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ABSTRACT

The orbital separation of compact binary stars will shrink with time owing to the emission of gravita-
tional radiation. This inspiral phase of a binary systemÏs evolution generally will be very long compared
to the systemÏs orbital period, but the Ðnal coalescence may be dynamical and driven to a large degree
by hydrodynamic e†ects, particularly if there is a critical separation at which the system becomes
dynamically unstable toward merger. Indeed, if weakly relativistic systems (such as white dwarfÈwhite
dwarf binaries) encounter a point of dynamical instability at some critically close separation, coalescence
may be entirely a classical, hydrodynamic process. Therefore, a proper investigation of this stage of
binary evolution must include three-dimensional hydrodynamic simulations.

We have constructed equilibrium sequences of synchronously rotating, equal-mass binaries in circular
orbit with a single parameterÈthe binary separationÈvarying along each sequence. Sequences have
been constructed with various polytropic as well as realistic white dwarf and neutron star equations of
state. Using a Newtonian, Ðnite-di†erence hydrodynamics code, we have examined the dynamical stabil-
ity of individual models along these equilibrium sequences. Our simulations indicate that no points of
instability exist on the sequences we analyzed that had relatively soft equations of state (polytropic
sequences with polytropic index n \ 1.0 and 1.5 and two white dwarf sequences). However, we did iden-
tify dynamically unstable binary models on sequences with sti†er equations of state (n \ 0.5 polytropic
sequence and two neutron star sequences). We thus infer that binary systems with soft equations of state
are not driven to merger by a dynamical instability. For the n \ 0.5 polytropic sequence, the separation
at which a dynamical instability sets in appears to be associated with the minimum energy and angular
momentum conÐguration along the sequence. Our simulations suggest but do not conclusively demon-
strate that, in the absence of relativistic e†ects, this same association may also hold for binary neutron
star systems.

Subject headings : binaries : close È hydrodynamics È instabilities È stars : neutron È white dwarfs

1. INTRODUCTION

The coalescence of double white dwarf and double
neutron star binaries is important to examine, since this
process may produce a number of astrophysically inter-
esting objects and events. Double white dwarf binary
mergers have been suggested as precursors to some Type Ia
supernovae & Tutukov Iben &(Iben 1984 ; 1988, 1991 ; Iben
Webbink et al. and to long gamma-ray1989 ; Branch 1995)
bursts & Canel White dwarfÈwhite dwarf(Katz 1996).
mergers may also lead to the formation of massive, single
white dwarfs or neutron stars & Petschek(Colgate 1982 ;

& Nomoto & Tutukov Saio,Saio 1985 ; Iben 1986 ; Kawai,
& Nomoto & Leonard to the formation1987 ; Chen 1993),
of subdwarf stars, or to the formation of hydrogen deÐcient,
highly luminous stars and references therein ;(Iben 1990

Neutron starÈneutron star mergers mayWebbink 1984).
result in bursts of gamma-rays and neutrinos, in the pro-
duction of r-process elements, and in the formation of black
holes et al. Paczyn� ski,(Eichler 1989 ; Meyer 1989 ; Narayan,
& Piran & Shapiro et al.1992 ; Rasio 1992 ; Davies 1994 ;

& Canel et al. Janka, &Katz 1996 ; Lipunov 1995 ; Ru†ert,
Scha� fer but see the simulations of Naka-1996 ; Shibata,
mura, & Oohara and & Ru†ert which cast1993 Janka 1996,
doubt on the neutron starÈneutron star merger scenario as
a precursor to gamma-ray bursts).

Merging compact binaries are also expected to be rela-
tively strong sources of gravitational radiation. The gravita-

1 Currently at the Department of Physics and Atmospheric Science,
Drexel University, Philadelphia, PA 19104.

tional radiation emitted during the inspiral phase of double
neutron star binary evolution (i.e., before tidal e†ects
become sizable) is likely to be detected by terrestrial inter-
ferometric detectors such as LIGO and VIRGO, which will
be sensitive to frequencies in the range of 10È103 Hz

et al. et al.(Abramovici 1992 ; Cutler 1993 ; Thorne 1995).
Proposed ““ dual-recycled ÏÏ interferometers and spherical
““ TIGA ÏÏ-type resonant detectors will be more sensitive
than LIGO to the higher frequency radiation, Hz,Z103
emitted during the brief Ðnal merger stage of the
coalescence & Meers et al.(Meers 1988 ; Strain 1991 ; Cutler

& Johnson however,1993 ; Merkowitz 1995 ; Thorne 1995 ;
see & Mathews who indicate that the gravita-Wilson 1995,
tional wave radiation emitted during this phase may have a
lower frequency than previously expected). The gravita-
tional wave radiation emitted during the merger phase in
double white dwarf binary evolution is unlikely to be
detected in the near future because the expected frequency
of the radiation falls in or just beyond the upper end of the
frequency range (10~4 to 10~1 Hz) of proposed space-based
laser interferometric detectors et al. et(Faller 1989 ; Hough
al. and the duration of the phase will be too short to1995),
produce a signiÐcant signal in this range of the detectorsÏ
sensitivity.

Because the Ðnal stages of binary coalescence are driven
in part by sizable nonlinear tidal e†ects, numerical hydro-
dynamic techniques must be used to properly follow the
evolution of merging binaries. The Ðrst step in performing
such a hydrodynamic simulation is the construction of an
appropriate initial model. The coalescence of the chosen
binary system must proceed on a dynamical timescale (on

311



312 NEW & TOHLINE Vol. 490

the order of a few initial orbital periods) in order for an
explicit hydrodynamics code to be able to carry out the
simulation in a reasonable amount of computational time.
Hence, the components of the initial binary model must
either be at a separation where they are dynamically
unstable to coalescence, or they must be forcibly brought to
coalescence from a wide separation (e.g., by draining orbital
angular momentum away from the system in a way that
mimics the e†ects of the gravitational wave radiation
reaction). Using the former methodology, the work present-
ed herein focuses on the identiÐcation of dynamically
unstable binary systems.

The initial separation at which a particular binary model
becomes dynamically unstable to merger, if one exists, can
be found via a stability analysis of a set of binary models
constructed in hydrostatic equilibrium, along a constant
mass sequence of decreasing orbital separation. This
sequence serves as an approximate representation of the
evolution of the binary as its components are brought closer
together by the e†ects of gravitational radiation. Such
analyses have recently been done by Lai, Rasio, and
Shapiro and by Rasio and Shapiro for binaries with poly-

tropic equations of state. In a polytropic equation of state
(EOS), the pressure P is expressed in terms of the density o
as P \ Ko1`1@n, where K is the polytropic constant and n is
the polytropic index (see The analytical work of Lai,° 2).
Rasio, and Shapiro utilized an approximate energy varia-
tional method and studied detached binaries with com-
ponents that have various mass ratios, spins, and polytropic
indices (Lai, Rasio, & Shapiro 1993a, 1993b, 1994a, 1994b ;
hereafter LRS 1993a, LRS 1993b, LRS 1994a, LRS 1994b).
The numerical work of Rasio and Shapiro utilized the
smoothed particle hydrodynamics technique to study
detached and contact binaries with components having
various mass ratios but equal spins and polytropic indices
(Rasio & Shapiro hereafter RS 1992, RS1992, 1994, 1995 ;
1994, RS 1995 ; for earlier work see & MonaghanGingold

Hachisu & Eriguchi1979 ; 1984a, 1984b ; Hachisu 1986b).
We performed stability analyses of equilibrium sequences

of double white dwarf binaries constructed with the zero-
temperature white dwarf EOS (Chandrasekhar 1967),
double neutron star binaries constructed with realistic
neutron star equations of state (adapted from Cook,
Shapiro, & Teukolsky and, for the sake of compari-1994),
son with the work of Lai, Rasio, and Shapiro and Rasio and
Shapiro, polytropic binaries with n \ 0.5, 1.0, and 1.5 equa-
tions of state. The examined equilibrium sequences were
constructed with the self-consistent Ðeld technique of
Hachisu which produces models of rotating,(1986a, 1986b),
self-gravitating Ñuid systems in hydrostatic equilibrium.
For simplicity, all binary models along these sequences
were constructed as synchronously rotating systems having
equal-mass (q \ 1.0) components. The relative stability of
individual binary systems along selected sequences was
examined using a three-dimensional, Ðnite-di†erence
hydrodynamics code. Both the construction of our equi-
librium binary sequences and our stability tests along these
sequences have been done using purely Newtonian gravity
and Newtonian dynamics.

