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Abstract Using an incomplete third-order cumulant expansion method (ICEM) and stan-
dard second-order closure principles, we show that the imbalance in the stress contribution
of sweeps and ejections to momentum transfer (�So) can be predicted from measured pro-
files of the Reynolds stress and the longitudinal velocity standard deviation for different
boundary-layer regions. The ICEM approximation is independently verified using flume
data, atmospheric surface layer measurements above grass and ice-sheet surfaces, and within
the canopy sublayer of maturing Loblolly pine and alpine hardwood forests. The model skill
for discriminating whether sweeps or ejections dominate momentum transfer (e.g. the sign of
�So) agrees well with wind-tunnel measurements in the outer and surface layers, and flume
measurements within the canopy sublayer for both sparse and dense vegetation. The broader
impact of this work is that the “genesis” of the imbalance in �So is primarily governed by
how boundary conditions impact first and second moments.

G. Katul (B) · D. Poggi
Nicholas School of the Environment and Earth Sciences,
Duke University Box 90328, Durham, NC, USA
e-mail: gaby@duke.edu

G. Katul
Department of Civil and Environmental Engineering,
Duke University, Durham, NC, USA

D. Poggi
Dipartimento di Idraulica Trasporti e Infrastrutture Civili, Politecnico di Torino,
Corso Duca degli Abruzzi, 24
10129, Torino, Italy

D. Cava
CNR - Institute of Atmospheric Sciences and Climate, Section of Lecce,
Polo Scientifico dell’Università
Strada Prov. Lecce-Monteroni km 1,200
73100 Lecce, Italy

J. Finnigan
CSIRO Marine and Atmospheric Research, FC Pye Laboratory, Black Mountain,
Canberra, ACT 2601, Australia



Boundary-Layer Meteorol (2006)

Keywords Canopy turbulence · Closure modelling · Cumulant expansions ·
Ejections and sweeps · Momentum transfer

1. Introduction

The interest in ejections and sweeps dates back to early experiments by Kline et al. (1967)
who demonstrated via flow visualization that fluid motion near a wall is “far from being
completely chaotic in nature” revealing a definite “sequence of ordered motion”. To quan-
tify the impact on momentum transfer of such coherent motion, often called the bursting
or ejection-sweep cycle, several techniques were proposed and tested (Robinson 1991). A
popular technique, known as conditional sampling and quadrant analysis, was introduced by
Lu and Willmarth (1973) to detect signatures of such coherent motion in component velocity
time series and to derive quantitative information about them (see reviews in Antonia 1981;
also Cantwell 1981). Building on earlier work by Frenkiel and Klebanoff (1967), Nakagawa
and Nezu (1977) and Raupach (1981) employed a two-dimensional Gram-Charlier cumu-
lant expansion method (CEM) for the joint probability density function (JPDF) of turbulent
longitudinal (u′) and vertical (w′) velocity components to link non-Gaussian JPDF with the
statistical properties of the ejection-sweep cycle. In particular, the CEM approach used by
Nakagawa and Nezu (1977) was able to analytically couple the imbalance in stress contri-
bution of sweeps and ejections to turbulent diffusion processes through the third (or mixed)
moments. Such a linkage was timely because advances in second-order closure modelling
required better parameterization of the turbulent diffusion processes (Hanjalic and Launder
1972; Mellor 1973; Donaldson 1973; Lumley 1978). Hence, it is no surprise that the imbal-
ance in the stress contribution of sweeps and ejections and non-Gaussian JPDF received
significant experimental and theoretical attention (e.g. Durst et al. 1992; Jovanovic et al.
1993; Durst and Jovanovic 1995).

Within the atmospheric boundary layer (ABL), the asymmetry in the JPDF also motivated
model developments such as top-down/ bottom-up diffusion (e.g. Weil 1990; Sorbjan 1999;
Patton et al. 2003) or structural models for the triple moments that require a priori knowl-
edge as to whether sweeps or ejections dominate the momentum transfer (Nagano and
Tagawa 1990).

