015

30 minutes zTP,t 0.144 0.145 0.145 0.146 0.146 0.145

zTP,lm,t 0.070 0.069 0.069 0.068 0.068 0.068

zTP,rm,t 0.025 0.026 0.026 0.025 0.025 0.026

Fixed parameters: level of significance = 0.010, a = –0.100.
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that without staggering, the z-statistics’ rejection frequency is seriously down-

ward biased at the 1-minute level, but not at the 30-minute level, since the market

microstructure noise impact decreases as the sampling interval increases. More-

over, the larger the noise size, the more serious the underrejection is, as explained
in Section 6.3.

Staggering in BVt and TPt, one the other hand, restores the nominal size and

makes the rejection rate robust to the noise proportion. Extra lagging (i = 2) retains

the robustness feature, but leads to a little overrejection. Thus, to achieve the

correct empirical size of the statistics, we can only stagger the returns up to

the level that breaks the serial dependence of the observed returns induced by

the market microstructure noise. Any extra lagging might introduce finite-sample

bias due to the longer interval covered in each return product term, making the
asymptotic approximation worse.

6.4.2 Power and Jump Detection. Table 13 summarizes the power of the three

zTP statistics and Table 14 shows the jump detection rate of the zTP,rm,t statistic

under different noise sizes and sampling intervals, with i = 0, 1, and 2. Without

staggering, noise size reduces the power and the jump detection rate of the

statistics due to the noise contribution of the total price variance, which has

different characteristics from those of the jump part. Staggering helps to improve
the jump detection rate at high frequency levels (one-minute and three-minute

returns).

We did the same experiment for the constant volatility setup as the bench-

mark case. It turns out that the above features hold true under the constant

volatility setup, showing the robustness of the results.

6.5 Empirical Data Revisited

The Monte Carlo evidence points toward the conclusion in Section 5 that the jumps
detected in the S&P data are bona fide jumps instead of market microstructure

noise. We reconduct the same calculation, using staggered returns from i = 0 to i =

2. Here we only use the S&P 500 index futures, because the cash index is made up

of 500 underlying stocks without a sensible notion of the market microstructure

noise. For comparability, we use the same subperiods as those in Section 5.

The empirical evidence, especially over the entire sample period April 21,

1982, to December 9, 2002, is generally consistent with the above analytical and

Monte Carlo findings. Staggering suggests a slightly more important role for
jumps both in terms of the number of jump days and the jump contribution in

the total price variance, as exhibited in Tables 15 and 16.

7 CONCLUSION

The Monte Carlo evidence suggests that, under the arguably realistic scenarios

considered here, the recently developed z-tests for jumps perform impressively

and are not easily fooled. Computed on a daily basis in ratio form, with a

492 Journal of Financial Econometrics



Table 13 Rejection frequencies of different jump statistics under market
microstructure noise.

smn

Interval 0.000 0.027 0.040 0.052 0.065 0.080

(i = 0)

1 minute zTP,t 0.032 0.018 0.012 0.010 0.008 0.007

zTP,lm,t 0.026 0.016 0.011 0.009 0.008 0.007

zTP,rm,t 0.023 0.015 0.011 0.009 0.008 0.006

3 minutes zTP,t 0.042 0.036 0.030 0.023 0.017 0.013

zTP,lm,t 0.029 0.027 0.022 0.017 0.013 0.010

zTP,rm,t 0.022 0.021 0.018 0.014 0.011 0.009

5 minutes zTP,t 0.050 0.048 0.043 0.037 0.030 0.025

zTP,lm,t 0.033 0.032 0.028 0.024 0.020 0.017

zTP,rm,t 0.023 0.023 0.020 0.018 0.015 0.013

30 minutes zTP,t 0.112 0.113 0.113 0.112 0.112 0.111

zTP,lm,t 0.052 0.052 0.052 0.051 0.050 0.050

zTP,rm,t 0.018 0.019 0.019 0.018 0.018 0.018

(i=1)