Our numerical techniques are brieÑy described in ° 2.
Constructed equilibrium sequences are presented in and° 3,
our dynamical tests of the stability of individual models
along selected sequences are presented in Finally, the° 4.
implications of these results are discussed in ° 5.

2. NUMERICAL TECHNIQUES

Our simulations of close binary systems involve the solu-
tion of the following set of equations that govern the struc-
ture and evolution of a nonrelativistic Ñuid in cylindrical
coordinates :

the continuity equation,

Lo

Lt
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PoissonÏs equation

+2' \ 4nGo ; (5)

and the EOS (see below). In the above equations, is the¿
velocity, S \ ou, T \ ow, and are the radial, ver-A \ oRvÕ
tical, and angular momentum densities, respectively (where
u, w, and are the radial, vertical, and azimuthal com-vÕ
ponents of the velocity, respectively), R, /, and z are the
cylindrical coordinates, and ' is the gravitational potential.

We have used three types of barotropic equations of state
in this work. The Ðrst, and simplest, type is a polytropic
EOS for which

P \ Ko1`1@n , (6)

where K is the polytropic constant and n, the polytropic
index, determines the degree of compressibility of the Ñuid
(the higher the value of n, the more compressible/the softer
the Ñuid).

The second type of EOS used is the zero-temperature
white dwarf (WD) EOS which rep-(Chandrasekhar 1967),
resents the pressure distribution of a completely degenerate
electron gas :

P \ a
0
[x(2x2 [ 3)(x2 ] 1)1@2 ] 3 ln (x ] J1 ] x2)]

x 4 (o/b
0
)1@3 , (7)

where dyn cm~2, ga
0

\ 6.00 ] 1022 b
0

\ 1.95(k
e
/2) ] 106

cm~3, and is the mean molecular weight per electron. Wek
e

have used in all of our computations. The heaviestk
e
\ 2

nonrotating single object that can be constructed with this
EOS has a mass of 1.44 (this is the Chandrasekhar massM

_
M

Ch
).

The third type of EOS used here is a realistic neutron star
(NS) EOS. We have chosen three such equations of state
(from among the 14 realistic NS equations of state listed in

Shapiro, & Teukolsky [hereafter CST]), eachCook, 1994
with a di†erent degree of compressibility (one soft, one
medium, and one hard). SpeciÐcally, the chosen soft EOS is
CSTÏs equation of state F ; the medium one is CSTÏs equa-
tion of state FPS; and the hard one is CSTÏs equation of
state L (see references within CST for the original sources of
these equations of state). We obtained these equations of
state in tabular form from G. B. Cook (1995, private
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communication). The tables each provide D500 values of
the pressure P for values of o ranging over 15 orders of
magnitude, from D8 to 1016 g cm~3 (note that it is actually
the number density whereN \ o/m

neutron
, m

neutron
\ 1.67

] 10~24 g, that is tabulated). Because we wanted to
perform parallel Ðnite-di†erence hydrodynamics (FDH)
simulations of systems with these equations of state and did
not possess an interpolation algorithm designed for efficient
use on a parallel machine, polynomial Ðts to the tabular
data were necessary. Some numerical manipulation of the
data was also needed because of the particulars of the tech-
nique used in the initial model construction. (See New 1996
for details.)

If the only motion of a Ñuid system is rotation about an
axis with an angular velocity ), which is constant in time
and a function of only the distance from the rotation axis,
the structure of the system is described by the following
single expression :

1

o
$P ] $' ] $((R) \ 0 , (8)

where the z-axis has been chosen as the axis of rotation and
the centrifugal potential is ((R) \ [/ )2(R)R dR. Such a
Ñuid is said to be in hydrostatic equilibrium because the
forces due to its pressure and to its gravitational and cen-
trifugal potentials are in balance. All of the initial equi-
librium binary systems studied in this work have been
constructed in hydrostatic equilibrium according to this
prescription, along with the additional constraint that
angular velocity is a spatial constant (i.e., not a function)

0
of R). In this case of uniform rotation, ((R) \ [)

0
2 R2/2.

2.1. Self-consistent Field Code

The method we have used to construct the equilibrium
models is HachisuÏs grid-based, three-dimensional self-
consistent Ðeld (HSCF) technique (Hachisu 1986a, 1986b).
This iterative technique produces rotating, self-gravitating
Ñuid systems in hydrostatic equilibrium. Our version of the
HSCF three-dimensional code computes the gravitational
potential via a direct numerical solution of PoissonÏs equa-
tion Details of the method used can be found in(eq. [5]).
Tohline (1978).

An estimate of the quality of the converged equilibrium
conÐguration is obtained from a determination of how well
the energy is balanced in the system. This balance is mea-
sured by the virial error, V E :

V E 4
o 2T ] W ] 3 / P dV o

o W o
, (9)

where T is the kinetic energy, W is the gravitational poten-
tial energy, and V is the volume of the model. The virial
errors in our equilibrium models constructed with poly-

tropic and WD equations of state were typically D10~3 to
10~4 ; those in models constructed with the realistic NS
equations of state were typically D10~2.

The forms of the WD and realistic NS equations of state
are such that when they are used in the HSCF code, the
density maxima of the models to be constructed musto

max
be given to the code as input. Thus, because we were inter-
ested in constant mass sequences for our stability analyses
of close binaries, we had to perform an iteration in the
choice of until we arrived at a conÐguration with theo

max
desired in the case of models with the WD and realisticM

T
,

NS equations of state. However, in the polytropic case, con-
verged models can actually be obtained without an a priori
choice of and then later scaled as desired.o

max
Our three-dimensional equilibrium conÐgurations are

assumed to be symmetric about the z \ 0 (equatorial)
plane ; this symmetry will be referred to as equatorial sym-
metry. Because our version of the three-dimensional HSCF
code constructs binaries with only equal-mass components,
a periodic symmetry over the azimuthal range 0 \ / \ n is
also assumed. This means that a quantity U speciÐed at an
angle / is equivalent to that same quantity speciÐed at all
angles /@ for which /@ \ (/ ] mn) and m is an integer :

U(/ ] mn) \ U(/) . (10)

This symmetry will be referred to as n-symmetry.

2.2. Finite-Di†erence Hydrodynamics Code

A Ðnite-di†erence hydrodynamics (FDH) code was used
to solve, on a discrete numerical grid, equations and(1)È(5)
an EOS (see above), which govern the temporal evolution of
a Ñuid. FDH codes di†er from smoothed particle hydrody-

namics (SPH) codes in that they follow the evolution of the
Ñuid as it Ñows through a Ðxed set of grid cells, instead of
treating the Ñuid as a set of particles and following the
evolution of each particle.

