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Abstract 

Background: Obesity is associated with increased risk of multiple sclerosis (MS); however, the 

underlying mechanisms remain unclear.  

Objective: To determine the extent to which decreased vitamin D bioavailability and altered levels 

of adiponectin and leptin mediate the association between obesity and MS. 

Methods: We performed Mendelian randomization (MR) analyses to estimate the effects on MS of 

body mass index (BMI), 25-hydroxyvitamin D (25OHD), adiponectin and leptin levels in a cohort of 

14,802 MS cases and 26,703 controls. We then estimated the proportion of the effect of obesity on 

MS explained by these potential mediators. 

Results: Genetic predisposition to higher BMI was associated with increased MS risk (OR=1.3340 per 

SD, 95% CI 1.0916-1.637), while higher 25OHD levels reduced odds of MS (OR=0.72 per SD, 95% CI 

0.60-0.87). In contrast, we observed no effect of adiponectin or leptin. In MR mediation analysis, 

5.24% of the association between BMI and MS was attributed to obesity lowering 25OHD levels 

(95% CI 0.34%- to 30.531.0%). 

Conclusions: This study found that a minority of the increased risk of MS conferred by obesity is 

mediated by lowered vitamin D levels, while leptin and adiponectin had no effect. Consequently, 

vitamin D supplementation would only modestly reverse the effect of obesity on MS.  



 

  

Introduction 

An increasing body of evidence supports a role for obesity in the development of multiple sclerosis 

(MS).1, 2 However, the mechanisms underlying this association remain unclear. A commonly 

hypothesized pathway is through vitamin D deficiency, another established MS risk factor,2 as 

obesity decreases the bioavailability of 25-hydroxyvitamin D (25OHD).3 While appealing, these 

proposed mediating effects of 25OHD have yet to be confirmed or quantified. Obesity is also 

characterized by a chronic low-grade inflammatory state, driven in part by hormones and cytokines 

secreted by adipose tissue, such as leptin and adiponectin. These have been implicated in MS 

pathogenesis and shown to modulate experimental autoimmune encephalomyelitis disease course 

(reviewed in 4). However, it remains unclear whether they have a causal role in the disease process 

or contribute to mediating the association with obesity. 

 

Establishing the relative contributions of obesity and vitamin D deficiency in particular to MS risk has 

major public health implications, as their prevalence in the US is respectively 41.6% and 39.6%.5, 6 

Furthermore, if a large proportion of the association between obesity and MS is explained by lowered 

25OHD levels, then vitamin D supplementation at a population level or in high-risk individuals could 

become a viable strategy to mitigate the effects of obesity on MS.  

 

To address these questions, we undertook a Mendelian randomization (MR) approach, which uses 

natural genetic variation as a proxy for an exposure to estimate its effect on an outcome. MR 

greatly reduces confounding since allelic variants influencing different exposures are randomly 

allocated at conception.7 The fact that genotypes are not modifiable by disease onset also limits 

reverse causation.8 This makes MR well suited for mediation analysis.9 In this study, we first 



 

  

estimated the effect of each ofwhether genetic predisposition towards higher 25OHD, leptin and 

adiponectin levels on influence the risk of MS, then took forward significantly associated traits into 

a two-step MR mediation analysis to determine their contribution to the association between 

obesity and MS. 

 

 

Methods 

Data sources 

We identified single-nucleotide polymorphisms (SNPs) for BMI and each potential mediator using 

large-scale genome-wide association studies (GWAS) as shown in the Table. 10-13 As genetic estimates 

for 25OHD were derived from the UK Biobank cohort,11 we used a BMI GWAS that did not include this 

cohort10 to avoid participant overlap in the mediation analysis, which can lead to inflated type 1 error 

rates.to avoid bias from sample overlap.8, 14  For MS susceptibility, summary genetic estimates were 

obtained from the discovery cohort of the latest International MS Genetics Consortium meta-analysis, 

which included 14,802 MS cases and 26,703 controls as previously described.15 To prevent 

confounding through population stratification, all genetic estimates were from individuals of 

European ancestry (white British group for the UK Biobank11) and subsequently adjusted for genetic 

principal components. 