Here, we investigate whether the profiles of first and second moments in the ABL are
sufficient to predict a priori whether ejections or sweeps dominate momentum transfer. If
successful, the implication of this work is that the “genesis” of this imbalance can be explained
by how boundary conditions impact lower-order moments.

2. Theory

The ejection–sweep cycle is typically quantified via quadrant analysis and conditional sam-
pling methods reviewed in Antonia (1981). Quadrant analysis refers to the joint scatter across
four quadrants defined by a Cartesian plane whose abscissa is u′ and ordinate is w′. The four
quadrants are connected with four modes of momentum transfer: events in quadrant II (u′ < 0,
w′ > 0) and quadrant IV (u′ > 0 and w′ < 0) are called ejections and sweeps respectively;
events in quadrant I (u′ > 0 and w′ > 0) and quadrant III (u′ < 0 and w′ < 0) are called
outward and inward interactions, respectively.

Nakagawa and Nezu (1977) and Raupach (1981) defined the imbalance in the contribu-
tion of sweeps and ejections to momentum transfer using the difference in stress fraction
contributions of quadrant II and quadrant IV:
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�So = u′w′
I V − u′w′

I I

u′w′ (1)

where u′w′ is the momentum flux and u′w′
I V

u′w′ and u′w′
I I

u′w′ are the stress fractions in quadrants
IV and II, respectively. The definition in Eq. (1) ensures that �So is bounded between −1 and
1 (assuming |u′w′| > 0). Based on this definition, sweeps dominate the momentum transfer
when �So > 0, and conversely. Because �So becomes ill-defined when |u′w′| → 0, our
analysis is restricted to cases when |u′w′| is finite. This restriction implies that the purely
convective boundary layer will not be treated here.

Using the Gram-Charlier series expansion of the JPDF (Kampé de Fèriet 1966), truncated
to the third order, Raupach (1981) demonstrated that

�So = 1 + Ruw

Ruw

√
2π

[
2C1

(1 + Ruw)2 + C2

1 + Ruw

]
(2)

where,

C1 = (1 + Ruw)

[
1

6
(M03 − M30) + 1

2
(M12 − M21)

]
,

C2 = −
[

1

6
(2 − Ruw) (M03 − M30) + 1

2
(M12 − M21)

]
,

and Ruw = u′w′
σuσw

, M ji = u′ j w′i
σ

j
u σ i

w

, σs =
√

s′2 and where u′ j
∣∣

j=2 → u′2, etc. . .

Katul et al. (1997a, b) noted that for the range of skewness values encountered in the atmo-
spheric boundary layer (including canopy turbulence), the contribution of the 1

6 (M03 − M30)

to Eq. (2) is small, which lead Katul et al. (1997a, b) to further simplify Eq. (2) to give:

�So ≈ 1

2Ruw

√
2π

(M21 − M12) (3)

where,

M21 = w′u′u′
σwσ 2

u
, (4a)

M12 = w′w′u′
σuσ 2

w

. (4b)

We refer to Eq. (3) as an incomplete cumulant expansion (ICEM) because of the elimination
of the velocity skewness.

