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We consider statistics for analyzing a variety of family-based and nonfamily-based designs for detecting linkage
disequilibrium of a marker with a disease susceptibility locus. These designs include sibships with parents,
sibships without parents, and use of unrelated controls. We also provide formulas for and evaluate the relative
power of different study designs using these statistics. In this first paper in the series, we derive statistical tests
based on data derived from DNA pooling experiments and describe their characteristics. Although designs based
on affected and unaffected sibs without parents are usually robust to population stratification, they suffer a loss
of power compared with designs using parents or unrelateds as controls. Although increasing the number of
unaffected sibs improves power, the increase is generally not substantial. Designs including sibships with multiple
affected sibs are typically the most powerful, with any of these control groups, when the disease allele
frequency is low. When the allele frequency is high, however, designs with unaffected sibs as controls do not
retain this advantage. In designs with parents, having an affected parent has little impact on the power, except
for rare dominant alleles, where the power is increased compared with families with no affected parents. Finally,
we also demonstrate that for sibships with parents, only the parents require individual genotyping to derive the
TDT statistic, whereas all the offspring can be pooled. This can potentially lead to considerable savings in
genotyping, especially for multiplex sibships. The formulas and tables we derive should provide some guidance
to investigators designing nuclear family-based linkage disequilibrium studies for complex diseases.

Over the last decade, attention has turned from po-
sitional cloning of Mendelian disease genes to the
dissection of multifactorial or complex diseases.
These are the common disorders that do not display
simple patterns of inheritance but are more consis-
tent with the interactive effects of multiple contrib-
uting loci. The ability to detect such loci depends on
the magnitude of their effects.

At the same time, it has also become clear that
conventional linkage analysis as a tool for mapping
disease loci is of limited potential and, from a prac-
tical standpoint, can only be expected to succeed
when the gene effect is moderate to large. One way
of quantitating the effect of a locus is by the param-
eter g, the genotype risk ratio associated with het-

erozygosity or homozygosity for a disease suscepti-
bility allele. In a recent perspective, Risch and Meri-
kangas (1996) and Camp (1997) demonstrated that
linkage analysis was likely to be successful only for
loci with g values in the range of four or larger but
not for loci with g values of two or less. However,
even for loci that confer risks associated with g val-
ues of four or larger, positional cloning may still be
a daunting task, as the confidence region for such
loci is likely to be large. In such cases, linkage dis-
equilibrium analysis becomes a critical tool for at-
tempting to narrow the inclusion region.

As an alternative approach to linkage screens,
Risch and Merikangas (1996) suggested genome-
wide linkage disequilibrium studies to search for
loci contributing to disease susceptibility. We use
the term linkage disequilibrium to refer to a popu-
lation association between two loci that are linked.
In the limiting case, the two loci are in complete
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disequilibrium or identical, whereby we assume that
the tested marker is actually disease predisposing.
We refer to association between unlinked loci as al-
lelic association. Risch and Merikangas (1996)
showed that even if one needs to test 1,000,000
polymorphic alleles and allows for a conservative
significance level of 5 2 1018, gene effects with g

values of as low as 1.5 could be readily detected in
realistically sized samples (<1000 families).

If genome screens by linkage disequilibrium
analysis with a large number of tested loci are to
become feasible, it will be necessary to develop ef-
ficient methods for genotyping a large number of
loci. One approach that can greatly reduce genotyp-
ing efforts is DNA pooling, which has been shown
to be quite effective in identifying disease-causing
loci in several settings, including Mendelian
founder mutations (Carmi et al. 1995; Barcellos et
al. 1997) as well as complex diseases (Arnheim et al.
1985).

DNA pooling may ultimately be the critical dif-
ference between linkage and linkage disequilibrium
studies. By DNA pooling, we assume that multiple
individual DNAs are pooled before genotyping. In
linkage studies, individual genotypes need to be
constructed, or at least, pairs of individuals need to
be compared for identity by descent, by such meth-
ods as GMS (Nelson et al. 1993). In contrast, in link-
age disequilibrium studies, affected individuals can
be grouped, as can unaffected individuals. It then
remains only to compare allele frequency estimates
in the two groups. If allele frequencies can be accu-
rately estimated by genotyping only two pools of
DNA rather than a large number of subjects indi-
vidually, tremendous savings can be obtained.

It is of considerable importance to examine the
relative power and robustness of different study de-
signs for approaching linkage disequilibrium analy-
sis. In general, we propose a two-stage approach. We
suggest that initial screens be conducted by DNA
pooling; loci that provide positive results in this
initial screen can then be subjected to individual
genotyping for confirmation. In this way, time-
consuming individual genotyping can be reserved
only for the most promising loci. However, efficien-
cies are still possible under individual genotyping,
as described below.

The simplest linkage disequilibrium study is the
epidemiologic case–control design, where unrelated
affected (cases) and unaffected (controls) individu-
als are typed. The major limitation of this design,
however, is the potential for confounding, or an
artifactual result. If the population under study is
heterogeneous and not randomly mating and the

cases and controls are not ethnically balanced, an
allele frequency difference can emerge that is coin-
cidental. Such an artifact is most likely to happen
when the disease occurs more frequently in an un-
detected subpopulation, which also differs, by
chance, from the remaining population in the fre-
quency of the tested allele.

Because of this potential for confounding, the
case–control design has lost favor with geneticists,
perhaps unduly so. Confounding requires undetec-
ted heterogeneity within the population studied, in-
cluding nonrandom mating and allele frequency
differences between subpopulations. Any known
ethnic subgrouping can be controlled by matching
controls to cases by ethnicity, provided this is
known, or by focusing on a single ethnic subgroup.

In any event, over the past decade, family-based
linkage disequilibrium study designs have become
popular because they offer complete robustness to
potential population heterogeneity. Also, the
samples are often simple to collect and can ap-
proach case–control designs in terms of power. Per-
haps the most popular of such designs is the single
affected child with parents. Several statistics have
been formulated to analyze such studies. The origi-
nal proposal was the haplotype relative risk (HRR) of
Falk and Rubinstein (1987), who calculated geno-
type frequencies in the affected children and com-
pared them with the frequency of genotypes formed
by merging the parental alleles not transmitted to
the affected child (effectively creating a ‘‘control’’
genotype from the alleles not transmitted to the af-
fected child).

Terwilliger and Ott (1992) subsequently consid-
ered several different test statistics for this same de-
sign. They referred to the Falk–Rubinstein statistic
as a genotype-based haplotype relative risk (GHRR);
they also formulated a test statistic based on allele
frequencies, rather than genotype frequencies ob-
served in the affected child versus the parental alle-
les not transmitted. They referred to this statistic as
the haplotype-based haplotype relative risk (HHRR).
They also described an alternative method of ana-
lyzing the family genotype data based on McNe-
mar’s test. This entails ignoring homozygous par-
ents and considering only the alleles transmitted by
heterozygous parents. Conditional on parental het-
erozygosity, each allele has a 50% probability of
transmission, leading to a simple symmetric x2 test.
Spielman et al. (1993) and Ewens and Spielman
(1995) showed that this test is completely robust to
nonrandom mating and that it can readily be ex-
tended to families with more than one affected
child, because under the null hypothesis of no link-
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age disequilibrium, every child in a family has an
independent probability of 50% of inheriting each
of the two alleles from a heterozygous parent. Spiel-
man et al. (1993) described this test as a transmis-
sion disequilibrium test (acronym TDT), which is
now in common usage. Other tests for families with
multiple affected sibs have been developed, such as
a maximum likelihood test (Risch 1984; Schaid and
Sommer 1993, 1994) and the AFBAC test (Thomson
1995), which compares the frequency of alleles
transmitted to affected children versus alleles never
transmitted to an affected child. The relative power
of the AFBAC test versus the TDT depends on the
precise genetic model and population mating pat-
tern; however, Ewens and Spielman (1995) showed
that only the TDT is robust to all possible mating
patterns, although the HHRR is also robust under
population stratification, the usual concern in non-
randomly mating populations.

