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David Kinderlehrer and Giorgio Vergara - Caffarelli

Dedicated to the memory of Hans Lewy

1 Introduction

Consider a functional of the form

Ew = [W(Vwdx + [tw(Vuuvids, ue CLQRM, (1.1
L¥] a0

where Q < RP is a domain with sriiooth boundary 902 and outward normal v,and W
and t are continuous functions. The distinguishing feature of E(u) here is that the
surface term is permitted to depend on Vu, the gradient of u. Qur interest is to
understand the relationship between the bulk energy and the superficial energy and the
influence of the latier on possible extremals.

Suppose we have in hand a smooth u stationary for (1.1), namely,
SEm) = 0, (1.2)
or, with S(F) = 0W/dF and F = Vu,

Js@®VLax +  [(wELY)IVE + Euv)L)ds = 0, @13)
0 EEel

{ € CHQ;RM).

1" This research was supported by the NSF and the ASOFR under DMS £7 1831 and by the Universiti di
Trento.
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Seeking the Euler equations of (1.2) or (1.3) and keeping in mind that the choices of {
and o{/ov are independent on 92, we find that

~divSE = 0 in Q (1.4)
SEWV - divignTF + Ty = 0 on Q2 (1.5)
v = 0 on dQ2 (1.6)

where divin Tr denotes the tangential divergence of Tx.

We now wish to recount a suggestion of De Giorgi concerning the interpretation of
(1.6). It may be expressed by writing

%f(l)h:() = -(;dl-'c(F+R§®v,u,v)|x=g = TEFLVIE®Y = 0

forall £ e R™,

So in particular, if T is rank-one convex, then f(A) is convex and its derivative vanishes
only at a minimum value. Thus

TFuv) = inf,_pm T(Fan +2®v,u,v) _ 1.7
F{an = F - Fv ® V.

In conclusion, what De Giorgi has brought to light is thal a stationary point of the
functional secks the minimuim value of 1 in the normal direction for a given value of the
tangential gradient. Our aim in this note is to illustrate how this property is manifested in
the relaxed functional for E and in its possible Young measure minimizers, both of which
arise when W and T are not quasiconvex.

We are aware of some recent work in this subject. Ball and Marsden consider
functionals of the form (1.1), where T does not depend on Vu, [4]. They raise the issue
of stability of solutions, illustrating that a necessary condition for a minimum involves both
W and T at the boundary. It will be readily apparent that the dependence of T on Vu
makes the scaling so fruitfully employed in [4] very difficult in our case. Ball and Marsden
also discuss dynamical stability. Fonseca is concerned with generalizations of the Maxwell
rule and certain types of defects observed in crystals, [17]. We retum to this topic in §8
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and §9. Surface interactions are also discussed in [25]. In addition, we mention a recent
work of Virga about liquid crystal droplets [29]. A general theory of the mechanical natere
of superficial interaction is under development by Gurtin [18). In the situation where the
surface term is more properly interpreted as a loading, we refer to Gurtin and Spector [19]
and Spector [26,27].

We might begin by introducing two simple examples. Consider the case where 1
arises from a constant hydrostatic pressure p, so m=n=3 and

P jdetVudx = l‘t(F,u,v)dS .
Q d

For an invertible square matrix A, let us call
A* = detA AT,
its adjugate or classical adjoint, With this notation,

HFuyv) = gF*-u®v. (1.8)

it is easily verified that T(F,u,v) = 1(F+a® v,u,v), so T does not depend on the normal
derivative and (1.6) is satisfied identically for all u.

As another example, consider a scalar valued u and

E@ = + Jivarax + > j(%—:—l)z as . (1.9}
4]
an

Examination of the first variation leads to the system
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Au = 0 in

du

— =0 a0 1.10
= on (1.10)
au =1 on 9%,

ov

which is inconsistent. We shall discuss a possible interpretation of this later.
In our subsequent discussion we shall always assume that
W and T are continuous functions of their arguments and
WALy =2 0 for (Afx)e MXRMxR?, (1.10)
ALEY) =2 0 for (AEV)e MxRMx 801,

where M denotes m x n matrices. This amounts to assuming that possible null-
lagrangians like (1.8) are expressed as integrals over £2 which are dominated by the bulk
energy density, and that the remaining surface energy densities are cooperative. For
technical simplicity we shall not impose the kinematical constraint that det A >0 whenn=
m. Letus set

