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Abstract
Approaches based upon sequence weights, to construct a position weight matrix of nucleotides from
aligned inputs, are popular but little effort has been expended to measure their quality.

We derive optimal sequence weights that minimize the sum of the variances of the estimators of base
frequency parameters for sequences related by a phylogenetic tree. Using these we find that
approaches based upon sequence weights can perform very poorly in comparison to approaches based
upon a theoretically optimal maximum-likelihood method in the inference of the parameters of a
position-weight matrix. Specifically, we find that among a collection of primate sequences, even an
optimal sequences-weights approach is only 51% as efficient as the maximum-likelihood approach
in inferences of base frequency parameters.

We also show how to employ the variance estimators to obtain a greedy ordering of species for
sequencing. Application of this ordering for the weighted estimators to a primate collection yields a
curve with a long plateau that is not observed with maximum-likelihood estimators. This plateau
indicates that the use of weighted estimators on these data seriously limits the utility of obtaining the
sequences of more than two or three additional species.
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Introduction
Approaches based upon sequence weights are frequently used to combine data from aligned
sequences into a position weight matrix, in which each sequence position is described by a
probability distribution over the range of possible nucleotides or amino acid residues. These
consensus models have proven useful for describing functional sections of sequence and in
database searches for additional similar sequences. Much effort has been put into the design
of weighting schemes that will ensure that the consensus model is close to true under a wide
variety of conditions. A typical extenuating circumstance is one in which a set of sequences
exhibiting a particular feature overwhelms the data from another set of sequences having a
different feature, merely because the latter set has fewer representatives available for analysis.
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There are many sequence weighting approaches, and several ways in which sequence weights
have been employed. Vingron & Argos (1989) calculated the weight of an amino acid sequence
to be the sum of the Hamming distances from that sequence to the other sequences, given a
proposed alignment; they used this information for multiple sequence alignment. Altschul et
al. (1989) computed weights for pairs of sequences based upon a variance-minimizing
condition among such pairs, and used this information in multiple sequence alignment in which
the quality of a multiple alignment is the weighted sum of the quality of each implied pairwise
alignment. They also used weights for the estimation of a continuous characteristic at the root
of a tree. Sibbald & Argos (1990) computed the weight for a sequence as its Voronoi volume,
using a Hamming distance metric within the space of sequences generated by sampling each
position's value randomly from the values for that position among the input sequences (akin
to bootstrapping). Vingron & Sibbald (1993) created a methodology for evaluating sequence-
weighting schemes, compared four, and concluded that the approach of Altschul et al.
(1989) is best when sequences are phylogenetically related. Otherwise, the approach of Sibbald
& Argos (1990) was considered best. Henikoff & Henikoff (1994) computed the weight of a
sequence as the sum of weights assigned to each of its positions; with the weight of a position
equal to the reciprocal of the number of sequences that have the same amino acid residue or
nucleotide at that position. Krogh & Mitchison (1995) chose weights that maximize a sum over
the aligned positions, with each term being the entropy of the distribution at that position
implied by the weights. Altschul et al. (1997) build a position-specific scoring matrix as an
early step in their popular PSI-BLAST algorithm. May (2001) applies six different sequence
weighting schemes as it tackles protein classification.

Our interest in sequence weights arises from the task of locating transcription factor binding
sites. These binding sites are short sections of DNA (6–30 base pairs long), often upstream of
the first exon of a gene, which play a critical role in transcription and the overall regulation of
gene expression. Variations in the sequence recognized by a particular transcription factor
(protein) are common, and it is natural to describe these binding-site sequences by choosing
the strand of the DNA encoding the gene and, for that strand, giving a motif, a consensus
distribution of nucleotides for each sequence position relevant to the transcription factor
binding. (See the work of Lawrence & Reilly (1990) for a good description of the statistical
model, and Benos et al. (2002) for an analysis of its effectiveness.)

A single transcription factor may play a role in multiple genes across multiple species; however
it is infeasible that we will have the binding site sequences for all relevant genes in all living
species. Since we have only a non-random subset of the genes in a non-random subset of the
species, we need an approach that can find an accurate consensus distribution in the presence
of these biases.

