THE RELAX CODES FOR LINEAR MINIMUM COST NETWORK FLOW PROBLEMS*

Dimitri P. BERTSEKAS and Paul TSENG
Laboratory for Information and Decision Systems and the Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

We describe a relaxation algorithm [1,2] for solving the classical minimum cost network flow problem. Our implementation is compared with mature state-of-the-art primal simplex and primal-dual codes and is found to be several times faster on all types of randomly generated network flow problems. Furthermore, the speed-up factor increases with problem dimension. The codes, called RELAX-II and RELAXT-II, have a facility for efficient reoptimization and sensitivity analysis, and are in the public domain.

1. Introduction

Consider a directed graph with a set of nodes \mathcal{N} and a set of arcs \mathcal{A}. Each arc (i, j) has associated with it an integer $a_{i j}$ referred to as the cost of (i, j). We denote by $f_{i j}$ the flow of the arc (i, j) and consider the classical minimum cost flow problem

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{(i, j) \in S A} a_{i j} f_{i j} \\
\text { subject to } & \sum_{\substack{ \\
(m, i) \in \mathscr{A}}} f_{m i}-\sum_{\substack{m \\
(i, m) \in A}} f_{i m}=0, \forall i \in \mathcal{N} \text { (conservation of flow) } \\
& \ell_{i j} \leqslant f_{i j} \leqslant c_{i j}, \forall(i, j) \in \mathscr{A} \tag{2}
\end{array}
$$

where $\ell_{i j}$ and $c_{i j}$ are given integers. We assume throughout that there exists at least one feasible solution of (MCF). We formulate a dual problem to (MCF).

We associate a Lagrange multiplier p_{i} (referred to as the price of node i) with the i th conservation of flow constraint (1). By denoting by f and p the vectors with elements $f_{i j},(i, j) \in \mathscr{A}$ and $p_{i}, i \in \mathcal{N}$, respectively, we can write the corresponding Lagrangian function

[^0]$$
L(f, p)=\sum_{(i, j) \in \mathcal{A}}\left(a_{i j}+p_{j}-p_{i}\right) f_{i j} .
$$

The dual problem is

$$
\begin{array}{ll}
\operatorname{maximize} & q(p) \\
\text { subject to } & \text { no constraints on } p, \tag{3}
\end{array}
$$

where the dual functional q is given by

$$
\begin{align*}
q(p) & =\min _{\ell_{i j} \leqslant f_{i j} \leqslant c_{i j}} L(f, p) \\
& =\sum_{(i, j) \in \mathscr{A}} \min _{\ell_{i j} \leqslant f_{i j} \leqslant c_{i j}}\left\{\left(a_{i j}+p_{j}-p_{i}\right) f_{i j}\right\} \triangleq \sum_{(i, j) \in \mathscr{A}} q_{i j}\left(p_{i}-p_{j}\right) . \tag{4}
\end{align*}
$$

The form of the dual arc cost functions $q_{i j}$ is shown in fig. 1 .

Fig. 1. Primal and dual costs for arc (i, j).
Given any price vector p, we consider the corresponding tension vector t having elements $t_{i j},(i, j) \in \mathscr{A}$ defined by

$$
\begin{equation*}
t_{i j}=p_{i}-p_{j}, \forall(i, j) \in \mathfrak{l} . \tag{5}
\end{equation*}
$$

Since the dual functional as well as subsequent definitions, optimality conditions and algorithms depend on the price vector p only through the corresponding tension vector t, we will often make no distinction between p and t in what follows.

For any price vector p, we say that an $\operatorname{arc}(i, j)$ is:

$$
\begin{array}{lll}
\text { Inactive } & \text { if } & t_{i j}<a_{i j} \\
\text { Balanced } & \text { if } & t_{i j}=a_{i j} \\
\text { Active } & \text { if } & t_{i j}>a_{i j} \tag{8}
\end{array}
$$

For any flow vector f, the scalar

$$
\begin{equation*}
d_{i}=\sum_{\substack{m \\(i, m) \in A}} f_{i m}-\sum_{\substack{m \\(m, i) \in A}} f_{m i} \forall i \in \mathcal{N} \tag{9}
\end{equation*}
$$

will be referred to as the deficit of node i. It represents the difference of total flow exported and total flow imported by the node.

The optimality conditions in connection with (MCF) and its dual given by (3) and (4) state that (f, p) is a primal and dual optimal solution pair if and only if

$$
\begin{array}{ll}
f_{i j}=\ell_{i j} & \text { for all inactive arcs }(i, j) \\
\ell_{i j} \leqslant f_{i j} \leqslant c_{i j} & \\
\text { for all balanced arcs }(i, j) \\
f_{i j}=c_{i j} & \tag{13}\\
d_{i}=0 & \text { for all active arcs }(i, j) \\
\text { for all nodes } i .
\end{array}
$$

Relations (10)-(12) are known as the complementary slackness conditions.
Our approach is based on iterative ascent of the dual functional. The price vector p is updated while simultaneously maintaining a flow vector f satisfying complementary slackness with p. The algorithms proposed terminate when f satisfies primal feasibility (deficit of each node equals zero). The main feature of the algorithms, which distinguishes them from classical primal-dual methods, is that the choice of ascent directions is very simple. At a given price vector p, a node i with nonzero deficit is chosen, and an ascent is attempted along the coordinate p_{i}. If such an ascent is not possible and a reduction of the total absolute deficit $\Sigma_{m}\left|d_{m}\right|$ cannot be effected through flow augmentation, an adjacent node of i, say i_{1}, is chosen and an ascent is attempted along the sum of the coordinate vectors corresponding to i and i_{1}. If such an ascent is not possible, and flow augmentation is not possible either, an adjacent node of either i or i_{1} is chosen and the process is continued. In practice, most of the ascent directions are single coordinate directions, leading to the interpretation of the algorithms as coordinate ascent or relaxation methods. This is an important characteristic, and a key factor in the algorithms' efficiency. We have found through experiment that, for ordinary networks, the ascent directions used
by our algorithms lead to comparable improvement per iteration as the direction of maximal rate of ascent (the one used by the classical primal-dual method), but are computed with considerably less overhead.

In the next section, we characterize the ascent directions used in the algorithms. In sect. 3, we describe our relaxation methods. In sect. 4, we describe the codes and give results of computational experimentation.

2. Characterization of ascent directions

Each ascent direction used by the algorithm is associated with a connected strict subset S of \mathcal{N}, and has the form $v=\left\{v_{i j} \mid(i, j) \in \mathscr{A}\right\}$, where

$$
v_{i j}=\left\{\begin{align*}
1 & \text { if } i \notin S, j \in S \tag{14}\\
-1 & \text { if } i \in S, j \notin S \\
0 & \text { otherwise }
\end{align*}\right.
$$

Changing any tension vector t in the direction v of (14) corresponds to decreasing the prices of all nodes in S by an equal amount while leaving the prices of all other nodes unchanged. It is seen from (4) that the directional derivative at t of the dual cost in the direction v is $C(v, t)$, where

$$
\begin{align*}
C(v, t) & =\sum_{(i, j) \in\{A} \lim _{\alpha \rightarrow 0^{+}} \frac{q_{i j}\left(t_{i j}+\alpha v_{i j}\right)-q_{i j}\left(t_{i j}\right)}{\alpha} \\
& =\sum_{(i, j) \in A A} e_{i j}\left(v_{i j}, t_{i j}\right) \tag{15}
\end{align*}
$$

and

$$
e_{i j}\left(v_{i j}, t_{i j}\right)= \begin{cases}-v_{i j} \ell_{i j} & \text { if }(i, j) \text { is inactive or if }(i, j) \tag{16}\\ & \text { is balanced and } v_{i j} \leqslant 0 \\ -v_{i j} c_{i j} & \text { if }(i, j) \text { is active or if }(i, j) \\ & \text { is balanced and } v_{i j} \geqslant 0\end{cases}
$$

Note that $C(v, t)$ is the difference of outflow and inflow across S when the flows of inactive and active arcs are set at their lower and upper bounds, respectively, while the flow of each balanced arc incident to S is set to its lower or upper bound depending on whether the arc is going out of S or coming into S, respectively. We have the following proposition.

PROPOSITION 1

For every non-empty strict subset S of \mathcal{N} and every tension vector t, there holds

$$
\begin{equation*}
w(t+\gamma v)=w(t)+\gamma C(v, t), \quad \forall \gamma \in[0, \delta), \tag{17}
\end{equation*}
$$

where $w(\cdot)$ is the dual cost as a function of t

$$
\begin{equation*}
w(t)=\sum_{(i, j)} q_{i j}\left(t_{i j}\right) \tag{18}
\end{equation*}
$$

Here, v is given by (14) and δ is given by

$$
\begin{align*}
\delta=\inf \left\{\left\{t_{i m}-a_{i m} \mid i \in S, m \notin S,(i, m): \text { active }\right\}\right. \\
\left.\left\{a_{m i}-t_{m i} \mid i \in S, m \notin S,(m, i): \text { inactive }\right\}\right\} . \tag{19}
\end{align*}
$$

(We use the convention $\delta=+\infty$ if the set over which the infimum above is taken is empty.)

Proof

It was seen [cf. (15)] that the rate of change of the dual cost w at t along v is $C(v, t)$. Since w is piecewise linear, the actual change of w along the direction v is linear in the stepwise γ up to the point where γ becomes large enough so that the pair $[w(t+\gamma v), t+\gamma v]$ meets a new face of the graph of w. This value of γ is the one for which a new arc incident to S becomes balanced and it equals the scalar δ of (19).
Q.E.D.

3. The relaxation method

The relaxation algorithm maintains complementary slackness at all times. At each iteration, it starts from a single node with nonzero deficit and checks whether changing its price can improve the value of the dual cost. If not, it gradually builds up, via a labeling procedure, either a flow augmenting path or a cutset associated with a direction of ascent. The main difference from the classical primal-dual method is that instead of continuing the labeling process until a maximal set of nodes is labeled, we stop at the first possible direction of ascent - frequently the direction associated with just the starting node.

TYPICAL RELAXATION ITERATION FOR AN ORDINARY NETWORK

At the beginning of each iteration, we have a pair (f, t) satisfying complementary slackness. The iteration determines a new pair (f, t) satisfying complementary slackness by means of the following process.

Step 1: Choose a node s with $d_{s}>0$. (The iteration can be started also from a node s with $d_{s}<0$ - the steps are similar.) If no such node can be found, terminate the algorithm. Else give the label " 0 " to s, set $S=\emptyset$, and go to step 2 . Nodes in S are said to be scanned.

Step 2: Choose a labeled but unscanned node k, set $S=S \cup\{k\}$, and go to step 3 .
Step 3: Scan the label of the node k as follows: Give the label " k " to all unlabeled nodes m such that (m, k) is balanced and $f_{m k}<c_{m k}$, and to all unlabeled m such that (k, m) is balanced and $\ell_{k m}<f_{k m}$. If v is the vector corresponding to S as in (14) and

$$
\begin{equation*}
C(v, t)>0 \tag{20}
\end{equation*}
$$

go to step 5 . Else if for any of the nodes m labeled from k we have $d_{m}<0$, go to step 4 . Else go to step 2.

Step 4 (flow augmentation): A directed path P has been found that begins at the starting node s and ends at the node m with $d_{m}<0$ identified in step 3 . The path is constructed by tracing labels backwards starting from m, and consists of balanced arcs such that we have $\ell_{k n}<f_{k n}$ for all $(k, n) \in P^{+}$and $f_{k n}<c_{k n}$ for all $(k, n) \in P^{-}$, where

$$
\begin{align*}
& P^{+}=\{(k, n) \in P \mid(k, n) \text { is oriented in the direction from } s \text { to } m\} \tag{21}\\
& P^{-}=\{(k, n) \in P \mid(k, n) \text { is oriented in the direction from } m \text { to } s\} \tag{22}
\end{align*}
$$

Let

$$
\begin{equation*}
\epsilon=\min \left\{d_{s},-d_{m},\left\{f_{k n}-\ell_{k n} \mid(k, n) \in P^{+}\right\},\left\{c_{k n}-f_{k n} \mid(k, n) \in P^{-}\right\}\right\} \tag{23}
\end{equation*}
$$

Decrease by ϵ the flows of all $\operatorname{arcs}(k, n) \in P^{+}$, increase by ϵ the flows of all arcs $(k, n) \in P^{-}$, and go to the next iteration.

Step 5 (price adjustment): Let

$$
\begin{align*}
& \delta=\min \left\{\left\{t_{k m}-a_{k m} \mid k \in S, m \notin S,(k, m): \text { active }\right\},\right. \\
&\left.\left\{a_{m k}-t_{m k} \mid k \in S, m \notin S,(m, k): \text { inactive }\right\}\right\}, \tag{24}
\end{align*}
$$

where S is the set of scanned nodes constructed in step 2 . Set

$$
\begin{aligned}
& f_{k m}:=\ell_{k m}, \forall \text { balanced arcs }(k, m) \text { with } k \in S, m \in L, m \notin S \\
& f_{m k}:=c_{m k}, \forall \text { balanced } \operatorname{arcs}(m, k) \text { with } k \in S, m \in L, m \notin S,
\end{aligned}
$$

where L is the set of labeled nodes. Set

$$
t_{k m}:= \begin{cases}t_{k m}+\delta & \text { if } \quad k \notin S, m \in S \\ t_{k m}-\delta & \text { if } \quad k \in S, m \notin S \\ t_{k m} & \text { otherwise }\end{cases}
$$

Go to the next iteration.
The relaxation iteration terminates with either a flow augmentation (via step 4) or with a dual cost improvement (via step 5). In order for the procedure to be well defined, however, we must show that whenever we return to step 2 from step 3, there is still some labeled node which is unscanned. Indeed, when all labeled nodes are scanned (i.e. the set S coincides with the labeled set), there is no balanced arc (m, k) such that $m \notin S, k \in S$ and $f_{m k}<c_{m k}$ or a balanced arc (k, m) such that $k \in S, m \notin S$ and $f_{k m}>\ell_{k m}$. It follows from the definition (15), (16) [see also the following equation (25)] that

$$
C(v, t)=\sum_{k \in S} d_{k} .
$$

Under the above circumstances, all nodes in S have nonnegative deficit and at least one node in S (the starting node s) has strictly positive deficit. Therefore, $C(v, t)>0$ and it follows that the procedure switches from step 3 to step 5 rather than switch back to step 2 .

If $a_{i j}, \ell_{i j}$, and $c_{i j}$ are integer for all $(i, j) \in \mathscr{A}$ and the starting t is integer, then δ as given by (24) will also be a positive integer and the dual cost is increased by an integer amount each time step 5 is executed. Each time a flow augmentation takes place via step 4 , the dual cost remains unchanged. If the starting f is integer, all
successive f will be integer, so the amount of flow augmentation ϵ in step 4 will be a positive integer. Therefore, there can be only a finite number of flow augmentations between successive reductions of the dual cost. It follows that the algorithm will finitely terminate at an integer optimal pair (f, t) if the starting pair (f, t) is integer.

It can be seen that the relaxation iteration involves a comparable amount of computation per node scanned as the usual primal-dual method [3]. The only additional computation involves maintaining the quantity $C(v, t)$, but it can be seen that this can be computed incrementally in step 3 rather than recomputed each time the set S is enlarged in step 2 . As a result, this additional computation is insignificant. To compute $C(v, t)$ incrementally in the context of the algorithm, it is helpful to use the identity

$$
\begin{equation*}
C(v, t)=\sum_{i \in S} d_{i}-\sum_{\substack{(i, j): \text { balanced } \\ i \in S, j \notin S}}\left(f_{i j}-\ell_{i j}\right)-\sum_{\substack{(i, j): \text { balanced } \\ i \notin S, j \in S}}\left(c_{i j}-f_{i j}\right) \tag{25}
\end{equation*}
$$

We note that a similar iteration can be constructed starting from a node with negative deficit. Here, the set S consists of nodes with nonpositive deficit, and in step 5 , the prices of the nodes in S are increased rather than decreased. The straightforward details are left to the reader. Computational experience suggests that termination is typically accelerated when ascent iterations are initiated from nodes with negative as well as positive deficit.

LINE SEARCH

The stepsize δ of (24) corresponds to the first break point of the (piecewise linear) dual functional along the ascent direction. It is possible to instead use an optimal stepsize that maximizes the dual functional along the ascent direction. Such a stepsize can be calculated quite efficiently by testing the sign of the directional derivative of the dual cost at successive break points along the ascent direction. Computational experimentation showed that this type of line search is beneficial, and was implemented in the relaxation codes.