We tested predictions from Eq. (3) against quadrant analysis using laboratory and field
measurements collected over a wide range of atmospheric conditions (Fig. 1). The flume
data are collected within and above a dense canopy composed of cylindrical rods (Poggi et
al. 2004a, b); the field datasets include surface-layer measurements above tall grass (Katul et
al. 1997a) and ice surfaces (Cava et al. 2001, 2005); and the forest canopy data include mea-
surements within a maturing pine stand (Katul and Albertson 1998) and an alpine hardwood
forest (Cava et al. 2006). The measurements within the Antarctic surface layer above ice also
include runs sampled at different heights for planar homogeneous flows, flows perturbed by
katabatic winds, and flows perturbed by a ridge. When taken together, this ensemble dataset
populates the entire plausible values of �So (i.e. −1 to 1) as shown in Figure 1.
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Fig. 1 Comparison between measured (i.e. quadrant analysis) and ICEM modelled �So. The open circles
are from a flume experiment comprised of cylindrical rods (dense canopy); the diamonds are data taken from
six levels within a maturing Loblolly pine forest; the stars are data from a surface-layer experiment above
a tall grass surface; the diamond are data taken from five levels within an alpine hardwood forest; and the
triangles are data taken in an Antarctic surface layer and include runs in which the surface layer is perturbed
by the presence of a ridge. The field experiments include a wide range of atmospheric stability conditions.
The 1:1 line is shown for reference. Regressing the modelled (ŷ = ICEM) upon the measured (x̂ = quadrant
analysis) �So using all the data (n = 1340 points) yields ŷ = 1.0x̂ +0.031 with a coefficient of determination
R2 = 0.92

Despite the simplifications in its derivation (i.e. truncation of cumulants beyond order 3
and elimination of the two velocity skewness values), Eq. (3) reproduces the measured �So

surprisingly well (R2 = 0.92, regression slope = 1.0, regression intercept = 0.03; sample
size n = 1, 341). In addition to the comparisons in Fig. 1, Eq. (3) was independently tested
by Katul et al. (1997a) in the atmospheric surface layer above a bare soil surface for a wide
range of stability conditions, Katul et al. (1997b) near the canopy top of a maturing pine forest
and a southern hardwood canopy also for a wide range of atmospheric stability conditions,
and more recently by Fer et al. (2004) for under-ice boundary-layer flows. All three studies
reported R2 > 0.9 in their comparisons.

Next, we consider whether Eq. (3) can be used to link �So to second-order flow statistics
thereby addressing the study objectives. Upon replacing the moments in Eq. (4) back into
Eq. (3), we obtain

�So ≈ 1

2
√

2π u′w′

(
w′u′u′

σu
− w′w′u′

σw

)
. (5)
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Standard gradient-diffusion closure for the triple moments results in (e.g. Wilson and
Shaw 1977):

u′
i u

′
j u
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k = −qλ

(
du′

j u
′
k

dxi
+ du′

i u
′
k
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i u
′
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)

where q =
√(

u′u′ + v′v′ + w′w′
)

is a characteristic turbulent velocity and λ is an unknown

characteristic length for the triple moments. For a one-dimensional case, w′u′u′ and w′u′w′
are given by

w′u′u′ = −qλ
du′u′

dz
, (6a)

w′u′w′ = −2qλ
du′w′

dz
. (6b)

Upon combining Equations (6) and (5), we obtain (Poggi et al. 2004b)

�So ≈ −qλ

2u′w′√2π

(
1

σu

dσ 2
u

dz
− 2

σw

du′w′
dz

)
. (7)

Again, it is not our intention to investigate the magnitudes of �So predicted by Eq. (7)
because such an investigation requires a rigorous determination of λ in Eq. (6) and accurate
measurements of the profiles of the second-order moments. However, Eq. (7) does offer a
desirable predictive skill: the sign of �So. That is, solely from the relative importance of the
profiles of second-order statistics, it is possible to distinguish whether momentum transfer
will be dominated by sweeps or ejections, the objective of this study.

3. Results and discussion

We consider next all three layers of the ABL: the outer region, the dynamic sub-layer, and

the canopy sublayer (sparse and dense), and we evaluate whether changes in dσu
dz and du′w′

dz
explain the sign of �So (measured by quadrant analysis). For the purposes of the following
discussion, we introduce four length scales: z—the height from the ground surface, d—the
zero-displacement height, h—the canopy height, δ—the ABL height and consider the four
cases below.