Because a consensus distribution is our goal, we define the efficiency of an approach by how
well it can estimate a consensus distribution. In this paper, we derive optimal sequence weights
that minimize estimator variance for sequences related by a phylogenetic tree. Further, we
calculate the efficiency of estimates using these optimal weights, relative to the efficiency of
a maximum-likelihood method based upon phylogenetic relationships, which is
mathematically guaranteed to provide the best efficiency. For the test cases to which these
methods are applied, we find that the optimal sequence weights approach is significantly
inferior.

Previous work in the field of incorporation of multiple species data into the location of
transcription factor binding sites can be found in the literature. McCue et al. (2002) modeled
the sequences as if they were independent in calculating the maximum a posteriori probability
(MAP) of a proposed motif. However, based upon simulations incorporating phylogenetic
relationships they raised the hurdle that such a MAP must clear to be deemed significant.
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Rajewsky et al. (2002) looked at pairs of sequences, locating functional DNA by detecting
where the observed mutation rate is lower than that expected from the overall mutation rate
between the species. Boffelli et al. (2003) looked at all of the sequences together, seeking for
functional DNA by observing where the phylogenetic model of Yang & Roberts (1995)
indicated mutation at a slower rate than elsewhere.

For clarity of example the bulk of the following addresses the direct use of sequence weights
in relation to the direct use of a maximum-likelihood approach. We then discuss the
implications for the more complex Bayesian, mixture models currently in common use.

System and Methods
For each algorithmic approach we calculate the relative efficiency of nucleotide-frequency
estimates using the statistical approach described by Kendall & Stuart (1979), Sections 17.28–
29. This efficiency is calculated via a total estimator variance (also termed, mean square error),
which is a sum over the four possible nucleotides that could occur in a shared consensus
distribution for a given set of sequence positions. The term of the sum for a given nucleotide
is the expected square of the deviation of the estimator for the probability of that nucleotide
from the underlying model value for that parameter. For this measure, a small sum of variances
is indicative of an efficient set of estimators, and a larger sum of variances is indicative of a
poorer set of estimators.

In our analysis we consider a single gene and its orthologs in the other species, and we assume
that we have an alignment of the corresponding upstream intergenic regions. Within such an
alignment, we consider a transcription factor binding site and its orthologs indicated by the
alignment. Within such a multi-species binding site, we focus upon a position (also termed,
column) and the nucleotides in such a position are modeled to be descendant from a single
nucleotide in the common ancestral species. However, this analysis applies equally well to
each position in the aligned binding site and thus to them all.

We observe that when we have a single equilibrium distribution that governs a fixed number
of sequence positions from each of S statistically independent sequences, the total estimator
variance for that equilibrium will be 1/S of the total estimator variance we would have had had
we used just the data from a single sequence. Thus, even when we are considering
phylogenetically-related (i.e., statistically dependent) multi-species aligned sequence data, we
report the efficiency (or effective number of independent observations, or effective species
count) of the data to be the total estimator variance if we use the sequence of just a single
species, divided by the total estimator variance derived from the complete set of sequences:

effective species count = total variance(single species)
total variance(all species) (1)

The effective species count gives a comparative measure of the ability of the data at one multi-
species binding site to yield a good estimate of its equilibrium distribution, relative to that of
multiple sites from a single species. For instance, suppose there is a set of sixteen species that
has an effective species count of 3.1. This finding indicates that the discovery of a multi-species
binding site (i.e., an aligned set of sixteen transcription factor binding sites descendant from a
transcription factor binding site in the common ancestral species) is slightly more statistically
useful than 3 distinct binding sites from a single-species data set. Again, this analysis applies
to each of the positions in the aligned site and thus to all of them.