Although family designs based on affected chil-
dren and parents have been widely used, it is some-
times difficult or impossible to obtain blood
samples from parents, especially for late onset dis-
orders where the parents will often be deceased.
Therefore, it is important to consider designs in-
volving affected and unaffected sibs (Clarke et al.
1956; Eaves and Meyer 1994; Risch and Zhang 1995;
Risch and Merikangas 1997; Curtis 1997). Using un-
affected sibs as controls for affected sibs offers the
advantage that test statistics independent of popu-
lation mating type patterns can be constructed,
similar to the TDT, eliminating the possibility of
stratification artifact. Below, we consider various
tests and the power of these tests for sibling-based
association studies, in particular in comparison to
designs involving parents or unrelated controls.

Our goal in this series of papers is to evaluate
the power of various family-based and nonfamily-
based study designs for detecting linkage disequilib-
rium, based on both DNA pooling and individual
genotyping. As we describe, DNA pooling precludes
the possibility of calculating certain test statistics
(such as the TDT). In the first paper of the series, we
focus on analyses based on DNA pooling; in a sub-
sequent paper, we consider individual genotyping.
In considering power, we initially consider the case
of complete disequilibrium, wherein the marker
tested is identical to the disease susceptibility locus;
subsequently, we examine the implications of in-
complete disequilibrium. We begin by introducing
our notation and genetic model and show that all of
the disequilibrium statistics are a function of the
allele frequency difference between affecteds (cases)
and an appropriate control group.

GENETIC MODEL

We consider a disease locus with alleles D and d, and
a marker locus with alleles A and a. D is the predis-
posing allele. A general model for penetrances at the
disease locus is assumed, in which the disease geno-
types and penetrances are DD, f2; Dd, f1; and dd, f0.
We assume throughout that penetrances are low, so
that unaffected individuals can be treated as ran-
dom, or phenotype ‘‘unknown.’’ This will generally
be a reasonable assumption when multiple loci con-
tribute to susceptibility and especially when the
monozygotic twin concordance is <30%, as the
genotype distribution for an unaffected sib at any
particular locus will deviate little from a ‘‘random’’
sib. For a major locus with high penetrance, our
calculations are conservative because unaffected in-
dividuals are more likely to be genotypically discor-
dant with their affected sibs than random individu-
als. Under these assumptions, the penetrance pa-
rameters can be reduced to ‘‘relative penetrances,’’
or genotypic risk ratios (Risch and Merikangas
1996). In terms of our modeling, this is equivalent
to fixing f0 = 1; then, f1 = the risk associated with
genotype Dd relative to genotype dd, and f2 = the
risk associated with genotype DD relative to geno-
type dd. Various models can be defined in terms of
f2 and f1. For example, a dominant model is charac-
terized by f2 = f1, a recessive model by f1 = 1, an ad-
ditive model by f2 = 2f1 1 1, and a multiplicative
model by f2 = f1

2.

STATISTICS

To test the null hypothesis of no linkage disequilib-
rium between the marker locus and disease locus,
we compare the allele frequencies of A in the af-
fected population and a control population, which
may be based on unrelated individuals, parents, or
unaffected siblings of the affecteds. We use statistics
of the form

p̂1 − p̂2

ŝ
(1)

where p̂1 is the sample frequency of allele A among
the affected, p̂2 is the sample frequency of A among
the controls, and ŝ2 is an estimator of the variance
of p̂1 1 p̂2.

Suppose we have a sample of n families of iden-
tical structure. Consider the case where each family
consists of an affected child and his/her parents. For
this case we consider the parents as the comparison
group. For the ith family, let X(i), Xf

(i), and Xm
(i)
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denote the number of A alleles in the child, father,
and mother, respectively. Then

p̂1 = Si

X~i!

2n
(2)

and

p̂2 = Si

Xf
~i! + Xm

~i!

4n
(3)

Under the null hypothesis of no linkage disequilib-
rium, all alleles have a 50% chance of being trans-
mitted from a heterozygous parent to the child, and
the alleles transmitted from the two parents are in-
dependent. Thus, p̂1 1 p̂2 has mean 0 and variance
h/8n, where h is the probability of a parent being
heterozygous. This is because p̂1 1 p̂2 is just (1/4n)
times the sum over 2n parents of the number of A
alleles transmitted versus nontransmitted to a child.
For homozygous parents, the variance of the differ-
ence in number of transmitted versus nontransmit-
ted A alleles is 0, whereas for heterozygous parents
the variance is 1. Thus, the total variance is (1/
16n2)(2n)h = h/8n.

Different estimators of Var(p̂1 1 p̂2), or equiva-
lently, different estimators of parental heterozygos-
ity h, result in different test statistics. For example, if
we use ĥ, the proportion of heterozygous parents in
the sample, as an estimator of h, the test statistic is

TDT =
p̂1 − p̂2

=ĥ/8n
(4)

the usual TDT of Spielman et al. (1993), or McNe-
mar’s test as described by Terwilliger and Ott (1992).
Here, we use D as a subscript to denote that we do
not use a Hardy–Weinberg assumption, and the sub-
script T denotes that p2 is estimated from parents’
genotypes. If we use 2p̂2 (1 1 p̂2) as an estimator of
h, the test statistic is

THT =
p̂1 − p̂2

=p̂2~1 − p̂2!/4n
(5)

Here, we use the subscript H to denote the use of the
Hardy–Weinberg assumption. This is equivalent to
the HHRR statistic of Terwilliger and Ott (1992).
This estimator of h is calculated under the assump-
tion of Hardy–Weinberg frequencies for the parents.
So, if the sample is from a stratified population,
2p̂2(1 1 p̂2) will be an overestimate of h, and as a
result, this statistic leads to a conservative test if the
statistic 5 is used as a z score. Under other types of
population structure, 2p̂2(1 1 p̂2) could underesti-
mate h and lead to an anticonservative test [Ewens

et al. (1995) give examples of different population
structures that lead to an excess of heterozygotes].
Several authors have made comparisons of these
two statistics. Although when random mating is as-
sumed, the HHRR test is more powerful than the
TDT (Terwilliger and Ott 1992), this is not true
when mating is not at random (Schaid and Sommer
1993). When population stratification exists, HHRR
test would be less powerful than the TDT. However,
it is only with very large stratification effects that
the power of the TDT is substantially larger than
that of the HHRR test (Thomson 1995).