 

We ensured that genetic variants were independent (r2 < 0.01) by using the 1000 Genomes European 

reference panel16 and PLINK v1.917 (clump command within 10,000 kb distance), 16 except for the 

25OHD levels variants for which we used conditionally independent estimates from a COJO analysis.11 

When genetic instruments variants were missing from one of the datasets, we identified proxy SNPs 



 

  

in linkage disequilibrium (LD; r2 > 0.6) using the same reference panel.16 We excluded variants within 

the major histocompatibility complex (MHC) region, as it is strongly associated with MS risk and 

exhibits complex linkage disequilibriumLD which renders it susceptible to bias from pleiotropy. 

Genetic variants were aligned to the forward strand. For GWAS not originally reported on the Genome 

Reference Consortium Human Build 37 (BMI, leptin and adiponectin), forward strand alleles for 

palindromic SNPs were inferred using minor allele frequencies up to 0.42. 

 

The inclusion of genetic variants with smaller effects on the exposure can lead to weak instrument 

bias, which attenuates MR estimates towards the null. For each phenotype, we evaluated instrument 

strength using the F-statistic (two-sample conditional F-statistic FTS for multivariable MR), with values 

greater than 10 indicating adequately strong instruments. As a sensitivity analysis, we also measured 

the effect of BMI on the risk of MS using the latest GWAS meta-analysis by Yengo and colleagues18 

(n=681,275) which included UK Biobank participants and thus was not used for the mediation 

analysis, as discussed above. This study identified 941 near-independent SNPs, of which 548 were 

included after filtering out MHC variants, marginal effects below genome-wide significance and 

correlated variants. 

 

Statistical analysis 

We first carried out univariable inverse-variance weighted (IVW) MR to examine the effect on MS of 

genetically determined BMI, 25OHD, leptin and adiponectin levels individually. For each genetic 

variant, the effect on MS was estimated using the SNP effect coefficients via the ratio method, with 

standard errors derived using the delta method.19 These individual MR estimates were combined into 

a summary measure using random-effect inverse-variance weighted meta-analysis. In addition, we 



 

  

applied the MR-Egger and weighted median MR methods to assess for potential bias from pleiotropic 

effects, whereby genetic instruments variants affect the outcome independent of the risk factor.8 We 

also performed the MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) outlier test to identify and 

remove potentially pleiotropic variants.20 

 

As leptin and adiponectin displayed no measurable effect on MS risk, only 25OHD levels were was 

taken forward into the mediation analysis. We measured the indirect effect of BMI on MS mediated 

by 25OHD levels using the product of coefficients method via two-step MR (Figure 1).9 This involved 

first estimating the effect of BMI on 25OHD levels, then multiplying this by the effect of 25OHD 

levels on MS risk adjusting for BMI using regression-based multivariable MR.21 The multivariable MR 

included genetic effects of both 25OHD levels and BMI for variants associated with either 

phenotype. The proportion mediated was estimated by dividing this the indirect effect by the total 

effect of BMI on MS. Outlier-corrected estimates were used for univariable analyses. 

 

To further ensure that our estimates were not biased by pleiotropy, we repeated the mediation 

analysis using only 6 genetic variants for 25OHD levels identified in a previous GWAS,22 most of 

which have a well-defined role in vitamin D synthesis (DHCR7/NADSYN1 [rs12785878]; CYP2R1 

[rs10741657]), transportation (GC [rs3755967]), or degradation (CYP24A1 [rs17216707]). Lastly, we 

calculated the effect of BMI on MS risk adjusting for 25OHD levels using multivariable MR. 