Phylogenetic Data Model
We use the statistical phylogenetic model for the likelihood of aligned phylogenetic sequence
data first described by Neyman (1971) and Felsenstein (1981). As is common, we track
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nucleotide mutations/substitutions from an ancestral sequence to a descendant sequence as a
matrix M, in which the rows of the matrix correspond to the different possibilities for the
nucleotide in the ancestral sequence, and the columns of the matrix correspond to the same
nucleotide possibilities in the descendant sequence. For instance, with the nucleotides ordered
as (A, T, C, G), the matrix is written:

M = (Pr A ∣ A Pr T ∣ A Pr C ∣ A Pr G ∣ A
Pr A ∣ T Pr T ∣ T Pr C ∣ T Pr G ∣ T
Pr A ∣ C Pr T ∣ C Pr C ∣ C Pr G ∣ C
Pr A ∣ G Pr T ∣ G Pr C ∣ G Pr G ∣ G

)
where, for example, Pr[A|C] is the probability that the descendant sequence has an A where
the ancestral sequence has a C.

We use phylogenetic tree topologies and edge lengths such as those depicted in Figure 1. A
tree describes the expected number of mutations per sequence position between any two
sequences in the tree (henceforth successive mutations at a single position are always included
in the count) as the sum of the edge lengths along the path that connects those two sequences.

We choose the nucleotide substitution model of Felsenstein (1981) because of its direct
connection to an underlying equilibrium distribution, even though it does not directly model
features such as the difference between transitions (A ↔ G and C ↔ T ) and transversions
(other changes in the nucleotides) as allowed by the model of Hasegawa et al. (1985). (But,
see the Discussion Section.) The nucleotide substitution matrix between two sequences
separated by a path of length x is:

Mx = e−kx(1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
+(1 − e−kx)(θA θT θC θG

θA θT θC θG
θA θT θC θG
θA θT θC θG

) (2)

k = 1

1 − (θA2 + θT2 + θC
2 + θG

2) ≥
4
3 . (3)

This model has the necessary features that as x → 0, the substitution matrix is the identity
matrix; that as x → +∞, the substitution matrix gives an equilibrium distribution independent
of which nucleotide we started with (i.e., all of the rows are equal); and that Ma+b = MaMb,
correctly modeling that the substitution resulting from evolution described by an evolutionary
distance a, followed by evolution described by an evolutionary distance b, is equal to the
evolution described by the sum of the evolutionary distances.

The value of k serves to calibrate the units of x. We choose k according to the convention of
Lanave et al. (1984). By this convention, when the ancestral sequence begins in the equilibrium
distribution the expected number of nucleotide substitutions per position between ancestor and
descendant sequences implied by the substitution matrix Mx is x.

Without this choice of normalization, one proposed distribution might be penalized relative to
another—not because the equilibrium is less reflective of the underlying biological process,
but because, via poor normalization, the two distributions imply a different total number of
mismatches between some pair of closely related sequences.
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Total Estimator Variance of the Sequence Weights Approach
With a single aligned sequence position (i.e., a column from a sequence alignment), sequence-
weighting estimates are obtained as follows:

θ̂b =∑
s
wsDsb (4)

where Dsb is 1 if sequence s has nucleotide b at the position and is 0 otherwise, and
∑sws = 1.

To calculate the total estimator variance, we imagine the following experiment. We start with
a phylogenetic model, such as the phylogenetic tree topologies and edge lengths calculated by
Page et al. (1999), and depicted in Figure 1, and an assumption for the equilibrium distribution
θ→∗ to define k* via Equation 3, and Mx via Equation 2. We imagine generating instances of a
sequence position's data according to the model, in this case a single nucleotide for each primate
species, and from that sample we calculate θ̂b according to Equation 4. We measure average

squared distance of these sampled θ̂b values to the model mean θb
∗ and repeat the experiment

for each nucleotide b. The sum of these measured variances is the total estimator variance that
we seek.

We can find the total estimator variance analytically, without the repeated sampling just
described. From Equation 4, the total variance of these estimators is computed as

∑
b
Var θ̂b =∑

b
E (θ̂b − θb

∗)2
= ∑
s,s′,b

wsws ′(E (Dsb − E Dsb )(Ds ′b − E D
s ′b ) )

= w→TCw→

(5)

where w→  is the column vector of sequence weights, w→T  is the corresponding row vector, C is
the S × S covariance matrix with elements

C
ss ′

=∑
b
Cov Dsb, Ds ′b

,

and S is the number of sequences.