) = [WVouxnd + [1(Veav)dS, ue CHORM  (LI12)
Q a8

P~
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2 The relaxed problem

The quasiconvexification of W, or its quasiconvex minorant, is given by

WHALS) = infc 5y [W(A + VI Ea) dx @.1)
D

where € = Cy(D) and D < R™ is a bounded domain with 13D | = 0. By (1.11),

W# 20, Itis well known that W# is quasiconvex and continous, cf. Dacorogna [6,7]1,
and that it is independent of D, cf. Ball and Murat [3]. The reader is reminded of Morrey's
Theorem that the functional

oW = [o(Vu) dx
Q2

is lower semi-continuous with respect b wélik* convergence in H1=(Q) when ¢ is
continous and quasiconvex [22,23]. Moreover, it is possible to show that for many
functions W(A) and suitable admissible classes A,

inf 4 [W(Vu)dx = inf 4 [WHVu)dx .
[¥] 0

We refer 10 [3,5,6,7,15,16] for a discussion of this and related points. For this reason the
functional defined by W¥# is often called the relaxed functional.

In order to determine inf 4 E(u), we are led to discuss the relaxation of the
superficial energy whose integrand is 7. Recall that we assume that T is continuous. For
afixed ve 8™, let D'c (x-v =0) beadomainandlet dx' denote the (n - 1)-
Lebesgue measure on D'. By D' x (-r,1), r > 0, we abbreviate the name of the set

1 The infmum of continucus functions, W¥ is uppet semicontinuous. The appropriate line of reasoning
in the present situation is upper semicontinuous = guasiconver = rank ome convex => {locally
Lipschitz) continuous.
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[xeRm x=(1-v ®V)xe D and |xvl<r]).

Let [E] denote the n - 1 dimensional Lebesgue measure of E. We define

?EEY) = infe oy [iFE+VLE A, BEV) e MxRm xS,
D t

(2.2)
C' = Clo'x (xn).

We always suppose that [0D]=0. Clearly ™ > 0 and is independent of r> 0.
Precisely as in [3], it is independent of D', and analogously to [6,7] it is quasiconvex,

We refer to the functional

o) = [WHVuox)dx + [tHVuuv)ds, u e CHQR™, (2.3)
Q an

as the relaxed functional of E. Our first objective is to prove!

THEOREM 2.1 Let E and ¥ be given by (1.12) and (2.3) and assume the
continuity and positivity hypotheses (1.11) about W and ©. Then

inf @) E(u) = infclim) F*u) = inful.~Q) F¥u). (2.4)

It will be part of the theorem to show that the last term in (2.4) is defined.

3 The tangential property of t#

The connection between the relaxation (2.4) and the formal discussion which gave
rise to (1.7) is given via the density

1 In the symbols for function spaces, we shall frequently suppress mention of the Tange space.
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:E (F,&,V) =1 (Ftan,g:\') = infye r3 TCF +y @ V,é.\’) (31)
Fan = FA-V ®V).

For T we have two ways of defining its quasiconvex minorant, either by

tlELY) = infe JE(F+V§,§, v) dx'
Df

or

- . 1 - '

T g(F,g,v) = infvy 5T DI’:(F + VL E v)dx

vV = Cé(D') .
Itis elementary to check that these are equal, so we may speak of T ¥ unambiguously.
Now 17, the infitium of continuous functions, may be only upper semicontinuous, and
therefore perhaps likewise for T ¥, HOWetier, this issue, and that of the tangential nature
of T is resolved in the next proposition.
PROPOSITION 3.1  With T defined by (3.1),

THELVY) = T™HEEW). (3.2)

Proof. Since T < 7, itis obvious that T# < 1#. Given (F.,v), let €> 0
and choose § € Cy(D' X (-r,1)), where D' is a smooth domain, such that

'['F(F+ VEEVIAX £ THEEVID] + ¢ . (3.3)
D!

First note that since T depends only on Fiap, we may assume in (3.3) that

for Ixnl<%r, xXe D, (3.4)

¥IX
I
=
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Secondly, any { e C(I,(D' X (-,)) may be approximated together with its gradient

uniformly by piecewise affine functions. Combining this with the fact that T is upper
semicontinuous, we may assume that the £ in (3.3) is piecewise affine and satisfies
(3.4). Thus, we may write

‘D =UM . D UN, [N]=0, where

i=1 i

Vil = V{ = A, in D, i=1,., M

and the Ai are constant matrices.

