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Abstract

A triple of finite von Neumann algebras B ⊆ N ⊆M is said to have the relative
weak asymptotic homomorphism property if there exists a net of unitary operators
{uλ}λ∈Λ in B such that

lim
λ
‖EB(xuλy)− EB(EN (x)uλEN (y))‖2 = 0

for all x, y ∈M . We prove that a triple of finite von Neumann algebras B ⊆ N ⊆M
has the relative weak asymptotic homomorphism property if and only if N contains
the set of all x ∈ M such that Bx ⊆

∑n
i=1 xiB for a finite number of elements

x1, . . . , xn in M . Such an x is called a one sided quasi-normalizer of B, and the
von Neumann algebra generated by all one sided quasi-normalizers of B is called the
one sided quasi-normalizer algebra of B. We characterize one sided quasi-normalizer
algebras for inclusions of group von Neumann algebras and use this to show that
one sided quasi-normalizer algebras and quasi-normalizer algebras are not equal in
general. We also give some applications to inclusions L(H) ⊆ L(G) arising from
containments of groups. For example, when L(H) is a masa we determine the unitary
normalizer algebra as the von Neumann algebra generated by the normalizers of H
in G.

Key Words: normalizer, quasi-normaliser, von Neumann algebra, discrete group, homo-
morphism
AMS classification: 46L10, 22D25

1 Introduction

Let M be a finite von Neumann algebra with a faithful normal trace τ , and let B be a
von Neumann subalgebra of M . The algebra B has the weak asymptotic homomorphism
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property if there exists a net of unitary operators {uλ}λ∈Λ in B such that

lim
λ
‖EB(xuλy)− EB(x)uλEB(y)‖2 = 0, x, y ∈M. (1.1)

This property was introduced by Robertson, Sinclair and the third author [19, 18, 20] for
masas (maximal abelian subalgebras) of type II1 factors. They showed that if B has the
weak asymptotic homomorphism property, then B is singular in M , and the purpose of
introducing this property was to have an easily verifiable criterion for singularity. In [21],
Sinclair, White, Wiggins and the third author proved that the converse is also true: if
B is a singular masa then B has the weak asymptotic homomorphism property (which is
equivalent to the weakly mixing property of Jolissaint and Stalder [8] for masas). We note
that the results of [21] are formulated for M a II1 factor, but the proofs only require that
M be a finite von Neumann algebra with a faithful normal trace. Thus the equivalence
of the weak asymptotic homomorphism property and singularity for masas is still valid at
this greater level of generality. However, this equivalence breaks down beyond the masa
case; in [7], Grossman and Wiggins showed that if B is a singular factor then B does not
necessarily have the weak asymptotic homomorphism property.

In [2], Chifan introduced a generalized version as follows. A triple of von Neumann
algebras B ⊆ N ⊆M is said to have the relative weak asymptotic homomorphism property
if there exists a net of unitary operators {uλ}λ∈Λ in B such that

lim
λ
‖EB(xuλy)− EB(EN(x)uλEN(y))‖2 = 0, x, y ∈M. (1.2)

Let NM(B) := {u a unitary inM : uBu∗ = B} denote the group of unitary normalizers of
B in M . Chifan showed that if B is a masa in a separable type II1 factor M , then

B ⊆ NM(B)′′ ⊆M (1.3)

has the relative weak asymptotic homomorphism property (see [10] for a different proof).
A natural extension of Chifan’s theorem is to consider a general triple of finite von

Neumann algebras B ⊆ N ⊆ M and to ask for conditions which ensure that the relative
weak asymptotic homomorphism property holds. Our main purpose in this paper is to
provide a characterization of this property and to consider some subsequent applications.
Our characterization is based on certain operators that are closely related to the quasi-
normalizers introduced by Popa in [14, 15]. Recall that he defined a quasi-normalizer for
an inclusion B ⊆ M to be an element x ∈ M for which a finite set {x1, . . . , xn} ⊆ M can
be found so that

Bx ⊆
n∑
i=1

xiB, xB ⊆
n∑
i=1

Bxi, (1.4)

and we denote the set of quasi-normalizers by qNM(B). These are not quite the correct
operators for our purposes, so we make a small adjustment by defining a one sided quasi-
normalizer to be any element x ∈ M satisfying only the first inclusion in (1.4), and we
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denote the set of such elements by qN (1)
M (B). In Section 3, we prove that a triple of finite

von Neumann algebras B ⊆ N ⊆ M has the relative weak asymptotic homomorphism
property if and only if N contains qN (1)

M (B). The von Neumann algebra generated by

qN (1)
M (B) is called the one sided quasi-normalizer algebra of B in M , and is denoted by

W ∗(qN (1)
M (B)), a notation which reflects the fact that qN (1)

M (B) is not necessarily self-
adjoint. In the case that B is a masa this characterization, combined with Chifan’s theorem,
gives that W ∗(qN (1)

M (B)) = NM(B)′′. It had been shown earlier in [17] that qNM(B)′′ =

NM(B)′′ when M is a separable II1 factor, and so W ∗(qN (1)
M (B)) = qNM(B)′′ for masas,

although these von Neumann algebras are different in general (see Example 5.3). The
advantage of the one sided quasi-normalizers is that they seem to be easier to calculate in
specific examples, as we will see below. We note that one sided objects of this type play a
significant role in understanding normalizers. For example, one sided unitary normalizers
were important in [22], and a one sided version of groupoid normalizers was a key technical
tool in [6].

After our characterization has been established in Section 3, we devote Section 4 to
the study of W ∗(qN (1)

M (B)). Here we show, among other results, that the one sided quasi-
normalizer algebra and the quasi-normalizer algebra of an atomic von Neumann subalgebra
B of a finite von Neumann algebra M are equal to M .

In Section 5, we apply these results to inclusions of von Neumann algebras arising from
inclusions H ⊆ G of discrete groups. We characterize one sided quasi-normalizer algebras
of such inclusions in terms of properties of the groups, and also show that one sided quasi-
normalizer algebras and quasi-normalizer algebras are not equal in general. Making use
of the one sided quasi-normalizers, we are able to study unitary normalizers and show,
for example, that when L(H) is a masa in L(G), its unitary normalizer algebra is the von
Neumann algebra of the group of normalizers of H in G. This leads to new characterizations
of when L(H) is either singular or Cartan. In section 6, we summarize the relationships
between various types of normalizer algebras, and we show that one sided quasi-normalizer
algebras have some special properties when compared to the other types. For example, we
establish a tensor product formula in Proposition 6.1 which parallels similar formulas for
groupoid normalizers and intertwiners proved in [6].