 

All statistical analyses were performed in R (version 3.6.0). We used the MendelianRandomization23 

(version 0.4.2), TwoSampleMR24 (version 0.5.4) and MVMR (version 0.2)25 R packages. The alpha-

level for statistical significance was set to 0.05. The data sources used in this study obtained 



 

  

informed consent from all participants. Separate institutional review board approval was not 

required for this study. 

Results 

Effects of vitamin D, leptin and adiponectin levels on MS 

Figure 2 shows the total effect on odds of MS for BMI, 25OHD levels, leptin and adiponectin levels 

as estimated by univariable MR. A significant effect was only observed for BMI (odds ratio 

[OR]=1.3340 per standard deviation [SD] increase in BMI, 95% CI 1.09 to 1.63, P=4.8x10-3 1.16 to 

1.67, P=3.12x10-4) and 25OHD levels (OR=0.72 per SD increase in log-transformed 25OHD, 95% CI 

0.60 to 0.87, P=6.21x10-4). To guide clinical interpretation, the SD for BMI was 4.7 kg/m2,10 while for 

25OHD it corresponded to a 29.2 nmol/L increase for individuals with a baseline level of 50 nmol/L. 

Additional equivalences for clinically relevant vitamin D thresholds are presented in the 

Supplementary Table S1. In sensitivity analyses, the MR-Egger intercept was centered around zero 

for both phenotypes (BMI: intercept=-0.0064, 95% CI -0.020 to 0.0080.007 to -0.17, P=0.4350; 

25OHD levels: intercept=0.006, 95% CI -0.003 to 0.005 to -0.003, P=0.22). Figure 2 shows that the 

MR-Egger regression coefficient,  and weighted median and MR-PRESSO outlier-corrected estimates 

were consistent with the main IVW analysis. F-statistics were greater than 10 for all phenotypes 

(range 22.2-167.9) and are reported in the F-statistics for each phenotype are reported in the 

Supplementary Table S2. The effect of BMI on MS risk was replicated using the larger set of 548 

variants from the latest BMI GWAS meta-analysis (OR=1.29, 95% CI 1.15 to 1.46, P=2.6x10-5). 

 

Mediation of the effect of BMI on MS by vitamin D 

Higher BMI was associated with lower 25OHD levels (IVW: =-0.082 per SD unit increase in BMI, 

95% CI -0.118 to -0.046, P=7.68.71x10-6; outlier-corrected: =-0.081, 95% CI -0.111 to -0.051, 



 

  

P=2.6x10-7). In contrast, genetically increased 25OHD levels did not influence BMI (=0.027, 95% CI -

0.018 to 0.073, P=0.24). In line with this, the effect of 25OHD levels on MS remained robust after 

adjusting for BMI in multivariable MR (OR=0.81, 95% CI 0.68 to 0.97, P=0.02OR=0.80, 95% CI 0.67-

0.96, P=0.01). The slightly weaker adjusted compared to unadjusted estimate is due to the reduced 

number of variants (NSNPs=78) also present in the BMI dataset (Supplementary Table S3). The 

proportion of the effect of BMI on MS mediated by 25OHD levels was 5.2% (95% CI 0.3% to 31.0%) 

5.4% (95% CI 0.4% to 30.5%). Using only the 6 previously identified SNPs for 25OHD,22 we obtained 

similar estimates of the mediated proportion (5.9%, 95% CI 0.3% to 36.3%) (6.4%, 95% CI 0.7% to 

33.7%).  

 

In multivariable MR, an effect of higher BMI on MS persisted after adjusting for 25OHD levels 

(OR=1.28 per SD unit increase in BMI, 95% CI 1.05-1.55, P=0.01), consistent with incomplete 

mediation (Supplementary Table S3). The two-sample conditional F-statistic FTS was 77.5 and 33.0 

for 25OHD levels and BMI respectively. 