The model of Equation 2 gives us the formula for the joint probability distribution for two
sequences s and s′ separated by a distance x:

Jx = e−k
∗x(θA

∗ 0 0 0

0 θT
∗ 0 0

0 0 θC
∗ 0

0 0 0 θG
∗
)

+(1 − e−k
∗x)(θA

∗θA
∗ θA

∗θT
∗ θA

∗θC
∗ θA

∗θG
∗

θT
∗θA

∗ θT
∗θT

∗ θT
∗θC

∗ θT
∗θG

∗

θC
∗θA

∗ θC
∗θT

∗ θC
∗θC

∗ θC
∗θG

∗

θG
∗θA

∗ θG
∗θT

∗ θG
∗θC

∗ θG
∗θG

∗
)

(6)

It follows that
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C
ss ′

= ∑
b
Cov Dsb, Ds ′b

=∑
b

(Jx)bb − (θb∗)2

= ∑
b
e−k

∗x(θb∗ − (θb∗)2) = e−k
∗x

k ∗ .

(7)

Setting zero equal to the gradient of the right-hand side of Equation 5 with respect to the vector
w→  (while using a La-Grange multiplier to ensure that ∑sws = 1), we find optimal sequence
weights:

w→ = C −11→

1→TC −11→
(8)

min
w→

w→TCw→ = 1

1→TC −11→
(9)

where 1→  is the column vector of all ones. Note that Equation 8 is identical in form to equations
which appeared in the work of Altschul et al. (1989), Vingron & Sibbald (1993), and Arvestad
& Bruno (1997). In the first, C was instead a matrix of tree path lengths between sequences.
In the second, C was instead a matrix of “(dis)similarity” values between sequences. In the
third, C was instead a matrix of covariances of distance estimates computed from the spectral
components of the substitution matrix, and the formula was used to compute a precise
consensus distance.

In our model we have n aligned sequence positions (e.g., the first position in each of n multi-
species binding sites), which are assumed to be independent given their shared nucleotide
consensus distribution. The total estimator variance in this situation differs from Equation 9
by a factor of 1/n:

1
n ( 1

1→TC −11→
). (10)

Total Estimator Variance of the Maximum Likelihood Approach
As we did for sequence weights, we wish to evaluate the total estimator variance as if we had
sampled the observed data from an underlying model, and we desire an approach that allows
us to integrate out the data so that we get the exact solution, rather than an approximation from
sampling.

The asymptotic approach via the Fisher information matrix will work. (See Kendall & Stuart
(1979), Section 17.39.) A data sample D for a multi-species sequence position (i.e., the
specification of a nucleotide for each of the species) is assumed to occur with frequency
proportional to its probability Pr D ∣ θ→∗ ; assuming the underlying phylogenetic model of
Equation 2, based upon some θ→∗. The expected log-likelihood of a model based upon an
equilibrium θ→  is calculated as

LL(θ→) = n∑
D
log(Pr D ∣ θ→ ) Pr D ∣ θ→∗

where n is the number of independent multi-species sequence positions sharing the consensus
distribution. (If the number of terms in the sum is too large, we can always revert to sampling
D proportionately to Pr D ∣ θ→∗ .) Intuitively, our confidence in the maximum-likelihood
estimate depends on the shape of LL(θ→) at its maximum θ→∗; the more steeply LL(θ→) falls off
from this maximum, the more confident we are of the estimate's accuracy.
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Specifically, our method is as follows. To calculate the total estimator variance at θ→∗, we
determine (via numerical differentiation) the Hessian matrix of pure and mixed second
derivatives of LL(θ→) with respect to a set of three degrees of freedom implicit in the four
components of θ→ ; we invert the matrix to find the variances and covariances of these degrees
of freedom; we adjust the covariance matrix to be 4 × 4 to represent the four natural parameters
θA, θT, θC, θG; and we then take the trace of this matrix, i.e., the sum of the expected estimator
variances. As with Expression 10, the dependence of the total estimator variance on n will be
through a factor of 1/n.