Sufficient background material on finite von Neumann algebras for this paper may be
found in [20].
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ability held at Texas A&M University in the summer of 2009. It is our pleasure to thank
the organizers of the workshop and the NSF for the financial support to the workshop.
The authors also thank Ionut Chifan, Kunal Mukherjee and Stuart White for valuable
comments on this paper.
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2 Preliminaries

Throughout this paper, M is a finite von Neumann algebra with a given faithful normal
trace τ . We use L2(M) = L2(M, τ) to denote the Hilbert space obtained by the GNS-
construction of M with respect to τ . The image of 1 ∈ M via the GNS construction
is denoted by ξ and the image of x ∈ M is denoted by xξ. Throughout this paper,
we will reserve the letter ξ for this purpose. The trace norm of x ∈ M is defined by
‖x‖2 = ‖x‖2,τ = τ(x∗x)1/2. The letter J is reserved for the isometric conjugate linear
operator on L2(M) defined on Mξ by J(xξ) = x∗ξ and extended by continuity to L2(M)
from the dense subspace Mξ.

Let B ⊆ M be an inclusion of finite von Neumann algebras. Then there exists a
unique faithful normal conditional expectation EB from M onto B preserving τ . Let eB
be the projection of L2(M) onto L2(B). For x ∈ M , we have eB(xξ) = EB(x)ξ. The
von Neumann algebra 〈M, eB〉 generated by M and eB is called the basic construction,
which plays a crucial role in the study of von Neumann subalgebras of finite von Neumann
algebras. The basic construction has many remarkable properties (see [9, 12, 20]). In
particular, there exists a unique faithful tracial weight Tr on 〈M, eB〉 such that

Tr(xeBy) = τ(xy), x, y ∈M. (2.1)

Furthermore, we can choose a net of vectors {ξi}i∈I from L2(M) such that

Tr(t) =
∑
i∈I

〈tξi, ξi〉2,τ , t ∈ 〈M, eB〉+ (2.2)

(see [20, Lemma 4.3.4, Theorem 4.3.11]). An examination of the proof of [20, Lemma 4.3.4]
shows that we may construct the index set I to have a minimal element i = 1 and we may
take ξ1 to be ξ. Letting t = eB in (2.2), we have eBξi = 0 for all i 6= 1, i ∈ I.

There is a well defined map Ψ : MeBM →M , given by

Ψ(xeBy) = xy, x, y ∈M, (2.3)

and called the pull down map. It was shown in [12] (also see [20]) that the pull down
map can be extended to a contraction from L1(〈M, eB〉,Tr) to L1(M, τ), which is just the
predual of the embedding M ↪→ 〈M, eB〉.

Let w ∈ 〈M, eB〉, and let η = w(ξ) ∈ L2(M). Then

Lη(xξ) = Jx∗J(η), x ∈M, (2.4)

is a densely defined operator affilated with M . We may identify Lη with η in a canonical
way so that ‖Lη‖2,τ = τ(L∗ηLη)

1/2 = ‖η‖2,τ is well defined (see [11]). Note that weB = LηeB.
Indeed, for x ∈M , we have

LηeB(xξ) = Lη(EB(x)ξ) = JEB(x∗)J(η) = JEB(x∗)Jw(ξ)
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= wJEB(x∗)J(ξ) = weB(xξ). (2.5)

For z ∈ 〈M, eB〉, define ‖z‖2,Tr = Tr(z∗z)1/2. The following lemmas are well known to
experts. For the reader’s convenience, we include the proofs.

Lemma 2.1. Suppose that w ∈ 〈M, eB〉 and η = w(ξ) ∈ L2(M). Then ‖weB‖2,Tr = ‖η‖2,τ .

Proof. The equalities

‖weB‖2
2,Tr = Tr(eBw

∗weB) =
∑
i∈I

〈weBξi, weBξi〉2,τ

= 〈w(ξ), w(ξ)〉2,τ = 〈η, η〉2,τ = ‖η‖2
2,τ (2.6)

follow from (2.2) and the fact that eBξi = 0 for i 6= 1.

The following lemma plays a key role in the proof of Lemma 3.5.

Lemma 2.2. Suppose that w ∈ 〈M, eB〉 and η = w(ξ) ∈ L2(M). Then

Ψ(weBw
∗) = LηL

∗
η, (2.7)

where Ψ is the pull down map and Lη is the operator defined by (2.4).

Proof. Since η ∈ L2(M), there exists a sequence {xn}∞n=1 in M such that

lim
n→∞

‖Lη − xn‖2,τ = lim
n→∞

‖η − xnξ‖2,τ = 0. (2.8)

Therefore,

‖LηL∗η − xnx∗n‖1,τ ≤ ‖(Lη − xn)L∗η‖1,τ + ‖xn(L∗η − x∗n)‖1,τ

≤ ‖Lη − xn‖2,τ‖Lη‖2,τ + ‖xn‖2,τ‖Lη − xn‖2,τ → 0. (2.9)

By Lemma 2.1,
lim
n→∞

‖weB − xneB‖2,Tr = lim
n→∞

‖η − xnξ‖2,τ = 0, (2.10)

and so limn→∞ ‖weBw∗ − xneBx∗n‖1,Tr = 0. Noting that Ψ(xneBx
∗
n) = xnx

∗
n, the equality

Ψ(weBw
∗) = LηL

∗
η follows since Ψ is a continuous contraction from L1(〈M, eB〉,Tr) to

L1(M, τ).

We have included here only the facts about the basic construction that we will need
subsequently. Much more detailed coverage can be found in [3, 9, 12, 20].



6

3 Main result

This section is devoted to the main result of the paper, Theorem 3.1. We state it immedi-
ately, but defer the proof until Lemmas 3.2–3.5 have been established. We have included
part (iii) for emphasis, but it is of course just a notational restatement of (ii).

Theorem 3.1. The following conditions are equivalent for finite von Neumann algebras:

(i) The triple B ⊆ N ⊆M has the relative weak asymptotic homomorphism property;

(ii) If x ∈ M satisfies Bx ⊆
∑n

i=1 xiB for a finite number of elements x1, . . . , xn in M ,
then x ∈ N ;

(iii) qN (1)
M (B) ⊆ N .

To prove this theorem, we will need several lemmas. The following is essentially [2,
Lemma 2.5] (see also [16, Corollary 2.3]), and so we omit the proof.

Lemma 3.2. Suppose that a triple of finite von Neumann algebras B ⊆ N ⊆ M does not
have the relative weak asymptotic homomorphism property. Then there exists a nonzero
projection p ∈ B′ ∩ 〈M, eB〉 such that 0 < Tr(p) <∞ and p ≤ 1− eN .