1 minute zTP,t 0.032 0.031 0.031 0.031 0.031 0.030

zTP,lm,t 0.026 0.026 0.025 0.025 0.025 0.024

zTP,rm,t 0.023 0.022 0.022 0.021 0.021 0.020

3 minutes zTP,t 0.042 0.044 0.043 0.042 0.041 0.040

zTP,lm,t 0.030 0.031 0.030 0.029 0.028 0.027

zTP,rm,t 0.024 0.024 0.024 0.023 0.022 0.021

5 minutes zTP,t 0.052 0.051 0.051 0.051 0.049 0.049

zTP,lm,t 0.033 0.033 0.033 0.033 0.032 0.030

zTP,rm,t 0.024 0.023 0.024 0.022 0.022 0.021

30 minutes zTP,t 0.134 0.133 0.133 0.132 0.132 0.131

zTP,lm,t 0.063 0.062 0.063 0.063 0.062 0.061

zTP,rm,t 0.024 0.024 0.024 0.024 0.023 0.023

(i=2)

1 minute zTP,t 0.034 0.032 0.031 0.031 0.032 0.032

zTP,lm,t 0.027 0.026 0.025 0.025 0.025 0.025

zTP,rm,t 0.024 0.022 0.021 0.021 0.022 0.022

3 minutes zTP,t 0.044 0.045 0.043 0.044 0.044 0.044

zTP,lm,t 0.032 0.031 0.031 0.031 0.030 0.030

zTP,rm,t 0.025 0.024 0.024 0.024 0.024 0.023

5 minutes zTP,t 0.053 0.051 0.052 0.051 0.051 0.050

zTP,lm,t 0.035 0.033 0.033 0.032 0.032 0.032

zTP,rm,t 0.025 0.023 0.023 0.023 0.023 0.023

30 minutes zTP,t 0.150 0.151 0.150 0.151 0.151 0.150

zTP,lm,t 0.074 0.074 0.073 0.073 0.072 0.073

zTP,rm,t 0.029 0.029 0.029 0.029 0.028 0.029

Fixed parameters: level of significance = 0.010, av = �0.100, sjmp = 1.50, l = 0.014.
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maximum adjustment in the estimate of scale, the size and power properties are

excellent, and the test statistics appear to do an outstanding job of identifying the

days on which jumps occur. Under modeling assumptions that include Gaussian

microstructure noise, the effect of market microstructure noise is to bias the tests

against finding jumps. That bias can be corrected using Andersen, Bollerslev, and
Diebold’s (2004) technique of staggering returns sufficiently to diminish the

effects of the local serial correlation induced by microstructure noise. Although

any Monte Carlo study is necessarily limited, and the theoretical work is con-

strained by the assumptions, it nonetheless seems reasonable to make valid

Table 14 Confusion matrices, large rare jumps, and market microstructure noise
(zTP,ren,t).

smn

0.000 0.027 0.052 0.080

Interval (NJ) (J) (NJ) (J) (NJ) (J) (NJ) (J)

(i = 0)

1 minute (NJ) 0.988 0.012 0.996 0.004 1.000 0.000 1.000 0.000

(J) 0.214 0.786 0.260 0.740 0.393 0.607 0.558 0.442

3 minutes (NJ) 0.988 0.012 0.989 0.011 0.995 0.005 0.998 0.002

(J) 0.292 0.708 0.308 0.692 0.377 0.623 0.461 0.539

5 minutes (NJ) 0.986 0.014 0.986 0.014 0.991 0.009 0.995 0.005

(J) 0.360 0.640 0.354 0.646 0.396 0.604 0.503 0.497

30 minutes (NJ) 0.986 0.014 0.985 0.015 0.985 0.015 0.986 0.014

(J) 0.744 0.257 0.724 0.276 0.734 0.266 0.740 0.260

(i = 1)

1 minute (NJ) 0.988 0.012 0.989 0.011 0.988 0.012 0.988 0.012

(J) 0.224 0.776 0.253 0.747 0.321 0.679 0.432 0.568

3 minutes (NJ) 0.986 0.014 0.986 0.014 0.987 0.013 0.988 0.012

(J) 0.286 0.714 0.305 0.695 0.341 0.659 0.416 0.584

5 minutes (NJ) 0.986 0.014 0.986 0.014 0.986 0.014 0.986 0.014

(J) 0.344 0.656 0.370 0.630 0.422 0.578 0.481 0.519

30 minutes (NJ) 0.980 0.020 0.980 0.020 0.980 0.020 0.981 0.019

(J) 0.708 0.292 0.721 0.279 0.718 0.282 0.750 0.250

(i = 2)