Results
Using a uniform distribution θ→∗ = (0.25, 0.25, 0.25, 0.25), we find that the use of optimal
sequence weights with the phylogenetic tree of primates from Figure 3 of Page et al. (1999),
as depicted in Figure 1 herein, gives an effective species count (as defined by Equation 1) of
1.49. This means that, for the purpose of precisely determining a column of a position-weight
matrix, each multi-species binding site located in aligned sequence data from these species will
be as statistically useful as a multi-species binding site located in aligned sequence data of 1.49
independent species, or as statistically useful as 1.49 independent single-species binding sites
located in single-species sequence data.

Looking at just human sequence data would give us an effective species count of 1.0. Thus,
the information from the non-human primates adds an effective 0.49 independent sequences
to our ability to determine the distribution of nucleotides. In contrast, the maximum-likelihood
approach gives an effective species count of 1.96, an increase of 0.96 over using human alone.
For sequence weights, the increase in the effective species count is 51% as large as that of the
maximum-likelihood competitor.

Additionally, we explored the proper theoretical order in which to sequence species, if the
sequence data are not yet available. Specifically, if we have some sequences, with a complete
phylogenetic tree, we can ask which additional single species' sequence would most increase
the effective species count for a consensus distribution. Figure 2 shows the effective number
of additional independent sequences, if we start with human and at each step add the single
species whose sequence would most increase the efficiency at that step. We find that, with the
use of human and the first two non-human primates, the maximum-likelihood approach is more
efficient than is the use of all of the species and the sequence-weights approach. The long
plateau for sequence weights in Figure 2 indicates that all of the sequences beyond the first
two or three additional sequences contribute little to the estimates.

We tested the approaches on a phylogenetic tree for Escherichia coli K12 and some related
bacteria. To build the tree, we retrieved DNA sequence data for the 16S rRNA gene for those
species from public sources, aligned the data using ClustalW (http://www.ebi.ac.uk/clustalw/),
and constructed a phylogenetic tree with the maximum-likelihood method of PHYLIP (http://
evolution.genetics.washington.edu/phylip.html). This is a common technique employed in
estimating phylogenetic tree topologies when little data is available—despite the general
consensus that the applicability of standard nucleotide substitution models to the conserved
nucleotides of a gene is suspect. We scaled up the resulting edge lengths by a factor of nearly
14 to match the finding of McCue et al. (2002), in which aligned non-coding sequence from
Escherichia coli K12 and Salmonella enterica serovar Typhi CT18 were 30% dissimilar on
average. Although the edge lengths in this tree, depicted in Figure 3, should not be considered
definitive, we find the tree to be a useful example. For this tree, the sequence-weights approach
gives the equivalent of 1.84 additional independent species. In contrast, the maximum-
likelihood approach gives the equivalent of 2.40 additional independent species. The sequence-
weights approach performed relatively better for this tree, although still suboptimally; for the
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sequence-weights approach the effective number of additional independent species is 77% as
large as that of the maximum-likelihood competitor.

Bayesian Mixture Models for Sequence Weights
To this point in this analysis we have adopted a “frequentist” approach rather than a Bayesian
approach in that we have have not incorporated an a priori distribution over θ→∗ in the calculation
of our estimates θ̂. For tractability purposes, in a Bayesian approach conjugate a priori
distributions are usually employed. (These are distributions for which the a priori and a
posteriori distributions are of the same mathematical form.) With such a choice, it is easy to
speak of an a priori distribution as being implied by pseudo data—and the maximum a
posteriori value of an estimator for the data can be computed as the maximum-likelihood
estimator for the combined data and pseudo data. This interpretation of priors informs us of
the their influence on our efficiency analysis.

In this case the pseudo data can be seen as pseudo sequence data that are mutually statistically
independent of each other and the actual data. Each pseudo sequence represents an independent
observation equivalent with either approach. With the addition of these sequences both
approaches will yield reduced uncertainty in the estimators. For instance, in Figure 2, both
curves will be shifted upwards; but, as a consequence of the Cramer-Rao Theorem, in no case
will the size of the shift of the sequence weights curve be more than that of the maximum-
likelihood curve.