Lemma 3.3. Let B ⊆ N ⊆M be a triple of finite von Neumann algebras, let p ∈ 〈M, eB〉
be a finite projection satisfying p ≤ 1−eN , and let ε > 0. Then there exists a finite number
of elements x1, . . . , xn ∈M such that EN(xi) = 0 for 1 ≤ i ≤ n, and∥∥∥∥∥p−

n∑
i=1

xieBx
∗
i

∥∥∥∥∥
2,Tr

< ε. (3.1)

Proof. By [13, Lemma 1.8], there are elements y1, . . . , yn ∈M such that∥∥∥∥∥p−
n∑
i=1

yieBy
∗
i

∥∥∥∥∥
2,Tr

< ε/3. (3.2)

For 1 ≤ i ≤ n, let xi = yi − EN(yi), and note that EN(xi) = 0. Since peN = 0, it follows
from (3.2) that ∥∥∥∥∥

n∑
i=1

EN(yi)eBy
∗
i

∥∥∥∥∥
2,Tr

=

∥∥∥∥∥eN
(
p−

n∑
i=1

yieBy
∗
i

)∥∥∥∥∥
2,Tr

< ε/3. (3.3)

Also, the identity

(1− eN)

(
p−

n∑
i=1

yieBy
∗
i

)
eN = −

n∑
i=1

(1− eN)yieNeBeNy
∗
i eN



7

= −
n∑
i=1

(yi − EN(yi))eBEN(y∗i )

= −
n∑
i=1

xieBEN(y∗i ) (3.4)

shows that ∥∥∥∥∥
n∑
i=1

xieBEN(y∗i )

∥∥∥∥∥
2,Tr

=

∥∥∥∥∥(1− eN)

(
p−

n∑
i=1

yieBy
∗
i

)
eN

∥∥∥∥∥
2,Tr

< ε/3, (3.5)

from (3.2). Using the expansion

yieBy
∗
i = (xi + EN(yi))eBy

∗
i = xieBy

∗
i + EN(yi)eBy

∗
i

= xieBx
∗
i + xieBEN(y∗i ) + EN(yi)eBy

∗
i (3.6)

and the inequalities (3.2), (3.3), and (3.5), we see that∥∥∥∥∥p−
n∑
i=1

xieBx
∗
i

∥∥∥∥∥
2,Tr

≤

∥∥∥∥∥p−
n∑
i=1

yieBy
∗
i

∥∥∥∥∥
2,Tr

+

∥∥∥∥∥
n∑
i=1

EN(yi)eBy
∗
i

∥∥∥∥∥
2,Tr

+

∥∥∥∥∥
n∑
i=1

xieBEN(y∗i )

∥∥∥∥∥
2,Tr

< ε, (3.7)

proving the result.

If p ∈ B′ ∩ 〈M, eB〉, then H = pL2(M) is a B-bimodule. Conversely, if H ⊆ L2(M) is
a B-bimodule and p is the orthogonal projection of L2(M) onto H, then p ∈ B′ ∩ 〈M, eB〉.
In the following we recall some basic facts about B-bimodules.

Suppose that a Hilbert subspace H ⊆ L2(M) is a right B-module. Let LB(L2(B),H)
be the set of bounded right B-modular operators from L2(B) into H. For instance, if
H = L2(B), then LB(L2(B), L2(B)) consists of operators induced by the left action of B
on L2(B).

Let B be a finite von Neumann algebra with a faithful normal trace τ . Suppose that
B acts on the right on a Hilbert space H. Then the dimension of H over B is defined as

dimB(H) = Tr(1), (3.8)

where Tr is the unique tracial weight on B′ satisfying the following condition

Tr(xx∗) = τ(x∗x), x ∈ LB(L2(B),H). (3.9)
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We say thatH is a finite right B-module if Tr(1) <∞. For details of finite right B-modules,
we refer to [23, Appendix A].

Suppose that H ⊆ L2(M) is a right B-module. Then H is called a finitely generated
right B-module if there exists a finite set of elements {η1, . . . , ηn} ⊆ H such that H is the
closure of

∑n
i=1 ηiB. A set {ηi}ni=1 of elements in H is called an orthonormal basis of H if

EB(η∗i ηj) = δijpi ∈ B, where each pi is a projection and, for every η ∈ H, we have

η =
n∑
i=1

ηiEB(η∗i η). (3.10)

Note that, by putting η = ηj into (3.10), we have ηj = ηjpj, 1 ≤ j ≤ n. It might appear
that the vectors on the right hand side of (3.10) are not in H, since ηi ∈ H ⊆ L2(M) and
EB(η∗i η) ∈ L1(B), but the construction of the orthonormal basis ensures that they do lie
in this Hilbert space.

Let pH be the orthogonal projection of L2(M) onto H. Following [15, Lemma 1.4.2],
we have pH =

∑n
i=1 LηieBL

∗
ηi

, where Lη is defined as in (2.4). Let wi = LηieB, a bounded
operator since wiw

∗
i ≤ pH. For each x ∈M and b ∈ B,

wiJbJ(xξ) = wi(xb
∗ξ) = LηieB(xb∗ξ) = Lηi(EB(xb∗)ξ)

= Lηi(EB(x)b∗ξ) = JbEB(x∗)J(ηi)

= JbJJEB(x∗)Jwi(ξ) = JbJwiJEB(x∗)J(ξ) = JbJwi(xξ). (3.11)

Thus wiJbJ = JbJwi, which implies that wi ∈ 〈M, eB〉. Summarizing the above arguments,
we have shown that

pH =
n∑
i=1

wieBw
∗
i , (3.12)

where wi = LηieB ∈ 〈M, eB〉. We note that every finitely generated right B-module has an
orthonormal basis, [15, 1.4.1].

The following lemma is proved by Vaes in [23, Lemma A.1] (see also [15, Lemma 1.4.2]).
It is designed to circumvent the difficulty that finite right B-modules might not be finitely
generated.

Lemma 3.4. Suppose that H is a finite right B-module. Then there exists a sequence
of projections {zn}∞n=1 in Z(B) = B′ ∩ B and a sequence of integers {kn}∞n=1 such that
limn→∞ zn = 1 in the strong operator topology and Hzn is unitarily equivalent to a left
pnMkn(B)pn right B-module pn(L2(B)(kn)) for each n, where pn is a projection in Mkn(B).
In particular, Hzn is a finitely generated right B-module.