Choose y; € R™m such that
—~ 1 1 e . .
[T F+ALEV) - 1F+A; +yiev.E V)| < 5. (3.5)

Define a piecewise affine function y in D'x (-r,r) with

Vy = yigv in D, i=1..,M, and

Wy = 0 forixpl = 1.

Let ne C(I,(D') be a scalar cut-off function for D', Consider ny so that

Viny) = nVy + y®Vn = nVy on D.

This permits us to compute that

| JrF+VvE+vmpEvar - [rF+VE+VyEvax | =
D' D'




Functionals with surface energies 9 1/25/89

| [rF+VE+nVyLvyde - [rE+VE+ VeI | < €,
D' D’
when supp(l - 1) is small enough.

Finally, we may calculate that

Ir“(F +VLEvyax = XM, jf(F + Ai', g, v) dx'

D D‘i

]

2it1 TE+ALE V) DY

v

_[t(F+ VE+Vy,E,v)dx — ¢
DI

i)

[r@+ 90+ V) &, v) dx - 2
Dl

v

™(F, &, v) [D]-2¢. QED

From the proposition, we conclude that E* is defined for u e H!.*(Q). Now for
any u e HL=(Q), we may find a sequence ug € Cé(ﬁ) such that

g = u uniformlyin Q ,

Vo = Vu pointwise a.e. in Q,
Ve — Vinu  pointwisc ae.in 9, and
supalVue | + supaq Vinue! < const

For example, u; may be found by convolution. By the continuity of W¥ and 1 we
conclude immediately that

) - E)
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and thus that

inf cligy F¥(u) = inful.eq) EHu),

which establishes the last equality of (2.4).
The formulas (3.1} and (3.2) show that
T#(Fig’v) = T#(Ftamg-\’) - (3°6)

This imples that ¥ is generally different from T even when T isconvex in A.

4 Approximation

We collect a few items about approximation, much of which is implicit in the
literature.

LEMMA 4.1 Let (F&a) e MXRM xRN and D c R with 10Dl =0, Given §> 0,
there is a sequence (€ C:,(D) such that

h > 0 in HL™(Q) weak* and

JWE + Vi & a)dx < WEE,E a)IDI + 5. @.1)
D
Proof. First choose any { e Cy(D) such that

JWE+vL e 0dx s WHE,E,a)IDI + 5.
D
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The collection of sets {c+€ D: ce D and € € 1) foreach integer h form a cover
of D in the sense of Vitali, so we may find a finite or countable subcover {c;+g D)
which is pairwise disjoint such that

D = U/{c+g DJUN, INI=0,

so in particular 2; (e)® = 1.
Let us define

X -G
Cn(x) = { il &

0 if otherwise,

3 if x € «¢j+ €D

We compute that

Jwauvch, galdx = 2 | W(F+ V&, a)dx

¢i + giD

pI fW(F + vc("—;ﬁ), g, a) dx

1
ci + giD

2 (e J W(F + V{(2), &, a) dz

J W+ V¢(2), &, a) dz
D

IA

WHE,E a)IDI + §. QED

The novelty, if any, in the theorem below is that we allow dependence on u and x and
the integrand W is assumed {0 be only continuous.
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THEOREM 4.2 Let ue CYQ) with Q a Lipschitz domain. Given 8> 0, there is
a sequence wWp € C[',(Q) such that

wh = 0 in H*(Q) weak* and

W@ +wu+wpdx € JWHVL LA + 5. @42)
[ Q

Proof. We proceed in steps.

Step 1. Replacement by affine functions. Let us recall that given a positive
integer h, we may find a function vy, = v and a domain Qg =€), such that

IV -yl < &,
v = u on 90,
{x: dist(x,0Q) > 1‘1- } € Qo cc Q,  and (4.3)

Vi, is piecewise affine,

Hence given € > 0, to be determined later, and the & of (4.2), we may choose v and
s0 that

| Jwévvvax - JWHVuumax | < e, @4
Q Q

and

[wE@vyax < L3, (4.5)
Q-0

To check (4.3) - (4.5), we refer to Ekeland and Temam [8] p.317, for example. Then we
may write

Q = UM, 0 UN, INI =0, where
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Vv I Q = Aj, aconstant matrix, i = I,..., M, and also

[wr@vynax = TM [ whavax 4.6)
Q

i=1
i

Note that throughout the remainder of the proof, v(x) is a known continuous function,

Step 2. Application of LEMMA 4.1 and scaling. Let D denote the unit cube in
RA, Fix i and set A = A;. By the definition of the Riemann integral, given & > 0, there
isa Ag >0 such that whenever

Q = U(as+ADIUN;, INjI =0 and {a+AD}
pairwise disjoint with Ag <Ag, then

| [whaLvax - 2 WHA,v(ag.a0 DI | < e. “.7)
Q
Given a € Q, by LEMMA 4.1 thereis a § = {a € Cy(D) such that

supl{l < and

1
h

[wa+vev@a dx < WHAv@.) + 7,
a+D

where ¥y will be chosen later.