ANALYSES BASED ON DNA POOLING

In the following, we consider a general pooling
strategy whereby all the affected offspring comprise
one pool and either the parents, unaffected sibs, or
unrelated controls form the second pool. The data,
in this case, are the allele frequencies in each pool
and the number of individuals in each pool. A direct
estimate of h from the parents is not available, so
the Hardy–Weinberg assumption must be made.
Thus, the HHRR statistic (formula 5) will be consid-
ered. Note that the HHRR statistic depends only on
the (pooled) allele frequencies in each of the two
groups and the sample sizes. Because we consider a
number of cases in terms of affected and unaffected
sibs, with and without parents, and unrelated con-
trols, we introduce some notation. We generally de-
note the test statistic used for these forms of data by
Q and will use properties of this statistic under null
and alternative hypotheses to calculate the power of
each test. When Q is based on a family with r af-
fected and s unaffected sibs and x available parents
and u unrelated controls, we let µr,s,x,u = E(Q) and
s2

r,s,x,u = Var(Q).
The tests considered below concern cases in

which samples are pooled into two groups. As noted
above, the TDT statistic cannot be calculated when
this is done, because for this statistic the proportion
of parents that are heterozygous is required to cal-
culate ĥ. However, to calculate a TDT, individual
genotypes of the offspring samples are not required
to estimate p̂1 (formula 4); thus, the offspring
samples can still be pooled, leading to a significant
reduction in genotyping, especially for multiplex
sibships. Furthermore, it is also clear that to calcu-
late a TDT does not require having the nuclear fami-
lies intact.

r Affected Children with Parents

To study the power of the THT statistic, we need to
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calculate the mean µ and variance s2 of statistic 5
under the alternative hypothesis. We first consider
the case that the marker locus and the disease locus
are in complete disequilibrium or that the disease-
predisposing locus is being assayed. For a single
family with one affected child, let

Q = X / 2 − ~Xf + Xm! / 4 (6)

Here, the superscript (i) is suppressed for simplicity.
Let G = (Xm,Xf) denote the mating type.

Given G = (1,1), that is, both parents are hetero-
zygous, the possible values of Q are Q = 11/2, 0, 1/2
with respective probabilities 1 / (1 + 2f1 + f2), 2f1 / (1
+ 2f1 + f2) and f2 / (1 + 2f1 + f2). Therefore,

p11 = E@Q?G = ~1,1!# =
1
2

f2 − 1
1 + 2f1 + f2

and

c11
2 = Var@Q?G = ~1,1!# =

1
2

~2f2 + f2 f1 + f1!

~1 + 2f1 + f2!2

Similarly,

p10 = E@Q?G = ~1,0! or ~0,1!# =
1
4

f1 − 1
1 + f1

c10
2 = Var@Q?G = ~1,0! or ~0,1!# =

1
4

f1
~1 + f1!2

and

p21 = E@Q?G = ~1,2! or ~2,1!# =
1
4

f2 − f1
f1 + f2

c21
2 = Var@Q?G = ~1,2! or ~2,1!# =

1
4

f2f1
~f2 + f1!2

For all other mating types, Q = 0. So

m1,0,2,0 = E~Q! = p11m11 + p10m~10! + p21m~21!

(7)

and

s1,0,2,0
2 = Var~Q! = E@Var~Q?G!# + Var@E~Q?G!#

= c11
2 m11 + c10

2 m~10! + c21
2 m~21!

+ p11
2 m11 + p10

2 m~10! + p21
2 m~21! − m1,0,2,0

2

(8)

where gij is the population frequency of mating type
(i,j) and mij is the conditional probability of G = (i,j)
given one affected child in the family; these values
are given in Table 1, setting r = 1. Here, m(ij) =
mij + mji when j Þ i. Under H0, the mean of Q is 0
and its variance is p(1 1 p)/4. For any given locus,
we test each allele individually. Hence, for n inde-
pendent families and using a one-sided test, assum-

ing asymptotic normality, the power to reject the
null hypothesis with significance level a is given by

FFza=p̃~1 − p̃! / 4 + =n m1,0,2,0

s1,0,2,0
G (9)

in which

p̃ = Si,jSi + j
4 Dmij

is the expected frequency of allele A in the parents
under the alternative hypothesis, F is the cumula-
tive standard normal distribution function, za is the
100a percentile of the standard normal distribution,
and i and j range from 0 to 2. In using a one-sided
test, we are assuming that all alleles at a locus are
tested (e.g., both alleles at a two-allele locus).

The analysis of r affected children is completely
analogous to the previous case of one affected child.
Let X1

(i), X2
(i), . . . , Xr

(i) be the number of A alleles in
each affected child. Xf

(i) and Xm
(i) are defined as be-

fore. If we have a sample of n families with r affected
children and parents, then

p̂1 = Si

X1
~i! + X2

~i! + . . . + Xr
~i!

2rn
,

p̂2 = Si

Xl
~i! + Xm

~i!

4n

and the test statistic is

THT =
p̂1 − p̂2

=p̂2~1 − p̂2! / ~4rn!

Let

Q = ~X1 + X2 + . . . + Xr! / 2r − ~Xf + Xm! / 4

Table 1. Conditional Probability [m(r)
ij]

of Mating Type G Given r Affected Children

Mating
type G

Population
frequency

Frequency (m(r)
ij) given

r-affected children

(2,2) g22 f r
2g22 / Kr

(2,1) g21 [(f2 + f1) / 2]rg21 / Kr

(2,0) g20 f r
1g20 / Kr

(1,2) g12 [(f2 + f1) / 2]rg12 / Kr

(1,1) g11 [(f2 + 2f1 + 1) / 4]rg11 / Kr

(1,0) g10 [(f1 + 1) / 2]rg10 / Kr

(0,2) g02 f r
1g02 / Kr

(0,1) g01 [(f1 + 1) / 2]rg01 / Kr

(0,0) g00 g00 / Kr

Kr is the population prevalence of r affected siblings, which
equals the sum of all numerators in the third column.
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Notice that, given G, X1, X2, . . . , Xr are indepen-
dent and have the same distribution as before, so

mr,0,2,0 = E~Q! = p11m11
~r! + p10m~10!

~r! + p21m21
~r!

(10)

also, E(Q|G) is the same as before, so that

sr,0,2,0
2 = Var~Q! = E@Var~Q?G!# + Var@E~Q?G!#

= ~1/r!~c11
2 m11

~r! + c10
2 m~10!

~r! + c21
2 m~21!

~r! !

+ p11
2 m11

~r! + p10
2 m~10!

~r! + p21
2 m~21!

~r! − mr,0,2,0
2

(11)

in which m(r)
ij is the conditional probability of G =

(i,j) given r affected children; these probabilities are
given in Table 1. The power for n such families is

FSza=p̃~1 − p̃! / 4r + =n mr,0,2,0

sr,0,2,0
D (12)

in which, in this case,

p̃ = Si,jSi + j
4 Dmij

~r! (13)

r Affected Children and s Unaffected Sibs
without Parents

We then consider families with r affected children
and s unaffected sibs in which the parents are un-
available; each family has the same numbers of un-
affected sibs. Thus, all sibships are of size s + r.
Again, we assume the absolute penetrances are low
so that the distribution of parental mating type de-
pends only on the number of affected children in
each family and not on the number of unaffected;
also, all alleles should have a 50% chance of being
transmitted to the unaffected children from hetero-
zygous parents.

We first consider the case of r = 1. Let Y1
(i), Y2

(i),
..., Ys

(i) be the number of A alleles in the unaffected
sibs who are enumerated from 1 to s. For this case,
the comparison group is the unaffected sibs. Then,
for n independent families of identical structure, p̂1

is defined the same as before (formula 2) and

p̂2 = Si

Y1
~i! + Y2

~i! + . . . + Ys
~i!

2ns
(14)

Under the null hypothesis, p̂1 1 p̂2 has mean 0 and
variance (s + 1)h/(8sn). The test statistic 1 is then
given by

THS =
p̂1 − p̂2

=~s + 1!p̂~1 − p̂! / ~4sn!
(15)

in which

p̂ = Si

X~i! + Y1
~i! + Y2

~i! + . . . + Ys
~i!