SINGLE NODE ITERATIONS

The case where the relaxation iteration scans a single node (the starting node s having positive deficit d_{s}), finds the corresponding direction v_{s} to be an ascent direction, i.e.

$$
\begin{equation*}
C\left(v_{s}, t\right)=d_{s}-\sum_{(s, m): \text { balanced }}\left(f_{s m}-\ell_{s m}\right)-\sum_{(m, s): \text { balanced }}\left(c_{m s}-f_{m s}\right)>0 \tag{26}
\end{equation*}
$$

reduces the price p_{s} (perhaps repeatedly via the line search mentioned earlier) and terminates is particularly important for the conceptual understanding of the algorithm.

CASES WHERE A SINGLE NODE ITERATION IS POSSIBLE

CASE WHERE A SINGLE NODE ITERATION IS NOT POSSIBLE
Fig. 2. Illustration of dual functional and its directional derivatives along the price coordinate p_{s}. Break points correspond to values of p_{s} where one or more arcs incident to node s are balanced.

We believe that much of the success of the algorithm is owed to the relatively large number of single node iterations for many classes of problems.

When only the price of a single node s is changed, the absolute value of the deficit of s is decreased at the expense of possibly increasing the absolute value of the deficit of its neighboring nodes. This is reminiscent of relaxation methods where a change of a single variable is effected with the purpose of satisfying a single constraint at the expense of violating others.

A dual viewpoint, reminiscent of coordinate ascent methods, is that a single (the sth) coordinate direction is chosen and a line search is performed along this direction. Figure 2 shows the form of the dual function along the direction of the coordinate p_{s} for a node with

$$
d_{s}>0
$$

The left-hand slope at p_{s} is

$$
-C\left(v_{s^{\prime}} t\right)
$$

while the right-hand slope is

$$
\begin{aligned}
-\bar{C}\left(v_{s}, t\right)= & -\sum_{\substack{(s, m) \in \mathscr{A} \\
(s, m): \text { active } \\
\text { or balanced }}} c_{s m}-\sum_{\substack{(s, m) \in \mathscr{} \\
(s, m): \text { inactive }}} \ell_{s m} \\
& +\sum_{\substack{(m, s) \in \mathscr{A} \\
(m, s): \text { active }}} c_{m s}+\sum_{\substack{(m, s) \in \mathscr{} \\
(m, s): \text { inactive } \\
\text { or balanced }}} \ell_{m s} .
\end{aligned}
$$

We have

$$
\begin{equation*}
-\bar{C}\left(v_{s^{\prime}}, t\right) \leqslant-d_{s} \leqslant-C\left(v_{s^{\prime}}, t\right), \tag{27}
\end{equation*}
$$

so $-d_{s}$ is a subgradient of the dual functional at p_{s} in the s th coordinate direction.
A single node iteration will be possible if and only if the right-hand slope is negative or equivalently

$$
C\left(v_{s^{\prime}} t\right)>0 .
$$

This will always be true if we are not at a corner and hence equality holds throughout in (27). However, if the dual cost is nondifferentiable at p_{s} along the sth coordinate, it may happen that (see fig. 2)

$$
-\bar{C}\left(v_{s^{\prime}}, t\right) \leqslant-d_{s}<0 \leqslant-C\left(v_{s}, t\right),
$$

in which case the single node iteration fails to make progress and we must resort to scanning more than one node.

Figure 3 illustrates a single node iteration for the case where $d_{s}>0$. It is seen that the break points of the dual functional along the coordinate p_{s} are the values of p_{s} for which one or more arcs incident to node s are balanced. The single node iteration shown starts with arcs $(1, s)$ and $(3, s)$ inactive, and arcs $(s, 2)$ and $(s, 4)$ active. To reduce p_{s} beyond the first break point $p_{4}+a_{s 4}$. the flow of arc $(s, 4)$ must be pulled back from $f_{s 4}=30$ to $f_{s 4}=0$. At the level $p_{3}-a_{3 s}$, the dual cost is maximized because if the flow of arc $(3, s)$ is set to the lower bound of zero, the deficit d_{s} switches from positive $(+10)$ to negative (-10). Figure 4 illustrates a single node iteration for the same node when $d_{s}<0$. The difference to the case $d_{s}>0$ is that

Fig. 3. Illustration of an iteration involving a single node s with four adjacent arcs $(1, s),(3, s),(s, 2),(s, 4)$ with feasible arc flow ranges $[1,20],[0,20],[0,10]$, $[0,30]$, respectively. (a) Form of the dual functional along p_{s} for given values of p_{1}, p_{2}, p_{3}, and p_{4}. The break points correspond to the levels of p_{5} for which the corresponding arcs become balanced. (b) Illustration of a price drop of p_{s} from a value higher than all break points to the break point at which arc $(s, 4)$ becomes balanced. (c) Price drop of p_{s} to the break point at which arc $(3, s)$ becomes balanced. When this is done, arc $(s, 4)$ becomes inactive from balanced and its flow is reduced from 30 to 0 to maintain complementary slackness. (d) p_{s} is now at the break point $p_{3}-a_{3 s}$ that maximizes the dual cost. Any further price drop makes arc (3,s) active, increases its flow from 0 to 20 , and changes the sign of the deficit d_{s} from positive $(+10)$ to negative (-10).

(a)

Fig. 4. Illustration of a price rise involving the single node s for the example of fig. 3. Here, the initial price p_{s} lies between the two leftmost break points corresponding to the arcs $(1, s)$ and ($s, 2$). Initially, arcs $(1, s),(s, 2)$, and $(s, 4)$ are inactive, and arc $(3, s)$ is active.
the price p_{s} is increased, instead of decreased, and as p_{s} moves beyond a break point, the flow of the corresponding balanced arc is pushed to the lower bound (for incoming arcs) and to the upper bound (for outgoing arcs), rather than pulled to the upper bound and lower bound, respectively.

DEGENERATE ASCENT ITERATIONS

If, for a given t, we can find a connected subset S of \mathcal{N} such that the corresponding vector (u, v) satisfies

$$
C(v, t)=0
$$

then from proposition 1 we see that the dual cost remains constant as we start moving along the vector v.i.e.

$$
w(t+\gamma v)=w(t), \quad \forall \gamma \in[0, \delta),
$$

where w, v, and δ are given by (14), (18), (19). We refer to such incremental changes in t as degenerate ascent iterations. If the ascent condition $C(v, t)>0$ [cf. (20)] is replaced by $C(v, t) \geqslant 0$, then we obtain an algorithm that produces at each iteration either a flow augmentation, or a strict dual cost improvement, or a degenerate ascent step. This algorithm has the same convergence properties as the one without degenerate steps under the following condition:
(C) For each degenerate ascent iteration, the starting node s has positive deficit d_{s}, and at the end of the iteration, all nodes in the scanned set S have nonnegative deficit.

We refer the reader to [1] for a proof of this fact. It can be easily seen that condition (C) always holds when the set S consists of just the starting node s. For this reason, if the ascent iteration is modified so that a price adjustment at step 5 is made not only when $C(v, t)>0$ but also when $d_{s}>0, S=\{s\}$ and $C\left(v_{s}, t\right)=0$, the algorithm maintains its termination properties. This modification was implemented in the relaxation codes and can have an important beneficial effect for special classes of problems such as assignment and transportation problems. We have no clear explanation for this phenomenon. For the assignment problem, condition (C) is guaranteed to hold even if S contains more than one node. The assignment algorithm of [4] makes extensive use of degenerate ascent steps.

4. Code description and computational results

The relaxation codes RELAX-II and RELAXT-II solve the problem

$$
\begin{array}{ll}
\text { minimize } & \sum_{(i, j) \in \mathscr{A}} a_{i j} f_{i j} \\
\text { subject to } & \sum_{(m, i) \in \mathscr{A}} f_{m i}-\sum_{(i, m) \in \mathscr{A}} f_{i m}=b_{i}, \quad \forall i \in \mathcal{N} \\
& 0 \leqslant f_{i j} \leqslant c_{i j}, \\
\forall(i, j) \in \mathscr{A} .
\end{array}
$$

This form has become standard in network codes as it does not require storage and use of the array of lower bounds $\left\{\ell_{i j}\right\}$. Instead, the smaller size array $\left\{b_{i}\right\}$ is stored and used. The problem (MCF) of sect. 1 can be reduced to the above form by making the transformation of variables $f_{i j}:=f_{i j}-\ell_{i j}$. The method for representing the problem is the linked list structure suggested by Aashtiani and Magnanti [5] and used in their KILTER code (see also Magnanti [6]). Briefly, during solution of the problem, we store for each arc its start and end node, its capacity, its reduced cost $\left(a_{i j}-t_{i j}\right)$, its flow $f_{i j}$, the next arc with the same start node, and the next arc with the same end node. An additional array of length equal to half the number of arcs is used for internal calculations. This array could be eliminated at the expense of a modest increase in computation time. The total storage of RELAX-II for arc length arrays is $7.5|\$ \mathrm{~A}|$. RELAXT-II is a code that is similar to RELAX-II but employs two additional arc length arrays that essentially store the set of all balanced arcs. This code, written with the assistance of Jon Eckstein, is faster than RELAX-II, but requires $9.5|\mathscr{A}|$ total storage for arc length arrays. There is additional storage needed for node length arrays, but this is relatively insignificant for all but extremely sparse problems. This compares unfavorably with primal simplex codes, which can be implemented with four arc length arrays.

The RELAX-II and RELAXT-II codes implement with minor variations the relaxation algorithm of sect. 3 . Line search and degenerate ascent steps are implemented as discussed in sect. 3 .

The codes assume no prior knowledge about the structure of the problem or the nature of the solution. Initial prices are set to zero and initial arc flows are set to zero or the upper bound, depending on whether the arc cost is nonnegative or negative, respectively. RELAX-II and RELAXT-II include a preprocessing phase (included in the CPU time reported) whereby arc capacities are reduced to as small a value as possible without changing optimal solutions of the problem. Thus, for transportation problems, the capacity of each arc is set at the minimum of the supply and demand at the start and end nodes of the arc. We found experimentally that this preprocessing can markedly improve the performance of relaxation methods, particularly for transportation problems. We do not fully understand the nature of this phenomenon, but it is apparently related to the fact that tight arc capacities tend to make the shape of the isocost surfaces of the dual functional more "round". Generally speaking, tight
arc capacity bounds increase the frequency of single node iterations. This behavior is in sharp contrast with that of primal simplex, which benefits from loose arc capacity bounds (fewer extreme points to potentially search over), and appears to be one of the main reasons for the experimentally observed superiority of relaxation over primal simplex for heavily capacitated problems.

It is possible to reduce the memory requirements of the codes by ordering the arc list of the network by head node, i.e. the outgoing arcs of the first node are listed first, followed by the outgoing arcs of the second node, etc. (forward star representation). If this is done, one arc length array becomes unnecessary, thereby reducing the memory requirements of RELAX-II to 6.5 arc length arrays, and of RELAXT-II to 8.5 arc length arrays. The problem solution time remains essentially unaffected by this device, but the time needed to prepare (or alter) the problem data will be increased. The same technique can also be used to reduce the memory requirements of the primal simplex method to three arc length arrays.

We have compared RELAX-II and RELAXT-II under identical test conditions with the primal-dual code KILTER (Aashtiani and Magnanti [5]) and the primal simplex code RNET (Grigoriadis and Hsu [7]). It is generally recognized that the performance of RNET is representative of the best that can be achieved with presently available simplex network codes written in FORTRAN. For example, Kennington and Helgason in their 1980 book [8] (p. 255) compare RNET with their own primal simplex code NETFLO on the first 35 NETGEN benchmarks [9] and conclude that "RNET . . . produced the shortest times that we have seen on these 35 test problems". Our computational results with these benchmarks are given in table 1 and show substantially faster computation times for the relaxation codes over both KILTER and RNET.

An important and intriguing property of RELAX-II and RELAXT-II is that their speedup factor over RNET apparently increases with the size of the problem. This can be seen by comparing the results for the small problems $1-35$ with the results for the larger problems $37-40$ of table 1 . The comparison shows an improvement in the speedup factor that is not spectacular, but is noticeable and consistent. Table 2 shows that for even larger problems, the speedup factor increases further with problem dimension, and reaches or exceeds an order of magnitude (see fig. 5). This is particularly true for assignment problems where, even for relatively small problems, the speedup factor is of the order of 20 or more.

We note that there was some difficulty in generating the transportation problems of this table with NETGEN. Many of the problems generated were infeasible because some node supplies and demands were coming out zero or negative. This was resolved by adding the same number (usually 10) to all source supplies and all sink demands, as noted in table 2. Note that the transportation problems of the table are divided into groups and each group has the same average degree per node (8 for problems $6-15$, and 20 for problems 16-20).

Table 1
Standard Benchmark Problems 1-40 of [9] obtained using NETGEN. All times are in secs on a VAX $11 / 750$. All codes compiled by FORTRAN in OPTIMIZE mode under VMS version 3.7, and under VMS version 4.1, as indicated. All codes run on the same machine under identical conditions. Problem 36 could not be generated with our version of NETGEN

Problem type	Problem no.	No. of nodes	No. of arcs	RELAX-II (VMS $3.7 /$ VMS 4.1)	RELAXT-II (VMS $3.7 /$ VMS 4.1)	KILTER VMS 3.7	$\begin{gathered} \text { RNET } \\ \text { VMS } 3.7 \end{gathered}$
	1	200	1300	2.07/1.75	1.47/1.22	8.81	3.15
	2	200	1500	2.12/1.76	1.61/1.31	9.04	3.72
	3	200	2000	1.92/1.61	1.80/1.50	9.22	4.42
	4	200	2200	2.52/2.12	2.38/1.98	10.45	4.98
	5	200	2900	2.97/2.43	2.53/2.05	16.48	7.18
	6	300	3150	4.37/3.66	3.57/3.00	25.08	9.43
	7	300	4500	5.46/4.53	3.83/3.17	35.55	12.60
	8	300	5155	5.39/4.46	4.30/3.57	46.30	15.31
	9	300	6075	6.38/5.29	5.15/4.30	43.12	18.99
	10	300	6300	4.12/3.50	3.78/3.07	47.80	16.44
Total (problems 1-10)				37.32/31.11	30.42/25.17	251.85	96.22
	11	400	1500	1.23/1.03	1.35/1.08	8.09	4.92
	12	400	2250	1.38/1.16	1.54/1.25	10.76	6.43
	13	400	3000	1.68/1.42	1.87/1.54	8.99	8.92
	14	400	3750	2.43/2.07	2.67/2.16	14.52	9.90
	15	400	4500	2.79/2.34	3.04/2.46	14.53	10.20
Total (problems 11-15)				$9.51 / 8.02$	10.47/8.49	56.89	40.37
	16	400	1306	2.79/2.40	2.60/2.57	13.57	2.76
	17	400	2443	2.67/2.29	2.80/2.42	16.89	3.42
	18	400	1306	2.56/2.20	2.74/2.39	13.05	2.56
	19	400	2443	2.73/2.32	2.83/2.41	17.21	3.61
	20	400	1416	2.85/2.40	2.66/2.29	11.88	3.00
	21	400	2836	3.80/3.23	3.77/3.23	19.06	4.48
	22	400	1416	2.56/2.18	2.82/2.44	12.14	2.86
	23	400	2836	4.91/4.24	3.83/3.33	19.65	4.58
	24	400	1382	1.27/1.07	1.47/1.27	13.07	2.63
	25	400	2676	2.01/1.68	2.13/1.87	26.17	5.84
	26	400	1382	1.79/1.57	1.60/1.41	11.31	2.48
	27	400	2676	2.15/1.84	1.97/1.75	18.88	3.62
Total (problems 16-27)				32.09/27.42	31.22/27.38	192.88	41.94

Table 1 (continued)

Problem type	Problem no.	No. of nodes	No. of arcs	RELAX-II (VMS $3.7 /$ VMS 4.1)	RELAXT-II (VMS $3.7 /$ VMS 4.1)	KILTER VMS 3.7	$\begin{gathered} \text { RNET } \\ \text { VMS } 3.7 \end{gathered}$
	28	1000	2900	4.90/4.10	5.67/5.02	29.77	8.60
	29	1000	3400	5.57/4.76	5.13/4.43	32.36	12.01
	30	1000	4400	7.31/6.47	7.18/6.26	42.21	11.12
	31	1000	4800	5.76/4.95	7.14/6.30	39.11	10.45
	32	1500	4342	8.20/7.07	8.25/7.29	69.28	18.04
	33	1500	4385	10.39/8.96	8.94/7.43	63.59	17.29
	34	1500	5107	9.49/8.11	8.88/7.81	72.51	20.50
	35	1500	5730	10.95/9.74	10.52/9.26	67.49	17.81
Total (problems 28-35)				62.57/54.16	61.71/53.80	356.32	115.82
	37	5000	23000	87.05/73.64	74.67/66.66	681.94	281.87
	38	3000	35000	68.25/57.84	55.84/47.33	607.89	274.46
	39	5000	15000	89.83/75.17	66.23/58.74	558.60	151.00
	40	3000	23000	50.42/42.73	35.91/30.56	369.40	174.74
Total (problems 37-40)				295.55/249.38	232.65/203.29	2217.83	882.07