We now scale by setting

MD = Lap@ = ;u;(%)

which has the properties
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supl&pl € suplfl < ]17 , supl V| = supl VLI <€ C(a),
and (4.8)
{W(A+VC1,v(a),a)dx < (WH(Av(2).a) + ) DI,
a+ AD

Now W is uniformly continuous on compact sets of its arguments, so by (4.8) we may
find A so small that

IlW(A + V0, v+ LX) - W(A + Vi v(a),a)|dx < yADI.
a+ AD

Hence thercisa A(@) < A such that

{W(A +V0, v+ LX) dx < (WHA, v(a)a) + 2y) ADI,
a+ AD

whenever A < A(a).
Step 3. Vitali covering. Thesets {a+A D:A< A(a)} formacoverof ©;

in the sense of Vitali, hence we may find a countable or finite subcollection {ag + AsD )
such that ag+ A D are pairwise disjoint and

& = Ufag+AsD}wN;, INil=0.

Thus with {5 = ‘:as;ks .

Y WA+ Vi, v+l dx € 2 (WHA,v(a)as) + 2y) ADI

ag + ADg

< [whavmxiax + 2y + €. (49)
Q.

1
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Since the number of points { ag } which occur in the $um may be infinite, we cannot
control the gradient of the function defined as s in ag + AsD, that is, the numbers C(a,)
in (4.8). Hence, choose a k >0 such that

Zs>k WAvX)dx < ¢

ag + DS

and set
. - Ls(x) x€ as+ A;D, s<k

&t { 0 otherwise

Then
WA+ v+ Gdx € [WhAvdx + 2y + 26, (4.10)
Q Q
Step 4. " Assembly and boundary condition  Let us set
= | Gi(x) x € Q
£t { 0 otherwise ~

Then from (4.10) we have the estimate

JWEv+ Vv odx € [WHAv0ax + 27 + M, (4.11)
% Qo
with
supifl < %-

To complete the demonstration, define w = wy by
L+w=v+{

and choose 2(y + €)M < $8 . QED
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Here is an example of an application of the preceding theorem, whose verification is
left to the reader. R ' '

COROLLARY 4,3 Let Q be a Lipschitz domain and u, € H1.>=(Q2) be given. Then

infg JW(Vuuxydx = infs [ WH(Vuux)dx
Q 4]

where
A= {veHl=Q): v =1, on o ).

We shall require an analogous approximation for the surface term.

THEOREM 4.4 Let D' cR"-1 pe a Lipschitz domain, v € Co(DY',S"- 1), and
ue C( D). Given 8> 0, there is a sequence {n € Cy(D' X (-1,£)) such that

k>0 in HL=(D' X (~1,1)) weak* and

J;(V(u+§h),u+ch,v)dx' < D[;c#(vu,u,v)dx' + &, (4.12)

The proof is essentially identical to that of Theorem 4.2 and is omitted.

5 Proof of THEQREM 2.1

In this section we prove THEOREM 2.1. It suffices to show that given u e CH{Q)
and §> 0, thereisa ve C1(€2) such that

Ev) £ E¥u) + 5. G0
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In view of THEOREMS 4.2 and 4.4, our major effort will be to give a "global” version of
(4.12), one valid on 0Q. We shall then connect the boundary and the bulk pieces of the
functional.

Let {%;} be acountable collection of smooth submanifolds of 3 such that the
%, are pairwise disjoint and

oQ = UI,UN, [dS =0.
N

Let €>0. We assume that (Y;) has the additional property that there is a collection
{ ¢i } of smooth functions andopensets {U;}, UicRY, U;inoQ=3; with

¢: Ui - Dix(-5,n), D c Ro-l,
(5.2)
2IDi] € 2areadQ, and |Jacqy — 1] < =

For our given u e C(Q), let u(z) = u((pi_l(z)) for z e Dj X (~1;,1;). By Theorem 4.5,

for each u; we may choose {3, with

stup | Cin | s% and

(5.3
JT(V(HH Lin,ui + Linv)dx' < IjIT"‘(VUi i, v)dx' + € [Dy] .