The three-dimensional FDH code used in the present
study is a Fortran 90 version of the Fortran 77 code
described by and Tohline, &Woodward (1992) Woodward,
Hachisu It was written, principally by Woodward, to(1994).
take advantage of the parallel architecture of the MasPar
computers on which it is run. The accuracy of the code is
second order in both time and space. The numerical tech-
niques employed are discussed in detail in Woodward

The solution to PoissonÏs equation is(1992). (eq. [5])
obtained through the alternating direction implicit (ADI)
method Sun, & Tohline(Cohl, 1997).

As in the HSCF code, the grid cells are uniformly spaced
in each of the three directions, and equatorial and n sym-
metries are assumed. The single precision hydrodynamic
simulations presented here were performed on cylindrical
grids with resolutions of 64 ] 64 ] 64.

In the binary stability analysis simulations presented in
from D2600 to 16,700 time steps were required to° 4,

follow each binary through one initial orbital period, P
I
.

On the 8 K node MasPar MP-1 at Louisiana State Uni-
versity (LSU), each time step took B19 CPU s (or B73 ks
per grid zone) ; hence, these simulations required B14È88
CPU hr per This large range is due to the variation inP

I
.

the size of the integration time step that could be taken in
the di†erent simulations. The size of this time step is
restricted in order to ensure the numerical stability of the
computations. The simulations we performed varied in
length from to A few of our binary dynamical1P

I
5P

I
.

stability test simulations were run on the 4 K node MasPar
MP-2 at the Scalable Computing Laboratory of the
Department of Energy Ames Laboratory at Iowa State
University. The CPU time per time step required for simu-
lations conducted on the MP-2 is that of the timeD3

5
required to run on the MP-1 at LSU.

Our FDH code typically follows the Ñuid evolution in the
inertial reference frame. However, we chose to incorporate
the option of running the code in a frame of reference that
rotates with the initial angular velocity of the Ñuid, This)

0
.

choice was motivated by a desire to minimize numerical
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e†ects that might artiÐcially inÑuence the stability of the
binary systems studied. The particular e†ect we sought to
minimize was dissipation due to numerical viscosity, which
arises from the coarseness of the Ðnite di†erencing. The
hope was that diminishing the motion of the Ñuid through
the grid by running in the rotating reference frame would
also diminish the dissipative e†ects of numerical viscosity
on the Ñuid (see for further details). (We also tried updat-° 4
ing the angular velocity of the rotating frame of reference
once during some of the simulations presented here, in
order to further minimize the dissipation due to numerical
viscosity).

The rotating reference frame adds two terms to the radial
equation of motion and one to the azimuthal equa-(eq. [2])
tion (see & Wilson(eq. [4]) Norman 1978) :
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The term that has been added to the radial equationo)2
0
R

of motion results from the centrifugal force ; the other two
added terms result from the Coriolis force. Note that the
centrifugal term in can be rewritten as A@2/equation (11)
(oR3), where We use this form in the actualA@ 4 o)

0
R2.

computation of the centrifugal term, with A@ centered at the
same place in each grid cell as is A, in order to be numeri-
cally consistent with the computation of the curvature term
A2/(oR3) in the radial equation of motion.

A discussion of the boundary conditions, vacuum treat-
ment, and rotation axis treatment implemented in our
hydrodynamics code is presented in New (1996).

3. EQUILIBRIUM SEQUENCES

We have constructed hydrostatic equilibrium sequences
of synchronized close binaries with polytropic as well as
realistic WD and NS equations of state. The individual
binary models along each sequence have the same EOS and
constant total mass, but decreasing binary separation,M

T
,

a. Here a is the distance measured between the pressure
(density) maxima of the stellar components. Each such
sequence represents a quasi-static approximation to the
evolution of a binary system in which gravitational radi-
ation gradually carries away the systemÏs orbital angular
momentum. These binary models were constructed, on
128 ] 128 ] 128 grids, with the HSCF technique (see ° 2.1),
which creates models of rotating, self-gravitating Ñuid
systems in hydrostatic equilibrium.

It should be noted that the true physical viscosity present
in double NS binaries is not expected to be strong enough
to enforce synchronization & Cutler(Bildsten 1992 ;

and the viscosity of the degenerateKochanek 1992),
material in double WD binaries probably is not strong
enough to synchronize them either (this can be shown by
applying the arguments given in & Cutler toBildsten 1992
WDs and using the values for the viscosity of degenerate
material given in However, if magnetic ÐeldsDurisen 1973).
are present, they may bring about synchronization. In any
case, synchronization is at least a simplifying assumption.
Furthermore, since NSs have relatively strong gravitational

Ðelds, Newtonian models and simulations of double NS
binaries need to be viewed with caution.

3.1. Polytropic Sequences

The equilibrium sequences that we constructed for binary
models with polytropic indices n \ 0.5, 1.0, and 1.5 are dis-
played in For each n, the total energy, E, and totalFigure 1.
angular momentum, J, are plotted versus the separation, a.
Note that we do not claim that the results given in this
Ðgure or in the rest of the manuscript are necessarily accu-
rate to the number of digits in which they are reported ; the
number of digits in which the results are presented allows
the display of characteristics of the equilibrium sequences
and the di†erentiation between individual models on these
sequences. As mentioned in the equations of state of° 2.1,
the polytropic models are such that the total mass of the
system, does not have to be chosen before its construc-M

T
,

tion but can be scaled afterwards as desired.
There are in fact three parameters, andM \ 1/2M

T
, R

sph
,

the polytropic constant K, that set the scale of a polytropic
model. Here is the radius of a spherical star of mass MR

sph
and polytropic index n. These parameters are related
according to the following equation (Chandrasekhar 1967) :

M \ 4nm
n

C(n ] 1)K

4nG

D~(3`n)@2(1~n)CR
sph
r
n

D(3~n)@(1~n)
, (13)

where and are Lane-Emden constants for a particularm
n

r
n

value of n (see for their values corresponding toTable 1
n \ 0.5, 1.0, and 1.5). Thus, only two of these three param-
eters are independent ; if two of them are speciÐed, the other
one is automatically determined. The quantities in Figure 1
are themselves normalized to G, M, and SpeciÐcally, ER

sph
.

has been divided by J has been divided byGM2R
sph
~1,

and a has been divided byG1@2M3@2R
sph
1@2, R

sph
.

In the discussion that follows, as in all values ofFigure 1,
the binary separation, a, have been normalized to OnR

sph
.

each sequence, point C marks the system where the surfaces
of the two binary components just come into contact.
Systems to the right of this point are detached binaries and
systems to left are contact binaries, or ““ dumbbells. ÏÏ For the
sake of illustration, displays an isodensity surfaceFigure 2
image of an example detached binary model (a \ 3.28,
n \ 1.0) and of an example dumbbell model (a \ 2.70,
n \ 1.0). Points M mark the models along each sequence
that have the minimum total energy and the minimum total
angular momentum. Along all three polytropic sequences,
the minimum in E occurs at the same separation as the
minimum in J. (See for a discussion of the signiÐcance° 3.4
of these minima.) The model with the smallest separation on
each sequence, marked with a T, will be referred to as the
““ terminal ÏÏ model. No synchronously rotating binary
models with the EOS particular to that sequence can be
constructed in equilibrium with a smaller separation than
that of the terminal model because the centrifugal force

TABLE 1

LANE-EMDEN CONSTANTS, ANDm
n

r
n

n m
n

r
n

0.5 . . . . . . . . . . . . . . . . . . 3.7871 2.7528
1.0 . . . . . . . . . . . . . . . . . . 3.14159 3.14159
1.5 . . . . . . . . . . . . . . . . . . 2.71406 3.65375

NOTE.ÈFrom Chandrasekhar 1967.
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FIG. 1.ÈSequences of binaries with polytropic indices n \ 0.5, 1.0, and 1.5 are displayed. Each sequence displays the total energy, E, and the total angular
momentum, J, of synchronized equilibrium binaries with the same total mass, but changing separation, a. See for details on how to scale the ofM

T
, ° 3.1 M

T
each polytropic sequence. Quantities have been normalized to G, and where is the radius of a spherical polytrope of mass M andM \ M

T
/2, R

sph
, R

sph
polytropic index n. Points M mark binary systems with the minimum E and J along each sequence. Points C mark the system where the surfaces of the stars
come into contact. Points T mark the terminal model.

would exceed the gravitational force along the equator of
such systems.