Table 2
Large Assignment and Transportation Problems. Times in secs on VAX 11/750. All problems obtained using NETGEN, as described in the text. RELAX-II and RELAXT-II compiled under VMS 4.1; RNET compiled under VMS 3.7. Problems marked with * were obtained by NETGEN, and then, to make to problem feasible, an increment of 2 was added to the supply of each source node, and the demand of each sink node. Problems marked with ${ }^{+}$were similarly obtained, but the increment was 10

No.	Problem type	No. of sources	No. of sinks	No. of arcs	Cost range	Total supply	RELAX-II	RELAXT-II	RNET
1		1000	1000	8000	1-10	1000	4.68	4.60	79.11
2		1500	1500	12000	1-10	1500	7.23	7.03	199.44
3		2000	2000	16000	1-10	2000	12.65	9.95	313.64
4		1000	1000	8000	1-1000	1000	9.91	10.68	118.60
5		1500	1500	12000	1-1000	1500	17.82	14.58	227.57
6		1000	1000	8000	1-10	100000	31.43	27.83	129.95
7*		1500	1500	12000	1-10	153000	60.86	56.20	300.79
$8{ }^{+}$		2000	2000	16000	1-10	220000	127.73	99.69	531.14
$9{ }^{+}$		2500	2500	20000	1-10	275000	144.66	115.65	790.57
10^{+}		3000	3000	24000	1-10	330000	221.81	167.49	1246.45
11		1000	1000	8000	1-1000	100000	32.60	31.99	152.17
12*		1500	1500	12000	1-1000	153000	53.84	54.32	394.12
13^{+}		2000	2000	16000	1-1000	220000	101.97	71.85	694.32
14^{+}		2500	2500	20000	1-1000	275000	107.93	96.71	1030.35
15^{+}		3000	3000	24000	1-1000	330000	133.85	102.93	1533.50
16^{+}		500	500	10000	1-100	15000	16.44	11.43	84.04
17^{+}		750	750	15000	1-100	22500	28.30	18.12	176.55
18^{+}		1000	1000	20000	1-100	30000	51.01	31.31	306.97
19^{+}		1250	1250	25000	1-100	37500	71.61	38.96	476.57
20^{+}		1500	1500	30000	1-100	45000	68.09	41.03	727.38

Fig. 5. Speedup factor of RELAX-II and RELAXT-II over RNET for the transportation problems of table 2. The normalized dimension D gives the number of nodes \mathcal{N} and arcs \mathbb{N} as follows:

$$
\begin{aligned}
& |\mathcal{N}|=1000 * D,|\mathfrak{A}|=4000 * D \text { for problems } 6-15 \\
& |\mathcal{N}|=500 * D,|\mathscr{A}|=5000 * D \text { for problems } 16-20 .
\end{aligned}
$$

To corroborate the results of table 2 , the random seed number of NETGEN was changed, and additional problems were solved using some of the problem data of the table. The results were qualitatively similar to those of table 2 . We also solved a set of transhipment problems of increasing size generated by our random problem generator called RANET. The comparison between RELAX-II, RELAXT-II and RNET is given in fig. 6. More experimentation and/or analysis is needed to establish conclusively the computational complexity implications of these experiments.

8. Conclusions

Relaxation methods adapt nonlinear programming ideas to solve linear network flow problems. They are much faster than classical methods on standard benchmark problems and a broad range of randomly generated problems. They are also better

Fig. 6. Speedup factor of RELAX-II and RELAXT-II over RNET in lightly capacitated transhipment problems generated by our own random problem generator RANET. Each node is a transhipment node, and it is either a source or a sink. The normalized problem size D gives the number of nodes and arcs as follows

$$
|\mathcal{N}|=200 * D,|\Omega A|=3000 * D
$$

The node supplies and demands were drawn from the interval [$-1000,1000$] according to a uniform distribution. The arc costs were drawn from the interval [1,100] according to a uniform distribution. The arc capacities were drawn from the interval [500,3000$]$ according to a uniform distribution.
suited for post optimization analysis than primal-simplex. For example, suppose a problem is solved, and then is modified by changing a few arc capacities and/or node supplies. To solve the modified problem by the relaxation method, we use as starting node prices the prices obtained from the earlier solution, and we change the arc flows that violate the new capacity constraints to their new capacity bounds. Typically, this starting solution is close to optimal and solution of the modified problem is extremely fast. By contrast, to solve the modified problem using primal-simplex, one must provide a starting basis. The basis obtained from the earlier solution will typically not be a basis for the modified problem. As a result, a new starting basis has to be constructed, and there are no simple ways to choose this basis to be nearly optimal.

The main disadvantage of relaxation methods relative to primal-simplex is that they require more computer memory. However, technological trends are such that this disadvantage should become less significant in the future.

Our computational results provided some indication that relaxation has a superior average computational complexity over primal-simplex. Additional experimentation with large problems and/or analysis are needed to provide an answer to this important question.

The relaxation approach applies to a broad range of problems beyond the class considered in this paper (see [10--13]), including general linear programming problems. It also lends itself to distributed or parallel computation (see [10,13-16]).

The relaxation codes RELAX-II and RELAXT-II together with other support programs, including a reoptimization and sensitivity analysis capacity, are in the public domain with no restrictions, and can be obtained from the authors at no cost. on IBM-PC or Macintosh diskette.

References

[1] D.P. Bertsekas, A unified framework for minimum cost network flow problems, LIDS Report LIDS-P-1245-A, M.I.T. (1982); also Math. Progr. 32(1985)125.
[2] D.P. Bertsekas and P. Tseng, Relaxation methods for minimum cost - ordinary and generalized network flow problems, LIDS Report LIDS-P-1462, M.I.T. (1985); also Oper. Res. Journal, to appear.
[3] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks (Princeton University Press, New Jersey, 1962).
[4] D.P. Bertsekas, A new algorithm for the assignment problem, Math. Progr. 21(1982)152.
[5] H.A. Aashtiani and T.L. Magnanti, Implementing primal-dual network flow algorithms, Oper. Res. Center Report 055-76, M.I.T. (1976).
[6] T. Magnanti, Optimization for sparse systems, in: Sparse Matrix Computations, ed. J.R. Bunch and D.J. Rose (Academic Press, New York, 1976) pp. 147-176.
[7] M.D. Grigoriadis and T. Hsu, The Rutgers minimum cost network flow subroutines (RNET documentation), Dept. of Computer Science, Rutgers University (1980).
[8] J. Kennington and R. Helgason, Algorithms for Network Programming (Wiley, New York, 1980).
[9] D. Klingman, A. Napier and J. Stutz, NETGEN - A program for generating large scale (un)capacitated assignment, transportation and minimum cost flow network problems Management Science 20(1974)814.
[10] D.P. Bertsekas, P. Hosein and P. Tseng, Relaxation methods for network flow problems with convex arc costs, SIAM J. Control and Optimization 25(1987).
[11] P. Tseng, Relaxation methods for monotropic programs, Ph.D. Thesis, M.I.T. (1986).
[12] P. Tseng and D.P. Bertsekas, Relaxation methods for linear programs, LIDS Report LIDS-P-1553, M.I.T. (1986); also Math. of Oper. Res. 12(1987).
[13] P. Tseng and D.P. Bertsekas, Relaxation methods for problems with strictly convex separable costs and linear constraints, LIDS Report LIDS-P-1567, M.I.T. (1986); also Math. Progr. 38(1987).
[14] D.P. Bertsekas, Distributed relaxation methods for linear network flow problems, Proc. 25th IEEE Conf. on Decision and Control, Athens, Greece (1986).
[15] D.P. Bertsekas and D. El Baz, Distributed asynchronous relaxation methods for convex network flow problems, LIDS Report LIDS-P-1417, M.I.T. (1984); also SIAM J. Control and Optimization 25(1987)74.
[16] D.P. Bertsekas and J. Eckstein, Distributed asynchronous relaxation methods for linear network flow problems, Proc. of IFAC '87, Munich, Germany (1987) (Pergamon Press, Oxford).

THE BASIC ALGORITHM

```
/* Read in problem data. */
nn:= number of nodes in network
na:= number of arcs in network
/* The nodes are numbered from 1 to nn and the arcs from }1\mathrm{ to na.*/
for arc:= 1 to na do
    cost(arc) := cost of arc
    upbd(arc) : = flow upper bound of arc
    head(arc) : = head node of arc
    tail(arc) : = tail node of arc
end do
for node:= 1 to nn do
    dfct(node) := extraneous flow supply out of node
end do
/* Initialize dual prices to 0 and then assign flow to arcs to satisfy complementary slackness. */
for arc := 1 to na do
rdcost(arc):= cost(arc)
if rdcost(arc) \geq0 then
    flow(arc) : = 0
    else
        flow(arc) : = upbd(arc)
        dfct(head(arc)):= dfct(head(arc)) + upbd(arc)
        dfct(tail(arc)) := dfct(tail(arc))-upbd(arc)
end do
/* Start relaxation iterations. */
while dfct(i) =0 for some i do
    for node:= 1 to nn do
        if dfct(node) > 0 then
        pred(node):= 0
        labe/set:= {node}
        scanset:= {\varnothing}
        augnode:= 0
        ascent : = false
```

```
            while augnode = 0 and not ascent do
            Choose a node1 & labelset\ scanset
            scanset:= scanset U {node1}
            /* Start scanning step. */
            scanning(node 1,augnode)
            /* Check if scanset corresponds to a dual ascent direction. */
            if
\begin{tabular}{|c|c|c|}
\hline \(\Sigma d f f t(\) node 1) & \(>\quad \Sigma \quad\) flow(arc) & \(\Sigma\) upbd(arc)-flow(arc) \\
\hline \multirow[t]{3}{*}{node 1 ¢ scanset} & \(r d \operatorname{cost}(\operatorname{arc})=0\) & \(r d \operatorname{cost}(a r c)=0\) \\
\hline & head(arc) ¢ scanset & head(arc) \& scanset \\
\hline & tail(arc) \& scanset & tail(arc) ¢ scanset \\
\hline
\end{tabular}
    then ascent:= true
    end do
    if ascent then
        doascent
    else
            augflow(augnode,node)
    end do
end do
```


procedure scanning(node 1,augnode)

```
/* This procedure performs a scanning step at node 1. */
for all arc such that head \((a r c)=\) node 1 do
if rdcost(arc) \(=0\) and flow(arc) \(>0\) then
node2: = tail(arc)
if node2 \(\&\) labelset then
pred(node2) : = arc
labelset: = labelset \(\cup\) \{node2\}
if \(\mathbf{d f c t}(\) node2) \(<0\) then augnode : \(=\) node2
end do
for all arc such that tail(arc) \(=\) node 1 do
if rdcost(arc) \(=0\) and flow(arc) <upbd(arc) then
```

```
node2 : = head(arc)
if node2 & labelset then
pred(node2) : = -arc
labelset:= labelset U {node2}
if dfct(node2) < 0 then augnode : = node2
end do
end;
```

procedure doascent
l^{*} This procedure performs dual ascent by line-minimization and updates the flow accordingly to satisfy complementary slackness. */
while

$\Sigma d f t($ node 1$)$	$>\quad \Sigma$ flow(arc)	+	Σ	upbda
node 1 ¢ scanset	$r d \operatorname{cost}(a r c)=0$		rdcost(arc) $=0$	
	head (arc) ¢ scanset		head(a	Q scans
	tail(arc) \& scanset		tail(arc)	scanset

do
/* Compute the stepsize to the next breakpoint in the dual cost and decrease the price of all nodes in scanset by the stepsize. Adjust the arc flow accordingly to maintain complementary slackness. */
pricechange : = very large positive number
for all arc such that head(arc) \& scanset and tail(arc) \& scanset do
if $r d \operatorname{cost}(a r c)=0$ then
$d f c t(h e a d(a r c)):=d f c t($ head $(a r c))-$ flow(arc)
dfct(tail(arc)) := dfct(tail(arc)) + flow(arc)
flow(arc) : = 0
if $0<-r d \operatorname{cost}(a r c)<$ pricechange then pricechange : $=-r d \operatorname{cost}(a r c)$
end do
for all arc such that head(arc) \& scanset and taillarc) \& scanset do
if $r d \operatorname{cost}(\operatorname{arc})=0$ then
$d f c t($ head $(a r c)):=\operatorname{dfct}($ head(arc) $)+(u p b d(\operatorname{arc})-$ flow(arc) $)$
dfct(tail(arc)) : = dfct(tail(arc)) - (upbd(arc)- flow(arc))
flow(arc): = upbd(arc)
if $0<r d \operatorname{cost}(a r c)<$ pricechange then pricechange : = rdcost(arc)
end do
for all arc such that head(arc) € scanset and tail(arc) \& scanset do

```
        rdcost(arc):= rdcost(arc) + pricechange
        end do
        for all arc such that head(arc) & scanset and tail(arc) & scanset do
        rdcost(arc) : = rdcost(arc) - pricechange
        end do
    end do
end;
procedure augflow(augnode,node)
l*}\mathrm{ This procedure adjusts the flow on arcs to decrease the total deficit, while maintaining complement
slackness. */
    flowchange:= min{ dfct(node), -dfct(augnode)}
    node1:= augnode
    while node1 f node do
        arc:= pred(node 1)
        if are > 0 then
            flowchange := min{ flowchange, flow(arc) }
            node1:= head(arc)
        else
            flowchange: = min{ flowchange, upbd(-arc)-flow(-arc)}
            node1:= tail(-arc)
    end do
    dfct(node) := dfct(node) - flowchange
    dfct(augnode):= dfct(augnode) + flowchange
    node1:= augnode
    while node1 f node do
        arc:= pred(node1)
        if arc >0 then
            flow(arc) : = flow(arc)-flowchange
            node1:= head(arc)
        else
            flow(-arc):= flow(-arc) + flowchange
            node1:= tail(-arc)
    end do
end;
```


Appendix


```
        U(M)=U(I)
        STAFTN(M)=STARTN(I)
        ENDN(M)=ENDN(I)
        END IF
```

 20 CONTINUE
 \(\mathrm{NA}=\mathrm{M}\)
 LARGE \(=20000000\)
 FEFEAT = FALSE.
 DO \(30 \mathrm{I}=1\), NA
 \(\operatorname{CAP}(I)=U(I)\)
 CALL INIDAT
 ***** Set initial dual prices to zero *****
 DO \(40 \quad \mathrm{I}=1\), NA
 \(40 \quad \mathrm{FC}(\mathrm{I})=\mathrm{C}(\mathrm{I})\)
 CALL FELAXT
 C
***** Display previous optimal cost *****
IF (FEFEAT) WRITE (b, 5O)TCOST
SO FORMAT(* *"FREVIOUS OFTIMAL COST $=$ *, F14.2)
TCOST=DFLOAT (O)
DO $60 \mathrm{I}=1$, NA
60 TCOST=TCOST+DFLDAT (X (I) *C (I))
WRITE (6,70) TCOST
70 FOFMAT(" : OFTIMAL COST $=*$ F14.2)
END

SUEROUTINE INIDAT
C ***** This subroutine uses the data arrays STARTN and ENDN
C to construct auxiliary data arrays FOU, NXTOU, FIN, and C NXTIN that are required by RELAXT. In this subroutine we
arbitrarily order the arcs leaving each node and store
this information in FOU and NXTOU. Similarly, we arbitra-
rilly order the arcs entering each node and store this
information in FIN and NXTIN. At the completion of the
construction, we have that

```
FOU(I) = First arc leaving mode I.
NXTOU(J) = Next arc leaving the head node of arc J.
FIN(I) = First arc entering node I.
NXTIN(J) = Next arc entering the tail node of arc J.
```

COMMON /AFFAYS/STAFTN/AFFAYE/ENDN/ELEK1/TEMFIN/ELK2/TEMFOU */ELKJ/FOU/ELK4/NXTOU/ELKS/FIN/ELK6/NXTIN
*/L/N,NA
INTEGEF: STAFTN(1), ENDN(1), TEMF'IN(1), TEMFOU(1), FQL(1)
INTEGEF NXTOU(1),FIM(1), NXTIN(1)
LDGICAL L

DO $10 \mathrm{I}=1, \mathrm{~N}$
$F I N(I)=0$
FOU(I)=0
$\operatorname{TEMF} \operatorname{IN}(I)=0$
10 TEMFOU(I) $=0$
DO $20 I=1$, NA
NXTIN(I) $=0$
NXTOU(I) $=0$

```
        II=STARTN(I)
        I2=ENDN(I)
        IF (FOU(II).NE.O) THEN
        NXTOU(TEMFOU(II))=I
        ELSE
        FOU(11)=1
        END IF
        TEMF\cdotOU (11)=I
        IF (FIN(I2).NE.O) THEN
        NXTIN(TEMFIN(IZ))=I
        ELSE
        FIN(I2)=I
        END IF
    20 TEMFIN(I2)=I
        FETUFN
    END
```

 SUEFOUTINE FELAXT

SUBROUTINE RELAXT RELEASE AFF. 1988

This subroutine solves the minimum (linear) cost ordinary network flow problem.
The routine implements the relaxation method of
Eertsekas, D. F'. "A Unified Framework for Frimal-Dual Methods .. " Math. Frogramming, Vol. 32, 1985, pp. 125-145
Eertsekas, D. F. \& Tseng, F. " "Felanation Methods for Minimum .." Operations Fesearch J. 1997 (to appear)
Bertsekas, D. F., \& Tseng, F." "The FELAX Codes for Linear Minimum Cost Network Flow Froblems", ANNALS OF OPERATIONS RESEARCH, THIS VOLUME
The routine was written by Dimitri Eertsekas and Faul Tseng with contributions by Jonathan Eckstein.