2n~s + 1!
(16)

is the sample frequency of allele A. Here, we are
using 2p̂(1 1 p̂) as an estimator of h. As in the case
of an affected child with parents, this estimator is
derived under the Hardy–Weinberg assumption and
could overestimate h in a stratified population. The
subscript S on T in formula 15 indicates that the
comparison allele frequency is based on sibs.

To study the power of this test, let

Q = X/2 − ~Y1 + Y2 + . . . + Ys! / ~2s! (17)

By an argument similar to that used for the previous
case, we can compute the mean and variance of Q
under the alternative hypothesis. Note that by as-
sumption the distribution of the mating type G will
not change (Table 1) and the conditional expecta-
tion of Q given G is the same as before, so only the
conditional variances change. After some simple al-
gebra, we have

m1,s,0,0 = E~Q! = m1,0,2,0

and

s1,s,0,0
2 = Var~Q!

= s1,0,2,0
2 + m11 / ~8s! + m~10! / ~16s!

+ m~21! / ~16s! (18)

in which s2
1,0,2,0 is given by formula 8.

Hence, by analogy with formula 9, n such fami-
lies give the power (for a one-sided test)

FSza=~s + 1!p̃s~1 − p̃s! / ~4s! + =n m1,s,0,0

s1,s,0,0
D

(19)

in which

p̃s = p̃ + m1,s,0,0 / ~s + 1!

If each family consists of r affected and s unaf-
fected sibs, by analogy with formula 15, the statistic
1 is given by

p̂1 − p̂2

=~r + s!p̂~1 − p̂! / ~4rsn!

in which

p̂1 = Si

X1
~i! + X2

~i! + . . . + Xr
~i!

2rn

is the frequency of allele A in the r affected sibs,

p̂2 = Si

Y1
~i! + Y2

~i! + . . . + Ys
~i!

2sn
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is the frequency of allele A in the s unaffected sibs,
and

p̂ = Si

X1
~i! + X2

~i! + . . . + Xr
~i! + Y1

~i! + Y2
~i! + . . . + Ys

~i!

2~r + s!n

is the sample frequency of allele A. By analogy to
the derivation of formula 19, the power for this test
is

FSza=~r + s!p̃~1 − p̃! / ~4rs! + =n mr,s,0,0

sr,s,0,0
D

(20)

in which

mr,s,0,0 = mr,0,2,0

sr,s,0,0
2 = sr,0,2,0

2 + m11
~r! / ~8s!

+ m~10!
~r! / ~16s!

+ m~21!
~r! / ~16s!

and

p̃ = SijSi + j
4 Dmij

~r! + S r
r + sDmr,s,0,0

is the sample frequency of allele A under the alter-
native hypothesis, and µr,0,2,0 and s2

r,0,2,0 are given
in formulas 10 and 11, respectively.

r Affected Sibs, s Unaffected Sibs, and One Available
Parent

Now, we consider families with r affected children, s
unaffected sibs, and one available parent (say the
father without loss of generality). We first consider
the case r = 1. Let Xf

(i) denote the number of A alle-
les in the available parent. For this case, the com-
parison group is the available parent plus the unaf-
fected sibs. Then, using the same notation as before,
we define p̂1 as in formula 2 and

p̂2 = Si

Xf
~i! + Y1

~i! + Y2
~i! + . . . + Ys

~i!

2n~s + 1!
(21)

To calculate the mean and variance of p̂1 1 p̂2, let

Q = X/2 − ~Xf + Y1 + Y2 + . . . + Ys! / @2~s + 1!#
(22)

Again, the distribution of G will not change, and the
conditional expectation of Q given G is the same as
before, so only the conditional variances change.
After some algebra, we have

m1,s,1,0 = E~Q! = m1,0,2,0

and

s1,s,1,0
2 = Var~Q! = s1,0,2,0

2 + m11s / @8~s + 1!2#
+ m~10! / @16~s + 1!# + m~21! / @16~s + 1!#

+ m~20! / @4~s + 1!2#

= s1,s + 1,0,0
2 + ~2m~20! − m11! / @8~s + 1!2#

(23)

Under the null hypothesis, p̂1 1 p̂2 will have
mean 0 provided the available and missing parents
are random with regard to the frequency of allele A,
and variance {(s + 2)h / [8(s + 1)] + (2m(20) 1 m11) /
[8(s + 1)2]}/n, or equivalently {(s + 2)h / [8(s + 1)] + (hc

1 h) / [4(s + 1)2]}/n, where hc is the probability of a
child being heterozygous. If we further assume Har-
dy–Weinberg equilibrium and random mating, the
variance can be simplified to (s + 2)pq / [4(s + 1)n].
So, we could define the test statistic to be

p̂1 − p̂2

=~s + 2!p̂~1 − p̂! / @4~s + 1!n#
(24)

in which

p̂ = Si

X~i! + Xf
~i! + Y1

~i! + Y2
~i! + . . . + Ys

~i!

2n~s + 2!

Then, n such families give the power (for a one-
sided test)

FFza=~s + 2!p̃1,s~1 − p̃1,s! / @4~s + 1!# + =n m1,s,1,0

s1,s,1,0
G

(25)

where p̃1,s = p̂ + µ1,s,1,0 / (s + 2) is the frequency
of allele A in the typed parent and s + 1 sibs under
the alternative hypothesis. We note that (2m(20) 1

m11) / [8(s + 1)2] equals 0 under random mating and
Hardy–Weinberg. Also, unless the deviation from
the above assumptions is large, this term would be
small and s1,s,1,0

2 would be quite close to s1,s + 1,1,0
2 .

Thus, the required sample size for families with one
affected sib, s unaffected sibs, and one parent would
be approximately equal to families with one af-
fected and s + 1 unaffected sibs. If each family con-
sists of r affected sibs, s unaffected sibs, and one
available parent, similar arguments apply, namely,
the power can be expected to be comparable to
families with r affected and s + 1 unaffected sibs
without parents. Numerical examples (data not
shown) bear this out. It is important to note that the
expectation of Q is 0 under the null hypothesis only
when the available and missing parents can be as-
sumed to have the same frequency of allele A, which
may be unprovable.
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Families with an Affected Parent

So far, for families with parents, we have assumed
the parents to be random with respect to disease
status (i.e., unknown). When the disease prevalence
in parents is low, these results are comparable to a
sample of families with unaffected parents. Here, we
consider the question of power for families with an
affected parent. This would entail analyzing these
families separately from those without affected par-
ents under random sampling, or, specifically, sam-
pling to enrich for families with affected parents.

We consider families with one affected parent,
one unknown parent, and r affected children. We
use the same statistic as formula 5, that is, compar-
ing the allele frequency of the affected children with
that of the parents (both affected and unaffected).

Given G, the distribution of the child’s geno-
type would be the same as before. However, the con-
ditional distribution of G given r affected children
would change to take into account the affected par-
ent. So the mean and variance will have the same
forms as in formulas 4 and 5 but with different val-
ues of mij, which are given in Table 2. The power is
also as given in formula 9, but with the modified
values of µ, s2, and p̂.

r Affected Sibs with u Unrelated Controls

In contrast to the designs considering unaffected
sibs or parents along with the affected sibs, we also
evaluate affected sibships (with r affecteds) using u
unrelated subjects as controls. Using unrelateds
raises the issue of confounding owing to population

stratification; however, we show below that using
sib controls also entails less power than the use of
unrelated individuals.

To examine the relative power obtained by us-
ing unaffected unrelated controls as opposed to un-
affected sibs, consider n family sets each with r af-
fected sibs and u unrelated controls. Then, we can
define the test statistic as

p̂1 − p̂2

=~ru + 2r + u!p̂~1 − p̂! / 4run
(26)

in which

p̂1 = Si

X1
~i! + X2

~i! + . . . + Xr
~i!