Case (1)—The Outer Region. In the outer region, roughly the region defined by (z−d)
δ

>

0.4, Raupach’s (1981) wind-tunnel experiments suggest that u′w′ < 0, dσ 2
u

dz < 0, and
du′w′

dz > 0 for both rough and smooth boundary layers (Fig. 2). Based on the sign of these
three quantities in Fig. 2, Eq. (7) unambiguously predicts �So< 0 (i.e. ejections dominate)
consistent with the measured �So by quadrant analysis.

Case (2)—The constant stress layer. In the neutral atmospheric surface layer (or dynamic
sublayer), defined as the constant stress region (see region bounded by 0.1 <

(z−d)
δ

< 0.2 in

Fig. 2), surface-layer similarity theory predicts that σu
u∗ ≈ 2.0; u′w′

u2∗
= −1,

dσ 2
u

dz = 0, du′w′
dz = 0

and via Eq. (7), �So = 0 also in agreement with the measurements (Fig. 2).
The fact that ejections and sweeps equally contribute to momentum transfer is also in

agreement with other surface-layer measurements above grass and bare soil surfaces (Katul
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Fig. 2 Measured σu , Reynolds stress (u′w′ or Ruw), and �So profiles within the canopy sublayer (top), and
within the constant stress and outer layers of the neutral ABL. For the canopy sublayer, data are collected in
a flume for sparse (dashed) and dense (solid) canopies (Poggi et al., 2004a). For the surface and outer layers,
data are collected in a boundary-layer wind tunnel for rough and smooth surfaces (Raupach 1981). The lines
in the bottom right �So panel are for various roughness values reported in Raupach (1981)

et al. 1997a;
∣∣ z−d

L

∣∣ < 0.05 and z/h > 4, where L is the Obukhov length). Furthermore,
this conclusion is consistent with several atmospheric surface-layer experiments that already
reported the JPDF to be approximately Gaussian for the surface layer (e.g. Chu et al. 1996).

Case (3)—The canopy sublayer inside sparse canopies. From Poggi et al.’s (2004a) flume
experiments, a near constant σu and σw , but an increasing u′w′ (i.e. less negative) with
increasing z, were measured inside sparse canopies (see z/h < 1 in Fig. 2). For constant

σu and σw and du′w′
dz > 0, Eq. (7) unambiguously predicts that ejections must dominate

momentum transfer for such conditions consistent with the �So data in Fig. 2.
Case (4)—The canopy sublayer inside dense canopies. All three variables, dσu

dz , dσw

dz , and

− du′w′
dz vary significantly within the canopy (see z/h < 1 in Fig. 2). However, all three

gradients are known to be positive (i.e. dσu
dz > 0, dσw

dz > 0, and − du′w′
dz > 0) as evidenced

from laboratory and field experiments (see review in Finnigan 2000) and the data in Fig.
2. When we combine this sign outcome with Eq. (7), the sign of �So must be controlled
by −u′w′. If u′w′ < 0, �So > 0 and sweeps dominate the momentum transfer. The fact
that sweeps dominate momentum transfer was already reported in numerous laboratory and
flume experiments (see Finnigan 2000; Poggi et al. 2004a,b), field experiments (e.g. Shaw
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et al. 1983 for corn; Baldocchi and Meyers 1988 for a hardwood forest; Katul and Albertson
1998 for a pine forest), and large-eddy simulations1 (Su et al. 1998).

However, one surprise from Eq. (7) is the case when u′w′ > 0 (which is possible inside
canopies as evidenced by the data in Katul and Albertson 1998 and Baldocchi and Meyers
1988). For this condition, Eq. (7) predicts that �So < 0 and ejections dominate the momen-
tum transfer. We caution that the latter prediction may well be questionable primarily because
of the gradient-diffusion approximation in Eq. (6) (rather than the ICEM approximation).