The following lemma is motivated by [15, Lemma 1.4.2].
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Lemma 3.5. Suppose that H ⊆ L2(M) is a B-bimodule, and that H is a finitely generated
right B-module with an orthonormal basis of length k. Let pH be the orthogonal projection
of L2(M) onto H. Then there exists a sequence of projections zn in B′ ∩ M such that
limn→∞ zn = 1 in the strong operator topology and for each n,

znpHzn(xξ) =
k∑
i=1

xn,iEB(x∗n,ix)ξ, x ∈M, (3.13)

for a finite number of elements xn,1, . . . , xn,k ∈M .

Proof. Let {ηi}ki=1 ⊆ H ⊆ L2(M, τ) be an orthonormal basis for H, in which case H =
⊕ki=1[ηiB]. By (3.12), pH =

∑k
i=1 wieBw

∗
i ∈ B′ ∩ 〈M, eB〉, where wi = LηieB ∈ 〈M, eB〉.

For b ∈ B, we have

b
k∑
i=1

wieBw
∗
i =

k∑
i=1

wieBw
∗
i b. (3.14)

Applying the pull down map to both sides and noting that wi(ξ) = ηi, we obtain

b

(
k∑
i=1

LηiL
∗
ηi

)
=

(
k∑
i=1

LηiL
∗
ηi

)
b (3.15)

by Lemma 2.2. Since
∑k

i=1 LηiL
∗
ηi

is an operator affiliated with M , q ∈ B′ ∩M for all

spectral projections q of
∑k

i=1 LηiL
∗
ηi

. Therefore, there exists a sequence of projections

zn ∈ B′∩M such that limn→∞ zn = 1 in the strong operator topology and
∑k

i=1 znLηiL
∗
ηi
zn

is a bounded operator for each n. Let xn,i = znLηi , 1 ≤ i ≤ k. Then xn,i ∈M and

znpHzn(xξ) =
k∑
i=1

xn,iEB(x∗n,ix)ξ, x ∈M, (3.16)

as required.

This completes the preparations for the proof of our main result, which we now give.
We will establish only the equivalence of (i) and (ii) since, as already noted, (iii) is just a
restatement of (ii).

Proof of Theorem 3.1. (ii)⇒(i). To derive a contradiction, suppose that (ii) holds but
that the triple B ⊆ N ⊆ M does not have the relative weak asymptotic homomorphism
property. By Lemma 3.2, there exists a projection p ∈ B′ ∩ 〈M, eB〉 such that 0 < Tr(p) <
∞ and p ≤ 1− eN .

LetH = pL2(M). ThenH is a B-bimodule and a finite right B-module. By Lemma 3.4,
we may assume that H is a finitely generated right B-module. By Lemma 3.5, there exists
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a sequence of projections zn in B′ ∩M such that limn→∞ zn = 1 in the strong operator
topology and for each n,

znpzn(xξ) =
k∑
i=1

xn,iEB(x∗n,ix)ξ ∈Mξ, x ∈M, (3.17)

for a finite number of elements xn,1, . . . , xn,k ∈M . Note that znpzn ∈ B′ ∩ 〈M, eB〉. Thus,
for every x ∈M ,

B (znpzn(xξ)) = (znpzn)(Bxξ) ⊆
k∑
i=1

xn,iBξ. (3.18)

Thus znpzn(xξ) ∈ Nξ ⊆ L2(N) by the assumption (ii) of Theorem 3.1. Hence, for each
η ∈ L2(M), znpzn(η) ∈ L2(N). Since limn→∞ zn = 1 in the strong operator topology,

p(η) = lim
n→∞

znpzn(η) ∈ L2(N), (3.19)

and so p ≤ eN . On the other hand, p ≤ 1− eN and we arrive at the contradiction p = 0.

(i)⇒(ii). Suppose that x ∈ M satisfies Bx ⊆
∑n

i=1 xiB for a finite number of elements
x1, . . . , xn in M , and let H be the closure of BxBξ in L2(M). Then H is a B-bimodule
and H ⊆ L2(

∑n
i=1 xiB). Thus H is a finite right B-module. Let p be the projection of

L2(M) onto H. Then p ∈ B′ ∩ 〈M, eB〉 and 0 < Tr(p) < ∞. We need only prove that
p ≤ eN since if this is the case, then xξ = p(xξ) = eN(xξ) ∈ L2(N), implying that x ∈ N .

Suppose that eNpeN = p is not true. Then (1 − eN)p 6= 0. Replacing p by a nonzero
spectral projection of (1 − eN)p(1 − eN) corresponding to some interval [c, 1] with c > 0,
we may assume that p is a nonzero subprojection of 1− eN .

Let ε > 0. By Lemma 3.3, there exists a finite set of elements {x1, . . . , xn} ⊆ M such
that EN(xi) = 0 and

‖p−
n∑
i=1

xieBx
∗
i ‖2,Tr < ε/2. (3.20)

Let p0 =
∑n

i=1 xieBx
∗
i . Since p ∈ B′ ∩ 〈M, eB〉, upu∗ = p for all unitary operators u ∈ B.

Thus

‖up0u
∗ − p0‖2,Tr ≤ ‖u(p0 − p)u∗‖2,Tr + ‖p0 − p‖2,Tr < ε, u ∈ U(B). (3.21)

Therefore,

2‖p0‖2
2,Tr = ‖up0u

∗ − p0‖2
2,Tr + 2Tr(up0u

∗p0)

= ‖up0u
∗ − p0‖2

2,Tr + 2
∑

1≤i,j≤n

Tr(uxieBx
∗
iu
∗xjeBx

∗
j)
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≤ ε2 + 2
∑

1≤i,j≤n

τ(EB(x∗iu
∗xj)x

∗
juxi)

≤ ε2 + 2
∑

1≤i,j≤n

‖EB(x∗juxi)‖2
2,τ (3.22)

for all unitary operators u in B. By the assumption of (i), there exists a sequence of
unitary operators {uk}∞k=1 in B such that

∑
1≤i,j≤n ‖EB(x∗jukxi)‖2

2,τ → 0 when k → ∞.
Hence, ‖p0‖2,Tr < ε. Since ε > 0 is arbitrary, it follows from (3.20) that p = 0, giving a
contradiction and completing the proof.

4 One sided quasi-normalizer algebras

Recall that an element x ∈ M is said to be a one sided quasi-normalizer of B if there
exists a finite set of elements {x1, . . . , xn} ⊆M such that Bx ⊆

∑n
i=1 xiB. The set of one

sided quasi-normalizers of B in M is denoted by qN (1)
M (B) while the von Neumann algebra

it generates is written W ∗(qN (1)
M (B)) and called the one sided quasi-normalizer algebra of

B. We now present some immediate consequences of Theorem 3.1.

Corollary 4.1. The triple B ⊆ W ∗(qN (1)
M (B)) ⊆ M has the relative weak asymptotic

homomorphism property.