This code is in the public domain and can be used for any purpose. It can be distributed freely.
Users are requested to acknowledge the authorship
of the code, and the relaxation algorithm. No modifications should be made to this code other than the minimal necessary to make it compatible with the FORTFAN compilers of specific machines. When reporting computational results please be sure to describe the memory limitations of your machine. Generally FELAXT requires more memory than primal simpley codes and may penalized severely by limited machine memory.

The difference between this routine and the similar code fELAX is that it maintains a data structure that gives all the balanced arcs in the network. This structure is called the "tree" for historical reasons, even though it describes a subnetwork that will generally be neither acyclic nor connected. Also, the tree may contain some arcs that are not balanced: it turns out to be cheaper to purge arcs that have become unbalanced only when their end nodes are being scanned, as opposed to always maintaining an exact set of balanced arcs.

C

The user must supply the following inputs to the subroutine:
All data should be in INTEGEF*4. To run in limited memory systems the arrays STARTN, ENDN, NXTIN, NXTOU, SAVE, FIN, FOU, LABEL, FRDCSF may be declared as INTEGEF*2.
N (the number of nodes)
NA (the number of arcs)
LARGE (a very large positive integer to represent infinity.
All problem data should be less than LAFGE in magnitude, and LAFGE should be less than, say, $1 / 4$ the largest INTEGER*4 of the machine used. This will guard primarily against overflow in uncapacitated problems where the arc capacities are taken finite but very large.)
STARTN(NA) (the head mode array)
ENDN(NA) (the tail node array)
FC(NA) (the reduced cost array)
x (NA) (the arc flow array)
U(NA) (the arc flow capacity array)
DFCT(N) (the deficit array)
FOU(N) (the first arc out array)
FIN(N) (the first arc in array)
NXTOU(NA) (the next arc out array)
NXTIN(NA) (the next arc in array)
This subroutine places the optimal flow in the array x
and the corresponding reduced cost vector in the array FC .


```
IMFLICIT INTEGER (A-Z)
LOGICAL FEFEAT, FEASEL, QUIT, SCAN,SWITCH,MAFKK, FOSIT, FCHANG
COMMON/AFRAYS/STARTN/ARFAYE/ENDN/AFRAYU/U/AFRRAYX/X/ARRAYQ/FC
*/AFRAYE/DFCT/ELK1/LAEEL/ELKK2/FFDCSF/ELKS/FOU/ELK4/NXTOU/ELKS/FIN
*/ELKKG/NXTIN/ELK7/SAVE/ELKIB/SCAN/BLK゙9/MAFK/L/N,NA,LARGE
*/ELKFR/FEFEAT
    COMMON /ELK1O/TFSTOU/ELKI1/TNXTOU/ELK12/TFSTIN/ELK1S/TNXTIN
```

 Each common block contains just one array, so the arrays in FELAXT
 can be dimensioned to 1 element and take their dimension from the
 main calling routine. With this trick FELAXT need not be recompiled
 if the problem dimension changes. If your FORTRAN does not support
 this feature change the dimensions below to be the same as the
 ones declared in your main calling program.
 DIMENSION TFSTOU(1), TNXTOU(1):TFSTIN(1), TNXTIN(1)
DIMENSION STARTN(1), ENDN(1),U(1), X(1), FC(1), DFCT(1)
DIMENSION LAEEL (1), FFDCSF(1), SCAN(1), FOU(1), NXTOU(1)
DIMENSION FIN(1), NXTIN(1), SAVE (1), MARK (1)
DDFOS and DDNEG are arrays that give the directional derivatives for all positive and negative single-node price changes. These are used only in the initial phase of the algorithm, before the "tree" datastructure comes into play. Therefore, they are equivalenced to TFSTOU and TFSTIN, which are the same size (number of nodes) and are only used after the tree comes into use.

C
c
C * reduce arc capacity as much as possible w/out changing the problem *
C * If this is a sensitivity run via routine SENSTV skip the
initialization *
C IF (FEFEAT) GO TO 190
DO SO NODE $=1$, N
C
C
Note that we also set up the initial DDFOS and DDNEG for each node (this is not necessary in FELAX).

DDFOS (NODE) =DFCT (NODE)
DDNEG (NODE) $=-$ DFCT (NODE)
SCAFOL=O ARC=FOU(NDDE)
10 IF (ARC.GT. O) THEN
SCAFOU=MINO (LARGE, SCAFOU+U (ARC))
ARE=NXTOU (ARC)
GO 7010
END IF CAFPUTT=MINO (LARGE,SCAF•OU+DFCT (NODE)) IF (CAFOUT.LT.O) THEN
c ** FFOBLEM IS INFEASIELE - EXIT

```
        WFITE(b,*)"EXIT DURING INITIALIZATION"
        WFITE(6,*) "EXOGENOUS FLOW INTO NODE",NODE," EXCEEDS OUT CAFACITY"
        CALL FRFLDW(NODE)
        GO TO 640
        END IF
```

c
20. AFC=FIN(NODE)
$U(A R C)=M I N O(U(A R C)$, CAFOUT $)$
SCAFIN=MINO (LARGE, SCAFIN+U(ARC))
AFiC=NXTIN(AFC)
GO TO 20
END IF
30 CAFIN=MINO(LARGE, SCAFIN-DFCT (NODE))
IF (CAFIN.LT.O) THEN
*** FFoellem is infeasible - Exit
WFIITE(6,*)"EXIT DURING INITIALIZATION*
WRITE (6 ; *) "EXOGENOUS FLOW OUT OF NODE", NODE,
* "exceeds in cafacity*
CALL FFFFLOW(NODE)
GO TO 640
END IF
C
40 IF (ARC. GT.0) THEN
$U(A R C)=M I N O(U(A F C), C A F I N)$
$A F C=N X T O U(A F C)$
GO TO 40
END IF
50 CONTINUE
C

```
C ******* initialize the arc flows and the nodal deficits ********
C *** note that U(AFC) is redefined as the residual capacity of ARC
    Now compute the directional derivatives for each coordinate
    exactly.
    As well as computing the actual defecits. U(AFC) is the residual
    capacity on AFiC, and X(AFC) is the flow.These always add up to the
    total capacity.
    DO 60 AFC=1,NA
        X(ARC) = O
        IF (FC (ARC) .LE. O) THEN
        T = U(AFC)
        T1 = STAFTN(AF:C)
        T2 = ENDN (AFC)
        DDFOS(T1) = DDFOS(T1) + T
        DDNEG(T2) = DDNEG(T2) + T
        IF {FC(ARC) .LT. (I) THEN
                X(AFC) = T
                LI(ARC) = O
                DFCT(T1) = DFCT(T1) + T
                DFCT(T2) = DFCT(T2) - T
                DDNEG(T1) = DDNEG(T1) - T
                DDFOS(T2) = DDFOS(T2) - T
        END IF
        END IF
    CONT INUE
    Adaptive strategy: the number of strictly single-node iteration
    passes attempted is a function of the average density of the
    network.
    IF (NA.GT.N*10) THEN
    NFASS=2
ELSE
    NFASS=3
END IF
We now do 2 or 3 passes through all the nodes. This is the initial
phase:if a single node iteration is not possibles we just go on to
the next node.
DO 180 F'ASSES = 1,NF'ASS
DO 170 NODE=1,N
    IF (DFCT(NODE) .NE. O) THEN
    Frice rise or price drop? (Note: it is impossible to have both.)
    IF (DDFOS(NODE) .LE. (1) THEN
    Frice rise. Loop over breakpoints in +Frice(NODE) direction.
    On outgoing arcs, tension will rise and reduced cost will fall
    -- so, next break comes at smallest positive reduced cost.
    On incoming arcs, tension will fall and reduced cost will rise
        -- so, next break comes at smallest negative reduced cost.
        DELFFRC = LAFGE
        AFIC = FOU (NODE)
        IF (AFIC .GT. O) THEN
                TFCC = FiC (AFiC)
                IF ((TFC .GT. O) .AND. (TFC .LT. DELFFRC)) THEN
```

DELFRC $=$ TRC
END IF
ARC $=$ NXTOU (ARC)
GOTO 70
END IF
$A F C=F I N(N O D E)$

80
IF (ARCC .GT. O) THEN
$T F C=F C(A R C)$
IF ((TRC . LT. O) .AND. (-TEC . LT. DELFFC)) THEN
DELFRC $=-T F C$
END IF
$\mathrm{ARC}=\mathrm{NXTIN}(\mathrm{AFC})$
GOTO 80
END IF
If no breakpoints left and ascent still possible, the problem
is infeasible.
IF (DELFRC .GE. LARGE) THEN
IF (DDFOS (NODE) .EQ. O) GOTD 170
GOTO 640
ENDIF
We have an actual breat;point. Increase price by that quantity.
First check the effect on all outbound arcs. which will have a
tension increase and reduced cost drop.
NXTEFK: = LARGE
$A R C=F O U(N D D E)$
IF (ARC . GT. O) THEN
$T F C=F C(A R C)$
IF (TRC .EQ. O) THEN
$T 1=\operatorname{ENDN}(A R C)$
$T=U(A F C)$
IF (T .GT. O) THEN
DFCT (NODE) $=\operatorname{DFCT}(N O D E)+T$
$\operatorname{DFCT}(T 1)=\operatorname{DFCT}(T 1)-T$
$X(A R C)=T$
$U(A F C)=0$
ELSE
$T=x(A R C)$
END IF
DDNEG (NODE) $=$ DDNEG (NODE) $-T$
$\operatorname{DDFOS}(T 1)=\operatorname{DDFOS}(T 1)-T$
END IF
For all outgoing arcs tension rises, and reduced cost drops
TRC = TRC - DELFFRC
IF ((TFC . GT. O) .AND. (TFC . LT. NXTEFK)) THEN
NXTBFK = TRC
ELSE IF (TFC .EQ. O) THEN
Arc goes from inactive to balanced. Just change tension
increase derivatives, and check for status change at
other end.
$\operatorname{DDFOS}(N D D E)=\operatorname{DDFOS}(N O D E)+U(A R C)$
$\operatorname{DDNEG}(E N D N(A F C))=\operatorname{DDNEG}(E N D N(A R C))+U(A R C)$
END IF
$\mathrm{FB}(\mathrm{ARC})=\mathrm{TRC}$
$A R C=N \times T O U(A R C)$
GOTO 100
END IF
Time to check: the incoming arcs into the node.

```
C
C
C
    110
C
C
c
C
C
C
IF ((DDFQS(NODE) .LE. O) .AND. (NXTEFK .LT. LAFGE)) THEN
    DELFRC = NXTEFK
    GOTO 90
END IF
    Now comes the code for a price decrease at NODE.
    On outgoing arcs, tension will drop and reduced cost will increase
    -- so, next break comes at smallest negative reduced cost.
    On incoming arcs, tension will increase and reduced cost will fall
    -- so, next break comes at smallest positive reduced cost.
    ELSE IF (DDNEG(NODE) .LE. (I) THEN
    DELFRC = LAFGE
    ARC = FOU(NODE)
These arcs will have an tension decrease and a reduced cost rise.
    ARC = FIN(NDDE)
```

LLSE IF (DDNEG(NDDE).LE. (1) THEN
DELFFRC = LAFGE
ARC $=$ FQU(NODE)
IF (ARC . GT. O) THEN $T R C=R C(A R C)$ IF ((TRC . LT. O) .AND. (-TRC . LT. DELFFC)) THEN DELFRC $=-T R C$
ENDIF
ARC $=N X T O U(A F C)$
GOTO 120
ENDIF
ARC = FIN(NODE)
IF (AFIC .GT. O) THEN

```
    TFC = RC (AFC)
    IF ({TRC .GT. O) .AND. (TRC .LT. DELFRC)) THEN
            DELFRC = TRC
    END IF
    ARC = NXTIN(ARC)
    GOTO 13O
END IF
```

```
If there is no breakpoint, the problem is infeasible,
unless we are making a degenerate step.
IF (DELFRC .EQ. LARGE) THEN
    IF (DDNEG(NODE) ,EQ. O) GOTO 170
    GOTO 640
END IF
Now we make the step to the next breakpoint. We start with the
outbound arcs. These have a tension decrease and reduced cost
rise. Therefore, the possible tramsitions are from balanced to
inactive or active to balanced.
NXTEFKK = LARGE
AFC = FOU (NODE)
IF (AFC .GT. O) THEN
    TRC = RC (ARC)
    IF (TF:C .EQ. O) THEN
        T1 = ENDN (AFC)
        T = X (ARC)
        IF (T .GT. O) THEN
            DFCT(NODE) = DFCT(NODE) - T
            DFCT(T1) = DFCT(T1) + T
            U(ARC) = T
            X(ARC) = 0
        ELSE
            T=U(ARC)
        END IF
        DDFOS (NODE) = DDFOS (NODE) - T
        DDNEG(T1) = DDNEG(T1) - T
    END IF
    Log the reduced cost rise for all arcs.
    TFCC = TFCC + DELFRC
    IF ({TRC .LT. O) .AND. (-TRC .LT. NXTERK)) THEN
        NXTERK = -TRC
    ELSE IF (TRC .EQ. O) THEN
        Active to balanced. Tension decrease derive go up.
        DDNEG (NODE) = DDNEG(NODE) + X (ARC)
        DDFOS (ENDN (AFC)) = DDFOS (ENDN (ARC) ) + X (ARC)
    END IF
    FC(AFC) = TF:C
    ARC = NXTOU(ARC)
    GOTO 150
END IF
Now do the incoming arcs. These have a tension increase and
therefore a reduced cost drop. The possible transitions are
from inactive to balanced and from balanced to active..
ARC = FIN(NODE)
IF (ARC .GT. O) THEN
    TFC = FC (AFC)
    IF (TFIC .EQ. O) THEN
        T1 = STARTN (ARC)
        T = U(ARC)
```

```
                    IF (T .GT. O) THEN
                        DFCT (NODE) = DFCT (NDDE) - T
                        DFCT(T1) = DFCT(T1) + T
                        X(ARC) = T
                U(ARC) = O
                    ELSE
                        T = X(ARC)
            END IF
            DDNEG(T1) = DDNEG(T1) - T
            DDF'OS(NODE) = DDFOS(NODE) - T
            END IF
            TRC = TRC - DELFFRC
            IF ((TRC .GT. 0) .AND. (TF:C .LT. NXTEFK)) THEN
                NXTERK = TFC
            ELSE IF (TRC .EQ. () THEN
                DDFOS(STAFTN(AFC)) = DDFOS(STARTN(AFC)) + U(AFC)
                DDNEG (NODE) = DDNEG (NODE) + U(AFC)
            END IF
            FC(AFC) = TRC
            ARC = NXTIN(ARC)
            GOTO 160
            END IF
C OK. Movement is done. Is this direction still a (degenerate)
C
    descent direction. If so, keep going.
            IF ((DDNEG(NODE) .LE. O) .AND. (NXTEFK. .LT. LAFGE)) THEN
                    DELFRC = NXTEFKK
                GOTO 140
            END IF
            END IF
            END IF
    170 CONTINUE
    180 CONTINUE
c ******* initialize the tree ************************************
    190 DO 200 I=1,N
            TFSTOU (I)=0
    200 TFSTIN(I)=0
            DO 210 I=1,NA
            TNXTIN(I)=-1
            TNXTOU(I)=-1
            IF (FC(I).EQ.O) THEN
                    TNXTOU(I)=TFSTOU (STARTN (I))
                    TFSTOU(STARTNN(I))=I
                    TNXTIN(I)=TFSTIN(ENDN(I))
                    TFSTIN(ENDN(I))=I
            END IF
    210 CONTINUE
            FEASEL= . TFUE.
            NDFCT=N
            NNONZ=0
            SWITCH=.FALSE.
            DO 220 I=1,N
            MAFK (I) =. FALSE.
            SCAN (I)=.FALSE.
        220 CONTINUE
            NLABEL=0
C
    ******* Set threshald for SWITCH *******************************
```

```
C FELAXT uses an adaptive strategy for deciding whether to
C continue the scanning process after a price change.
C The threshold parameters tp and ts that control
C this strategy are set in the next few lines.
C
    TF=10
    TS=INT (N/15)
C
c **** start relaxation algorithm ***************
C
    23O CONTINUE
        DO 630 NODE=1,N
            DEFCIT=DFCT (NODE)
            IF (DEFCIT.EQ.O) THEN
                GO TO 6SO
            ELSE
                FOSIT = (DEFCIT .GT. G)
                NNONZ=NNONZ+1
            END IF
        ***** ATTEMFT A SINGLE NODE ITEFATION FFOM NODE ****
        IF (FOSIT) THEN
C
c ************* CASE OF NODE W/ FOSITIVE DEFICIT ********
C
    FCHANG = .FALSE.
        INDEF=DEFCIT
        DELX=0
        NE=0
C
C Check outgoing (probably) balanced arcs from NODE.
C
        AF:C=TFSTOU(NODE)
    240 IF (ARC .GT. O) THEN
        IF ({RC (AFC) .EO. O) .AND. {X(ARC) .GT. 0)) THEN
            DELX = DELX + X(ARC)
            NB = NE + 1
            SAVE (NB) = AF:C
        ENDIF
        ARC = TNXTOU(ARC)
        GOTO 240
        END IF
C
C Chect: incoming arcs now.
C
    ARC = TFSTIN(NODE)
    250
    IF (AFC .GT. O) THEN
        IF ((F:C (ARC) .EQ. O) .AND. (U(ARC) .GT. O)) THEN
                        DELX = DELX + U(AFC)
            NB}=\textrm{NE}+
            SAVE (NB) = -AFC
        ENDIF
        ARC = TNXTIN(ARC)
        GOTO 250
    END IF
C
C ***** end of initizl node scan ********
C
```