 

None of the individual variants associated with BMI, 25OHD, leptin or adiponectin levels were 

genome-wide significant in the discovery cohort of the MS susceptibility GWAS (Supplementary 

Tables S4-7). Of the genes reported to be associated with MS (based on distance from their 

corresponding variants), 2 overlap with 25OHD levels (CYP24A1 and TNFAIP8) and 1 with BMI 

(ADCY3). While the lead variants for MS and those phenotypes were not in LD (Supplementary 

Table S8), a previous study reported a coding variant in CYP24A1 which strongly reduces 25OHD 

levels and also increases risk of MS.26 CYP24A1 encodes an enzyme that catalyzes the inactivation of 

calcidiol and calcitriol. 



 

  

 

 

Discussion 

This study provides genetic support for a causal role of increased BMI and lowered 25OHD levels in 

the development of MS, using updated genetic estimates from large-scale cohorts. When 

considering both phenotypes in a mediation framework, we estimated that only 5.42% (and up to a 

third) of the association between obesity and MS susceptibility can be explained by lowered vitamin 

D levels. In contrast, the results show no effect on the risk of the disease for lifelong genetically 

related increases in leptin or adiponectin levels. Therefore, the majority of the effect of obesity 

remains unexplained. 

 

Previous MR studies on the effects of 25OHD levels and BMI on MS risk have found directionally 

consistent results with overlapping estimate confidence intervals.27-31  Similarly, our previous MR 

study of adiponectin levels using an independent MS genetic cohort found no effect on MS risk.32 

While some observational studies have described increased leptin and lowered adiponectin levels in 

MS compared to controls, these have generally been small and included prevalent MS cases, making 

them susceptible to reverse causality.4 That said, small effects by those cytokines on MS risk may 

still exist given their wider estimate confidence intervals. 

 

Despite the large body of observational studies on vitamin D deficiency and obesity in MS, to our 

knowledge none has addressed the question of mediation between these risk factors. A previous 

study in pediatric-onset MS and another in adult-onset MS reported independent effects of 

genetically determined BMI and 25OHD levels using multivariable regression.28, 31 However, they did 



 

  

not quantify the mediated effects and employed an approach which may be more susceptible to 

measurement error in the intermediate phenotype. Moreover, both studies used genetic estimates 

for 25OHD previously adjusted for BMI, making them ill-less suited to assess mediation of obesity.  

 

A major strength of this work is the MR approach which helps overcome many of the challenges 

facing traditional mediation analysis by reducing bias from unmeasured confounding, reverse 

causality and measurement error. It also enabled us to estimate the effects of each phenotype using 

large-scale genetic studies totaling more than 800,000 participants, while alleviating the need for all 

direct measurements of those phenotypes to be performed in a single cohort. We also acknowledge 

a number of limitations. First, potential bias from pleiotropy cannot be entirely excluded. While the 

genetic variants included are reliably associated and predictive of their respective phenotypes, their 

functional consequences (or those of strongly correlated variants in the same region) are not known 

in most cases and may include pleiotropic effects. These cannot be directly tested; hHowever, our 

sensitivity analyses and the consistent estimates obtained using the reduced set of SNPs mapped to 

genes with well-characterized roles in vitamin D metabolism decrease the likelihood of pleiotropic 

bias. Second, a binary outcome can lead to biased mediation estimates due to the non-collapsibility 

of odds ratio, although this is lessened by the use of product of the coefficients method and the rare 

prevalence of MS.9 Third, MR estimates the risk associated with lifelong differences in the exposure, 

and as such may not fully capture effects that are time-specific. Fourth, although the risk of weak 

instrument bias is low given the F-statistics, the lower variance explained for leptin, as well as the 

smaller GWAS sample size for leptin and adiponectin, have contributed to reduced statistical power 

compared to other phenotypes, as indicated by the wider confidence intervals. As such, small 

effects by those cytokines in MS risk may still exist. That said, the genetic variants used in this study 



 

  

adequately capture differences in BMI in early adulthood,33 the time period where obesity is most 

strongly associated with MS risk, while for vitamin D deficiency associations have been reported 

from in utero through early adulthood.2 Lastly, we assume that the associations between MS, 

obesity and 25OHD levels are linear (assumptions supported by previous studies34-36) and without 

interaction. Confirmation of these findings in observational studies with direct phenotype 

measurement, studies investigating potential interactions between BMI and 25OHD levels, and 

exploration of the mechanistic pathways underlying the association between obesity and MS are 

needed. 