For the next corollary, we note that B ⊆ M has the weak asymptotic homomorphism
property precisely when the triple B ⊆ B ⊆M has the relative version.

Corollary 4.2. A von Neumann subalgebra B of a finite von Neumann algebra M has the
weak asymptotic homomorphism property if and only if W ∗(qN (1)

M (B)) = B.

Suppose that B is a subfactor of a factor M and [M : N ] < ∞. Then M =

W ∗(qN (1)
M (B)) by [12, Proposition 1.3]. Thus we have the following corollary, which was

first proved by Grossman and Wiggins [7].

Corollary 4.3. If B is a finite index subfactor of a type II1 factor M and B 6= M , then
B does not have the weak asymptotic homomorphism property.

In comparing W ∗(qN (1)
M (B)) with the von Neumann algebra qNM(B)′′ generated by

the set of quasi-normalizers, it is clear that W ∗(qN (1)
M (B)) ⊇ qNM(B)′′. It is an interesting

question to know under what conditions equality holds. In this direction, we have the
following result.

Proposition 4.4. If B is an atomic von Neumann subalgebra of M , then

W ∗(qN (1)
M (B)) = qNM(B)′′ = M. (4.1)
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Proof. We need only show that qNM(B)′′ = M . Since B is atomic, B = ⊕Nn=1Bn, where
each Bn is a full matrix algebra and 1 ≤ N ≤ ∞. Let pn be the central projections in B
corresponding to Bn. In the following we will show that pnMpm ⊆ qN (B) for n 6= m, which
implies that qNM(B)′′ = M . Let x ∈ pnMpm. With respect to a choice of matrix units of
Bn = pnBpn ∼= Mr(C) and Bm = pmBpm ∼= Ms(C), we can write x = (xij)1≤i≤r,1≤j≤s. Let
yij be the r × s matrix with the (i, j)-th entry xij and other entries 0 with respect to the
same matrix units of Bn and Bm. Now

Bx = Bnx = {(λijxij)1≤i≤r,1≤j≤s : λij ∈ C}

=
∑

1≤i≤r,1≤j≤s

yijBm =
∑

1≤i≤r,1≤j≤s

yijB. (4.2)

By symmetry, xB ⊆
∑n

i=1Bxi for a finite set of elements {x1, . . . , xn} ⊆ M . Thus x ∈
qNM(B), completing the proof.

Using Chifan’s theorem in [2], we have the following corollary of Theorem 3.1. Note
that the equality of the first and third algebras is already known by measure theoretic
methods [17].

Corollary 4.5. If B is a masa in a separable type II1 factor M , then

NM(B)′′ = W ∗(qN (1)
M (B)) = qNM(B)′′. (4.3)

In reference to Corollary 4.5, we do not know if the stronger equality qN (1)
M (B) =

qNM(B) holds for masas, even in the special cases considered in Section 5.
We end this section with the following observation.

Theorem 4.6. Let N = W ∗(qN (1)
M (B)). If p ∈ B′ ∩ 〈M, eB〉 is a finite projection in

〈M, eB〉, then p ≤ eN . Furthermore, W ∗(qN (1)
M (B)) = qNM(B)′′ if and only if eN is the

supremum of all projections p ∈ B′ ∩ 〈M, eB〉 such that p is finite in 〈M, eB〉.

Proof. The first statement is implied by the proof of Theorem 3.1. Suppose that eN
is the supremum of all projections p ∈ B′ ∩ 〈M, eB〉 such that p is finite in 〈M, eB〉.
Then eN (B′ ∩ 〈M, eB〉) eN is a semi-finite von Neumann algebra. Let Q = qNM(B)′′.
Clearly, eQ ≤ eN , so suppose that eQ 6= eN . Then there is a nonzero finite projection
p ≤ eN − eQ such that p ∈ B′ ∩ 〈M, eB〉 and p is finite in 〈M, eB〉. By Lemma 1.4.2
of [15], any projection p′ ∈ B′ ∩ 〈M, eB〉 with p′ ≤ JpJ must be infinite. On the other
hand, JpJ ≤ JeNJ = eN and therefore JpJ (B′ ∩ 〈M, eN〉) JpJ is semifinite. This is a

contradiction. If W ∗(qN (1)
M (B)) = qNM(B)′′, then eN is the supremum of all projections

p ∈ B′ ∩ 〈M, eB〉 such that p is finite in 〈M, eB〉 by [15, Lemma 1.4.2 (iii)].
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5 Group von Neumann algebras

In this section we will apply our previous results to the study of inclusions L(H) ⊆ L(G)
arising from inclusions H ⊆ G of discrete groups. We will make the standard abuse of
notation and write g for a unitary in L(G) and for a vector in `2(G). Thus we denote the
Fourier series of x ∈ L(G) by x =

∑
g∈G αgg where

∑
g∈G |αg|2 < ∞. We do not assume

that G is I.C.C., so that L(G) may not be a factor. However, when using a trace, it will
always be the standard one given by τ(e) = 1 and τ(g) = 0 for g ∈ G \ {e}.

The notion of one sided quasi-normalizers of von Neumann algebras has an obvious
counterpart for group inclusions H ⊆ G. We say that g ∈ G is a one sided quasi-normalizer
of H if there exists a finite set {g1, . . . , gn} ⊆ G such that

Hg ⊆ ∪ni=1 giH. (5.1)

It is immediate that these elements form a semigroup inside G, denoted qN (1)
G (H). How-

ever, for ease of notation, we will also denote this by Γ throughout the section. There
are two distinguished subgroups of G associated with Γ. We denote by H1 the maximal
subgroup Γ ∩ Γ−1 inside Γ (corresponding to the quasi-normalizers qNG(H) defined by a
two sided version of (5.1)). We let H2 denote the subgroup of G generated by Γ, and we
note that the containment H1 ⊆ H2 can be strict, as we show by a subsequent example.
Many of the results in this section will depend on the following.

Theorem 5.1. Let H ⊆ G be an inclusion of discrete groups, let x ∈ qN (1)
L(G)(L(H)), and

write x =
∑

g∈G αgg for its Fourier series. If g0 ∈ G is such that αg0 6= 0, then g0 ∈ Γ.