The separation at which this termination of the sequence
occurs increases from a \ 2.45 for n \ 1.5 to a \ 2.76 for
n \ 0.5. The separation at which the minima occur also
increases from a \ 2.70 for n \ 1.5, to a \ 2.89 for n \ 1.0,
to a \ 3.11 for n \ 0.5. Note that contact occurs to the right
of the minima for n \ 1.5 and to the left of the minima for
n \ 1.0 and 0.5. We have determined that points C and M
coincide for n \ 1.177. If the binary components were
spherical, their separation at the point of contact would be
a \ 2. However, a(C) ranges from 2.81 for n \ 1.5 to 2.94 for
n \ 0.5.

3.1.1. Comparison with Previous Work

In this section, we compare our polytropic equilibrium
sequences to those presented in andLRS 1993b, RS 1992,

Note that LRS andRS 1995. in 1993b, RS 1992, RS 1994,
binary separation is deÐned as the distanceRS 1995,

between the centers of mass of the binary components and,
as mentioned above, we deÐne it as the distance between the
pressure (density) maxima of the components. For ease of
comparison, the values of binary separation presented in
this section that are based on our work do represent the
separation between the centers of mass of our binary com-
ponents. In this section and the rest of this manuscript, any

FIG. 2a FIG. 2b

FIG. 2.ÈExample isodensity images of a detached binary and a contact binary, or ““ dumbbell. ÏÏ These two binaries have n \ 1.0 ; the separation of the
detached binary shown in (a) is a \ 3.28 ; the separation of the dumbbell shown in (b) is a \ 2.70. The density level is 5.0 ] 10~3 of the maximum density.
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binary separation that refers to the distance between the
components centers of mass will be denoted as a

cm
.

The analytical stability analyses of whichLRS 1993b,
utilized an approximate energy variational technique, also
showed that simultaneous minima in E and J existed along
sequences of constant mass, synchronized binaries with
n \ 0.5, 1.0, and 1.5. (According to the minimaLRS 1993b,
occur at on the n \ 0.5 sequence and ata

cm
\ 2.99 a

cm
\

2.76 on the n \ 1.0 sequence.) This analytical method
cannot construct contact binaries and thus, according to
our sequences, should not be able to identify minima on the
n \ 1.5 sequence. However, because the n at which the
minima and points of contact coincide is D2.0 in their
study, Lai, Rasio, and Shapiro do Ðnd minima(LRS 1993b)
for the n \ 1.5 sequence at a

cm
\ 2.55.

In addition, approximate equilibrium sequences were
constructed with the SPH techniques of Rasio and Shapiro

The n \ 1.0 sequence presented in(RS 1992 ; RS 1995). LRS
has simultaneous minima at which is1993b a

cm
\ 2.90,

closer to our value of than the analytically deter-a
cm

\ 2.98
mined found in The n \ 1.5a

cm
\ 2.76 LRS 1993b.

sequence presented in has the minima atRS 1995 a
cm

\
2.67. No sequence with n \ 0.5 has been published by Rasio
and Shapiro. contains a summary of the separa-Table 2
tions, of the models at the minima of the polytropica

cm
,

sequences as determined in and thisLRS 1993b, RS 1995,
work. For completeness, this table also gives the values of
binary separation determined by this work in terms of the
separation, a, between the pressure maxima of the com-
ponents.

also shows equilibrium sequences ofHachisu (1986b)
n \ 0.5 and 1.5 polytropes. However he presents his results
as sequences of versus J2 instead of E or J versus a. A)

0
2

comparison between results and ours isHachisuÏs (1986b)
given in To conform with HachisuÏs notation, theFigure 3.
quantities in this Ðgure are normalized to 4nG, andM

T
, V

T
,

where is the total volume of the binary system. SpeciÐ-V
T

cally, has been divided by and J2 has been)
0
2 4nGM

T
/V

T
,

divided by 4nGM
T
3 V

T
1@3.

3.2. W hite Dwarf Sequences

We have constructed equilibrium sequences for binary
models with the zero-temperature WD EOS. Because the
HSCF technique requires that the maximum density of the
desired model (which sets be given as input when thisM

T
)

EOS is used, it is impossible to build a single sequence that

TABLE 2

SEPARATION OF MODELS AT MINIMA OF

POLYTROPIC SEQUENCES

n

TECHNIQUE 0.5 1.0 1.5

Analytic . . . . . . 2.99a 2.76a 2.55a

SPH . . . . . . . . . . . . . 2.90a 2.67b

HSCF . . . . . . . . 3.20c 2.98c 2.77c

3.11d 2.89d 2.70d

a From separation betweenLRS 1993b,
componentsÏ centers of mass.

b From separation betweenRS 1995,
componentsÏ centers of mass.

c From this work, separation between
componentsÏ centers of mass.

d From this work, separation between
componentsÏ pressure maxima.

FIG. 3.ÈThe square of the angular velocity vs. the square of the)
0

total angular momentum J of equilibrium binaries with the same total
mass, but decreasing separation, a, is shown for both the n \ 0.5 andM

T
,

1.5 sequences of (individual models connected by solidHachisu (1986b)
lines) and for our sequences (individual models marked with plus signs).
The quantities are normalized to 4nG, and the total volume of theM

T
, V

T
,

system.

can be scaled to any desired with this EOS. Instead weM
T

have constructed separate WD sequences, each of which
represents models with one speciÐc value of We haveM

T
.

constructed nine such sequences with ranging fromM
T

0.298 to 2.72 Four representative sequences, withM
_

.
1.19, 2.03, and 2.72 are shown inM

T
\ 0.500, M

_
, Figure 4.

The other Ðve sequences are displayed in the Appendix,
along with the four WD sequences presented in (InFigure 4.
addition, two WD sequences with [nearM

T
2M

Ch
] \ 2.81

and 2.85 are presented in the they have beenAppendix ;
excluded from the discussion below because of their irregu-
lar nature.) The normalization in is the same asFigure 4
that in However, in this case has been deter-Figure 1. R

sph
mined numerically by constructing a spherical WD of mass

in hydrostatic equilibrium.M \ M
T
/2

The separations, a, of the models at the points of contact,
the minima, and the terminal points on the constructed WD
equilibrium sequences are shown in as a functionFigure 5
of the total binary system mass. Along the WD sequences,
the separation of the terminal model gradually increases
from a \ 2.45 when to a \ 2.86 whenM

T
\ 0.298 M

_
As in the polytropic sequences presented inM

T
\ 2.72 M

_
.

the previous section, simultaneous minima in E and J exist
along each WD sequence. The point of contact on these
sequences always occurs at a larger separation than the
minima; the separation at which it occurs also gradually
increases from a \ 2.81 for to a \ 3.05 forM

T
\ 0.298 M

_
(except for a slight decrease in this separa-M

T
\ 2.72 M

_
tion for the sequence). The separation of theM

T
\ 1.19 M

_
model at the minimum of each sequence also increases from
a \ 2.70 for to a \ 2.97 forM