3.1. Robustness to gradient-diffusion approximations

We note that predictions by Eq. (7) may be more robust to the gradient-diffusion approxi-
mation when compared to Eq. (6). To illustrate, consider the extensive surface-layer dataset
in Kader and Yaglom (1990). A finite w′u′w′ was reported for the near-neutral surface
layer despite their constant friction velocity (u∗). Equation (6) would predict w′u′w′ = 0 if
du′w′/dz = 0. Hence, based on this argument alone, predictions from Eq. (7) may well be
contaminated by a non-trivial error. Let us assess how such ‘gross’ errors in Eq. (6) might
affect predictions from Eq. (7).

Kader and Yaglom (1990) do not report w′u′u′ and hence we cannot fully test Eq. (7)
for velocity. However, they do report analogous moments for air temperature (T ). If we use
Kader and Yaglom’s (1990) data for temperature, we find the following for the near-neutral
surface layer:

w′w′T ′
u2∗T∗

= 0.55; w′T ′T ′
u∗T 2∗

= 1.2; σT

T∗
= 2.9; σw

u∗
= 1.25.

With these estimates

M21 = w′T ′T ′

σwσ 2
T

=
(

1.2

1.25 (2.9)2

) (
u∗T 2∗
u∗T 2∗

)
= 0.11,

M12 = w′w′T ′
σ 2

wσT
=

(
0.55

(1.25)2 2.9

) (
u2∗T∗
u2∗T∗

)
≈ 0.12,

resulting in

�So ≈ 1

2RwT
√

2π
(M21 − M12) ≈ 0

if RwT is finite (or non-zero sensible heat flux). Hence, for near-neutral surface-layer flows,
the Kader and Yaglom (1990) data would have yielded �So ≈ 0 assuming the ICEM expan-
sion, tested in Fig. 1, is accurate at their station. Gradient-diffusion argument (Eq. 5) would
have erroneously predicted that M12 ≈ M21 ≈ 0, but Eq. (7) would have correctly predicted
that sweeps and ejections are in balance. Interestingly, what is important here is to model
correctly not the individual moments but the imbalance between them.

1 While the authors state that their canopy is sparse, the inflection point in their mean velocity profile appears
sufficient to induce Kelvin-Helmholtz instabilities, at least when compared to the sparse canopy in the flume
experiments of Poggi et al. (2004a).
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4. Conclusions

We have demonstrated that the incomplete third-order cumulant expansion (ICEM) approach
reproduces the sign and magnitude of �So surprisingly well, and that when combined with
standard second-order closure principles, can analytically link �So to the profiles of dσu

dz ,
dσw

dz , and − du′w′
dz . Using this linkage, we showed that in the:

1) outer layer, �So < 0 and ejections dominate momentum transfer;
2) neutral surface layer, �So = 0 and a balance between ejections and sweeps exists;
3) sparse canopy sublayer, �So < 0 and ejections dominate momentum transfer;
4) dense canopy sublayer, �So > 0 and sweeps dominate momentum transfer through out

most of the canopy.

None of these four findings is particularly new; however, the ability to predict them from
the profiles of σ 2

u , σ 2
w , and u′w′ is one of the main novelties of this work. The broader impact

of our findings can be summarized as follows. If �So does capture the statistical properties
of the ejection–sweep cycle, then these properties are a “by-product” of how the boundary
conditions produce non-uniformity in the first- and second-order velocity statistics. Within
the canopy sublayer, the critical boundary condition is the fact that the drag of the canopy
on the flow is extended in the vertical rather than being confined to the ground plane; within
the outer layer, the critical boundary condition is the decay of turbulence near the ABL top;
and within the surface layer, the critical condition is the balance between the control of the
dynamics by the upper and lower boundary conditions (Kader and Yaglom 1978).

While the approach proposed in Eq. (7) was successful in predicting the sign of �So

for flat terrain under steady-state neutral conditions, several problems remain. For example,
whether this model can predict the local sign of �So in the presence of strong mean pressure
gradients (e.g. topography induced), or when a horizontal heterogeneity length scale (e.g.
forest edges) dominates the advective transport, remains to be investigated. Nonetheless, this
approach provides a simplified framework with which to confront these complex issues.
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