Proof. Let M = L(G) and B = L(H). We may assume that ‖x‖ = 1 and Bx ⊆
∑r

i=1 xiB
for a finite number of elements x1, . . . , xr ∈ M . Let H be the closure of BxBξ in L2(M)
so that H is a B-bimodule. Since H ⊆ L2(

∑r
i=1 xiB), H is a finitely generated right

B-module, so there exist vectors η1, . . . , ηk ∈ H ⊆ L2(M) such that

η =
k∑
i=1

ηiEB(η∗i η), η ∈ H, (5.2)

where η, ηi are viewed as unbounded operators affiliated with M . In particular, we have

bx =
k∑
i=1

ηiEB(η∗i bx), b ∈ B. (5.3)

Set C = max {‖ηi‖2 : 1 ≤ i ≤ k}, and let ηi =
∑

g∈G α
i
gg be the Fourier series for ηi,

1 ≤ i ≤ k. Since
k∑
i=1

∑
g∈G

|αig|2 =
k∑
i=1

‖ηi‖2
2 <∞, (5.4)
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there is a finite set S = {g1, . . . , gn} ⊆ G such that

k2C2

(
k∑
i=1

∑
g∈Sc
|αig|2

)
< |αg0|2. (5.5)

For each h ∈ H, it follows from (5.3) that

Lhx =
k∑
i=1

ηiEB(η∗iLhx). (5.6)

Since EB(η∗iLhx) ∈ L2(B) for 1 ≤ i ≤ k, these elements have Fourier series which we write
as EB(η∗iLhx) =

∑
h′∈H β

i
h′h
′. Then

∑
g∈G

αghg =
k∑
i=1

(∑
g′∈G

αig′g
′
∑
h′∈H

βih′h
′

)
. (5.7)

Comparing the coefficients of hg0 on both sides of (5.7), we have

αg0 =
k∑
i=1

(∑
h′∈H

αihg0(h′)−1βih′

)
. (5.8)

Since ‖x‖ = 1,
‖EB(η∗iLhx)‖2 ≤ ‖η∗iLhx‖2 ≤ ‖ηi‖2 ≤ C, (5.9)

and so
∑

h′∈H |βih′|2 ≤ C2 for 1 ≤ i ≤ k. The Cauchy–Schwarz inequality gives

|αg0|2 ≤ k2

k∑
i=1

(∑
h′∈H

αihg0(h′)−1βih′

)2

≤ k2

k∑
i=1

(∑
h′∈H

|αihg0(h′)−1|2
∑
h′∈H

|βih′ |2
)

≤ k2C2

k∑
i=1

(∑
h′∈H

|αihg0(h′)−1|2
)
. (5.10)

If hg0(h′)−1 ∈ Sc for all h′ ∈ H, then we have

|αg0|2 ≤ k2C2

(
k∑
i=1

∑
g∈Sc
|αig|2

)
, (5.11)

and this contradicts (5.5). Thus there exists an h′ ∈ H such that hg0(h′)−1 ∈ {g1, . . . , gn},
from which it follows that hg0 ∈ giH for some i, 1 ≤ i ≤ n. Since h ∈ H is arbitrary, we
have shown that Hg0 ⊆ ∪ni=1 giH, and therefore g0 ∈ Γ.
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A consequence of Theorem 5.1 is that we can now describe both qNL(G)(L(H))′′ and

W ∗(qN (1)
L(G)(L(H))) in terms of groups.

Corollary 5.2. Let H ⊆ G be an inclusion of discrete groups. Then

(i) qNL(G)(L(H))′′ = L(H1);

(ii) W ∗(qN (1)
L(G)(L(H))) = L(H2).

Proof. The inclusion “⊇ ” is obvious in both cases. If x ∈ qN (1)
L(G)(L(H)) with Fourier

series
∑

g∈G αgg, then any g ∈ G for which αg 6= 0 must lie in Γ ⊆ H2 by Theorem 5.1.
This establishes “⊆ ” in (ii).

Now assume that x ∈ qNL(G)(L(H)), which is equivalent to x, x∗ ∈ qN (1)
L(G)(L(H)). If

x =
∑

g∈G αgg then x∗ =
∑

g∈G αgg
−1, so Theorem 5.1 gives g, g−1 ∈ Γ whenever αg 6= 0.

Then such elements g lie in Γ∩ Γ−1 = H1 and this shows the containment “⊆ ” in (i).

Based on the above corollary, we can now present an example where the quasi-normalizers
and the one sided quasi-normalizers are distinct.

Example 5.3. Consider the free group F∞, where the generators are written {gi : i ∈ Z},
and for each n ∈ Z, let Kn be the subgroup generated by {gi : i ≥ n}. The shift i→ i+ 1
on Z induces an automorphism φ of F∞ defined on generators by φ(gi) = gi+1, i ∈ Z. Then
n→ φn gives a homomorphism α : Z→ Aut(F∞), and we let G be the semidirect product
F∞ oα Z. Let H = K0. In the following we will show that H1 6= H2. We denote by t
the generator of Z. Then every element of G can be written as wtn, where w ∈ F∞. Note
that tHt−1 = K1 ⊆ H. So Ht−1 ⊆ t−1H and t−1 ∈ H2. Suppose that t−1 ∈ H1. Then
t−1H ⊆ ∪Ni=−NHaiti for some large positive integer N and some ai ∈ F∞. Multiplying on
the right by t gives K−1 ⊆ ∪Ni=−N K0ait

i+1 and so K−1 ⊆ K0a−1. If r is the total number of
occurrences of g−1 in a−1, then gr+1

−1 ∈ K−1 but gr+1
−1 /∈ K0a−1 and we reach a contradiction.

Thus t−1 /∈ H1 and so H1 6= H2. �

We now list some algebraic conditions on group inclusions H ⊆ G that will be useful
subsequently. The first two come from [4]. When H is abelian, (C1) below gives a necessary
and sufficient condition for L(H) to be a masa in L(G), while (C1) and (C2) combined
give a sufficient condition for L(H) to be a singular masa [4]. Subsequently (C2) alone was
shown to be a necessary and sufficient condition in [8] (see also the review of this paper,
MR2465603 (2010b:46127), by Stuart White).

(C1) For each g ∈ G \H, {hgh−1 : h ∈ H} is infinite.

(C2) Given g1, . . . , gn ∈ G \H, there exists h ∈ H such that

gihgj /∈ H, 1 ≤ i, j ≤ n.



16

(C3) If g ∈ G and there exists a finite set {g1, . . . , gn} ⊆ G such that

Hg ⊆ ∪ni=1 giH,

then g ∈ H. (Γ = qN (1)
G (H) = H in our notation).