260° CONTINUE
C

```
    ********* IF no price change is possible exit
```

 IF (DELX.GT. DEFCIT) THEN
 QUIT = (DEFCIT. LT. INDEF)
 GO TO \(\Xi \mathrm{BO}\)
 END IF
 Now compute distance to next breakpoint.
 DELFFRC = LAFGE
 \(A F C=F O U(N O D E)\)
 270 IF (AFC .GT. O) THEN
 \(\mathrm{FDCOST}=\mathrm{RC}(A F C)\)
 IF ((FDCOST . LT. O) .AND. (-FiDCOST . LT. DELFRE)) THEN
 DELFFRC \(=-\operatorname{FDCOST}\)
 ENDIF
 ARC \(=\) NXTOU (ARC)
 GOTO 270
 END IF
 \(A R C=F I N(N O D E)\)
 280 IF (ARC .GT. O) THEN
 \(\mathrm{FDCOST}=\mathrm{RC}(\mathrm{AFC})\)
 IF ((RDCOST .GT. 0) AND. (FDCOST . LT. DELFRC)) THEN
 DELFRC \(=\) RDCOST
 ENDIF
 \(A R C=N X T I N(A R C)\)
 GOTD 280
 END IF
 C
C
C
C ***** The dual cost can be decreased without bound $^{\text {cha }}$
GO TO 640
END IF
**** SKIF FLOW ADJUSTEMT IF THERE IS NO FLOW TO MODIFY ***
IF (DELX.EQ. O) GO TO 300
***** Adjust the flow on balanced arcs incident of NODE to
maintain complementary slackness after the price change *****
DO $290 \mathrm{~J}=1, \mathrm{NE}$
AFC=SAVE (J)
IF (ARC.GT. 0) THEN
NODE2=ENDN (ARC)
$T 1=X$ (ARC)
DFCT $($ NODE2 $)=\operatorname{DFCT}($ NODE2 $)+T 1$
$U(A R C)=U(A R C)+T 1$
$X(A F B)=0$
ELSE
NAF:C $=-A R C$
NODE2=STARTN(NARC)
$\mathrm{T} 1=\mathrm{U}$ (NARC)
DFCT $($ NODE 2$)=$ DFCT $($ NODE 2$)+T 1$
$X($ NARC $)=X($ NARC $)+T 1$
$U($ NARC $)=0$

```
            END IF
    290 CONTINUE
        DEFCIT=DEFCIT-DELX
    300 IF (DELFRC.EQ.LARGE) THEN
            OUIT=. TFUE.
            GO TO 350
        END IF
C
C ***** NODE corresponds to a dual ascent direction. Decrease
C the price of NODE by DELFKC and compute the stepsize to the
C
    next breakpoint in the dual cost *****
    NE=O
    FCHANG = .TF:LE.
    DF=DELFRC
    DELFRC=LARGE
    DELX=0
    AFC=FOU (NDDE)
    310 IF (AF:C.GT.0) THEN
        FDCOST=FC (AFC) +DF
        FC (ARC)=FDCOST
        IF (RDCOST.EQ.0) THEN
            NB=NE+1
            SAVE (NE) =ARC
            DELX=DELX + X (ARCO)
            END IF
            IF ((FDCOST.LT.O).AND. (-FDCOST.LT.DELFRC)) DELPRC=-RDCOST
            ARC=NXTOU(ARC)
            GOTO S10
        END IF
        AFC=FIN(NODE)
    320 IF (ARC.GT.O) THEN
        FDCOST=FC (AFC) -DF
        FC (AFC)=FDCOST
        IF (RDCOST.EQ.O) THEN
            NE=NB+1
            SAVE (NE) =-AFIC
            DELX=DELX+U(AFC)
        END IF
        IF ((FDCOST.GT.O).AND. (RDCOST.LT.DELFRC)) DELFRC=FDCOST
        AFC=NXTIN(AFLC)
        GOTO 320
        END IF
C
C
        ***** return to check if another price change is possible ******
    GO TO 260
C
C ******* perform flow augmentation at NODE *****
3SO DO 340 J=1,NE
    AFC=SAVE(J)
    IF (AFC.GT.(1) THEN
        *** ARC is an outgoing arc from NODE *********************
        NODE2=ENDN (AF:C)
        T1=DFCT (NODE2)
        IF (T1.LT.O) THEN
                ***** Decrease the total deficit by decreasing flow of ARIC
                QUIT=.TFUE.
                T2=X(AFiC)
```

```
            DX=MINO(DEFCIT,-T1,T2)
            DEFCIT=DEFCIT-DX
            DFCT (NODE2) =T1+DX
            X(ARC)=T2-DX
            U(ARC)=U(ARC)+DX
            IF (DEFCIT.EQ.O) GO TO 350
        END IF
```

 ELSE
 *** -ARC is an incoming arc to NODE ********************
 NARC=-ARC
 NODE2=STARTN (NARC)
 T1=DFCT (NODE2)
 IF (TI.LT. O) THEN
 ***** Decrease the total deficit by increasing flow of -ARC
 QUIT=. TRUE.
 T2=U(NARC)
 DX=MINO (DEFCIT, \(-T 1, T 2\))
 DEFCITT=DEFCIT-DX
 DFCT (\(\operatorname{NODE2}\)) \(=T 1+D X\)
 \(X(\) NARC \()=X(\) NARC \()+D X\)
 \(U(N A F C)=T 2-D X\)
 IF (DEFCIT.EQ.0) GO TO 350
 END IF
 END IF
 CONTINUE
 DFCT (NODE) =DEFCIT
 Feconstruct the list of balanced arcs adjacent to this node.
 First, the list at this node is now totally different. Eat
 the old lists of incoming and outgoing balanced arcs, and create
 a whole new one. This way we get the in and out lists of balanced
 arcs for NODE to be exactly correct. For the adjacent nodes, we
 add in all the newly balanced arcs, but do not bother getting rid
 of formerly balanced ones (they will be purged the next time the
 adjacent node is scanned).
 IF (FCHANG) THEN
 ARC = TFSTOU(NODE)
 TFSTOU(NODE) \(=0\)
 IF (ARC . GT. O) THEN
 NXTARC = TNXTOU(ARC)
 TNXTOU (ARC) \(=-1\)
 AF:C \(=\) NXTARC
 GOTO 360
 END IF
 ARC \(=\) TFSTIN(NODE)
 TFSTIN(NODE) \(=0\)
 IF (ARC .GT. O) THEN
 NKTARC \(=\) TNXTIN(ARC)
 \(\operatorname{TNXTIN}(A F C)=-1\)
 ARC = NXTARC
 GOTO 370
 END IF
 *** Now add the currently balanced arcs to the list for this
 *** node(which is now empty), and the appropriate adjacent ones
 DO \(380 \mathrm{~J}=1\), NG
 ARC \(=\) SAVE(J)
 IF (ARC.LE.O) AF:C=-AFC
    ```
                IF (TNXTOU(AFC) .LT. O) THEN
                        TNXTOU(ARC) = TFSTOU(STARTN(ARC))
                        TFSTOU(STARTN(ARC)) = ARC
                END IF
                IF (TNXTIN(ARC) .LT. O) THEN
                        TNXTIN(AFC) = TFSTIN(ENDN(AFC))
                        TFSTIN(ENDN(AFC)) = ARC
                            END IF
    380
                CONTINUE
            END IF
C
C *** end of single node iteration for a positive deficit node ***
C
    ELSE
C
C
C
    390 IF (ARC .GT. O) THEN
        IF ({FC(ARC) .EQ. O) .AND. (X (ARC) .GT. O)) THEN
                DELX = DELX + X (AFC)
                NE = NB + 1
                SAVE (NE) = ARC
            ENDIF
            AFIC = TNXTIN(ARC)
            GOTO 350
        END IF
        AFC=TFSTOU(NODE)
400 IF {ARC .GT. 0) THEN
        IF ((FC (AFC) .EQ. O) .AND. (U{ARC) .GT. O)) THEN
                DELX = DELX + U(ARC)
                NH = NE + 1
                SAVE (NE) = -AFC
            ENDIF
            AFC = TNXTOU(AFC)
            GOTO 400
        END IF
C
410 CONTINUE
    IF {DELX.GT.DEFCIT) THEN
        OUIT = (DEFCIT .LT. INDEF)
        GO TO 48O
    END IF
C
    Now compute distance to next breakpoint.
    DELFF:C = LAFGE
    ARC = FIN(NODE)
420 IF (ARC .GT. 0) THEN
        RDCOST = FC (ARC)
        IF ((RDCOST .LT. O) .AND. {-RDCOST .LT. DELFFC)) THEN
            DELFFRC = -FIDCOST
        ENDIF
        ARC = NXTIN(ARE)
```

GOTO 420
END IF
$A F C=F O U(N O D E)$
4.30 IF (ARC .GT. O) THEN

FDCOST $=\mathrm{RC}$ (ARC)
IF ((RDCOST .GT. O) .AND. (RDCOST .LT. DELFRC)) THEN
DELFRC $=$ FDCOST
ENDIF
AF:C $=$ NXTOU (ARC)
GOTO 430
END IF
C \quad ******* check if problem is infeasible ************************ IF ((DELX.LT.DEFCIT).AND. (DELFRC.EQ.LAFGE)) THEN

GO TO 640
END IF
IF (DELX.EQ.O) GO TO 450
C
c \quad ******* flow augmentation is possible ************************* DO $440 \mathrm{~J}=1$, NE
$A R C=S A V E(J)$
IF (AFC.GT. O) THEN
NODE2=STARTN (AFC)
T1=X (ARC)
DFCT (NODE2) $=$ DFCT (NODE2) $-T 1$
$U(A R C)=U(A R C)+T 1$
$X(A R E)=0$
ELSE
NARC=-ARC
NODEZ=ENDN (NAFC)
T $1=\mathrm{U}$ (NARC)
DFCT $($ NODE2 $)=$ DFCT $($ NODE2 $)-T 1$
$X($ NAF:C $)=X($ NAFC $)+T 1$
$U($ NARC $)=0$
END IF
440 CONTINUE
DEFCIT=DEFCIT-DELX
450 IF (DELFRC.EQ.LAFGE) THEN
DUIT=. TRUE.
GO TO 500
END IF
C \quad ******* price increase at NODE is possible ********************
$\mathrm{NE}=0$
FCHANG $=$. TFUE
$\mathrm{DF}=\mathrm{DELF} \cdot \mathrm{FC}$
DELF'RC=LARGE
DELX=0
$A F C=F I N(N O D E)$
460 IF (AFC. GT. O) THEN
$\operatorname{FDCOST}=\mathrm{FC}(\mathrm{AF:C})+\mathrm{DF}$
$\mathrm{RC}(\mathrm{ARC})=\mathrm{FDCOST}$
IF (FiDCOST.EQ. O) THEN
$\mathrm{NB}=\mathrm{NB}+1$
SAVE (NE) =ARC
$D E L X=D E L X+X(A F C)$
END IF
IF ((RDCOST.LT. O).AND. (-F:DCOST.LT.DELFFFC)) DELFFRC=-RDCOST
$A R C=N X T I N(A F E)$
GOTO 460
END IF
$A R C=F O U$ (NODE)

470 IF (AFC. GT. O) THEN
FDCOST=FE (AF:C) -DP
$\mathrm{FC}(\mathrm{AFiC})=\mathrm{FDCOST}$
IF (FDDCOST.EQ.0) THEN
$N E=N E+1$
SAVE (NE) $=-$ ARC
DEL $X=D E L X+U$ (ARC)
END IF
IF ((FDCOST.GT. O). AND. (FDCOST.LT. DELFFRC)) DELFFR=FDCOST ARC=NXTOU (AFC)
GOTO 470
END IF
GO TO 410
C
C
$480 \mathrm{DO} 490 \mathrm{~J}=1, \mathrm{NE}$
$A F C=S A V E(J)$
IF (ARC.GT. O) THEN
C *** ARC is an incoming arc to NODE ******************** NODE = $=$ STAFTN (AFC) T1=DFCT (NODE2) IF (T1.GT.O) THEN QUIT $=$. TFUE. $T 2=X(A R C)$ DX=MINO (DEFCIT,T1,T2) DEFCIT=DEFCIT-DX DFCT (NODEZ) $=T 1-D X$ $x(A F C)=T Z-D X$ $U(A F: C)=U(A F B C)+D X$ IF (DEFCIT.EQ.O) GO TO 500 END IF
ELSE
C *** - AF:C is an outgoing arc from NODE ********************* NAFCC=-ARC NODE $2=E N D N$ (NAFC) T1=DFCT (NODE 2) IF (T1.GT.0) THEN QUIT = . TRUE.
TZ=U(NARC) DX=MINO (DEFCIT,T1,T2)
DEFCIT=DEFCIT-DX
DFCT $($ NODE 2$)=T 1-D X$
$x($ NAFC $)=X($ NAFC $)+D X$
$U($ NARC $)=T 2-D X$.
IF (DEFCIT.EQ.O) GO TO SOO
END IF
END IF
490 CONTINUE
$50 \mathrm{DFCT}($ NODE $)=-$ DEFCIT
C
Feconstruct the list of balanced arcs adjacent to this node. First, the list at this node is now totally different. Eat the old lists of incomirig and outgoing balanced arcs.

IF (FCHANG) THEN AFC = TFSTOU (NODE)
TFSTOU(NODE) $=0$
510 IF (ARIC .GT. O) THEN

$$
\text { NYTAF:C }=\text { TNXTOU(ARC) }
$$

```
            TNXTOU(ARC) = -1
            ARC = NXTARC
            GOTO 510
        END IF
        AFC = TFSTIN(NODE)
        TFSTIN(NDDE) = 0
    520
    IF (ARC .GT. G) THEN
        NXTAFC = TNXTIN(AFC)
        TNXTIN(ARC) = -1
        ARC = NXTARC
        GOTO 520
        END IF
        *** Now add the currently balanced arcs to the list for this
        *** node(which is now empty), and the appropriate adjacent ones
        DO 53O J=1,NE
            ARC = SAVE(J)
            IF (ARC.LE.O) ARC=-AFC
            IF (TNXTOU(AFC) .LT. O) THEN
                TNXTOU(ARC) = TFSTOU(STARTN(AFCC))
                TFSTOU(STARTN(ARC)) = ARC
            END IF
            IF (TNXTIN(AF:C) .LT. O) THEN
                TNXTIN(ARC) = TFSTIN(ENDN(AFC))
                TFSTIN(ENDN(ARC)) = ARC
            END IF
        CONTINUE
            END IF
C
C ***** end of single node iteration for a negative deficit node ***
C
    END IF
C
IF (QUIT) GO TO 6SO
C
C
    SWITCH = (NDFCT =LT. TF.)
    ******** UNMAFKK NODES LAEELED EAFLIEF ********
        DO 540 J=1, NLABEL
            NODE2=LABEL (J)
            MAFK}(NODE2)=.FALSE.
            SCAN (NODEZ)=. FALSE.
            CONTINUE
    540
C
C
C
    530
    ******** INITIALIZE LAEELING *******
        NLAEEL=1
        LABEL (1)=NODE
        MAFK (NODE) =. TF:UE.
        FF:DCSR (NODE)=0
```