With a mixture model of Dirichlet priors, which is used in many current sequence weights
approaches, the analysis is more complicated, but the Cramer-Rao Theorem still applies; in no
case will the size the shift of the sequence weights curve be more than that of the maximum-
likelihood curve.

Discussion
While we have picked the Felsenstein (1981) nucleotide substitution model, which does not
directly recognize the differences between nucleotide transitions and nucleotide transversions,
and have evaluated it with a uniform equilibrium distribution, we do not believe the results to
be highly sensitive to these choices. For instance, in an extreme equilibrium example of the
Felsenstein (1981) model, in which one nucleotide is modeled to occur 90% of the time and
the occurrence of the other three nucleotides is equally likely among the remaining 10%, the
sequence-weights approach is 59% as efficient as the maximum-likelihood approach in making
use of the non-human primate sequences of Figure 1. In another example, with the nucleotide
substitution model of Hasegawa et al. (1985) (with a value of 10 for the ratio of a transition
rate to a transversion rate), evaluated with a uniform equilibrium distribution of nucleotides,
the sequence-weights approach is 48% as efficient as the maximum-likelihood approach.

The choice of total estimator variance (also termed, mean square error) as a benchmark for
evaluating the two approaches is somewhat arbitrary, and we can envisage alternatives. Even
if we assume that a function of the θ̂ covariance matrix must be optimized, there are alternatives.
The product of the (pure) variances and the determinant of the covariance matrix (i.e., the
volume of the confidence ellipsoid) are two obvious possibilities. (For more see, e.g., Chapter
2 in Silvey (1980).) We settled upon the sum of the individual variances for several reasons:

• In describing a transcription factor binding site, or when describing a sequence pattern
for database search, we frequently see each position in the sequence of the site
described by a probability distribution of nucleotides. Thus, it is reasonable to evaluate
an approach's efficiency on the basis of how well it can determine a probability
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distribution of nucleotides. That is, it is straightforward to use some function of the
covariance matrix of the estimators θ̂.

• Unlike the case for some of the alternatives based upon the covariance matrix, for
total estimator variance a zero variance in one of the dimensions does not hide the
uncertainties in the other dimensions.

• Because it is the trace of the covariance matrix, and because the trace is a characteristic
that is unchanged when we perform an orthogonal change of basis, the metric does
not depend on the choice of orthogonal basis used to describe the equilibrium θ→ .

Our analysis of the maximum-likelihood approach is based upon the asymptotic case in which
the number of transcription factor binding sites is large. The Cramer-Rao Theorem (see, e.g.,
Stuart et al. (1999)) guarantees that this asymptotic analysis provides a lower bound on the
variance of the estimators.

We need a phylogenetic tree if we are to use the maximum-likelihood approach for deriving a
consensus distribution, but we need not use the aligned sequence data to generate the
phylogenetic tree. If the sequence data are used to construct the tree, beware of the possibilities
of alignment bias and sequence bias. Specifically, the “optimal” alignment may be assessed as
optimal in part because it has matched up nucleotides that accidentally coincide; this alignment
bias may cause nucleotide-mutation rates and phylogenetic distances to be underestimated.
Further, if the aligned sequence is in part conserved, this too may cause the mutation rates and
phylogenetic distances to be underestimated.

If the goal is to find θ̂ at an aligned position that is believed to be significantly conserved, the
mutation model of Equation 2—for sequence positions not subject to natural selection—may
not be directly applicable. In such a case, it may be reasonable to multiply occurrences of kx
in Equation 2 by a positive factor γ ≤ 1 to indicate an expected reduced rate of mutation,
effectively shrinking the phylogenetic tree. This is somewhat similar to the approach of Bruno
(1996), where, in the context of amino acid residues, a lower mutation rate was desired when
the number of residues that occur with significant probability is smaller. Translation of this to
nucleotides and our conventions fixes γk = 1/((B − 1) max{θA, θT, θC, θG}), where B = 4 is the
number of nucleotides.