 

 

Conclusion 

This MR study found that a small proportion of the effect of obesity on the risk of MS is mediated by 

decreasing levels of vitamin D, while leptin and adiponectin had no measurable effect on MS 

susceptibility. This suggests that widespread vitamin D supplementation would only lead to modest 

reduction in the association between obesity and MS, most of which remains unexplained.  



 

  

Acknowledgments: We wish to kindly thank the IMSGC, GIANT and ADIPOGen consortia for access 

to their summary statistics data. Part of this work was conducted using the UK Biobank resource. 

 

Declaration of Conflicting Interests: B.R. reported receiving compensation for consulting fees from 

GlaxoSmithKline and Deerfield Capital outside the submitted work. S.E.B. reported receiving 

compensation for consulting fees from EMD Serono, Novartis, Merck & Co and Sanofi-Aventis 

outside of the submitted work. No other disclosures were reported.  

 

Funding: This study was supported by the NMSS-ABF Clinician Scientist Development Award from 

the National Multiple Sclerosis Society and the Multiple Sclerosis Society of Canada (FAN-1808-

32256 to A.H.), by the Medical Research Council Integrative Epidemiology Unit (MC_UU_00011/1 to 

R.E.M.), and the National Institutes of Health (NIH) (R01NS099240 to S.E.B). Dr Baranzini holds the 

Distinguished Professorship in Neurology I and is the Heidrich Family and Friends Endowed Chair in 

Neurology at UCSF. The Richards research group is supported by the Canadian Institutes of Health 

Research (grants 365825; 409511), the Lady Davis Institute of the Jewish General Hospital, the 

Canadian Foundation for Innovation, the NIH Foundation, Cancer Research UK, Genome Québec, 

the Public Health Agency of Canada and the Fonds de Recherche Québec Santé (FRQS). Dr Richard is 

supported by a FRQS Clinical Research Scholarship. Support from Calcul Québec and Compute 

Canada is acknowledged. TwinsUK is funded by the Welcome Trust, Medical Research Council, 

European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical 

Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation 

Trust in partnership with King’s College London. 

  



 

  

References 

1. Harroud A and Richards JB. Mendelian randomization in multiple sclerosis: A causal role for 

vitamin D and obesity? Mult Scler. 2018; 24: 80-5. 

2. Olsson T, Barcellos LF and Alfredsson L. Interactions between genetic, lifestyle and 

environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017; 13: 25-36. 

3. Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D 

status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013; 

10: e1001383. 

4. Keyhanian K, Saxena S, Gombolay G, Healy BC, Misra M and Chitnis T. Adipokines are associated 

with pediatric multiple sclerosis risk and course. Mult Scler Relat Disord. 2019; 36: 101384. 

5. Forrest KY and Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. 

Nutr Res. 2011; 31: 48-54. 

6. Hales CM, Fryar CD, Carroll MD, Freedman DS and Ogden CL. Trends in Obesity and Severe 

Obesity Prevalence in US Youth and Adults by Sex and Age, 2007-2008 to 2015-2016. JAMA. 

2018; 319: 1723-5. 

7. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I and Ebrahim S. Clustered environments and 

randomized genes: a fundamental distinction between conventional and genetic epidemiology. 

PLoS Med. 2007; 4: e352. 