1
In the remainder of the calculation, we will denotc by K a constant whose value may vary

from line to line but depends only on the function u, which is fixed, and 9Q. From (5.2)
and (5.3), we may estimate that

2 lj[‘C(V(ui + Gin)li + LinV) A € 2 ’j[‘l:#(Vui Ui ,V)dx' + 2¢ area 90
i i

1
i-¢

£

i Jt#(Vui 20 ,v) Jac; dx” + 2¢ area 9Q
i
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1
1-¢

<

Ei z['c#(Vu Ju,V)dS + 2¢e area 9Q
i

1A

a +2e)2iz[¢#(vu 4,v)dS + 2¢ area 9Q
i

A

It#(Vu a.vydsS + gK -
a0

And thus

2 DJ:(V(ui+cih),ui+§ih,v) Jacgidx < {tH(Vu,u,v)dS + eK. (54)
i a0

Analogous to our discussion of (4,10}, choose k s0 large that

Zi,.kz[c#(w uVv)dS < ¢ (5.5)
i

and define the functions

- Cm(ep(x)) xe Zj,i £k
Yhlx) { 0 otherwise and

ov

0 otherwise

_ oGin(e(x)) o
Wh(x)z{-——-——-—- xeEe Y;, 1 £k

Since dQ is smooth, this choice permits us to extend Wy, to a function continuously
differentiable in a neighborhood in 2 such that

W

= 2
~ = Yy on a2 and  supolynl < §.

From (5.4} and (5.5), we have the estimate
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[tV @+ )+ vy dx < [t*Vou vy + e k. (5.6)
a2 a0

«

Finally, we may choose wy, from (4.2) such that

JW(V(u + Whlu+ wpx)dx < IW#(Vu, u,x)dx  + g,
Q Q

Now let us set
V.= Mu+wh + Q-mu+yn) = u+ qwy + A -y ,

where 7 is a cut-off function. Since both wy, and Yh converge uniformly to 0, we may
choose M and then h so that

E(v) < FHu) + K. QED

6 Parametrized measure minimizers

Suppose that (u¥)} < CH(Q) is a minimizing sequence for F(u) which is
bounded in H1=(Q). After extraction of a subsequence, we may assume that there is a
ue HI=(;R™) such that

uk - u in HL=(Q:RM) weak*. 6.1)
Indeed, slightty more is true, which shall be of use in our situation. The functions Vuk
are continuous and bounded in Q w 99, from which it follows that in addition to (6.1),

there is a matrix F(x) € L**(3C%;R™) such that

Vik » F in L=(3Q:R™) weak* with (6.2)
Vanl = Fl-v ®v).
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Although E(u) need not even be defined, owing to Theorem 2.1,

FHu) = limg oo FHUK) = limyg . EWK) = inf Bv). (6.3)
In evidence are a limit configuration u and a limit energy E*(u) with little apparent
connection between them. This connection is provided by the Young measure or
parametrized measure introduced by L. C. Young [30]. Its existence and properties have
been noted in many places in various forms [1,2,5]. For an introduction to its use in
differential equations we refer to Tartar [28]. '

Briefly, let K cR™ be compact such that supp Vuk < K forall k. Then there is

a family of probability measures (i) x e 0 < M(K), the Radon measures on K, such

that for any y(A,x) continuous in A and integrable in x,

yVukx) -  w(x) in L(Q) N L=@Q) weak*, where
_ (6.4)
v = J W(AX) dug(A),  dxae.inQ-and dS ae.in 9Q

For example, since
Vuk — Vu in L=(Q) weak*,

Vux) = l([ A dig(A), ac. in Q.

Moreover, it is well known that any minor M(A) is weak* continous, so

M(Vu(x)) = k[ M(A) dux(A) , ae. in Q.

More generally, regarding F=Vu in € as well as on 9Q,

MF®X) = ]J M(A) ditx(A), dxae.in Q and dS ae.in 90 . (6.5)
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For the minimizing sequence (uk) there is an additional weak* continuous function
owing to the lower semi-continuity of ¥,

LEMMA 6.1 Let (uk) cCYQ) be a minimizing sequence for E(u) such that

Vuk > F in £=(Q) U L=(0Q) weak*.
Then
WHVukukx) — WHF,ux) in L=(Q) weak* and
6.6)
H(Vukukyv) — t#F,u,v) in L=(@2) weak*.
In particular,

WHEG).0(X).X) = J WHA,u(x),%) dix(A) , dx ae. in Q and

(6.7)
HE)UE)Y) = ‘J HAUX),V) dug(A), dSae.in 9Q.