1 minute (NJ) 0.988 0.012 0.989 0.011 0.988 0.012 0.987 0.013

(J) 0.221 0.779 0.266 0.734 0.331 0.669 0.409 0.591

3 minutes (NJ) 0.985 0.015 0.986 0.014 0.985 0.015 0.985 0.015

(J) 0.286 0.714 0.325 0.675 0.383 0.617 0.442 0.558

5 minutes (NJ) 0.984 0.016 0.986 0.014 0.985 0.015 0.985 0.015

(J) 0.360 0.640 0.390 0.610 0.435 0.565 0.490 0.510

30 minutes (NJ) 0.975 0.025 0.974 0.026 0.975 0.025 0.974 0.026

(J) 0.737 0.263 0.730 0.270 0.737 0.263 0.750 0.250

Fixed parameters: level of significance = 0.010, av = �0.100, sjmp = 1.50, l = 0.014.
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Table 15 Proportion of days identified as jumps by the daily statistics.

Level of significance 0.500 0.950 0.990 0.995 0.999

S&P 500 index futures (04/21/1982–04/18/1997)

(i = 0)

zTP,t 0.64384 0.20941 0.11925 0.09651 0.06293

zTP,lm,t 0.64384 0.17980 0.08699 0.06716 0.04019

zTP,rm,t 0.64384 0.15732 0.06346 0.04469 0.02327

(i = 1)

zTP,t 0.68112 0.25754 0.15415 0.12850 0.08726

zTP,lm,t 0.68112 0.22263 0.11687 0.09228 0.05500

zTP,rm,t 0.68112 0.19751 0.08858 0.06319 0.03411

(i = 2)

zTP,t 0.71549 0.29799 0.18879 0.16288 0.11528

zTP,lm,t 0.71549 0.25939 0.14728 0.11819 0.07377

zTP,rm,t 0.71549 0.23559 0.11396 0.08726 0.04707

(04/21/1997–10/22/2002)

(i = 0)

zTP,t 0.66108 0.20918 0.11152 0.09402 0.05175

zTP,lm,t 0.66108 0.17566 0.07726 0.05831 0.03061

zTP,rm,t 0.66108 0.14942 0.05758 0.03499 0.01603

(i = 1)

zTP,t 0.62026 0.20408 0.11953 0.09184 0.06195

zTP,lm,t 0.62026 0.17055 0.08163 0.06341 0.03134

zTP,rm,t 0.62026 0.15452 0.05977 0.03790 0.02332

(i = 2)

zTP,t 0.60714 0.19096 0.11006 0.09111 0.06706

zTP,lm,t 0.60714 0.16327 0.08309 0.06924 0.04519

zTP,rm,t 0.60714 0.14213 0.06560 0.05248 0.02551

(04/21/1982–12/09/2002)

(i = 0)

zTP,t 0.64886 0.20960 0.11705 0.09583 0.05997

zTP,lm,t 0.64886 0.17875 0.08427 0.06479 0.03779

zTP,rm,t 0.64886 0.15523 0.06190 0.04223 0.02140

(i = 1)

zTP,t 0.66506 0.24277 0.14462 0.11859 0.08060

zTP,lm,t 0.66506 0.20845 0.10740 0.08465 0.04859

zTP,rm,t 0.66506 0.18569 0.08099 0.05650 0.03105

(i = 2)

zTP,t 0.68608 0.26938 0.16776 0.14366 0.10220

zTP,lm,t 0.68608 0.23351 0.13016 0.10490 0.06595

zTP,rm,t 0.68608 0.21037 0.10085 0.07790 0.04126
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nonparametric claims for the reliability of the tests. That claim could be further

buttressed (or possibly discredited) by additional research using more complicated

data generating processes such as those with regime shifts or jumps in volatility.