2rn

p̂2 = Si

Y1
~i! + Y2

~i! + . . . + Yu
~i!

2un

p̂ = S 2r
r + 1

p̂1 + up̂2D Y S 2r
r + 1

+ uD
and Y1

(i), . . . , Yu
(i) are the number of A alleles in the

u unrelated controls. The respective variances of p̂1

and p̂2 are pq(r + 1) / 4 and pq / 2u. These are used as
weights in the standard statistical way in the defi-
nition of p̂.

To calculate the power, we first need to deter-
mine the expectation and variance of (X1 + X2 + . . .
+ Xr) / 2r under the alternative hypothesis (again the
superscript (i) is suppressed for convenience). Here,
we define «ij = E[(X1 + . . . + Xr)/2r|(i,j)], that is, the
conditional expectation of (X1 + . . . + Xr) / 2r given
parental mating type (i,j). Then, «22 = 1, «21 = «12 =
(2f2 + f1) / (2f2 + 2f1), «20 = «02 = 1/2, «11 = (f2 + f1) /
(f2 + 2f1 + 1), «10 = «01 = f1 / (2f1 + 2), and «00 = 0.

We also require the variance of (X1 + . . . + Xr) /
2r conditional on mating type. Here, we define tij

2 =
Var[(X1/2) | (i,j)]. Then, t22

2 = t20
2 = t00

2 = 0, t21
2 =

t12
2 = f2f1 / 4(f2 + f1)2, t11

2 = (f2f1 + 2f2 + f1) / 2(f2 + 2f1
+ 1)2, t10

2 = t01
2 = f1 / 4(f1 + 1)2. Then, the power is

given by

FFza=~ru + 2r + u!p̆~1 − p̆! / 4ru + =n mr,0,0,u

sr,0,0,u
G
(27)

in which

mr,0,0,u = E$@~X1 + . . . + Xr!/2r − ~Y1 + . . . + Yu! / 2u#%

= m22
~r! + «21m~21!

~r! +
1
2

m~20!
~r! + «11m11

~r!

+ «10m~10!
~r! − p

Table 2. Conditional Probability of Mating
Type G Given r Affected Children
and an Affected Parent

Mating
type G

Population
frequency

Frequency [m(r)
ij] given

r-affected children

(2,2) g22 f2
r+1g22 / Kr8

(2,1) g21 f2[(f2 + f1) / 2]rg21 / Kr8
(2,0) g20 f2f1

rg20 / Kr8
(1,2) g12 f1[(f2 + f1) / 2]rg12 / Kr8
(1,1) g11 f2[(f2 + 2f1 + 1) / 4]rg11 / Kr8
(1,0) g10 f1[(f1 + 1) / 2]rg10 / Kr8
(0,2) g02 f1

rg02 / Kr8
(0,1) g01 [(f1 + 1) / 2]rg10 / Kr8
(0,0) g00 g00 / Kr8

Kr8 is the population prevalence of r affected children and one
affected parent, which equals the sum of all numerators in the
third column.
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sr,0,0,u
2 = Var@~X1 + . . . + Xr!/2r − ~Y1 + . . .

+ Yu! / 2u#

=
1
r

@t21
2m~21!

~r! + t11
2m11

~r! + t10
2m~10!

~r!#

+ m22
~r! + «21

2m~21!
(r) +

1
4

m~20!
~r! + «11

2m11
~r!

+ «10
2m~10!

~r! − ~mr,0,0,u + p!2 +
1
2u

p~1 − p!

and

p̆ = p + 2r mr,0,0,u / @2r + ~r + 1!u#

Numerical Results—Comparison of Sample Sizes

We now evaluate the relative efficiency of different
family structures for detecting linkage disequilib-
rium. We base relative efficiency on the relative
number of families, or subjects, required to obtain a
given power. Which use is more appropriate, that is,
in terms of families or subjects, will depend on
whether the primary expense is in identifying and
recruiting families or individual subjects within
families. We consider affected sibships of size one to
four with parents, a sibship of size one with an af-
fected parent, sibships without parents with up to
four affected sibs and two unaffected sibs, and af-

fected sibships up to size four compared with two
unrelated controls.

We calculate the sample size necessary to obtain
power of 80% (z1 1 b = 10.84) with a significance
level of 5 2 1018 (za = 5.33), which yields a poste-
rior false-positive rate of ∼5% after 1,000,000 inde-
pendent tests (Risch and Merikangas 1996). To do
so, we use the power formulas given above for the
various family structures (formulas 9, 12, 19, 20, 25,
and 27). To obtain the formula for sample size n,
these formulas are set equal to 1 1 b and then
solved for n. For example, for formula 9, we get (sup-
pressing the subscripts of µ and s)

n = Fz1 − bs − za=p̃~1 − p̃! / 4
m

G2

Similar formulas for n are easily derived from
the other power formulas.

Table 3 provides the required number of fami-
lies for detection of linkage disequilibrium for domi-
nant, recessive, multiplicative, and additive models
for sibships with parents. For each model we have
included only a single set of genotypic risk ratios
(with f2 fixed at four) and three gene frequencies
(P = 0.05, 0.20, and 0.70). The actual genotypic risk
ratios for each model are given in the footnote to

Table 3. Number of Families Required to Detect Linkage Disequilibrium
for Sibships with Parents for Four Genetic Models Using Pooling

r = 1 r = 2 r = 3 r = 4
Parent affected

r = 1

Dominant
p = 0.05 314 98 51 37 186
p = 0.20 224 117 96 97 205
p = 0.70 2,913 2,222 2,269 2,607 3,179

Recessive
p = 0.05 38,909 7,071 1,847 599 36,443
p = 0.20 972 241 95 52 885
p = 0.70 199 122 113 127 271

Multiplic.
p = 0.05 1,251 448 218 123 918
p = 0.20 417 173 101 71 378
p = 0.70 451 265 215 202 559

Additive
p = 0.05 734 252 125 76 497
p = 0.20 333 152 101 80 302
p = 0.70 686 411 330 299 816

Significance level a = 5 2 10−8; power 1 − b = 0.80.
Dominant model: f2 = f1 = 4; recessive model: f2 = 4, f1 = 1; multiplicative model: f2 = 4, f1 = 2; additive model:
f2 = 4, f1 = 2.5.
(r) Number of affected sibs.
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Table 3. Results were similar for other genotypic risk
ratios (in terms of the relative magnitudes of the
various sample sizes).