The statement (6.6) follows easily from (6.3); details are omilted. On the other hand, the
functions ( W(Vukuk,x}) and (t(Vukuk,yv)) are bounded sequences which converge
weak* to functions W(x) and ?(x), respectively, It follows from the definition of the
Young measure that

W) = K[ W(Au(),x) dux(A), dxae.in Q and

(6.8)
) = IZ[fc(A,u(x),v) diux(A), dS ae.in Q.

From (6.3),
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) = J W) dx + a!: (%) dx . 6.9)

This next result delincates the nature of the support of ( iy ). Its proof is
analogous to Theorem 5.4 [5).

THEOREM 6.1 Let (vX) c CYQ) be a minimizing sequence for Eu) such that
wk - u in HL>(Q) and
Vuk -5 F in L=(Q) N L=(0Q) weak*, and

supp Vuk < K, K compactin R™,
Let (1ix) be the parametrized measure determined by (Vuk). Then
supppx © {Ae M: WAuX)LX) = WHAu(x)x) },ae.in Q

and (6.10)
supp ux < {Ae M: 1(Au(x)x) = T¥(Aux),x) }, ae on 3Q.

In particular,
Wx) = K[W#(A,u(x),x) dig(A), dxae.in Q

and (6:11)
) = J A, u(x),v) duy(A), dS ae.in 9Q.

Proof. Evaluating both sides of (6.9} gives that

‘[{ W(x)-w#(F,u(i),x)] dx + aJ'{ w(x) - EFux),x)}dS = 0.
Q

Now observe that

W) = JW(A,ucx),n dix(A) 2 Jw#(A,u(x),x) dux(A) = WHF,u(x),x)
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and

wx) = K[r(A.u(x),v) dux(A) = lJ-:*'*(A,uoo,v) dux(A) = THEu(),v),

and hence equality holds. This proves both (6.11) and (6.10). QED

7 Elementary examples

Let us begin by returning to (1.9), which has the "inconsistent” equilibrium
equations (1.10}. For this functional, since u is scalar valued, we may write

1av) = y@v - )2, aeRn, (7.1)
Thus
T@v) = infierT@+vV) = infie R y@V +t-1)2 = 0,
50 TH@ay) = t#fa,v) = 0, forall ae R0,

Consider a local situation, namely, Q = { x, > 0,I1x1 < 1},

I'={x =0,Ixl<1},and
= L 2 L (9u 2 gx'
Ew = & Jivurax + L f(——l) ax' | (7.2)
Q ov
r
Vv = ~¢&n. Let ud(x) = —min (xp,£), £€>0. Then

e —~ 0 in H(Q) as ¢ — 0,
although
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Vut = —ey on I,
From this, it is easy 1o deduce that the minimizing Young measure (L) has the form

b = {50 if xe Q 7.3

8_en if xeT
Note that even though 7 is convex, t* # 1,

We next consider the functional

Ew) = [e@etVuydx + [fdetVu)ds, ue Ci(@), (7.4)
Q N o)

where ¢ and f are smooth convex functions, nonnegative, with
0@) = info = 0

and (7.5)
f(1) = inff = 0,

for some a#0,1. We assume that Q <R3,

g J
\
\
\ f ®
\‘\ <
1 P

Functions ¢ and f sausfying (7.5)

The equilibrium equations for (7.4) are inconsistent like (1.11), Let us establish
directly that
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inf Euw) = 0. (7.6)

Let p(x) = disi(x,0Q), x € Q, whichis C! near dQ under the assumption that 9% is
smooth. Note that

Vp = v on dQ
Let g&(t), t € R, be a sequence of smooth functions such that

g80) = 0, g&t) = 0 fort 2 e, and
dge dgE
Lo = wlgl - v,

where ¥ will be chosen later. Set

uE(x) = ax + EE(P(X)V(X), xe . (1.7)
Thus
d £
VuE = al + 7;‘#9)”@" + gtVy
= al + yv®v on 0%,
Also,
det Vot = a2(a+7y) = 1 on 9Q for the choice
1
¥ = 57 —a.