```
            ******** SCAN STARTING NODE **********
            SCAN (NDDE) = . TRLIE .
            NSCAN=1
            DM=DFCT (NODE)
```

```
DELX=0
DO 550 J=1,NB
    AFC=SAVE (J)
    IF (ARC.GT.O) THEN
        IF (FOSIT) THEN
            NODE2=ENDN (ARC)
        ELSE
            NODE2=STARTN (AFC)
        END IF
        IF (.NOT.MAFK(NODE2)) THEN
                NLAEEL=NLAEEL+1
                LABEL (NLAEEL)=NODEZ
                FRDCSR (NODE2) =ARC
                MARK (NODEZ)=. TRUE.
                DELX=DELX+X (ARC)
        END IF
        ELSE
        NARC=-AFC
        IF (FOSIT) THEN
            NODE2=STARTN (NARC)
        ELSE
            NODE2=ENDN(NAF:C)
        END IF
        IF (. NOT.MAFK (NODE2)) THEN
            NLAEEL=NLAEEL+1
            LAEEL (NLABEL) =NODE2
            FRDCSR (NODE2)=ARC
            MARK (NODE2)=. TRUE.
            DELY=DELX+U (NARC)
            END IF
            END IF
```

 5SO CONTINUE
 C
E
c
560 NSCAN=NSCAN+1
****** chect to see if SWITCH needs to be set ******
SbITCH indicates it may now be best to change over to a more
conventional primal-dual algorithm lone which can reuse old
labels to some extent).
SWITCH = SWITCH .OR. ((NSCAN .GT. TS) .AND. (NDFCT.LT. TS))
**** scan next node on the list of labeled nodes ****
scanming will continue until either an OVEFESTIMATE of the residual
capacity across the cut corresponding to the scanned set of nodes
(called DELX) exceeds the absolute value of the total deficit of the
scanned nodes (called $D M$), or else an augmenting path is found. Arcs
that are in the tree but are not balanced are purged as part of the
scanning process.
I=LABEL (NSCAN)
SCAN (I) = . TRUE.
IF (POSIT) THEN
[C ******* scanning node 1 for case of positive deficit $* * * * * *$

NAUGND=0
FRVARC=0

```
        ARC = TFSTOU(I)
    570 IF (AKC.GT.0) THEN
C
C ***** ARC is an outgoing arc from NODE *****
C
    IF {NC (AFC) .EQ. O) THEN
        IF (X (ARC) .GT. O) THEN
                NODE2=ENDN (ARC)
                IF (.NOT. MAFK(NODE2)) THEN
C
C
C
C
                    ***** NODE2 is not in the labeled set. Add NODE2 to the
                    labeled set. *****
                FRDCSR (NODEZ )=ARC
                IF (DFCT(NODE2).LT.0) THEN
                        NAUGND=NALGND+1
                        SAVE (NAUGND) = NODE?
                END IF
                NLABEL=NLABEL+1
                LABEL (NLABEL) =NODE?
                MAFK (NODE2)=. TFUE.
                DELX=DEL X + X (AFC)
                END IF
            END IF
            FRVARC = ARC
            AF:C = TNXTOU(AFC)
        ELSE
            TMFARC = ARC
            AFEC = TNXTOU(AFC)
            TNXTOUS(TMFARC) = - 1
            IF (FRVAFC .EQ. O) THEN
                TFSTOU(I) = AFC
            ELSE
            TNXTOU(FFKVARC) = ARC
            END IF
        END IF
        GOTO 570
        END IF
C
C
C
            FRVARC = 0
            AFC=TFSTIN(I)
            5BO IF (ARC.GT.O) THEN
            ***** ARC is an incoming arc into MODE *****
            IF (RC(AF:C) .EQ. O) THEN
            IF (U(ARC) .GT. O) THEN
                NODE2=STARTN(ARC)
                IF (.NOT. MAFK(NODE2)) THEN
                    ***** NODE2 is not in the labeled set. Add NODE2 to the
                    labeled set.
                    FRDCSR (NODE2)=-ARC
                    IF (DFCT(NODE2).LT.O) THEN
                        NAUGND=NAUGND+1
                SAVE (NAUGND) =NODE2
                    END IF
```

```
NLABEL=NLAEEL +1
LABEL (NLABEL) =NODE2
MARK (NODE2) = . TRUE.
```

$D E L X=D E L X+U(A F B C)$
END IF
END IF
FFVAFIC = ARC
$A R C=\operatorname{TNXTIN}(A R C)$
ELSE
TMFAFIC = AFC
$A F C=$ TNXTIN(ARC)
TNXTIN(TMFARC) $=-1$
IF (FRVARCC EQ. O) THEN
TFSTIN(I) $=A F C$
ELSE
TNXTIN(FFUARC) $=$ ARC
END IF
END IF
GOTD 580
END IF
C
C * correct the residual capacity of the scanned nodes cut *
C
AFC=FFRDCSR (I)
IF (AFC.GT.O) THEN
$D E L X=D E L X-X$ (ARC)
ELSE
$D E L X=D E L X-U(-A R C)$
END IF
C
C ********** end of scanning of I for positive deficit case ****
C
ELSE
C
C
******* scanning node I for case of negative deficit ****
NAUGND $=0$
FFVVAFC $=0$
$A F C=T F S T I N(I)$
590 IF (ARC.GT. O)
IF (FiC (AFC) .EQ. O) THEN
IF (X (AFC) . GT. O) THEN
NODE $2=$ STAFTN (AFC)
IF (.NOT. MAFK (NODE2)) THEN
FRDCSR (NODE2) =ARC
IF (DFCT (NODE2). GT. O) THEN
NAUGND=NAUGND +1
SAVE (NALIGND) = NODE2
END IF
NLABEL $=$ NLABEL +1
LAEEL (NLABEL) =NODE2
MAFK (NODE2) =. TRUE .
$D E L X=D E L X+X$ (ARC)
END IF
END IF
FFVAFEC $=A R E$
$A R C=T N X T I N(A R C)$
ELSE
TMFARC = ARC
$A R C=$ TNXTIN (ARC)

```
                    TNXTIN(TMFARC) = -1
                    IF (FFVAFC .EQ. O) THEN
                        TFSTIN(I) = ARC
            ELSE
                    TNXTIN(FRVARC) = AF:C
            END IF
        END IF
        GOTO 590
    END IF
C
C
C
    FRUARC = 0
    AFIC = TFSTOU(I)
    600 IF (ARC.GT.0) THEN
        IF (RC (ARC) .EQ. O) THEN
            IF \U(ARC) .GT. O) THEN
                NODEP=ENDN (ARIC)
                IF (.NOT. MARK (NODE2)) THEN
                FFDCSF (NODE2)=-AFC
                                IF (DFCT (NODE2).GT.O) THEN
                                NAUGND=NAUGND+1
                                SAVE (NAUGND) =NODE2
                                END IF
                                    NLABEL=NLABEL+1
                                    LAEEL (NLABEL) =NODE2
                                    MAFK゙ (NODE2)=. TRUE.
                                    DELX=DELX+U(ARC)
                END IF
            END IF
            FRUARC = ARC
            AFC = TNXTOU(AFC)
        ELSE
            TMFARC = ARC
            ARC = TNXTOU(ARC)
            TNXTOU(TMFARC) = -1
            IF (FRVARC = EQ. 0) THEN
                    TFSTOU(I) = AFC
            ELSE
                            TNXTOU(FRVARC) = ARC
            END IF
        END IF
        GOTO 600
    END IF
C
    ARC=FRDCSR(I)
    IF (AFC.GT.O) THEN
        DELX=DELX-X (AF:C)
    ELSE
        DELX=DELX-U(-AFC)
        END IF
        END IF
C
C
C
    DM=DM+DFCT (I)
*** check iff the set of scanned nodes correspond
C to a dual ascent direction; if yes, perform a
C price adjustment step, otherwise continue labeling *
```

C

```
IF (NSCAN.LT.NLAEEL) THEN
    IF (SWITCH) GD TO 610
    IF ((DELX.GE.DM).AND. (DELX.GE.-DM)) GO TO 610
END IF
************** TRY A FRICE CHANGE ************
Note that since DELX-ABS(DM) is an OVEFESTIMATE of ascent slope, we
may occasionally try a direction that is not really an ascent. In
this case the ANCNT: routines return with DUIT set to .FALSE. . The
main code, it turn, then tries to label some more node.
```

IF (POSIT) THEN
CALL ASCNT 1 (DM, DELX, NLAEEL, AUGNDD, FEASEL,
SWITCH,NSCAN)
ELSE
CALL ASCNT2 (DM, DELX, NLAEEL, AUGNOD, FEASEEL;
SWITCH,NSCAN)
END IF
IF (.NDT.FEASEL) GO TO 640
IF (.NOT.SWITCH) GD TO 630
IF ((SWITCH).AND. (AUGNOD.GT. O)) THEN
NAUGND=1
SAVE (1)=AUGNOD
END IF
*** CHECK IF AUGMENTATION IS FOSSIELE.
IF NOT RETUFN TO SCAN ANDTHEF NODE. ***
CONTINUE
C
C
C
C
IF (NAUGND.EQ.O) GO TO 560
Do the augmentation.
DO $620 \mathrm{~J}=1$, NAUGND
AUGNOD=SAVE (J)
IF (FOSIT) THEN
CALL AUGFLI (AUGNOD)
ELSE
CALL AUGFL2 (AUGNOD)
END IF
620 CONTINUE
C
C
C
＊＊FETUFN TO TAKE UF ANOTHEF NODE W／NONZEFO DEFICIT＊＊
630 CONTINUE
********** TEST FOR TEFMINATION ***********
We have just done a sweep throught all the nodes. If they all
had zero defecit, we must be done.
NDFCT $=$ NNDNZ
NNONZ $=0$
IF (NDFCT.EQ.6) THEN
FETURN
ELSE
GQ TO 230

END IF

C
 640 WFITE (6,*)' FROBLEM IS FOUND TO EE INFEASIELE.*

FEASEL $=$.FALSE.
FEETUFN
END

SUEROUTINE FFFFLOW (NODE)

IMFLICIT INTEGEF: (A-Z)
DIMENSION STAFTN(1), ENDN(1), U(1), $x(1), \operatorname{DFCT}(1)$
DIMENSION FQU(1), NXTOU(1)
DIMENSION FIN(1), NXTIN(1)

WFITE ($6, *$) "DEFICIT (I.E., NET FLOW OUT) OF NODE $=$ *, DFCT (NODE) WFITE ($6, *$) 'FLOWS AND CAFACITIES OF INCIDENT AFES OF NODE', NODE IF (FOU (NODE).EQ. O) THEN

WFITE ($6, *$) "NO QUTGQING AF:CS"
ELSE
$A F: C=F Q U(N O D E)$
10 IF (AFIC.GT.O) THEN
WFIITE (6, *) "AFC", ARIC, " EETWEEN NODES", NODE, ENDN (AFIC)
WFITE ($6, *$) "FLOW $=$ ", $\mathrm{X}($ AR:C)
WFITE ($口, *$) "FESIDUAL CAF'ACITY $=$ ", U(AF:C)
$A F: C=N \times T O U$ (AFC)
GOTO 16
END IF
END IF
C
C
C
IF (FIN (NODE).ED. G) THEN
WRITE ($6, *$) "NO INCOMING AFECS"
ELSE
$A F: C=F I N(N O D E)$
20
IF (ARC.GT.O) THEN
WFiITE (ó,*) "ARC", ARC." EETWEEN NODES", STAF:TN(ARIC), NODE
WFITE ($6, *$) "FLOW $=$ ", X (AFEC)
WFITE ($6, *$) F FESIDUAL CAFACITY $=$ ", U(AFC)
$A F C=N X T I N(A K C)$
GO TO 20
END IF
END IF
C
C

c

```
        FETUFN
        END
    SUEFOUTINE AUGFLI(AUGNOD)
    ***** This subroutine performs the flow augmentation step.
        A flow augmenting path has been identified in the scanning
        step and here the flow of all arcs positively (negatively)
        oriented in the flow augmenting path is decreased (increased)
        to decrease the total deficit. *****
        IMFLICIT INTEGEF: (A-Z)
        COMMON/ARFAYS/STARTN/ARFRAYE/ENDN/ARFAYU/U/ARRAYX/X
        */AFFFAYE/DFCT/ELK2/FRDCSR
        DIMENSION STARTN(1),ENDN(1),U(1),X(1),DFCT(1),FRDCSR(1)
    ***** A flow augmenting path ending at AUGNOD is found.
    Determine DX, the amount of flow change. *****
        DX= DFCT (AUGNOD)
        IE=ALGGND
        10 IF (FFDCSF(IE).NE.O) THEN
        AFC=FRDCSF (IE)
        IF {ARC.GT.0) THEN
            DX=MINO (DX,X (ARC))
            IE=STAF:TN(ARC)
        ELSE
            DX=MINO (DX,U(-AFC))
            IE=ENDN(-AFIC)
        END IF
        GOTO 10
    END IF
    FOOT=IB
    DX=MINO (DX, DFCT (ROOT))
    IF (DX .LE. O) FETUFN
    ***** Update the flow by decreasing (increasing) the flow of
    all arcs positively (negatively) oriented in the flow
    eugmenting path. Adjust the deficits accordingly. *****
    DFCT (AUGNOD)=DFCT (AUGNOD) +DX
    DFCT (FOOT)=DFCT (ROOT)-DX
    IE=AUGNOD
2O IF (IB.NE.ROOT) THEN
    ARC=FFRDCSR(IE)
    IF (ARC.GT.O) THEN
        X(AF:C) =X (AFC) -DX
            U(AF:C)=U(ARC) +DX
            IE=STAFTN(AFC)
        ELSE
            NAF:C=-AFC
            X(NAFC})=X(\mathrm{ NAFC })+D
            U(NARC)=U (NARC) -DX
            IE=ENDN (NARC)
        END IF
        GOTO 2O
    END IF
```

FETUFN
END

SUEROUTINE ASCNT1 (DM, DELX,NLAEEL, AUGNOD, FEASEL, SWITCH, *NSCAN)

```
This subroutine essentially performs the multi-node
price adjustment step. It first checks if the set
of scanned nodes correspond to a dual ascent direction.
If yes, then decrease the price of all scanned nodes.
There are two possibilities for price adjustment:
If SWITCH=.TFUE, then the set of scanned nodes
corresponds to an elementary direction of maximal
rate of ascent, in which case the price of all scanned
nodes are decreased until the next breakpoint in the
dual cost is encountered. At this point some arc
becomes balanced and more node(s) are added to the
labeled set.
If SWITCH=.FALSE. then the prices of all scanned nodes
are decreased until the rate of ascent becomes
negative <this corresponds to the price adjustment
step in which both the line search and the degenerate
ascent iteration are implemented).
IMFLICIT INTEGEF (A-Z)
The two "tree"-based ascent routines have a common temporary
storage area whose dimension is set below. The maximum conceivable
amount needed equals the number of arcs, but this should never
actually occur.
```

LQGICAL SCAN, MARE, SWITCH, FEASEL, QUIT
COMMON/AFRFAYS/STAFTN/AFRAYE/ENDN/AFFAYU/U/AFRFAYX/X/AFFRAYG/FC */AFFAYE/DFCT/ELF1/LABEL/ELK2/FFDCSF/ELKミ/FOU/ELK4/
*NXTOU/ELKE/FIN/ELK6/NXTIN/ELK7/SAVE/ELK8/SCAN/ELK゙9/MAFK
*/L/N,NA, LAREE
COMNON/ELK1O/TFSTOU/ELKK11/TNXTOU/ELK12/TFSTIN/ELE1S/TNXTIN
COMMON /ASCELK/B
DIMENSION TFSTOU(1), TNXTOU(1), TFSTIN(1), TNXTIN(1)
DIMENSION STAFTN(1), ENDN(1), U(1), X(1), RC (1), DFCT (1), LAEEL (1)
DIMENSION FFDCSF (1), FOU(1), NXTOU(1), FIN(1), NXTIN(1)
DIMENSION SAVE (1), SCAN(1), MAFK (1)
***** Store the arcs between the set of scanned nodes and
its complement in SAVE and compute DELFRC, the stepsize
to the next breakpoint in the dual cost in the direction
of decreasing prices of the scanned nodes. *****
DELFFRC=LAFGE
DL $Y=0$
NSAVE $=0$
**** calculate the array SAVE of arcs across the cut of scanned
nodes in a different way depending on whether NSCAN>N/2 or not.
This is done for efficiency. ****

IF (NSCAN.LE.N/2) THEN