We note that (C1) is a consequence of (C2) and also of (C3): if an element g ∈ G \H
had only a finite number of H-conjugates {g1, . . . , gn}, then (C2) would fail for the finite
set {g±1

1 , . . . , g±1
n }, while (C3) would fail since we would have Hg ⊆ ∪ni=1 giH. No abelian

hypothesis on H is required for this.
Combining Theorem 3.1 and Corollary 5.2, we obtain a purely algebraic characterization

for the weak asymptotic homomorphism property. Note that we are not assuming H to be
abelian.

Corollary 5.4. Let H ⊆ G be an inclusion of discrete groups. Then L(H) ⊆ L(G) has
the weak asymptotic homomorphism property if and only if condition (C3) is satisfied.

As mentioned above, condition (C2) is necessary and sufficient to imply that L(H) is
a singular masa in L(G) when H is abelian (see [18, 8]). The following gives a different
necessary and sufficient condition for singularity of L(H) ⊆ L(G) in terms of the group
structure. After Corollary 5.5 has been proved, it will be apparent that conditions (C2)
and (C3) are equivalent when H is abelian. The direction (C2) ⇒ (C3) is routine, but we
do not have a purely group theoretic argument for the reverse implication.

Corollary 5.5. Let H ⊆ G be an inclusion of discrete groups with H abelian. Then L(H)
is a singular masa in L(G) if and only if condition (C3) is satisfied.

Proof. Suppose that L(H) is a singular masa in L(G). From [21], the inclusion L(H) ⊆
L(G) has the weak asymptotic homomorphism property, so it is immediate from the defi-
nition that the triple L(H) ⊆ L(H) ⊆ L(G) has the relative form. Theorem 3.1 then gives

qN (1)
L(G)(L(H)) ⊆ L(H), and so condition (C3) holds.

Conversely, suppose that condition (C3) is valid. Then qN (1)
L(G)(L(H)) ⊆ L(H) follows

from Theorem 5.1, and the weak asymptotic homomorphism property holds for L(H) ⊆
L(G) by Theorem 3.1. As noted before Corollary 5.4, condition (C1) is a consequence of
condition (C3), so L(H) is a masa in L(G). Singularity now follows from [21].

In the case that L(H) is a masa in L(G), we can now describe NL(G)(L(H))′′ in terms
of the normalizer NG(H) := {g ∈ G : gHg−1 = H} at the group level. For this we need a
preliminary group theoretic result.
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Lemma 5.6. Let H ⊆ G be an inclusion of discrete groups with H abelian, and suppose
that condition (C1) holds. Let g ∈ G be such that there exists a finite set {g1, . . . , gn} ⊆ G
satisfying

Hg ⊆ ∪ni=1 giH. (5.12)

Then g ∈ NG(H).

Proof. We may assume that the left cosets in (5.12) are a minimal set for which (5.12)
holds. Thus they are pairwise distinct, and so disjoint, and minimality implies that

Hg ∩ giH 6= ∅, 1 ≤ i ≤ n. (5.13)

Since there exist h ∈ H and some integer i such that g = gih, we may replace gi by gih
and renumber to further assume that g = g1.

Now (5.12) implies that HgH ⊆ ∪ni=1 giH while the reverse containment follows from
(5.13). Since HgH is invariant under left multiplication by elements h ∈ H, we obtain a
representation π of H into the permutation group of {1, . . . , n} by defining πh(i) to be that
(unique) integer j so that hgi ∈ gjH, 1 ≤ i ≤ n. Let K ⊆ H be the kernel of π, a finite
index subgroup of H. Since g = g1, we see that kg ∈ gH for all k ∈ K. Let α ∈ Aut (G) be
defined by α(r) = g−1rg, for r ∈ G. Then, by definition of K, we have α(K) ⊆ H. Thus

α(K) ⊆ H ∩ α(H) ⊆ α(H), (5.14)

and so K1 := H ∩ α(H) has finite index in α(H) and satisfies

K ⊆ α−1(K1) ⊆ H. (5.15)

Then α−1(K1) has finite index in H, so we may list the cosets as α−1(K1)h1, . . . , α
−1(K1)hm

for some integer m and elements h1, . . . , hm ∈ H. For any h ∈ H and k ∈ K1,

α−1(k)hiα
−1(h)h−1

i α−1(k−1) = hiα
−1(h)h−1

i , 1 ≤ i ≤ m, (5.16)

since α−1(k) commutes with both hi and α−1(h). Thus α−1(h) has only a finite number
of H-conjugates, showing that α−1(h) ∈ H from the hypothesis that condition (C1) holds.
Thus gHg−1 ⊆ H. But condition (C1) implies that H (and hence gHg−1) is maximal
abelian in G, showing that gHg−1 = H. It follows that g ∈ NG(H).

Corollary 5.7. Let H ⊆ G be an inclusion of discrete groups with H abelian, and satisfying
condition (C1), so that L(H) is a masa in L(G). Then

NL(G)(L(H))′′ = L(NG(H)). (5.17)

In particular, L(H) is a singular masa if and only if NG(H) = H, and is Cartan precisely
when H is a normal subgroup of G.
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Proof. By Theorem 5.1, any u ∈ NL(G)(L(H)) lies in L(Γ). By Lemma 5.6, Γ ⊆ NG(H),
so NL(G)(L(H))′′ ⊆ L(NG(H)). Since the reverse inclusion is true for any subgroup H, the
result follows.

In specific cases this corollary is easy to apply. The properties of the various types of
masas presented in [4] or in [20, §2.2] can now be verified trivially by using the equality of
(5.17). We also note that Corollary 5.7 solves a question posed in [22, Remark 5.5]. The
conclusion of (5.17) was reached by Cameron in a different situation. As a special case of
[1, Theorem 5.4], he showed that (5.17) holds when H and G are both I.C.C. satisfying
L(H)′ ∩ L(G) = C1.