T
\ 0.298 M

_
M

T
\ 2.72

however, in this case there is a somewhat more sub-M
_

;
stantial decrease in this separation between the M

T
\ 0.500

and sequences (for which a \ 2.73).M
_

M
T

\ 2.36 M
_

3.2.1. Comparison with Previous Work

has constructed double WD binaryHachisu (1986b)
sequences along which instead of was held con-o

max
, M

T
,

stant. shows a comparison between the J versusFigure 6
relations for the models with the minimum angularM

T
momentum on the sequences and those onHachisu (1986b)
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FIG. 4.ÈThe same as except for binaries with the zero-temperature WD EOS. Because, unlike the polytropes, the of these systems cannot beFig. 1 M
T

scaled, separate sequences must be constructed for binaries with di†erent Four representative sequences with 1.19, 2.03, and 2.72 areM
T
. M

T
\ 0.500, M

_
shown here. In the sequences for seven other values of are shown, along with those given here. The normalization is the same as in butAppendix, M

T
Fig. 1,

here is the radius of a spherical model with the WD EOS and massR
sph

M \ M
T
/2.

our sequences. The angular momentum in this Ðgure is nor-
malized to 1050 in cgs units and the mass is normalized to

The comparison is excellent for low masses ; however,M
_

.
the relations deviate slightly for M

T
º 2 M

_
.

3.3. Neutron Star Sequences

We have constructed equilibrium sequences for binary
models with three realistic NS equations of state of varying
compressibility (F, soft ; FPS, medium; L, hard). As in the
case of the WD EOS, the desired for each of theseM

T

FIG. 5.ÈThe separation, a, of the models at the points of contact
(crosses), the minima (asterisks), and the terminal points (plus signs) on the
WD equilibrium sequences are shown as a function of the total mass, M

T
,

of the binaries on those sequences.

sequences must be speciÐed prior to their construction. We
have chosen to construct one sequence with M

T
\ 2.80 M

_
for each of the three equations of state. These three
sequences are displayed in and have been normal-Figure 7
ized to G, M, and The values of were determinedR

sph
. R

sph
numerically by constructing a spherical star of mass M \

in hydrostatic equilibrium, with each of the three NSM
T
/2,

equations of state.

FIG. 6.ÈThe total angular momentum, J, vs. the total mass, of theM
T
,

models with the minimum J on each of constantHachisuÏs (1986b)
maximum density sequences (individual models marked with crosses) and
on each of our constant sequences (individual models marked withM

T
plus signs). The angular momentum has been normalized to 1050 in cgs
units and the total mass to M

_
.
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FIG. 7.ÈThe same as but for binaries with the F, FPS, and L realistic NS equations of state. The on each of these sequences is 2.80 (unlikeFig. 1, M
T

M
_

polytropes, the of these systems cannot be scaled). The normalization is the same as in but here is the radius of a spherical model constructedM
T

Fig. 1, R
sph

with the particular NS EOS of the sequence and a mass M \ M
T
/2.

The terminal model occurs at the same separation on the
F and FPS sequences (a \ 2.59) and at a slightly wider
separation (a \ 2.62) on the L sequence. The locations of
the minima in E are not very well deÐned on these
sequences. For the F sequence, the E minimum likely occurs
in the range 2.75 \ a \ 2.81 ; for the FPS sequence, in the
range 2.72 \ a \ 2.81 ; and for the L sequence, in the range
2.72 \ a \ 2.84. The J minima are well deÐned and occur at
nearly the same separation on all three sequences (on the F
sequence at a \ 2.80, on the FPS sequence at a \ 2.78, and
on the L sequence at a \ 2.79). Like the WD sequences, the
minima always occur at a smaller separation than do the
points of contact. However, on all of the NS sequences these
two points are very close together. The separation between
points C and M thus seems to be determined by the lower
density regions of the objects, since this is where the equa-
tions of state, which di†er signiÐcantly only in the density
regimes above nuclear density (2.8 ] 1014 g cm~3), are
similar.

The scatter in E displayed near the minima of these
sequences may result in part from our piecemeal recon-
struction of G. B. CookÏs (1995, private communication)
tabular NS equations of state (see and from the approx-° 2)
imate manner in which we calculate the internal energy E

int
of the models (we compute an e†ective polytropic index n

eff
for each grid zone in the model and then use these spatially
varying indices to calculate the internal energy according to

P dV ). Because of these factors, we identify the JE
int

\ / n
eff

minima as the true minima along these sequences and, as
before, have marked their location with the letter M.
Another factor that must be kept in mind when studying the
features of these NS sequences is that the virial error (V E),

which measures the quality of the equilibria, is D10~2. This
is 1È2 orders of magnitude higher than the V E of models
along the polytropic and WD EOS sequences and almost
certainly results in part from the piecemeal forms of the NS
equations of state used. Note that for the polytropic and
WD EOS, we typically very accurately pinpointed the loca-
tion of the minimum by moving point B (one of the two
points on the surface of the star that must be given as input
to the HSCF code and whose position inÑuences the
separation of the binary components) one grid cell at a time
in the region of the minimum in order to get as many
models as possible with the grid resolution we used.
However, since we had difficulty obtaining converged
models for some portions of the NS sequences, we moved
point B two grid cells at a time when constructing NS
models. Thus the locations of the minima are slightly more
uncertain for the NS equations of state than in the other
studied equations of state.

3.4. Nature of the Minima

Turning points on equilibrium sequences, like the
minima present in E and J along the sequences presented
above, are usually associated with points of instability. The
two types of instability that will be discussed below are
secular instability and dynamical instability. For an insta-
bility to be classiÐed as dynamical, according to the conven-
tion in it must conserve energy, angularLRS 1993b,
momentum, and circulation. If an instability proceeds as a
result of some mechanism that dissipates one of the con-
served quantities, e.g., via viscosity or gravitational radi-
ation, then it is classiÐed as a secular instability (see also

for discussions of dynamical versus secularTassoul 1978
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I
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instabilities). A dynamical instability takes place on the
dynamical timescale of the system; a secular instability
takes place on the timescale of the particular dissipative
mechanism that induces it.

The minima in E and J on synchronous binary sequences
have been identiÐed as points of secular instability by pre-
vious authors. Lai, Rasio, and Shapiro stated(LRS 1993b)
that the neighboring models adjacent to the model at the
minimum of each sequence are uniformly rotating and
therefore can only be reached with the aid of viscosity. Thus
they concluded that this minimum cannot be associated
with a dynamical instability, since viscosity does not pre-
serve circulation. Their approximate analytical method pre-
dicts that on polytropic sequences with n \ 0.7, dynamical
instabilities exist at separations smaller than those of the
minima. For the n \ 0.5 sequence, these authors conclude
that the dynamical instability sets in at a

cm
\ 2.68. Hachisu

and references therein) also labels turning points(1986b
along his synchronous polytropic and WD sequences as
points of secular instability.

Because our hydrodynamics code does not include the
dissipative e†ects of either the gravitational radiation reac-
tion or the true Ñuid viscosity, we are unable to conÐrm the
presence of a secular instability with a hydrodynamics
simulation. However, it is possible to study the dynamical

stability of a system with our code. In the following section,
we present the results of our FDH tests of the dynamical
stability of models on sequences selected from those pre-
sented above and compare these results with those of other
authors.