The results for sibships without parents, com-
paring affected to unaffected sibs, are given in Table
4. We consider sibships with up to four affected and
two unaffected sibs. In Table 5 we present results
comparing affected sibships up to size four with two
unrelated controls. Comparing Tables 3 and 4, it is
apparent that among the family-based designs, sam-
pling parents is always optimal. The number of dis-
cordant sib pairs required to give the same power as
a child with parents is roughly twofold across mod-
els (Table 3, column 1, vs. Table 4, column 1). How-
ever, per individual sampled, this ratio is 1.33-fold.
Adding an additional unaffected sib gives a family
sample size ratio of ∼1.5 compared with affecteds
with parents and is the same per person sampled
(Table 3, column 1, vs. Table 4, column 2). We also
note that per person sampled, the relative efficiency
of an affected child and one unaffected sib is the
same as an affected child and two unaffected sibs. In
general, for families with one affected child, using s
unaffected sibs would be approximately s 3 (1 + s)
as efficient in terms of the relative numbers of fami-
lies required as using parents as controls. Thus, the
gain, per person sampled, diminishes with each ad-
ditional unaffected sib sampled. Thus, if affecteds
are readily available, there is not much advantage in

sampling additional unaffected sibs beyond the
first. The same is true for sibships with r affected sibs
(r > 1), where the corresponding formula is
s 3 (r + s). For affected sib pairs, the required num-
ber using two unaffected sibs is double the number

Table 4. Number of Families Required to Detect Linkage Disequilibrium
for Sibships with r Affected and s Unaffected Sibs, without Parents,
Using Pooling

r = 1 r = 2 r = 3 r = 4

s = 1 s = 2 s = 1 s = 2 s = 2 s = 2

Dominant
p = 0.05 753 534 355 227 147 126
p = 0.20 489 357 376 247 248 296
p = 0.70 5,719 4,317 6,490 4,357 5,638 7,860

Recessive
p = 0.05 79,556 59,234 22,031 14,555 4,810 1,883
p = 0.20 2,022 1,498 745 494 237 145
p = 0.70 341 271 269 196 206 255

Multiplic.
p = 0.05 2,811 2,032 1,535 992 605 405
p = 0.20 891 655 547 361 258 209
p = 0.70 831 642 689 478 471 515

Additive
p = 0.05 1,690 1,213 885 569 351 253
p = 0.20 717 526 483 318 258 239
p = 0.70 1,292 990 1,117 765 760 818

Table 5. Number of Families Required
to Detect Linkage Disequilibrium
for Sibships with r Affected Sibs Compared
with Two Unrelated Controls Using Pooling

r = 1 r = 2 r = 3 r = 4

Dominant
p = 0.05 207 66 36 27
p = 0.20 158 73 51 42
p = 0.70 2,204 1,158 819 656

Recessive
p = 0.05 28,820 5,015 1,325 431
p = 0.20 712 154 55 26
p = 0.70 160 72 49 39

Multiplic.
p = 0.05 872 265 121 66
p = 0.20 300 102 52 32
p = 0.70 352 152 93 67

Additive
p = 0.05 502 154 74 45
p = 0.20 238 90 52 36
p = 0.70 530 231 141 100
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of such pairs with parents. As the number affected
increases to three and four, this ratio increases from
two to about threefold, whereas the number of in-
dividuals sampled is the same for both designs.

What is the impact of one parent being affected
in families with one affected child and parents avail-
able? The answer depends primarily on the fre-
quency of the susceptibility allele but also to some
extent, the genetic model and penetrances (Table 3,
column 1 vs. column 5). Typically, when the allele
frequency is low (<20%), families with an affected
parent are more powerful but only largely so at very
low allele frequencies (<5%). For high allele fre-
quencies (>50%), however, the opposite is the case;
such families are less powerful. Again, this is most
true when the allele frequency is very high (>70%).
These results are easily seen in terms of heterozygos-
ity for the disease allele in the affected parent. At
low allele frequency, the parent being affected will
increase the probability that (s)he is heterozygous;
at high allele frequency it will reduce that probabil-
ity. Maximum power is obtained when parents are
heterozygous.

From Tables 3 and 4 we can also contrast the
relative efficiency of families with different num-
bers of affected children. First, we consider families
with parents. For most models, the relative effi-
ciency of families with two affected compared to
singletons ranges from ∼3-fold at low allele fre-
quency to ∼1.5-fold at high allele frequency, de-
pending to some extent on the genetic model. The
only substantial deviation from these ratios is for a
rare recessive gene, in which the efficiency of mul-
tiplex families is substantially greater (up to five-
fold). In any event, because families with two af-
fected children have only 4:3 as many subjects to
sample as families with one affected child, such
families will generally also be more efficient per per-
son sampled. For families with three affected, the
relative efficiency compared with sib pairs ranges
from ∼1.2 at high allele frequency to 2 at low allele
frequency. The sample size ratio is 5:4 = 1.25, which
suggests those will also be a useful family structure.
For families with four affected, the relative effi-
ciency, compared with trios, ranges from 1.0 at high
allele frequency to ∼1.8 at low allele frequency.
Thus, quartets will also be generally useful families.
It is likely, however, that families with more affect-
eds are more difficult and expensive to recruit. Thus,
a reasonable strategy might be to collect all families
with at least two affected sibs.

The situation is somewhat different when com-
paring families without parents. For example, con-
sider sibships with one affected and two unaffected

versus two affected and one unaffected. The relative
efficiency of these two family structures, which
have the same number of individuals, depends on
the model and allele frequency. Families with two
affected are more efficient for low allele frequencies
but not necessarily so for high allele frequencies.
This is particularly true for dominant or additive
models, in which families with one affected are
more efficient at high allele frequencies and even at
moderate allele frequencies if the penetrance ratio is
high. The trend toward increasing efficiency with
number of affected sibs seen in the case of parents
included does not generally apply to families with-
out parents. For example, comparing families with
one to four affected sibs, each with two unaffected
sibs, the required sample sizes decrease only at low
allele frequency (P = 0.05); at high allele frequency
(P = 0.70), the numbers increase with number af-
fected. At intermediate allele frequencies, the
sample sizes decrease only for the recessive model
but are roughly similar for the other models.

To examine the loss of power by using unaf-
fected sibs or parents as controls, we considered the
power for affected sibships using unrelated unaffect-
eds as controls. The loss of power using relatives for
controls is substantial. Affected sib pairs with two
unrelated controls are typically 3–3.5 times as effi-
cient as sib pairs with two unaffected sibs. Even for
affected sib pairs with parents, the loss of efficiency
is approximately twofold. The disadvantage of fam-
ily-based controls grows with the number of af-
fected sibs. For affected sib trios, families with two
unaffected sibs are ∼5 times less efficient than using
two unrelated controls; families with parents are ∼2
times less efficient. For families with four affected,
the situation is even worse. Using unaffected sibs is
∼6 times less efficient than using two unrelated con-
trols; using parents is ∼40% as efficient. Upon reflec-
tion, the explanation for these trends should be
clear. With more affected in the sibship, the fre-
quency of allele A increases, creating a greater dif-
ference from unrelated controls. With family-based
designs, however, the allele frequency is also in-
creasing in the relatives (unaffected sibs or parents),
leading to a smaller difference between the affecteds
and their normal sibs or parents. The disadvantage
of using unrelated controls is the potential for arti-
fact owing to population stratification. However, it
is important to note that the robustness obtained
from using family-based controls comes at a sub-
stantial price—a loss of efficiency of two- to sixfold
using unaffected sibs or two- to threefold using par-
ents.

Examination of Tables 3–5 reveals that remark-
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able savings in total sample size can be achieved by
sampling families with more affected sibs, especially
at lower disease allele frequencies and when unre-
lated controls are used. Furthermore, the number of
multiplex families required can be reduced even fur-
ther if one uses additional unrelated controls. For
example, by using three controls for sibships with
three affected sibs, the required sample size can be
reduced by ∼15%; by using four unrelated controls
in families with four affected sibs, the sample sizes
can be reduced by ∼30% (calculations performed
but not shown). This is an additional advantage to
using unrelated controls that cannot be realized by
using family-based controls. Generally, it is simpler
to obtain a large unrelated control group than re-
lated controls.

We also wanted to determine the extent to
which the sample size reduction from using sibships
with more affecteds was owing to the larger sample
size, versus the expected increase in susceptibility
allele frequency in such families. Therefore, we con-
sidered the design of selecting a single affected from
sibships with two, three, or four affected along with
two unrelated, unaffected controls. For this design,
the required number of cases was increased by ∼60%
over the numbers given in Table 5 for sibships of
size 2, 70% for sibships of size 3, and 80% for sib-
ships of size 4. Thus, much of the substantial in-
crease in power using larger sibships derives from
the excess allele frequency expected in the affected
individuals from such families, rather than the
larger number of subjects included.