Boffelli et al. (2003) considered variations in the mutation rate as an indicator of the location
of functional/conserved sequence. (In our notation, this would be equivalent to allowing the
variable γ to vary by sequence position, but leaving θ→  fixed across sequence positions.) It may
prove to be the case that a combined approach, which maximizes the joint probability of the
distribution θ→  and the mutation rate γ, is better at estimating the consensus distribution θ→  than
is the simpler maximum-likelihood approach described here.

If there is no reason to believe that aligned sequence data are phylogenetically related, or if
construction of a tree is not possible, then the maximum-likelihood approach will not be
feasible. In this case, a sequence-weights approach may still be feasible.

Many sequence weights approaches are designed for speed; and a maximum-likelihood
approach could be considerably slower. There may be applications where use of the rougher,
faster method is more beneficial than the more precise, slower method.

The sequence-weights approach may be slightly less efficient than we have indicated here.
Equation 8 can give some negative sequence weights. If we add constraints to force all weights
to be non-negative, the total estimator variance can only increase, with a corresponding
decrease in the effective species count. However, our evidence is that this effect is small.
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For both the maximum-likelihood approach and the sequence-weights approach, the value of
θ̂ at a particular position depends primarily on the sequence data for that aligned position;
however, for the sequence-weights approach, θ̂ also weakly depends upon the assumed
underlying θ→∗, via the occurrences of k* in Equation 7. For additional accuracy when the result
in any approach depends on θ→∗, we might use the computed θ̂ vector as the value of θ→∗ for a
subsequent iteration, repeating until sufficient convergence is achieved.

Conclusion
We have developed a procedure, based upon phylogenetic relationships, to determine optimal
weights for a sequence weights approach to computing a consensus distribution of nucleotides
at any position of an alignment of nucleic acid sequences.

We have shown that the use of optimal sequence weights performs significantly worse than a
maximum-likelihood method based upon phylogenetic relationships. In particular, for aligned
sequences from primates (as represented by the phylogenetic tree of Page et al. (1999)), the
sequence-weights approach is 51% as efficient as is the maximum-likelihood approach in
making use of the data from the non-human primates. Furthermore, for sequences from human
and two well-chosen non-human primates, the maximum-likelihood approach is more efficient
than is use of all twenty-two species with the sequence-weights approach. We also find that,
aligned sequences from Escherichia coli K12 and related species of bacteria (as depicted in
the phylogenetic tree of Figure 3) show a comparable 77% relative efficiency.

Generally, our procedure gives a means to estimate the loss in using a sequence weights
approach for any given tree, and thus provides a measure, or at least a bound, of the efficiency
cost of using a faster, weighting approach. In some cases the loss in efficiency may be a price
worth paying for the added speed of computation. When this is not the case then, rather than
the use of sequence weights to estimate the distribution of nucleotides at each position of the
aligned sequences, we recommend an alternative recipe. First, obtain a phylogenetic tree that
connects the species in question. Second, use the tree topology and edge lengths (as well as
any position-specific variations implied by the more advanced models) to calculate the most
likely consensus distribution of nucleotides at each position of the aligned sequence.
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Figure 1.
Phylogenetic tree of primates from Figure 3 of Page et al. (1999). Each edge shows the number
of nucleotide substitutions between an ancestral and descendant species (including multiple
substitutions at a single position) that is expected in 104 sequence positions. Edges are drawn
to scale, except for the very shortest.
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Figure 2.
The effective number of additional independent sequences for the sequence-weights and
maximum-likelihood approaches, as a function of the number of additional sequences. The
sequences have been added to Homo sapiens so as to greedily maximize the efficiency at each
addition. The values are per multi-species site found; for example, with the maximum-
likelihood approach, finding 5 multi-species sites in the ten best species would be as good as
5 × 0.868 = 4.34 additional single-species sites, or 9.34 single-species sites found in single-
species data.
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Figure 3.
Segment near Escherichia coli K12 of an unrooted phylogenetic tree based on 16S rRNA gene
data (see text for details). Each edge shows the number of nucleotide substitutions between an
ancestral and descendant species (including multiple substitutions at a single position) that is
expected in 104 sequence positions. These edge lengths are approximate and should not be
considered definitive.
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