4. HYDRODYNAMIC TESTS OF STABILITY

To determine if a point of dynamical instability exists on
an equilibrium sequence like those discussed in the previous
section, the dynamical stability of individual models along
the sequences may be tested with FDH simulations. We
have done just that for the three polytropic sequences of

for a low mass and a high mass° 3.1, (M
T

\ 0.500 M
_

)
WD sequence from and for two of(M

T
\ 2.03 M

_
) ° 3.2,

the three realistic NS equations of state sequences of ° 3.3.
All of these stability tests were performed in the rotating

reference frame in order to minimize the dissipative(° 2.2)
e†ects of the numerical viscosity that results from the dis-
crete nature of the computational simulation. The inÑuence
of numerical viscosity on the evolution of binary systems
can be seen in which shows a comparison betweenFigure 8,
simulations of one particular WD binary system (M

T
\

0.500 and a \ 2.63) performed in the inertial frameM
_

(dashed curve) and in the rotating frame (solid curve). This
Ðgure shows the evolution of the moment of inertia of the

FIG. 8.ÈThe moment of inertia, I, normalized to as a function of time, t, normalized to the initial orbital period, is given for dynamical(MR
sph
2 ), P

I
,

stability tests of a binary with the zero-temperature WD EOS, and a \ 2.63. The solid curve shows the results of a simulation performedM
T

\ 0.500 M
_

,
with our second-order accurate FDH code in the rotating frame, the dashed curve shows the test performed with the same code but in the inertial frame, and
the dot-dashed curve shows the test performed in the rotating frame, but with the advection terms in the FDH code reduced to Ðrst-order accuracy.
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system, I, as a function of time, t. The evolution of I is more
instructive than the evolution of the binary separation itself,
since the latter quantity can only be measured by discrete
jumps in the location of the density maximum on the grid,
whereas I varies smoothly with time.

As can be seen from the binary appears to beFigure 8,
dynamically unstable when the simulation is performed in
the inertial frame (dashed curve), as I plummets on a time-
scale of to By contrast, the same model evolved in2P

I
3P

I
.

the rotating frame is certainly not unstable to merger, as
can be seen by the relatively steady behavior of its moment
of inertia over time. Thus, simulations done in the rotating
frame prevent the misidentiÐcation of models as dynami-
cally unstable, which are so only because of numerical arti-
facts. In order to illustrate that the accuracy of the Ðnite
di†erencing scheme also inÑuences the amount of numerical
viscosity present in a simulation, also shows theFigure 8
same model evolved in the rotating frame but with a FDH
code that used a Ðrst-order accurate advection scheme to
compute the divergence terms in equations (dot-(1)È(4)
dashed curve). This Ðgure indicates that the accuracy of the
code has an e†ect on the evolution of this system that is
similar to that of the Ñow of the Ñuid through the grid in the
inertial frame.

Models along the equilibrium sequences presented in ° 3
were constructed with a grid resolution of 128 ] 128 ] 128.
However, a FDH simulation with this resolution cannot be
done on the MP-1 computer at LSU. So portions of the
selected sequences mentioned above have been recomputed
on 64 ] 64 ] 64 grids. It is the stability of models on these
new sequences that actually has been tested. For complete-
ness, gives the separations of the points of contact,Table 3
minima, and terminal models for both the 643 and the 1283
versions of the polytropic and WD sequences discussed
below. (We do not show this comparison for the NS
sequences because we have not determined or were unable
to accurately determine the location of some of these points
on the 643 NS sequences.)

4.1. W hite Dwarf Sequences

4.1.1. M
T

\ 2.03 M
_

In the lower panel of I(t) is shown for WDFigure 9,
binaries with separations ranging from(M

T
\ 2.03 M

_
)

a \ 2.80 (triple dot-dashed curve) (a dumbbell model just
past the point of contact) to a \ 2.53 (solid curve) (the ter-
minal model on the sequence). For the sake of convenience,
the relevant equilibrium sequence itself is reprinted in the
upper panel of The moments of inertia of theFigure 9.
binary models at the points of contact, minima, and termi-

TABLE 3

COMPARISON OF 643 AND 1283 SEQUENCES

EOS Grid Size a(C) a(M) a(T)

WD, 2.03 M
_

. . . . . . . 643 2.84 2.67 2.53
1283 2.84 2.68 2.53

WD, 0.500 M
_

. . . . . . 643 2.81 2.70 2.45
1283 2.81 2.70 2.46

n \ 1.5 . . . . . . . . . . . . . . . 643 2.81 2.70 2.45
1283 2.81 2.70 2.45

n \ 1.0 . . . . . . . . . . . . . . . 643 2.84 2.88 2.62
1283 2.84 2.89 2.61

n \ 0.5 . . . . . . . . . . . . . . . 643 2.94 3.10 2.77
1283 2.94 3.11 2.76

FIG. 9.ÈStability tests of the WD sequence. The vari-M
T

\ 2.03 M
_

ables in the lower plot are the same as but the simulations all areFig. 8,
performed in the rotating reference frame with the second-order accurate
FDH code. The solid curve is the stability test of the terminal model on the
sequence (a \ 2.53), the dashed curve is the test of the model with a \ 2.63,
the dot-dashed curve is the test of the model at the minimum (a \ 2.67),
and the triple dot-dashed curve is the test of the model just past point of
contact (a \ 2.80). The moments of inertia of the binary models at the
points of contact, minima, and termination along the equilibrium sequence
are labeled with the letters C, M, and T, respectively. For convenience, the
sequence itself has been reprinted from in the upper plot.Fig. 4

nation along the equilibrium sequence (constructed on a
128 ] 128 ] 128 grid) are labeled with the letters M, C, and
T, respectively. Note that because the binary models used in
the FDH stability tests were from sequences constructed on
64 ] 64 ] 64 grids, there may be a slight o†set between the
initial values of I for these models and the points marked as
M, C, and T on the I(t) plot, since they correspond to the
128 ] 128 ] 128 sequence.

All of the models tested on the sequence are dynamically
stable. Thus we conclude that no point of dynamical insta-
bility exists along this sequence. In we presentFigure 10,
isodensity images of an example of the evolution of a stable
binary. The images are from the simulation of the model at
the minimum of the sequence, correspond-M

T
\ 2.03 M

_
ing to the dot-dashed curve of Since the simula-Figure 9.
tion was performed in the rotating frame, the binary does
not appear to pivot very much in this set of images even
though the simulation was carried out for D4P

I
.

4.1.2. M
T

\ 0.500 M
_

Our tests of the sequence began withM
T

\ 2.03 M
_

models of wider separation and continued up the sequence
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FIG. 10a FIG. 10b

FIG. 10c FIG. 10d

FIG. 10e FIG. 10f

FIG. 10.ÈIsodensity images of a stable binary with the WD EOS, and a \ 2.67. The density level is 5 ] 10~4 of the maximum density.M
T

\ 2.03 M
_

,
was taken at Fig. 10b, at Fig. 10c, at Fig. 10d, at Fig. 10e, at and Fig. 10f, at Since theFig. 10a t \ 0.0P

I
; t \ 0.8P

I
; t \ 1.5P

I
; t \ 2.3P

I
; t \ 3.0P

I
; t \ 3.8P

I
.

simulation was performed in the rotating frame, the binary does not appear to pivot very much in this set of images.

to the terminal model. Because no point of dynamical insta-
bility was found on this sequence, we performed our tests of
the sequence on models much closer to theM

T
\ 0.500 M

_
terminal model, knowing that we could work our way back
down the sequence to the point of dynamical instability if
we found models that were unstable. (This methodology
assumes that all models that have separations less than that
of the model located at the point of dynamical instability
will also be unstable.) But, as can be seen from the bottom
panel of both a model at a \ 2.63 (dashed curve)Figure 11,
and the terminal model at a \ 2.45 (solid curve) are dynami-
cally stable against merger. Thus we again infer that there is
no point of dynamical instability along this sequence.