Finally, we note that although the actual num-
bers in Tables 3–5 are based on a significance level
of 5 2 1018 (Za = 5.33) and power of 80%
(Z1 1 b = 10.84), the ratio of sample sizes for differ-
ent designs is reasonably stable for other levels of
significance and power. This is because in the
sample size formulas, the coefficients of Za and
Z1 1 b are nearly equal, representing the standard
deviation of the statistic under the null and alterna-
tive hypotheses. When considering alternative hy-
potheses close to the null, these standard deviations
are very similar; thus, the sample size is nearly a
function of (Za + Z1 1 b)2. Therefore, other values of
Za and Z1 1 b will give sample size ratios that are
similar to those we have derived.

Combining Families of Different Structure

In all the calculations derived above, we have as-
sumed pooling of families of identical structure.
Typically, an investigator may, in practice, have
families of differing structure—for example, some

singleton families with parents, some sibships with-
out parents with different numbers of affecteds and
unaffecteds. Simple pooling of families of different
structure (e.g., placing all unaffecteds and/or par-
ents together and all affecteds together) is not a ro-
bust procedure, because population stratification
could lead to an artifactual difference between the
‘‘affected’’ and control pools. For example, suppose
we have sibships without parents: Some of the sib-
ships have one affected and two unaffected, and the
others have two affected and one unaffected. Then,
if the sibships come from populations with different
allele frequencies, the pooled samples will not nec-
essarily have the same frequency. This is because the
affected pool will be weighted toward the popula-
tions from which the sibships with two affected are
derived, whereas the control pool will be weighted
toward the populations from which the sibships
with one affected derive. For example, suppose the
frequency of allele A in the population from which
the sibships with two affected and one unaffected
sib derive is 0.6, whereas its frequency in the popu-
laton from which the sibships with one affected and
two unaffected derive is 0.3. Then the frequency of
allele A in the affected pool (assuming equal repre-
sentation of the two sibship types) is (2/3)(0.6) + (1/
3)(0.3) = 0.5, while the frequency in the pool of un-
affected sibs is (1/3)(0.6) + (2/3)(0.3) = 0.4. Thus,
the affected pool appears to have a higher frequency
of allele A owing simply to population stratification
and unbalanced sibships.

There are two potential solutions to this prob-
lem. First, only families of identical structure are
pooled. Statistics can be derived from each of these
individual experiments and subsequently combined
(as described below). However, there is a second
possibility allowing for combining all families. To
combine across families, the ratio of number af-
fected to number unaffected must be constant. One
way to accomplish this is to have an equal number
of affecteds and unaffecteds from each family. This
can be done by duplicating some samples placed in
the pools. For example, suppose we have families
with one affected and two parents (type 1), one af-
fected and one unaffected sib (type 2), one affected
and two unaffected sibs (type 3), two affected with
two parents (type 4), two affected and one unaf-
fected sib (type 5), and two affected and two unaf-
fected sibs (type 6). Families of type 2, 4, and 6 can
be pooled together as is; for families of type 1, the
affected child is first duplicated before this family is
pooled; for families of type 3, again the affected sib
is duplicated before pooling; for families of type 5,
the unaffected sib is duplicated before pooling. This
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strategy will create balanced pools between affect-
eds and controls, eliminating confounding owing to
allele frequency variation among families of differ-
ent structure. In the example given above, suppose
we duplicate the unaffected sib in the sibships with
two affected and one unaffected and duplicate the
affected sib in the sibships with one affected and
two unaffected in forming pools. The pooled allele
frequency for affecteds will be (1/2)(0.6) + (1/
2)(0.3) = 0.45, and the pooled allele frequency for
unaffecteds will be the same, 0.45.

We then consider the statistics derived from
these two approaches of combining families of dif-
ferent structure. In the first scenario, we have k pairs
of allele frequencies from the k different family
structures. There is an infinite number of ways of
combining these estimates; the optimal one, in
terms of power, depends on the specific alternative
model. As a simple, practical approach, we suggest
taking the weighted sums of the allele frequencies,
where the weights are based simply on the number
of affected individuals going into that pool.

For the second scenario, we have just a single,
pooled allele frequency difference for two pools; we
need to calculate the variance of this difference.
This can be accomplished by summing the vari-
ances for each family before duplication of indi-
viduals, using the formulas derived in the sections
above. In these formulas we require a sample esti-
mate of p, the population frequency of allele A. This
estimate varies according to family structure (e.g., it
is estimated from parents only for affecteds with
parents but from all sibs in families without par-
ents). In this case, we suggest using 1⁄2(p̂1 + p̂2),
where p̂1 and p̂2 are the estimated allele frequencies
for the affected and control pools, respectively. This
may lead to a conservative test and some loss of
power; however, using only p̂2 as an estimator of p
can lead to an inflated type 1 error frequency, espe-
cially if families without parents predominate in the
sample.

The choice of which approach to take, scenario
1 or scenario 2, will depend on experimental con-
siderations. Scenario 2 requires forming only two
pools, although some individuals will need to be
duplicated. Scenario 1 requires multiple pools, de-
pending on the number of different family struc-
tures in the sample, but allows for analyzing the
families as is.

Level of Resolution of Allele Frequencies in Pooling

An important issue in the power of DNA pooling
strategies for detecting allelic associations with dis-

ease is the level of resolution of allele frequencies in
DNA pools as a function of sample size. Imprecise
estimation of allele frequencies in pooled samples
leads to a source of variation for which we have not
accounted in our formulas; we have only allowed
for sampling variance. Assuming that the error of
estimation is not systematically different between
pools, the expected difference in allele frequencies
between pools (i.e., p1 1 p2) will remain un-
changed, but the variance of the estimated differ-
ence will be greater than what we have calculated.
This will lead to an inflated type 1 error, because a
greater proportion of the distribution, under the
null hypothesis, will be beyond the threshold for
significance. Thus, to retain the same significance
level, the threshold for the observed allele fre-
quency difference needs to be raised, leading also to
a consequent decrease in power.

Evaluation of this problem requires both experi-
mental and theoretical considerations. Presumably,
the variability in allele frequency estimation in-
creases with the number of samples in the pool;
thus, there will be a trade-off between increasing the
number of pools to improve resolution at the ex-
pense of creating more pools for genotyping. An
exact analysis of this problem can be performed
once the parameters of resolution for DNA pooling
are obtained. Preliminary evidence from microsat-
ellites indicates good reliability of allele frequency
estimation in pools up to 75 individuals, indicating
the feasibility of pooling for this class of marker
(Barcellos et al. 1997). For SNP markers, these stud-
ies remain to be performed.

Incomplete Linkage Disequilibrium

The calculations we have presented above represent
the case of complete linkage disequilibrium (i.e., the
disease and marker loci are the same). It is impor-
tant to consider also the power when examining a
nearby marker in incomplete disequilibrium with
the disease locus. As has been pointed out elsewhere
(Muller-Myhsok and Abel 1997), the power to detect
a disease susceptibility locus can decrease consider-
ably with diminishing linkage disequilibrium be-
tween a tested marker and the disease locus.

We consider the following model: Let D and d
be the alleles at the disease locus with allele frequen-
cies p and q, respectively. Let A and a be the alleles
at the marker locus, with allele frequencies p8 and q8,
respectively, where A is positively associated with D.
We define the linkage disequilibrium parameter d

(Bengtsson and Thomson 1981) by
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d =
P~A?D! − P~A!