8. Hemani G, Bowden J and Davey Smith G. Evaluating the potential role of pleiotropy in 

Mendelian randomization studies. Hum Mol Genet. 2018; 27: R195-R208. 

9. Carter AR, Gill D, Davies NM, et al. Understanding the consequences of education inequality on 

cardiovascular disease: mendelian randomisation study. BMJ. 2019; 365: l1855. 



 

  

10. Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for 

obesity biology. Nature. 2015; 518: 197-206. 

11. Manousaki D, Mitchell R, Dudding T, et al. Genome-wide Association Study for Vitamin D Levels 

Reveals 69 Independent Loci. Am J Hum Genet. 2020; 106: 327-37. 

12. Dastani Z, Hivert MF, Timpson N, et al. Novel loci for adiponectin levels and their influence on 

type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS 

Genet. 2012; 8: e1002607. 

13. Kilpelainen TO, Carli JF, Skowronski AA, et al. Genome-wide meta-analysis uncovers novel loci 

influencing circulating leptin levels. Nat Commun. 2016; 7: 10494. 

14. Burgess S, Davies NM and Thompson SG. Bias due to participant overlap in two-sample 

Mendelian randomization. Genet Epidemiol. 2016; 40: 597-608. 

15. International Multiple Sclerosis Genetics C. Multiple sclerosis genomic map implicates 

peripheral immune cells and microglia in susceptibility. Science. 2019; 365. 

16. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 

2015; 526: 68-74. 

17. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and 

population-based linkage analyses. Am J Hum Genet. 2007; 81: 559-75. 

18. Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for 

height and body mass index in approximately 700000 individuals of European ancestry. Hum 

Mol Genet. 2018; 27: 3641-9. 

19. Thompson JR, Minelli C and Del Greco MF. Mendelian Randomization using Public Data from 

Genetic Consortia. Int J Biostat. 2016; 12. 



 

  

20. Verbanck M, Chen CY, Neale B and Do R. Detection of widespread horizontal pleiotropy in 

causal relationships inferred from Mendelian randomization between complex traits and 

diseases. Nat Genet. 2018; 50: 693-8. 

21. Burgess S, Dudbridge F and Thompson SG. Re: "Multivariable Mendelian randomization: the 

use of pleiotropic genetic variants to estimate causal effects". Am J Epidemiol. 2015; 181: 290-

1. 

22. Jiang X, O'Reilly PF, Aschard H, et al. Genome-wide association study in 79,366 European-

ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat 

Commun. 2018; 9: 260. 

23. Yavorska OO and Burgess S. MendelianRandomization: an R package for performing Mendelian 

randomization analyses using summarized data. Int J Epidemiol. 2017; 46: 1734-9. 

24. Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal 

inference across the human phenome. Elife. 2018; 7. 

25. Sanderson E, Davey Smith G, Windmeijer F and Bowden J. An examination of multivariable 

Mendelian randomization in the single-sample and two-sample summary data settings. Int J 

Epidemiol. 2019; 48: 713-27. 

26. Manousaki D, Dudding T, Haworth S, et al. Low-Frequency Synonymous Coding Variation in 

CYP2R1 Has Large Effects on Vitamin D Levels and Risk of Multiple Sclerosis. Am J Hum Genet. 

2017; 101: 227-38. 

27. Mokry LE, Ross S, Ahmad OS, et al. Vitamin D and Risk of Multiple Sclerosis: A Mendelian 

Randomization Study. PLoS Med. 2015; 12: e1001866. 



 

  

28. Jacobs BM, Noyce AJ, Giovannoni G and Dobson R. BMI and low vitamin D are causal factors for 

multiple sclerosis: A Mendelian Randomization study. Neurol Neuroimmunol Neuroinflamm. 

2020; 7. 

29. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G and Richards JB. Obesity and Multiple 

Sclerosis: A Mendelian Randomization Study. PLoS Med. 2016; 13: e1002053. 