4.2. Polytropic Sequences

4.2.1. n \ 1.5

Based on the results of the stability tests of the WD
sequences, we began our investigation of this sequence with
the terminal model (a \ 2.45). Because an n \ 1.5 polytrope

is supposed to be a fair representation of a low-mass WD,
we have plotted the I(t) of the terminal model (a \ 2.45) in

(dot-dashed curve) along with the models of theFigure 11
low-mass WD sequence. The polytropic model has been
scaled to represent a binary with and aM

T
\ 0.500 M

_
equal to that of a spherical WD with the same mass.R

sph
This sets K according to As can be seen, theequation (13).
evolution of the n \ 1.5 terminal model closely follows that
of the low-mass WD terminal model. From its stability, we
infer that the remainder of the models on the n \ 1.5
sequence are also stable, and thus no point of dynamical
instability exists along this sequence either. This result con-
Ñicts with the SPH simulations presented in whichRS 1995,
identiÐed a point of dynamical instability at ona

cm
^ 2.4

their n \ 1.5 sequence.

4.2.2. n \ 1.0

As illustrates, we have performed dynamicalFigure 12
stability tests of four binaries on the n \ 1.0 sequence with
separations ranging from a \ 3.28 (triple dot-dashed curve)
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FIG. 11.ÈStability tests of the WD and the n \ 1.5M
T

\ 0.500 M
_

sequences. The same variables and code as used in The solid curve isFig. 9.
the simulation of the terminal model (a \ 2.45) on the M

T
\ 0.500 M

_
WD sequence (the equilibrium sequence itself is reprinted from in theFig. 4
upper plot), the dashed curve is the test of the model on this same sequence
with a \ 2.63, and the dot-dashed curve is the test of the terminal model
(a \ 2.45) on the n \ 1.5 polytropic sequence.

to a \ 2.62 (solid curve) (terminal model). All were stable
against merger on a dynamical timescale. The moment of
inertia of the terminal model actually increases by D20%
over the timescale depicted here ; the moment oft \ 4P

I
inertia of the initially most widely separated model
(a \ 3.28) decreases by about the same percentage. The two
other models exhibit behavior in between these two
extremes. Note that after an initial dip, the moment of
inertia of the model at the minimum of the sequence
(a \ 2.88 ; dot-dashed curve) is nearly constant. These results
conÑict with the SPH simulations presented in RS 1992,
which identiÐed a model with as being dynami-a

cm
\ 2.8

cally unstable.

4.2.3. n \ 0.5

As illustrates, we have tested the dynamicalFigure 13
stability of Ðve binaries on the n \ 0.5 sequence with
separations ranging from a \ 3.41 (long-dashed curve) to
a \ 2.77 (solid curve) (terminal model). Both the model at
the minimum of the sequence (a \ 3.10 ; short-dashed curve)
and the terminal model were unstable to merger on a
dynamical timescale. The other three more widely separated
models, including the model (a \ 3.17 ; dot-dashed curve)
located just prior to the minimum of the sequence, were
stable. Thus dynamical instability sets in at the minimum of

FIG. 12.ÈStability tests of n \ 1.0 sequence. The same variables and
code as described in The solid curve is the test of the terminal modelFig. 9.
(a \ 2.62), the dashed curve is the test of the model with a \ 2.70, the
dot-dashed curve is the test of the model at the minimum of the sequence
(a \ 2.88), and the triple dot-dashed curve is the test of the model with
a \ 3.28. The equilibrium sequence itself is reprinted from in theFig. 1
upper plot.

this sequence (a \ 3.10, The SPH simulationsa
cm

\ 3.20).
presented in identiÐed a point of dynamical insta-RS 1994
bility along this sequence at a

cm
\ 2.97.

4.3. Neutron Star Sequences

4.3.1. Equation of State L

As illustrates, we have tested the dynamicalFigure 14
stability of a NS binary system near the minimum (a \ 2.79)
and a more widely separated model (a \ 3.26) on the realis-
tic NS equation of state L sequence. The model near the
minimum of the sequence became unstable to dynamical
merger in The more widely separated model appears to1P

I
.

be stable ; its behavior resembles that of the most widely
separated models tested on the n \ 1.0 and 0.5 sequences
(see Figs. and Although we have not accurately iden-12 13).
tiÐed the separation at which the dynamical instability sets
in along this sequence, it has obviously already done so at
a \ 2.79. By analogy with the n \ 0.5 sequence, it is pos-
sible to infer that the onset of dynamical instability is
associated with the region of the minimum energy and
angular momentum along the sequence.

4.3.2. Equation of State F

As illustrates, we have tested the dynamicalFigure 15
stability of the model at the minimum (a \ 2.80) of the
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FIG. 13.ÈStability tests of n \ 0.5 sequence. The same variables and
code as described in The solid curve is the test of the terminal modelFig. 9.
(a \ 2.77), the short-dashed curve is the test of the model at the minimum
of the sequence (a \ 3.10), the dot-dashed curve is the test of the model
with a \ 3.17, the triple dot-dashed curve is the test of the model with
a \ 3.24, and the long-dashed curve is the test of the model with a \ 3.41.
The equilibrium sequence itself is reprinted from in the upper plot.Fig. 1

realistic NS equation of state F sequence. Like the model
near the minimum of the equation of state L sequence, the
model at the minimum of this sequence is also unstable to
dynamical merger. Although we have not tested the stabil-
ity of a widely separated model on this sequence, we infer,
by analogy with the n \ 0.5 and equation of state L
sequences, that there exist more widely separated models on
this sequence that are stable and that the point of onset of
the dynamical instability may be associated with the region
of the minimum.

4.3.3. Equation of State FPS

We have not tested the stability of any of the models on
the realistic NS equation of state FPS sequence. However,
since our tests of the sti† equation of state L and the soft
equation of state F produced similar results, we expect that
the stability properties of the models on this EOS of
medium sti†ness will resemble the properties of models on
these other realistic NS equations of state sequences.

5. DISCUSSION AND CONCLUSIONS

We have examined the dynamical stability of synchro-
nously rotating, equal-mass binaries with polytropic, zero-
temperature WD and realistic NS equations of state.
SpeciÐcally, we tested the dynamical stability of individual

FIG. 14.ÈStability tests of equation of state L sequence. The same
variables and code as described in The solid curve is the test of theFig. 9.
model near the minimum of the sequence (a \ 2.79) ; the dashed curve is
the test of the model with a \ 3.26. The equilibrium sequence itself is
reprinted from (upper panel).Fig. 7

models constructed along equilibrium sequences of binaries
with the same total mass, and EOS but decreasingM

T
,

separation, in order to determine if any models on these
sequences were unstable to merger on a dynamical time-
scale.

Our stability analyses started with two WD EOS
sequences, one with a low total mass and(M

T
\ 0.500 M

_
)

one with a fairly high total mass used as(M
T

\ 2.03 M
_

),
representatives of the nine regular WD EOS sequences we
constructed (which ranged in mass from to 2.72M

T
\ 0.298

Our simulations indicate that no points of dynamicalM
_

).
instability exist on either of these two sequences. We have
inferred from this result that it is likely (although not
certain) that the other WD sequences are also dynamically
stable. This being the case, we expect that WD mergers will
only happen via secular processes and that it will not be
possible to properly simulate the coalescence of equal-mass,
double WD binaries using explicit FDH (or SPH) tech-
niques. It still remains to be seen whether or not double
WD binaries having unequal mass components are suscep-
tible to merger on a dynamical timescale.