1 − P~A!
=

P~A?D! − p8

q8
(28)

Furthermore, we define f = qp8/pq8 as the odds ratio
of the allele frequencies at loci D and A. We also
note that, in general, 0 ø d ø 1. However, if p8 < p,
then d has a smaller upper bound, namely f, which
is <1. If p8 > p, then f > 1, and d has an upper bound
of 1. From formula 28, we can derive the condi-
tional probabilities:

P~D?A! = p +
pq8

p8
d

P~d?A! = q −
pq8

p8
d

P~D?a! = p − pd

P~d?a! = q + pd

Assuming the relative penetrances f2 and f1 corre-
spond to the disease locus genotypes DD and Dd, we
can calculate relative penetrances f28 and f18 corre-
sponding to the marker locus genotypes AA and Aa
by using the conditional allele probabilities given
above, along with the formula P(Aff |AA) =
P (Aff |DD )P (DD |AA ) + P (Aff |Dd )P (Dd |AA ) +
P(Aff|dd)P(dd|AA), and similar formulas for geno-
types Aa and aa. We then obtain

f82 =
@f2~p + wd!2 + 2f1~p + wd!~q − wd! + ~q − wd!2#

@f2~p − pd!2 + 2f1~p − pd!~q + pd! + ~q + pd!2#

f1 =

{f2~p + wd!~p − pd! + f1@~p + wd!~q + pd!
+ ~q − wd!~p − pd!# + ~q − wd!~q + pd!}

@f2~p − pd!2 + 2f1~p − pd!~q + pd! + ~q + pd!2#

in which w = pq8/p8. If we assume a multiplicative
model, namely f1 = g and f2 = g2, then the above
formulas for f28 and f18 reduce also to a multiplica-
tive model, f18 = h, f28 = h2, where

h =
~p + wd!g + ~q − wd!

~p − pd!~q + pd!
(29)

It is then straightforward to calculate the sample
size increase owing to incomplete disequilibrium for
a multiplicative model, using the design of a single
affected with parents. From formulas derived previ-
ously, the required sample size when testing the dis-
ease locus D is given by

N =
~pg + q!2Fza −Î1

2 S1 +
g

~pg + q!2
D z1 − bG2

pq~g − 1!2

(30)

The comparable formula, using locus A instead of D,
is given by

N8 =
~p8h + q8!2Fza −Î1

2 S1 +
h

~p8h + q8!2
D z1 − bG2

p8q8~h − 1!2

(31)

From formulas 30 and 31, if we assume z11b = 0
(corresponding to 50% power), or the term involv-
ing z1 1 b is relatively small or constant, then the
ratio N8/N can be well represented by

N8

N
=

~p8h + q8!2pq~g − 1!2

~pg + q!2p8q8~h − 1!2
(32)

First we note that

p8h + q8 =
pg + q

1 + p~1 − d!~g − 1!

and

h − 1 =
pd~g − 1!

p8@1 + p~1 − d!~g − 1!#

Thus,

N8

N
=

qp8

pq8d2 =
f

d2 (33)

Formula 33 shows the sensitivity to incomplete dis-
equilibrium. For example, if p = 0.1 and p8 = 0.2 but
d = 1, then N8/N = F = 2.25, that is, about twice the
sample size is required. If d = 0.7 instead of 1, then
this figure can be multiplied by ∼2, to give a sample
size ratio of 4.5-fold. Similarly, if p = 0.2 and p8 = 0.1
and d = F, then N8/N = 1/F = 2.25. Of course, the
greater the disparity between p and p8, or the smaller
the value of d, the greater the sample size increase.

The calculation for other study designs, for ex-
ample, those involving more affected sibs, is some-
what more complicated. To some extent, the sample
size increase will be proportionately greater with
more affected sibs, owing to lack of independence of
the allele frequency difference (between affecteds
and ‘‘controls’’) among affected sibs, even within
mating type. However, for near to complete disequi-
librium, these effects will be modest.

DISCUSSION

We have presented statistics that can be applied to
test for linkage disequilibrium in nuclear families
based on DNA pooling, either when parents are
available or unavailable. We have shown that in-
creasing the number of affecteds in the sibship can
lead to a substantial increase in power but will de-
pend to some extent on the genetic model and allele
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frequencies. The greatest advantage occurs when
the susceptibility allele frequency is low; when the
allele frequency is high, designs incorporating un-
related controls maintain this advantage, whereas
designs with unaffected sibs lose the advantage.
Families with parents are intermediate, with neither
a great loss nor advantage.

Using unaffected sibs as controls suffers a loss of
power compared with using parents or unrelateds,
especially as the number affected in the sibship in-
creases. Additional benefit can be obtained by in-
creasing the number of unaffected sibs in the fam-
ily; however, on a per person basis, increasing this
number past two will generally not greatly enhance
the power.

Pooling provides the great advantage of reduc-
ing the amount of molecular work required but can-
not guarantee the absolute robustness possible
when individual genotyping is performed and ana-
lyzed by statistics such as the TDT. In the subse-
quent paper, we consider other statistics based on
individual genotyping and their power.

Our motivation for these analyses is the recent
demonstration of the limited power of linkage
analysis to detect susceptibility loci of modest effect,
which are likely to predominate for complex disor-
ders (Risch and Merikangas 1996). The approach of
genome-wide linkage disequilibrium studies is also
not of unlimited potential. The primary limitation
is the lack of complete disequilibrium with any
tested candidate allele, which can substantially re-
duce power (Muller-Myhsok and Abel 1997). The
original proposal by Risch and Merikangas (1996)
was to test potentially functional variations in
known genes. The limitation of this approach is the
small proportion of known genes and the consider-
able future effort required to identify and sequence
all human genes.

An alternative approach is to use a very dense
map of anonymous polymorphisms, perhaps
spaced 100 kb apart. It is as yet difficult to predict
how successful this type of approach would be, ow-
ing to lack of knowledge of the distribution of link-
age disequilibrium in the human genome. This dis-
tribution is certainly not uniform across chromo-
somes nor across populations. With the addition of
further empirical studies of linkage disequilibrium
in different populations in the future, it may be pos-
sible to better predict the power of this type of strat-
egy. However, the considerations given in the final
section of this paper and, in particular, formula 31
should serve as a warning that this latter approach
will not automatically be successful, unless an ex-
tremely dense map of markers is used.

Given the large amount of genotyping likely to
be required by either of the above strategies, our
conclusions regarding number of families of differ-
ent designs is quite relevant. We emphasize that
multiplex families, that is, those with many affected
sibs, are optimal and can greatly reduce the total
sample size, but only if parents are available or by
using unrelated controls.

Although there has been considerable emphasis
of late on using family-based controls, we have
shown that using unaffected sibs as controls may
lead to an unacceptable loss of power when com-
pared with designs using unrelated controls. Case-
control association studies have often been criti-
cized by geneticists for lack of robustness to strati-
fication artifact. However, few direct examples of
this explanation for spurious or nonreplicable ge-
netic associations have been offered. Instead, the
culprit may simply be type 1 error, resulting from
large numbers of tests of this type being conducted,
with few true underlying genetic associations. If so,
using family-based designs will not eliminate nor
even reduce the rate of false-positive claims. Using a
design with low power may actually lead to an in-
creased frequency of false positives among reported
significant associations.

Thus, for early onset diseases, when parents are
readily available, using multiplex families with par-
ents as controls is a reasonable strategy. However,
when parents are missing, we recommend using un-
related controls, at least as a first step, to retain high
power to detect susceptibility loci of modest effect.
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