Table 16 Summary of RV, BV, and RJ.

Statistics RV BV RV – BV RJ

S&P 500 index futures (04/21/1982–04/18/1997)

(i = 0)

Sample mean 1.45438 1.25291 0.20146 0.04601

SD of mean 0.28803 0.16804 0.12000 0.00182

Full-sample statistics 5500.46066 4738.52390 761.93676 0.13852

(i = 1)

Sample mean 1.45438 1.26816 0.18622 0.06017

SD of mean 0.28803 0.20411 0.08393 0.00189

Full-sample statistics 5500.46066 4796.18426 704.27640 0.12804

(i = 2)

Sample mean 1.45438 1.24790 0.20647 0.07269

SD of mean 0.28803 0.19699 0.09105 0.00198

Full-sample statistics 5500.46066 4719.57255 780.88811 0.14197

(04/21/1997–10/22/2002)

(i = 0)

Sample mean 2.10718 2.01193 0.09525 0.04445

SD of mean 0.06690 0.06266 0.00424 0.00279

Full-sample statistics 2891.05330 2760.37224 130.68106 0.04520

(i = 1)

Sample mean 2.10718 2.01341 0.09378 0.04095

SD of mean 0.06690 0.06133 0.00557 0.00302

Full-sample statistics 2891.05330 2762.39293 128.66038 0.04450

(i = 2)

Sample mean 2.10718 2.02129 0.08589 0.03556

SD of mean 0.06690 0.06211 0.00479 0.00311

Full-sample statistics 2891.05330 2773.21121 177.84209 0.04076

(04/21/1982–12/09/2002)

(i = 0)

Sample mean 1.63393 1.46074 0.17319 0.04562

SD of mean 0.21083 0.12375 0.08708 0.00152

Full-sample statistics 8473.55466 7575.38272 898.17194 0.10600

(i = 1)

Sample mean 1.63393 1.47225 0.16168 0.05500

SD of mean 0.21083 0.14980 0.06103 0.00160

Full-sample statistics 8473.55466 7635.08331 838.47135 0.09895

(i = 2)

Sample mean 1.63393 1.45973 0.17420 0.06266

SD of mean 0.21083 0.14467 0.06616 0.00168

Full-sample statistics 8473.55466 7570.17627 903.37839 0.10661
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A good starting point for the latter would be the pure jump nonnegative Ornstein-

Uhlenbeck (OU) processes introduced in Barndorff-Nielsen and Shephard (2001),

with generalizations reviewed and simulation schemes presented in Todorov and

Tauchen (2004). Another avenue to strengthen the nonparametric claim would be
to check whether the jump tests can uncover possible serial correlation in jumps, as

suggested by evidence in Andersen, Bollerslev, and Huang (2005).

The Monte Carlo work also suggests that the new test statistics, while powerful,

are not consistent tests. We believe that only by computing the statistics over a full

sample, instead of day by day, can a consistent test be developed. However, our

Monte Carlo work identifies a serious pitfall in this effort. Successful development

requires a nonparametric way of knocking out a small sample bias that otherwise gets

greatly magnified when summed over many days. We defer this task to future work.
The empirical work indicates strong evidence for jumps, where jumps account

for about 4.5% to 7.0% of the total daily variance of the S&P index, cash or futures.

Interestingly, that evidence is obtained with a test likely biased away from finding

jumps, and redoing the tests with the adjustment for microstructure noise raises the

test statistics somewhat. The case for jumps thus appears compelling. The presence

of jumps perforce precludes the prevalent assumption of local continuity and

suggests that financial econometricians will need to enrich considerably the class

of parametric models used to model very high frequency price series. The recent
book by Cont and Tankov (2004) provides a powerful toolkit for creating more

elaborate models. Although parametric modeling of very high frequency time

series with jumps presents an intriguing statistical challenge, there is the serious

issue of how economically important is the relatively small average contribution of

4.5% to 7.0% of total daily price variance. That question can only be addressed by

examining the portfolio optimization behavior of an economic agent facing price

series generated by the enhanced statistical models just discussed.
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