For this choice of u€, one checks that

E(ut) = I o(detVug)dx — 0 as ¢ — 0.
supp glop

Moreover, the Young measure determined by (uf) is OF(x) where
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al if xe Q
F& =1 a1+ (Eg_a)vtav if xe 30

Itis of interest to compute the relaxed functional, With
T(A) = f(detA),
we have that
T (Av) = infyf(det(A+y®@V)).
Recall the formula
det(A+B) = detA +A¥-B + A-B* + detB, AB 3 x3 matrices,
where

C* = adjugate of C = {3 €inkeirsCirChs) -

When detC 2 0, C* = da1CC T = -a%detC. Since y®v isofrank 1, (y®v)* =
0 and det(y ® v) = 0, so0

det(A+y®@v) = detA + A* . y®v = detA + A¥v.y .

It follows immediately that
~ i A*y 2
Faw = {f(” i v
£(0) if  A*v =0
_ { 0 if A*V 20
Y it  A*v =0

Since the matrices A for which A*v = 0 are simply a subset of those of vanishing
determinant, a closed nowhere dense set, the continuity of t# insures us that
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HAY) = 0 forali Ae M. (7.8)
Hence the relaxed functional for (7.3) is

B*u) = [ o(detVu)dx (1.9)
Q

8 Some remarks about elastic crystals

We wish to address a few issues which iflustrate the role of symmetry groups in the
possible relaxation of a superficial density. We intend to investigate densities suggested by
the constitutive theory for elastic crystals following Ericksen, ¢f. {9,10,11,12].
Discussions of the consequences of these ideas, for example, in the analysis of
microstructural properties, are given in Ball and James [2], Ericksen [13], and James [20],
for example, as well as Fonseca [16] fitid (5], ¢f. also [21]. The patametrized measure is a
useful device in some of this work, although it may be only implicit in the discussion. The
extension of these ideas to surface interaction has been developed by Parry [24] and
Fonseca [17].

The relaxation which we discuss below has been determined by Fonseca [17]. Qur
approach is somewhat different since we already know that a possible ¥ depends only on
Fian, although much of the technical manipulation may seem similar.

Weset m=n=2or3. Let QcR" be a domain with smooth boundary I'. We

shall neglect any dependence on temperature. Let us assume, analogously to (1.11), that
W(A) e C(M) and 7(A£,v) e C(M X R" xR") and satisfy

WA 2 0 for Ae M (8.1)
and

TALV) =2 0 for (A v)e MxRO xRN, with (8.2)

T(ALA) = 1(ALV) when A > 0.
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Hypotheses on W

W(QA)
W(AH)

W)  for Qe S0(3) (frame indifference)  (8.3)
W(A) for He Hq, (material symmetry}

where Hg =LGL(Z})L-! is a conjugate group of GL(Z3).
Hypotheses on 1:

T(QAQEV) = ALV for Qe S0(3) (frame indifference) (8.4)
TAHEHTY) = t(ALyv) for He Hr, (material symmetry) (8.5)

where Hr is a conjugate group of GL(Z3), perhaps different from Hg. Note that this is

precisely the symmetry satisfied by (1.8), which is the determinant. Considerations at the
level of the crystal lattice may be used to justify (8.3); and (8.5). Let us set

Eu) = jW(Vu) dx + It(Vu,u,v') ds, ne CHO). (8.6)
0 Y

Our objective is to identify the functional F*(u) of (2.3). To this end we review
briefly what is known about the bulk term. Introduce the function

Q(det F) = inf ger A = det F W(A), 8.7
which is Ericksen's sub-energy for W, [11]. Then, according to [5,16],
WHA) = @**(det A), AcM, (8.8)

where @**(t) is the convexification of ¢(t). In fact, Fonseca shows that (8.3) alone is
sufficient for (8.8} to hold.

To define the quantity analogous to (8.7) for T requires some care. As our
subsequent demonstration will show, we came upon the characterization after deducing its
principal properties. Provisionally, let us set
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o(F*v.Ev) = inf pxy -y T(AE,V),

where A* denotes the adjugaic of A, as usual, It turns out that it is relatively easy to
show that ¢ depends only on the vectors F*v and €. Anticipating this, set

YEV,E) = infasy-prvTALY) . (8.9)
This function plays the role of the subenergy (8.7) for T.

THEOREM 8.1 Under the hypotheses (8.2) and (8.5) (material symmetry) about
©(AEV), let ¥ be defined by (8.9). Then

tHEEV) = y++(F*v,§), (8.10)
where y** denotes the convexification of W@a.£) in the variable a.
Thus the relaxed flirictional for (8.6) is

) = [ore@etVu)dx + [y*s(Vurv,u)ds,
o] an
ue CiQ). (8.11)

When, in addition, frame indifference is imposed, we shall show that

OF*V.EV) = Yo(IF*vI,F*.E®v |ED, (8.12)
where ,, is a function of the three scalars |F*v |, F*-E®v ,and | &].