Remark 5.8. The results of this section can be extended to the more general setting of
inclusions N oθ H ⊆ N oθ G where N is a finite von Neumann algebra with a faithful
normal trace τ , H ⊆ G are discrete groups, and θ is an action of G on N by trace preserving
automorphisms. We make no assumptions that G acts either freely or ergodically. The
analog of Corollary 5.2 is then the relations

qNNoθG(N oθ H)′′ = N oθ H1, W ∗(qN (1)
NoθG(N oθ H)) = N oθ H2, (5.18)

which are seen to be generalizations by taking N = C1 and θ the trivial action. We omit
the details since they are so similar to what has already been presented, and we mention
only the one small change that is necessary. The Fourier series

∑
g∈G αgg of Theorem 5.1

is replaced by
∑

g∈G xgg with xg ∈ N and
∑

g∈G ‖xg‖2
2 < ∞, and ‖xg‖2 is substituted in

all calculations involving |αg|. �

6 Concluding remarks

Let B be a von Neumann subalgebra of M . Various notions of “ normalizers ” have been
introduced:

(i) normalizersNM(B) ([4]): a unitary operator u ∈M is a normalizer of B if uBu∗ = B;

(ii) one sided normalizers ONM(B) ([22]): a unitary operator u ∈ M is a one sided
normalizer of B if uBu∗ ⊆ B;

(iii) groupoid normalizers GNM(B) ([5]): a partial isometry v ∈M is a groupoid normal-
izer of B if vBv∗ ⊆ B and v∗Bv ⊆ B;

(iv) intertwiners GN (1)
M (B) ([6]): a partial isometry v ∈ M is an intertwiner of B if

v∗v ∈ B and vBv∗ ⊆ B;
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(v) quasi-normalizers qNM(B) ([14]): an operator x ∈ M is a quasi-normalizer of B if
there exists a finite number of elements x1, . . . , xn ∈ M such that Bx ⊆

∑n
i=1 xiB

and xB ⊆
∑n

i=1Bxi;

(vi) one sided quasi-normalizers qN (1)
M (B): an operator x ∈ M is a one sided quasi-

normalizer of B if there exist a finite number of elements x1, . . . , xn ∈ M such that
Bx ⊆

∑n
i=1 xiB.

The relations between von Neumann algebras generated by the above “ normalizers ” are
the following:

NM(B)′′ ⊆ GNM(B)′′ ⊆ qNM(B)′′

⊇ ⊇ ⊇

ONM(B)′′ ⊆ W ∗(GN (1)
M (B)) ⊆ W ∗(qN (1)

M (B))

. (6.1)

By Corollary 4.5, if B is a masa in a type II1 factor M , then NM(B)′′ = W ∗(qN (1)
M (B))

and therefore all of the above “ normalizer algebras ” are the same. On the other hand,
for each “X ⊆ Y ” in the above diagram, there are examples of inclusions of finite von
Neumann algebras such that X 6= Y (see [6, 22]). Among the above “ normalizer algebras ”,

W ∗(qN (1)
M (B)) has the following two special properties. The first of these is the formula

(6.4) for tensor products. This is an outgrowth of the analogous formulas

GNM1 ⊗̄M2 (B1 ⊗̄B2)′′ = GNM1(B1)′′ ⊗̄ GNM2(B2)′′ (6.2)

and
W ∗

(
GN (1)

M1 ⊗̄M2
(B1 ⊗̄B2)

)
= W ∗

(
GN (1)

M1
(B1)

)
⊗̄W ∗

(
GN (1)

M2
(B2)

)
(6.3)

established in [6] under the hypothesis that B′i∩Mi ⊆ Bi, and which can fail without some
such assumption. In contrast, the next proposition requires no restrictions.

Proposition 6.1. Let Bi ⊆ Mi be inclusions of finite von Neumann algebras, i = 1, 2.
Then

W ∗
(
qN (1)

M1 ⊗̄M2
(B1 ⊗̄B2)

)
= W ∗(qN (1)

M1
(B1)) ⊗̄W ∗(qN (1)

M2
(B2)). (6.4)

Proof. Suppose that x1 ∈ M1 satisfies B1x1 ⊆
∑n1

i=1 yiB1 for a finite number of elements
y1, . . . , yn1 in M1, and x2 ∈ M2 satisfies B2x2 ⊆

∑n2

i=1 ziB2 for a finite number of elements
z1, . . . , zn2 in M2. Then (B1 ⊗̄B2)(x1 ⊗ x2) ⊆

∑n1

i=1

∑n2

j=1(yi ⊗ zj)(B1 ⊗̄B2). This proves
that

W ∗
(
qN (1)

M1 ⊗̄M2
(B1 ⊗̄B2)

)
⊇ W ∗(qN (1)

M1
(B1)) ⊗̄W ∗(qN (1)

M2
(B2)). (6.5)

On the other hand, the triple Bi ⊆ W ∗(qN (1)
Mi

(Bi)) ⊆Mi has the relative weak asymptotic
homomorphism property by Corollary 4.1, i = 1, 2, and so

B1 ⊗̄B2 ⊆ W ∗(qN (1)
M1

(B1)) ⊗̄W ∗(qN (1)
M2

(B2)) ⊆M1 ⊗̄M2 (6.6)
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also has the relative weak asymptotic homomorphism property. By Theorem 3.1, we have
the reverse containment

W ∗
(
qN (1)

M1 ⊗̄M2
(B1 ⊗̄B2)

)
⊆ W ∗(qN (1)

M1
(B1)) ⊗̄W ∗(qN (1)

M2
(B2)), (6.7)

completing the proof.

We end with two results that discuss the situation of a cut down of B ⊆ M to an
inclusion eBe ⊆ eMe for a projection e ∈ B.

Proposition 6.2. Let e ∈ B be a projection. Then W ∗(qN (1)
eMe(eBe)) = eW ∗(qN (1)

M (B))e.

Proof. We only prove that e
(
qN (1)

M (B)
)
e ⊆ W ∗(qN (1)

eMe(eBe)). The proof of qN (1)
eMe(eBe) ⊆

eW ∗(qN (1)
M (B))e is similar. Suppose that z is a central projection in B such that z =∑n

j=1 vjv
∗
j with the vj’s partial isometries in B and v∗j vj ≤ e. Write e0 = ez. If x ∈ M

satisfies Bx ⊆
∑r

i=1 xiB, then

eBee0xe0 ⊆ eBzxe0 = ezBxe0 ⊆ e0

r∑
i=1

xiBe0 = e0

r∑
i=1

xizBe0

=
r∑
i=1

n∑
j=1

(e0xivj)(v
∗
jBe0) ⊆

r∑
i=1

n∑
j=1

(e0xivj)(eBe). (6.8)

Therefore, e0xe0 ∈ qN (1)
eMe(eBe). Since the central support of e in B can be approximated

arbitrarily well by such special central projections z, e0 approximates e arbitrarily well,
and exe ∈ W ∗(qN (1)

eMe(eBe)).

Combining Proposition 6.2 and Corollary 4.2, we obtain the following consequence.

Corollary 6.3. Suppose that B has the weak asymptotic homomorphism property in M
and e ∈ B is a projection. Then eBe has the weak asymptotic homomorphism property in
eMe.
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