```
    DO SO I= 1,NSCAN
        NODE=LABEL (I)
            AF:C=FOU (NODE)
    10 IF (ARC.GT.O) THEN
```

```
                    ***** AFiC is an arc pointing from the set of scanned
            nodes to its complement. ******
            NODE2=ENDN (AFC)
            IF (.NOT.SCAN(NODE2)) THEN
                NSAVE=NSAVE+1
                SAVE (NSAVE)=AFC
                FDCOST=FC (AFC)
    IF ({FDCOST.EQ.O).AND. (FFDDCSR(NODE2).NE.AFC)) DLX=DLX+X (ARC)
            IF ((FDCOST.LT.G).AND. (-FDCOST.LT.DELFFC)) DELFFC=-FDCOST
            END IF
            ARC=NXTOU (ARC)
            GOTO 10
        END IF
        AFC=FIN(NODE)
            IF (AFC.GT.O) THEN
            ***** ARC is an arc pointing to the set of scanned
            nodes from its complement. *****
            NODE2=STARTN(AFC)
            IF (.NOT.SCAN(NODE2)) THEN
                NSAVE=NSAVE+1
                SAVE (NSAVE) =-ARC
                FDCOST=FC {AF: )
IF ((FDCOST.EQ.O).AND. (FRDCSF (NODE2).NE. -AFC)) DLX=DLX+U(ARC)
                IF ((FDCOST.GT.O).AND. (FDCOST.LT.DELFFRC)) DELFFRC=FDCOST
            END IF
            ARC=NXTIN(ARC)
            GOTO 20
            END IF
SO CONTINUE
    ELSE
    DO SO NODE=1,N
        IF (SCAN(NODE)) GO TO 6O
            AFC=FIN(NODE)
40 IF (AF:C.GT.O) THEN
                NODEZ=STAFTN:AFC)
                IF (SCAN(NODE2)) THEN
                    NSAVE=NSAVE+1
                SAVE (NSAVE) =AFC
                FDCOST=FC (ARC)
    IF ((FDCOST.EQ.O).AND. (FRDCSFF(NODE).NE.AFC)) DLX=DLX+X (AFC)
                IF ((RDCOST.LT.O).AND. (-FDCOST.LT.DELFRC)) DELFRC=-RDCOST
            END IF
            AFIC=NXTIN (AFC)
            GOTO 40
        END IF
        ARC=FOU(NODE)
        IF (AFC.GT. O) THEN
            NODEZ=ENDN(ARC)
            IF (SCAN(NODE2)) THEN
```

```
                    NSAVE=NSAVE+1
                    SAVE (NSAVE)=-ARC
                    FDCOST=FC (AFC)
IF ((RDCOST.EQ.O). AND. (FRDCSR (NODE).NE. -ARC)) DLX=DLX+U(AFC)
                    IF ((FDCOST.GT.O).AND.(RDCOST.LT.DELFRC)) DELFRC=FDCOST
            END IF
            ARC=NXTOU (ARC)
            GOTO 50
            END IF
6O CONTINUE
    END IF
    ***** Check if the set of scanned nodes truly corresponds
    to a dual ascent direction. Here DELX+DLX is the enact
    sum of the flow on arcs from the scanned set to the
    unscanned set plus the ( capacity - flow) on arcs from
    the unscanned set to the scanned set. *****
    IF (DELX+DLX.GE.DM) THEN
        SWITCH=. TRUE.
        AUGNOD=0
        DO 70 I=NSCAN+1,NLAEEL
            NODE=LABEL (I)
            IF (DFCT(NODE).LT.O) AUGNOD=NODE
70 CONTINUE
            FETUFN
        END IF
    DELX=DELX+DLX
    ******* check that the problem is feasible *********************
BO IF (DELFRC.EQ:LARGE) THEN
    ***** We can decrease the dual cost without bound.
    Therefore the primal problem is infeasible. *****
    FEASEL=.FALSE.
    FETUFN
    END IF
    ******** Decrease prices of the scanned nodes, add more
    nodes to the labeled set & check if a newly labeled node
    has negative deficit. *****
    IF {SWITCH) THEN
    AUGNOD=0
    DO 90 1=1,NSAVE
        ARC=SAVE (I)
        IF (AFC.GT.O) THEN
            FC (AFC) =FC (AFC) +DELFFC
            IF (FRC (ARC).EO.0) THEN
                NODE2=ENDN (AFC)
                IF (TNXTOU(ARC) .LT. O) THEN
                TNXTOU(AFC) = TFSTOU(STARTN(ARC))
                TFSTOU(STARTN(ARC)) = ARC
                END IF
                IF (TNXTIN(AFC) .LT. O) THEN
                TNXTIN(ARC) = TFSTIN(NODE2)
                    TFSTIN(NODE2) = AFC
                    END IF
```

```
            FFDCSR (NODE2)=ARC
            IF (DFCT(NODE2).LT.O) THEN
                AUGNOD=NODE?
            ELSE
                IF (.NOT.MAFK(NODE2)) THEN
                MAFKK (NODE2) =.TFUE.
                NLAEEL=NLAEEL +1
                LABEL (NLAEEL)=NODE2
            END IF
            END IF
        END IF
        ELSE
        ARC=-AR:C
        FC (ARC) = RC (ARC) -DELFFRC
        IF (FCC (ARC).EQ. O) THEN
            NODE2=STARTN(ARC)
            IF (TNXTOU(ARC) .LT. O) THEN
                TNXTOU(ARC) = TFSTOU(NODE2)
                TFSTOU(NODEZ) = AFC
            END IF
            IF (TNXTIN(ARC) .LT. O) THEN
                TNXTIN(AFC) = TFSTIN(ENDN(ARC))
                TFSTIN(ENDN(ARC)) = ARC
            END IF
            FRDCSF (NODE2)=-ARC
            IF (DFCT(NODE2).LT.0) THEN
                AUGNOD=NODE2
            ELSE
                IF {.NOT.MAFK(NODEZ)) THEN
                MARK (NODEZ)=. TRUE.
                NLAEEL=NLAEEL+1
                LAEEL (NLABEL) = NODE2
            END IF
            END IF
            END IF
                END IF
            CONTINUE
            FETUFN
```

```
ELSE
```

***** Decrease the prices of the scanned nodes by DELFRC.
Adjust arc flow to maintain complementary slackness with
the prices. *****

```
NE = O
DO 100 I=1,NSAVE
    ARC=SAVE(I)
    IF (AFC.GT.O) THEN
        T1=RC (ARIC)
        IF (T1.EQ.O) THEN
            TZ=X(AFC)
            TS=STARTN(ARC)
                DFCT (TS)=DFCT (TS)-T2
                TS=ENDN (ARC)
                DFCT (T\Xi) = DFCT (T\Xi) +T2
                U(ARC) =U(ARC) +T2
                X(ARC)=0
            END IF
        FCC(AFC)=T1+DELFFC
```

```
            IF (RC(AF'C).EQ.O) THEN
                    DELX=DELX + X (ARC)
                    NE = NE + 1
                    FRDCSR (NE) = ARC
            ENDIF
        ELSE
            ARC=-ARC
            T1=RC (ARC)
            IF (T1.EQ.0) THEN
            T2=U(ARC)
            T3=STARTN (ARC)
            DFCT (TJ) =DFCT (TS) +T2
            TB=ENDN (ARC)
            DFCT (TS)=DFCT (TS)-T2
            X(ARC) = X (AFC) +T2
            U(ARC)=0
            END IF
            FC (ARC)=T1-DELFRC
            IF (FC(AFC).EQ.O) THEN
                DELX=DELX+U(ARC)
                NE = NE + 1
                FRDCSR (NE) = ARC
            END IF
        END IF
    100
        CONTINUE
        END IF
C
    IF (DELX.LE.DM) THEN
C
C
C
C
C
        ***** The set of scanned nodes still corresponds to a
        dual (possibly degenerate) ascent direction. Compute
        the stepsize DELFFR to the next breakpoint in the
        dual cost. *****
        DELFRC=LAFIGE
        DO 110 I=1,NSAVE
            AF:C=SAVE (I)
            IF {ARIC.GT.O\ THEN
                FDCOST=F:C (AF:C)
            IF ((FRDCOST.LT.0).AND. (-F:DCOST.LT.DELFFRC)) DELFFRC=-FDCOST
        ELSE
            AFC=-ARC
                    FDCOST=FC (ARC)
            IF ((FDCOST.GT.O).AND.(FDCOST.LT.DELFF:C)) DELFFRC=F:DCOST
        END IF
        CONTINUE
            IF ((DELFRC.NE.LAFGE).OF. (DELX.LT.DM)) GO TO 8O
        END IF
        *** Add new balanced arcs to the superset of balanced arcs. ***
        DO 120 I=1,NE
        AFC=FFRDCSF: (I)
            IF (TNXTIN(AFE).EQ.-1) THEN
                J=ENDN(ARC)
                TNXTIN(AFC)=TFSTIN(J)
                TFSTIN(J)=ARC
            END IF
            IF (TNXTOU(AFC).EQ.-1) THEN
                J=STAFTN (AFC)
```


TNXTOU (AFC) $=$ TFSTOU(J)

TFSTOU (J) =ARC
END IF
120 CONT INUE
FETUFN
END

SUBFOUTINE AUGFLZ (AUGNOD)
IMFLICIT INTEGEF (A-Z)
COMMON/ARFAYS/STARTN/ARFAYE/ENDN/AFFAYU/U/AFRAYX/X
*/AFFAYE/DFCT/BLKZ/FRDCSFi
DIMENSION STARTN(1), ENDN(1), U(1), X(1), DFCT(1),FRDCSF (1)
******* an augmenting path is found. determine flow change ***
DX=DFCT (AUGNOD)
IE=AUGNOD
10 IF (FRDCSF: (IE). NE. ©) THEN
AF:C=FRDCSF (IE)
IF (AFC. GT. O) THEN
$D X=M I N O(D X, X(A R C))$
$I E=E N D N$ (AFC)
ELSE
$D X=M I N O(D X, U(-A F C))$
IE=STAFTN(-AFC)
END IF
GOTO 10
END IF
$\mathrm{FODT}=\mathrm{IE}$
$\mathrm{DX}=\mathrm{MINO}$ (DX, -DFCT (FOOT))
IF (DX .LE. O) RETURN
******* update the flow and deficits $* *$
DFCT (AUGGNOD) = DFCT (AUGNOD) -DX
DFCT (ROOT) = DFCT (ROOT) +DX
IE=AUGNOD
20 IF (IE.NE. FOOT) THEN
AF:C=FRDCSF (IE)
IF (ARC. GT. O) THEN
$X(A F C)=X(A R C)-D X$
$U(A F C)=U(A F C)+D X$
IE=ENDN (ARC)
ELSE
NAFC $=-A F C$
X (NARC) $=X($ NARC $)+D X$
$U($ NARC $)=U$ (NARC) $-D X$
I $\mathrm{B}=$ STAFTN (NAFLC)
END IF
GOTO 20
END IF
FETUFN
END

SUEFOUTINE ASCNT2 (DM, DELX, NLAEEL, AUGNOD,FEASEL, SWITCH, *NSCAN)

```
IMFLICIT INTEGER (A-Z)
```

```
The two "tree"-based ascent routines have a common temporary
```

storage area whose dimension is set below. The maximum conceivable
amount needed equals the number of arcs, but this should never
actually occur.
LOGICAL SCAN, MAFK, SWITCH, FEASEL, QUIT
COMMON/ARFAYS/STARTN/ARRAYE/ENDN/ARRAYU/U/ARFAYX/X/ARRAYG/RC
*/ARRAYB/DFCT/BLK1/LABEL/BLK2/FRDCSR/ELKB/FOU/BLK4/
*NXTOU/ELKKS/FIN/ELKKb/NXTIN/ELKT/SAVE/ELKB/SCAN/ELK9/MARK
*/L/N,NA, LAFGE
COMMON /ELK゙1O/TFSTOU/ELKK11/TNXTOU/ELK゙12/TFSTIN/ELK1S/TNXTIN
COMMON /ASCBLK/E
DIMENSION TFSTOU(1), TNXTOU(1), TFSTIN(1), TNXTIN(1)
DIMENSION STARTN (1), ENDN (1), U(1), X(1), FC (1), DFCT (1), LAEEL (1)
DIMENSION FFRDCSFi(1), FOU(1), NXTOU(1), FIN(1), NXTIN(1)
DIMENSION SAVE (1), SCAN (1), MAFK (1)
******* augment flows across the cut \& compute price rise *****
DELFRC=LAFGE
DLX=O
NSAVE=0
IF (INSCAN.LE.N/2) THEN
DO $30 \mathrm{I}=1$, NSCAN
NODE=LAEEL (I)
$A R C=F I N(N O D E)$
IF (ARIC.GT. O) THEN
NODE2=STARTN (AFC)
IF (. NOT. SCAN (NODE2)) THEN
NSAVE=NSAVE +1
SAVE (NSAVE) =ARC
FDCOST=FC (AFC)
IF (FDCOST . EQ. O). AND. (FRDCSF (NODE2). NE. AFC)) $D L X=D L X+X$ (AFC)
IF ((RDCOST.LT.O).AND. (-FDDCOST.LT.DELFRC)) DELFRC=-RDCOST
END IF
ARC=NXTIN (ARC)
GOTO 10
END IF
$A F C=F O U(N D D E)$
IF (ARC. GT. O) THEN
NODE2=ENDN (ARC)
IF (.NOT. SCAN (NODE2)) THEN
NSAVE=NSAVE +1
SAVE (NSAVE) =-ARC
RDCOST=FC (AFC)
IF ((FDCOST. EQ. O) . AND. (FRDCSF (NODEZ) . NE. -ARC)) DLX=DLX $+U(A R C)$
IF ((FDCOST. GT. O). AND. (FDCOST.LT. DELFFRC)) DELFRC=FRDCOST
END IF
$A R C=N \times T O U$ (ARC)
GOTO 20
END IF
30 CONTINUE
ELSE
DO 60 NODE=1,N
IF (SCAN (NDDE)) GO TO 60
ARC=FOU (NODE)
IF (AFC.GT. O) THEN
NODE2=ENDN (ARC)

```
            IF (SCAN(NODE2)) THEN
                    NSAVE=NSAVE+1
                    SAVE (NSAVE)=ARC
                    FDCOST=RC (AFC)
    IF ((FDCOST.EQ.O). AND. (FRDCSF'(NODE).NE.AF:C)) DLX=DLX+X (AFC)
            IF ((FDCOST.LT.O).AND.(-RDCOST.LT.DELFFRC)) DELFFC=-RDCOST
            END IF
            AFC=NXTOL (AFEC)
            GOTO 40
        END IF
        AFC=FIN(NODE)
    50 IF (ARC.GT.O) THEN
            NODE2=STARTN(ARC)
            IF (SCAN(NODE2)) THEN
                        NSAVE=NSAVE+1
                SAVE (NSAVE)=-ARC
                RDCOST=FC (AFC)
        IF ((FDCOST,EQ.O).AND. (FRDCSF(NODE).NE.-ARC)) DLX=DLX+U(ARC)
                    IF ((FDCOST.GT.O).AND. (RDCOST.LT.DELF'RC)) DELFRC=FDCOST
            END IF
            AF:C=NXTIN(ARC)
            GOTO 50
        END IF
    60 CONTINUE
        END IF
        IF (DELX+DLX.GE.-DM) THEN
        SWITCH=. TRUE.
        ALGGNOD=0
        DO 70 I=NSCAN+1,NLAEEL
            NODE=LAEEL (I)
            IF (DFCT(NODE).GT.O) AUGNDD=NODE
            CONTINLIE
            F:ETUFN
        END IF
        DELX=DELX+DLX
80 IF (DELFFC.EQ.LARGE) THEN
            FEASEL=.FALSE.
            FETUFN
        END IF
C ***** INCFEASE FRIICES *****
    IF (SWITCH) THEN
        ALIGNOD=0
        DO 90 I=1,NSAVE
        ARC=SAVE (I)
        IF (ARC.GT.O) THEN
            RC (ARC)=FC (ARC) +DELFFRC
            IF (RC(AFC),EQ.O) THEN
                NODE2=STAFTN(AFC)
                IF (TNXTOU(ARC) .LT. O) THEN
                    TNXTOU(AFE) = TFSTOU(NODEE2)
                    TFSTOU(NODE2) = AFC
                END IF
                IF (TNXTIN(ARC) .LT. O) THEN
                    TNXTIN(AFC) = TFSTIN(ENDN(AFC))
                    TFGTIN(ENDN(AFC)) = ARC
```

C
$\stackrel{c}{c}$
C
C