30. Gianfrancesco MA, Glymour MM, Walter S, et al. Causal Effect of Genetic Variants Associated 

With Body Mass Index on Multiple Sclerosis Susceptibility. Am J Epidemiol. 2017; 185: 162-71. 

31. Gianfrancesco MA, Stridh P, Rhead B, et al. Evidence for a causal relationship between low 

vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017; 88: 1623-9. 

32. Devorak J, Mokry LE, Morris JA, et al. Large differences in adiponectin levels have no clear 

effect on multiple sclerosis risk: A Mendelian randomization study. Mult Scler. 2017; 23: 1461-

8. 

33. Brandkvist M, Bjorngaard JH, Odegard RA, Asvold BO, Sund ER and Vie GA. Quantifying the 

impact of genes on body mass index during the obesity epidemic: longitudinal findings from the 

HUNT Study. BMJ. 2019; 366: l4067. 

34. Munger KL, Chitnis T and Ascherio A. Body size and risk of MS in two cohorts of US women. 

Neurology. 2009; 73: 1543-50. 

35. Munger KL, Levin LI, Hollis BW, Howard NS and Ascherio A. Serum 25-hydroxyvitamin D levels 

and risk of multiple sclerosis. JAMA. 2006; 296: 2832-8. 

36. Wortsman J, Matsuoka LY, Chen TC, Lu Z and Holick MF. Decreased bioavailability of vitamin D 

in obesity. Am J Clin Nutr. 2000; 72: 690-3. 

  



 

  

Figure Legends 

Figure 1. Directed acyclic graph of the MR mediation analysis. 

Increased BMI may affect the risk of MS through lowering 25OHD levels (indirect pathways in red), or 

independently from 25OHD (pathway in blue). The indirect effect can be calculated by multiplying  

times , where  is the effect of BMI on 25OHD levels, and  the effect of 25OHD levels on MS 

adjusted for BMI using multivariable MR. The proportion mediated can be estimated by dividing the 

indirect effect by the total effect of BMI on MS. 25OHD=25-hydroxyvitamin D; MS = multiple sclerosis; 

SNP = single nucleotide polymorphism 

 

 

Figure 2. Forest plot showing the MR estimates investigating the effect of BMI and its potential 

mediators on the risk of MS. 

There were too few variants to apply the MR-Egger method for leptin levels, and no outliers were 

identified by MR-PRESSO except for BMI. The unit change for each phenotype associated with 

reported odds ratio can be found in Table 1. 25OHD=25-hydroxyvitamin D; CI=confidence intervals; 

IVW=inverse-variance weighted; MR=Mendelian randomization; MS=multiple sclerosis; 

NSNPs=number of singe nucleotide polymorphisms included in each analysis; OR=Odds ratio.  



 

  

Tables 

 

Table 1. Summary of the phenotypes and summary genetic data used as exposures in the MR 

analyses 

Phenotype Sample size NSNPs 
a Units Data source 

BMI 322,154 74 SD increase in BMI, adjusted for age, age2 and sex GIANT consortium 10 

25OHD  401,460 138 SD increase in standardized log-transformed 

levels, adjusted for vitamin D supplementation, 

age, sex, season of measurement and assessment 

center (as proxy for latitude) 

UK Biobank 11 

Adiponectin  38,276 11 Unit increase in log-transformed levels, adjusted 

for age, sex and BMI 

ADIPOGen consortium 12 

Leptin  52,126 4 Unit increase in log-transformed levels, adjusted 

for age, age2 and sex 
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a Genome-wide significant SNPs, after exclusions due to linkage disequilibrium, MHC region or 

palindromic SNPs. For 25OHD levels, this represents the number of conditionally independent 

variants from COJO analysis. BMI=body mass index; MHC=major histocompatibility complex; 

MR=Mendelian randomization; SD=standard deviation; SNPs=single nucleotide polymorphisms 