Our examination of the n \ 1.5 and n \ 1.0 polytropic
sequences also identiÐed no points of dynamical instability.
This result conÑicts with the published results of Rasio and
Shapiro who identiÐed a dynamically(RS 1992 ; RS 1995)
unstable binary between the minimum and the terminal
point of the n \ 1.5 sequence and another just past the
minimum of the n \ 1.0 sequence. However, as in RS 1994,
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FIG. 15.ÈStability tests of equation of state F sequence. The same
variables and code as described in The solid curve is the test of theFig. 9.
system at the minimum of the sequence (a \ 2.80). The equilibrium
sequence itself is reprinted from (upper plot).Fig. 7

our test of the n \ 0.5 sequence does indicate the presence
of a dynamical instability. In our simulations, this insta-
bility sets in at the minimum of the sequence. Rasio and
Shapiro locate the point of dynamical instability(RS 1994)
at Although they do not state where thea

cm
\ 2.97.

minimum of their sequence is located, the analytical work in
places it at Recall that LRSLRS 1993b a

cm
\ 2.99. in

Lai, Rasio, and Shapiro label this minimum as a1993b,
secular instability, and they predict that a dynamical insta-
bility sets in at a smaller separation on this(a

cm
\ 2.68)

sequence. However, in light of the simulations presented in
and in this work, it seems likely that the minimumRS 1994

itself may be associated with the onset of the dynamical
instability.

The di†erences between our results and those of Rasio
and Shapiro for the sequences with the(RS 1992 ; RS 1995)
softer equations of state may result from the fact that SPH
has difficulty modeling low-density regions that are more
extensive in systems with softer equations of state. It is
interesting to note that the analytical work in LRS 1993b
predicts that points of dynamical instability exist only on
sequences for which n is less than B0.7. It would be intrigu-
ing to test the stability of other polytropic sequences with
our FDH code in order to determine at what value of n the
dynamical instability Ðrst appears. Another point that is
worth emphasizing again is that our stability tests were run

in the rotating frame of reference. We believe that we would
have misidentiÐed some truly stable models as being
unstable had these tests been performed in the inertial frame
(see the discussion in associated with° 4 Fig. 8).

Our stability analyses of the realistic NS equations of
state sequences identiÐed models at (or near) the minima of
the soft equation of state F and the hard equation of state L
as being dynamically unstable. However, because of com-
puting resource constraints, we have been unable to deter-
mine whether or not the onset of the dynamical instability
takes place in the regions of the minima of these sequences.
If the n \ 0.5 sequence is taken as an example, one might
infer this to be the case. Although we did not test the stabil-
ity of the medium equation of state FPS sequence we con-
structed, we expect that such tests would yield results
similar to those of the other two NS equations of state. If
further simulations of the n \ 0.5 and NS equations of state
sequences do identify the minimum as the point of dynami-
cal instability, the question will arise as to why this turning
point does not also mark the onset of dynamical instability
on the sequences with softer equations of state. At this time
we are unable to provide a physical explanation for this
possibility (see, however, the discussion in LRS 1993b).

All of the binary models that we have identiÐed as stable
against dynamical merger in have not necessarily° 4
become steady state conÐgurations by the end of our simu-
lations. In fact, at the end of our simulations the moments of
inertia of some of the stable models are still decreasing
gradually and those of others are still increasing gradually.
However, these binaries did not become unstable to merger
on a dynamical timescale (i.e., about a few P

I
).

It is interesting to note that this gradual (secular-type)
evolution of our models is such that models before the
minimum of a sequence (i.e., models with separations larger
than that of the model at the minimum) tended to exhibit
decreasing moments of inertia, and those after the minimum
tended to exhibit increasing moments of inertia. (This trend
appears in the simulations of models on the low-mass WD
sequence and is more pronounced in the tests of models
with sti†er equations of state.) Lai, Rasio, and Shapiro (LRS

have indicated that viscosity does indeed cause the1994b)
orbits of models before the minimum of a sequence to
decay. They also suggest that as a result of the action of
viscosity, the orbit of a binary past the minimum ““ . . . can
either expand . . . as the system is driven to a lower energy,
stable synchronized state, or it can decay . . . as the stars are
driven to coalescence. ÏÏ

The description in of the action of viscosity isLRS 1994b
consistent with our results if the gradual evolution of the
moments of inertia of our models is attributed to the e†ects
of the remaining numerical viscosity in our code (which
acted in our case to increase the moments of inertia of
dynamically stable models past the minima). By carrying
out simulations in the rotating reference frame (as is illus-
trated in we have overcome the primary e†ect ofFig. 8),
numerical viscosity, which is to dissipate orbital motions
and drive systems to coalescence. In simulations performed
in the rotating frame, it may be a higher order e†ect of
numerical viscosity on any internal motions that develop in
the systems that causes the observed secular-type evolution
of our binary models. Note that this higher order e†ect of
numerical viscosity cannot be identiÐed as the mechanism
responsible for driving any of our unstable models to
coalescence because the timescale of their evolution was
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FIG. 16.ÈWhite dwarf equilibrium sequences. Here, 0.500, 0.803, 1.19, 1.63, 2.03, 2.36, 2.58, 2.72, 2.81, and 2.85M
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FIG. 16ÈContinued

dynamical and not gradual. In addition, had this aspect of
numerical viscosity played a signiÐcant role in the evolution
of the terminal model on the n \ 0.5 sequence, its moment
of inertia should have increased gradually, but instead its
moment of inertia decreased and the model merged on a
dynamical timescale.

Even though our work indicates that there is no point of
dynamical instability along the n \ 1.0 sequences, it would
still be possible for an explicit hydrodynamics code to
follow the merger of a close binary with this EOS if it was
assumed to represent a neutron starÈneutron star system.
This is because the timescale, q, on which gravitational radi-
ation would drive a close neutron starÈneutron star binary
to coalescence is on the order of its initial orbital period, P

I
.

According to & Teukolsky a point massShapiro (1983),
approximation to this timescale is

q \
5

256

c5

G3

a4

2M3
. (14)

If the binary at the minimum of our n \ 1.0 sequence is
assumed to have components with M \ 1.4 andM

_
km, then q \ 2.5 (Note that for theR

sph
\ 10 ms \ 1.6P

I
.

binary at the minimum of our WD EOSM
T

\ 2.03 M
_

sequence, and for the binary withqP
I
~1 \ 2.2 ] 107

a \ 2.63 on our WD EOS sequence,M
T

\ 0.500 M
_

Hence, if the e†ects of the gravitationalqP
I
~1 \ 6.4 ] 109.)

radiation reaction were accounted for, as other authors
have done (see, e.g., & Nakamura etOohara 1990 ; Davies
al. Centrella, & McMillan et al.1994 ; Zhuge, 1994 ; Ru†ert

the merger of the n \ 1.0 binary would proceed on a1996),
timescale comparable to the dynamical timescale.

The variation between the results of our stability analyses
of binaries with the softer equations of state and those of RS

and emphasizes the importance of comparing1992 RS 1995
the results of hydrodynamic simulations performed with
di†erent numerical techniques. Certainly the inclusion of
more complex physics, such as the e†ects of the gravita-
tional radiation reaction and of full general relativity,
should be the aim of research in this Ðeld. However, an
e†ort should be made to reach agreement on the results of
much simpler, Newtonian simulations in order that their
results and the results of more complex simulations can be
conÐdently presented as guides to those who will be design-
ing and building gravitational radiation detectors and inter-
preting the data collected at future gravitational radiation
observatories.
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APPENDIX

EQUILIBRIUM SEQUENCES

Eleven WD EOS equilibrium binary sequences, each with a di†erent are displayed in See for details.M
T
, Figure 16. ° 3.2
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