```
            END IF
            FRDCSF}(NODE2)=ARC
            IF (DFCT(NODE2).GT.0) THEN
                    ALIGNOD=NODE2
            ELSE
                IF {.NOT.MARK (NODE2)) THEN
                    MARK (NODE2)=. TRUE.
                    NLABEL=NLABEL+1
                    LAEEL (NLABEL) =NODE2
                    END IF
                    END IF
            END IF
        ELSE
            AFC=-ARC
            FC (AFC)=RC (ARC) -DELFFRC
            IF (FCC (AFC).EQ.O) THEN
                    NODE2=ENDN (ARC)
                    IF (TNXTOU(ARC) .LT. O) THEN
                TNXTOU(ARC) = TFSTOU(STAFTN(AFC))
                    TFSTOU(STARTN(ARC)) = ARC
                    END IF
                    IF (TNXTIN(AFC) .LT. O) THEN
                TNXTIN(ARC) = TFSTIN(NODEZ)
                    TFSTIN(NODE2) = AFIC
                    END IF
                    FRDCSR (NODE2)=-ARC
                    IF (DFCT(NODE2).GT.O) THEN
                    AUGNOD=NODE?
            ELSE
                    IF (.NOT.MARK(NODE2)) THEN
                    MAFK(NODE2)=. TFUE.
                    NLAEEL=NLAEEL +1
                    LAEEL (NLAEEL) =NODE2
                    END IF
            END IF
                END IF
                END IF
    FO CONTINUE
        FETUFN
C
    ELSE
C
    NE =O
    DO 100 I=1,NSAVE
    AF:C=SAVE (I)
    IF (ARC.GT.O) THEN
                T1=FC (ARC)
            IF (T1.EQ.0) THEN
                T2=x (ARC)
                TS=STAFTN(ARC)
                DFCT (TS)=DFCT (TS)-T2
                T3=ENDN (AFC)
                DFCT (TS)=DFCT (TS) +T2
                U(ARC) = U(AFC)+T2
                X(AEC})=
            END IF
        FR (ARC)=T I +DELFRRC
        IF (RC (AFC).EQ.O) THEN
            DELX=DELX + X (ARC)
            NE = NE + 1
```

 END IF
 ELSE
 \(A R C=-A R C\)
 T1=RC(ARC)
 IF (T1.EQ. O) THEN
 \(T 2=U(A R C)\)
 \(T 3=S T A R T N\) (ARC)
 \(\mathrm{DFCT}(T 3)=\operatorname{DFCT}(T 3)+T 2\)
 TS=ENDN (AFC)
 \(\operatorname{DFCT}(T 3)=\operatorname{DFCT}(T 3)-T 2\)
 \(X(A R C)=X(A F C)+T 2\)
 \(U(\) ARC \()=0\)
 END IF
 \(\mathrm{RC}(A F C)=T 1-D E L F R C\)
 IF (FCC (ARC).EQ.O) THEN
 \(D E L X=D E L X+U(A R C)\)
 \(\mathrm{NE}=\mathrm{NB}+1\)
 \(\operatorname{FRDCSF}(N B)=A R C\)
 END IF
 END IF
 100
 C
END IF
IF (DELX.LE.-DM) THEN
DELFRC=LARGE
DO $110 \mathrm{I}=1$, NSAVE
AFC=SAVE (I)
IF (ARC.GT.O) THEN
FDCOST=FiC (AFiC)
IF ((RDCOST.LT. O).AND. (-RDCOST.LT.DELFRC)) DELPRC=-RDCOST
ELSE
$A F C=-A R C$
RDCOST=FC (ARC)
IF ((FDCOST.GT.O). AND. (FDCOST.LT.DELFRC)) DELFRC=RDCOST
END IF
110
CONTINUE
IF ($(D E L F R C . N E . L A F G E) . O R .(D E L X . L T .-D M))$ GO TO 日O
END IF
*** Add new balance arcs to the superset of balanced arcs. ***
DO $120 \quad \mathrm{I}=1$, NE
$A F C=F F D C S F(I)$
IF (TNXTIN(ARC).EQ.-1) THEN
$J=E N D N$ (ARC)
TNXTIN $(A R E)=$ TFSTIN (J)
TFSTIN(J) =AFC
END IF
IF (TNXTOU(ARC).EQ.-1) THEN
$J=S T A R T N(A F C)$
TNXTOU(ARC)=TFSTOU(J)
$\operatorname{TFSTOU}(J)=A F i C$
END IF
120 CONTINUE
C
RETURN
END

SUBFOUTINE SENSTV

SENSTTIUITY ANALYSTS FOR THE MTNTMUW COST NETWORE FLOW FROELEM．


```
*** THE SUEROUTINE IS BASED ON THE FAFEF: ***
*** D.F. EEFTGEEAS. F.TSENG "THE FELAX CODES FOF ***
*** LINEAF: MINIMUM COST NETAOFE FLOW FFOELEMS", ***
*** ANNALS OF OPERATIONS RESEARCH, THIS VOLUME 当**
ANNALS OF ***
*** THE SUEFOUTTNE IS MFITTEN JN STANDAFD FOFTFGN77 ***
*** ***
*** DUESTIONS AND COHNENTG SHOULO EE DTFECTED TO ***
*** DIMITFI EEFTSEKAS AMD FALIL TSENG ***
*** DEPAFTMENT OF EIECTRTCAL ENGTNEEFTMG * ***
*** COMFLJTEF SCJENCE ***
*** LABOFATOFY FOF INFGFMATTOM AMD DECISTON STSTEME ***
*** M.I.T." CAMEFIDGE. MASSACHUSETTS, G21"G. U.S.A. ***
```



```
***** Thx= subroutine allows the user to jnteractively
Either chamge nodal Eupply* or change flow upper bound
of an existing are, or ehange cost or an existing are,
or delete an exictimg arc, or add an arc. *****
NOTE : If in the system on whith this subroutine is fan. the
variable local to a subroutine is re-jnitialized fo some default
value) each time the subroutine is called, then the uEer must mal:e
the following currentlv lacal variables DELARC, DAFE, DU" ADDAFC,
AAFC globel &by either putting them an a common block or pessumg
them through the celling perameter'.
IMFLICIT INTEGEF (A-Z)
COMNON/AFFAYS/STAFTN/AFFAYE/ENDN/AFF:AYU/U/AFFAYX/X/AFFAYG/FE:
*/AFRAYB/DFCT/ELKI/IABEL/ELFO/FFICE/BL&S/FOU/EL_4/AXTOU
*/ELLE/FIN/ELKG/NXTIN/EING/MAFI:/L/N.MA, LAFGE
    COMMON/ARFAYC/C/ELKCAF/CAF/ELFFR/REFEAT
    INTEGEF: CAF(1),U(1), 隹(), C(1),FC(1),DFCT;(1)
    INTEGEF: STAFTN(1), ENDN(1), LAEEL(1),FFTCE'1),FOU(1) %NXTOU(1;,
*FTN(1),NXTTN(1)
    LDGTCAL ADDAFC,DEIGARC,FEFEAT, MAFF (1)
    IF &.NOT.REFEAT) THEN
    ***** Festore the arc cepacity to that of the original problem
    (recall thet when solving the original problem, FELAX in the
    problem preprocessing phase may decrease the arc caparity) and
    update flow and deficit to agree with this "new" capacity. 吿米*
    DO 10 I=1,NA
        IF (FL(I).LT.O) THEN
            DFCT(STARTN(I))=DFCT(STAFTN(I) +CAF(I)-X(I)
            DFCT (ENDN(I))=DFCT (ENDN(I))-CAF(I)+X(I)
            X(I)=CAF (I)
        ELSE
            U(I)=CAF (I) -X(I)
        END IF
```

```
    continue
        FEFEAT =. TRLUE.
END IF
    WFIITE (6, SO)
    WFITE (6,40)
    WFITE (6,50)
    WFITE (G,60)
    WFITE(6,70)
    WFITE (6, 日0)
    IF (ADDAFC) WFITTE(G,OO) AAF:L
    IF (DELAFC) WFITE(b,100) DAFC
    FOF:MAT:* : "INFUTT O TO SOLVE THE MODIFIED FFIOELEM";
    FOFMAT(: :", 1 TO CHANGE NODAL FLOW SUFFLY")
    FOF:MAT:" *, 2 TO CHANGE ARC FLOW UFFEF EOUND")
    FOFIMAT(` ". : S TO CHANGE AF:C COST`)
    FOFIMAT(: :}\because\quad4\mathrm{ TO DELETE AN AFC')
    FOFMAT(: *. S TO ADD AN ARIC')
    FDFIMAT(" *"* G TO DELETE LAST AFC**IB," ADDED*)
```



```
    FEAD (5,*)SEL
    IF (SEL.EG.O) THEN
        FETUFN
    ELSE IF (SEL.EQ.J.) THEN
C
C
***** Change nodal flow supply *****
    110 WFITE!6,120)
    120 FOFMAT:` * =JNFUT NODE # WHERE FLOW SUFFLY IS INCFEASED*)
        FEAD (5,*)NODE:
        IF ((NODE.LE.O).OF:.(NDDE.GT.N)) GO TO 1.10
        WFITE (S,13O)
    130 FOFMAT:* *"TNFUT AMOUNT OF INCREASE (OG VALUE ALLOWED)")
        FEAD(E,*)DELSUF
        DFCT (NODE) = DFCT (NODE) -DELSLIF
    14% WFITE(6,15O)
    15O FGFMAT:" ", MNFUT NODE NO. WHEFE FLIDW SUFFLY IS DECFEASED*)
        FEAD (S; *)NODE
        ]F ((NODE.LE.O).DF:(NCDDE.GT.N)) GO TO 14O
            IFCT (NODE)=DFCT (NODE) +DELSUF
            ELSE IF (SEL.EO.2) THEN
C
& ***** Chamge arc flow capacity *****
c}\mathrm{ 米* Note that U is not the arc capacity but rather the flow margin
C
    160
    170
        WFITE:(0, 170)
        FOFMAT:" "INFUIT AFC NO. AND THE INCREASE IN UFFEF EOUND*)
        FEAD(E,*)AF:C, DELUE
        IF ({AF(.LE,O).DF. (AFC.GT.NA)) GO TO 1.OO
        IF {FC(AFE).LT.O) THEN
***** AFC is autive, therefore maintain flow at (new) capacity* **
            DFCT(STAFTN(AFC))=DFCT(STAFTN(AFC)) +DELUE
            DFCT (ENDN(AFC))=DFCT(ENDN(AFC))-DELIJE
            X(AFC) =X(AFC) +DELUE
            IF (X (AFC).LT,O) WFITE(S.1G0)
        ELSE IF (FC(AFC).EO.O) THEN
            IF {U(AFE).(EE -DELUE) THEN
                U:AFC):=U(AFC) +DELUE
            El.SE

C flow to new capacity. ***** DEL \(=-\) DELUE \(-U(A R C)\) DFCT (STARTN (ARC)) =DFCT (STARTN (ARC)) -DEL \(\operatorname{DFCT}(E N D N(A R C))=\operatorname{DFCT}(E N D N(A R C))+D E L\) \(X(A R C)=X(A F C)-D E L\) IF (X (AFC).LT. O) WRITE (6, 180)
\(U(A R C)=0\)
END IF
ELSE
\(U(A F C)=U(A F i C)+D E L U E\)
IF (U(ARC).LT.O) WFITE (6, 180)
FORMAT(" "FLOW UFFER BOUND IS NOW \& \(\mathrm{Q}^{*}\) )
END IF
ELSE IF (SEL.EQ.S) THEN
        FORMAT: " "INFUT ARC ND. \& TNCFEASE IN COST")
        IF ( \((\mathrm{FC}(\mathrm{ARC}) . \mathrm{GE} . \mathrm{O})\).AND. \((\mathrm{RC}(\mathrm{ARC})+D E L C . L T . \mathrm{O})\) ) THEN

C
C
***** Delete an arc *****
IF (SEL.EO.6) THEN
IF (.NOT. ADDARC) GO TO 20
ADDAFC=. FALSE.
\(A F C=A A R C\)
ELSE
***** Change arc cost *****
        WFITE (6, 200)
        FEAD (5, *) AFC \({ }^{\text {© DELC }}\)
        IF ( (AFiC. LE. O). QF. (ARC.GT.NA)) GO TO 190
\(\operatorname{DFCT}(E N D N(A R C))=\operatorname{DFCT}(E N D N(A R C))+X(A R C)\) \(U(A R C)=U(A F C)+X(A F C)\) \(x(A R C)=0\)
END IF
\(F C(A F C)=F C(A F C)+D E L C\)
\(C(A R C)=C(A R C)+D E L C\)
ELSE IF ((SEL.EQ.4).OF. (SEL.EQ. 6)) THEN

WRITE (6, 220)
FOFMAT: ": INFUT ARC NO. FOR DELETION")
FEAD (S, *) AFC
IF ((AFC.LE.O).OR. (ARC.GT.NA)) GO TO 210
DELAFC=. TRUE.
DAF:C=AF:C
\(D U=U(A F C)+X(A F C)\)
END IF
***** ARC becomes inactive, therefore decrease flow to zero. ***** \(\operatorname{DFCT}(S T A F T N(A R C))=D F C T(S T A R T N(A R C))-X(A F C)\)
***** Fiemove ARC from the data array FIN, FOU, NXTIN, NXTOU. *****
AFC 1 =FOU (STARTN (AFiC) )
IF (AFCD1.EQ.ARC) THEN
\(\operatorname{FOL}(S T A R T N(A F E))=N X T O U(A F C 1)\)
ELSE
ARCZ \(=N X T Q U(A F C 1)\)

IF (ARC2.EQ.ARC) THEN \(N \times T O U(A R C 1)=N X T O U(A R C 2)\) GO TO 240
END IF ARC1 \(=\) ARC2
GO TO \(2 \Xi O\)
END IF
*** Fiemove flow of ARC from networl: by setting its flow and
capacity to 0.
\(\operatorname{DFCT}(S T A F T N(A R C))=\operatorname{DFCT}(S T A F T N(A F C))-X(A F C)\)
\(\operatorname{DFCT}(E N D N(A R C))=\operatorname{DFCT}(E N D N(A R C))+X(A F C)\)
\(X(A R C)=0\)
\(U(A R C)=0\)
ELSE IF (SEL.EQ.S).OF. (SEL.EQ.7)) THEN
IF (SEL.EQ.7) THEN
IF (.NOT. DELARC) GO TO 20
I ARC=DARC
IH=STARTN (IARC)
IT=ENDN (IARC)
DELARC=.FALSE.
IU=DU
ELSE
WFITE ( 6,280 ) NA +1
FOFMAT; *: INFUT HEAD \& TAIL NODES OF NEW ARC', IB)
READ (5, *) IH, IT
IF ( (IH.LE. O). OR. (IH.GT.N).OF. (IT.LE.O). OR. (IT.GT.N)) GO TO 270
WRITE (G, SOO)
FOFMAT: * * INFUT COST \& FLOW UPFER ED")
FEAD (5, *) IC, IU
IF (IU.LT. O) GO TO 290
ADDARC=. TFUE.
\(A A R C=N A+1\)
\(\mathrm{NA}=\mathrm{NA}+1\)
\(C(N A)=I C\)
STARTN(NA) \(=1 H\)
\(\operatorname{ENDN}(N A)=I T\)
\(I A R C=N A\)
END IF
ARC \(1=F \operatorname{IN}(E N D N(A R C)\) ) IF (ARC 1.EQ.ARC) THEN \(\operatorname{FIN}(E N D N(A R C))=N X T I N(A R C 1)\)
ELSE
ARC2=NXTIN(ARC1)
IF (ARC2.EQ.ARC) THEN
NXTIN (ARC1) \(=\mathrm{NXTIN}(A R C 2)\)
GO TO 260
END IF
\(A F C 1=A F C 2\)
GO TO 250
END IF
```

 FFICE (IH)=0
 DO S1O I=1,N
 310
 320
 330
 340
 350
 ARC=FIN(NODE)
 IF (ARC.LE.O) GO TO SSO
 NODE2=STAFIN(ARC)
 IF (.NOT.MAFK(NODEZ)) THEN
 MARK (NODE2)=.TFUE.
 FRICE (NODE2)=C (ARC) -RC (ARC) +FRICE (NDDE)
 IF (NODE2.EQ.IT) GO TO S70
 NLAEEL=NLABEL +1
 LABEL (NLABEL) =NODE2
 END IF
 AFC=NXTIN(AFC)
 GO TO 350
 360 GO TO 320
 C
C ***** Compute reduced cost of the new arc and update flow and
C
deficit accordingly. *****
FC(IAFC)=C (IAFC) +FFICE (IT)
IF (FC(IARC).LT.O) THEN
DFCT (IH)=DFCT (IH)+IU
DFCT(IT)=DFCT (IT)-IL
X(IARC)=IU
U(IARC) =0
ELSE
X(IARC) =0
U(IARC)=IU
END IF
NXTOU (IAFC)=FOU (IH)
FOU(IH)=IAFE
NXTIN(IARC)=FIN(IT)
FIN(IT)=IARC
END IF
GO TO 20
END

```
```


[^0]: *This work has been supported by the National Science Foundation under Grant NSF-ECS8217668.