COROLLARY 8.2 Under the hypotheses (8.2}, (8.4), and (8.5) about T(A.E,V), let
Yo be defined by (8.11). Then

HEEY) = Y (FYLF - E8 I (8.13)

where y*+* denotes the convexification of \W(aLB,Y) with respect to the real variables
(cu.B). Moreover y** isincreasing in «.
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The first part of the proof will be directed towards showing that there is some
function f(a,€) which fulfills (8.10). We then show that f=y** There are a number of
¢lementary facts about the group H we collect here. Proofs d@ppear in the appendix to this
section.

ELEMENTARY FACTS

a. Let v € 82, Then there are My € H such that

My
T — e as k — oo, (8.14)
[Mpv |
b. Let a,ne R3 and ve 82 with a-n = a-v = 0. Then there are Hi

€ B, Axe (0,1), and vie §2 such that

1+a®n = limg o ((1-A)1 +MHY, vV = limg,wVg, and Hivg = vy

(8.15)
c. Given Q € SO(2), there are vectors a;,n;€R2 with a;-m; = 0,i=
1,2,3, such that
Q= (+a@nm{l+a2@8m(1+a3®n3). (8.16)

To check that t* satisfies the symmetry condition (8.5) is easily accomplished by
changing variables in the integral in (2.2).
LEMMA 8.3 Suppose that a-n = a-v = 0. Then
Al +a@ntv) = ™HALVY). (8.17)

Proof. Observe that the condition a-v =0 is the same as
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(l+a®@nlv = v,
It suffices to show that
Al +a®n)tyv) < ALV, (8.18)

forin (B.18) we mayreplace A by A(1+a®n) and 1+a®n by 1-a®n to
obtain

HALY) < THAQ+a®nEv). (8.19)

Suppose first that H=1 +p®q € H and v - p =0. Then by rank-one convexity of t#
and (8.2},

AL+ ®QEV) < (1-M ALV +ATHFAHEY)
= (1-A) ALV + A THAHE HTV)
|+ = tHAEV) .

Hence by (8.19),

AL+ Ap @ Q.EV) = THAEW) when p-g=p-v=20
and 0<A<1, (8.20)

Given a,n, v, choose a sequence Hg, Ay, and vy satisfying (8.12). The result follows
by continuity of t#. QED

LEMMA 8.4 Let F and A be 3 x 3 matrices satisfying
F*fv = A%y # {, (8.21)

Then there are a rotation Q with axis v, a simple shear E = 1 +a®n,with n-v = 0
andan M e H such that

$

ApnM = FianMQE. (8.22)



Functionals with surface energies 2 1/25/89

M =1 if F*rvwv 2 0.

Proof, First note that (1 ~v ® v)* = v ® v, so the hypothesis {8.21) is
equivalent to

FA-vOV)* = (A(l-v@v)* or

Fan*v = Aw@n*v or (8.23)

Fti AFt2 = At; A Aty

- where (t3,t2,v) is an orthonormal basis. Inspecting the third components of these vectors,
in the {t1,lo,v) coordinates, we have

F11F22 — FiaoF21 = AnAn — AppAn, (8.24)

which we assume nonzero for the moment. Let

F11 Fi12 0 A1l A1z O
F' = (Fz] F22 0) and A’ = [AZI Az2 0)
0 0 0 0 0 0
so that
Fian = (Ft1,Fta,0) = F'+v®f, f-v =0, and:
Apan = (At,A0) = A'+v®a, a-v = 0.

By the factorization lemma [5], Proposition 3.4, A' = F'QE where Q is a rotation with
axis vand E=1+a®n with a-n=a-v =n-v = 0. Hence

Agan = FQE +v®a = (Fan + VR C)QE, (8.25)
for some ¢ with c¢-v = 0, after a little manipulation. Now compute that

“Apn*v = Fuan + v O C)*QE*y
with
QE* = Q(I-n®a)yy = Qv = v,
or
Apn*v = (Fan + v&c)*v.
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So from (8.23),
Fian*Y = (Fran + V®C)*v.

Writing this as

Fi1 Fia 1n Fi2
[lej A (Fn] = ( F21 ) A [ F22 )
F31 Faz F31 + ¢ Fiz + c3

and inspecting gives rise to the two equations

0
0,

Fi1e2 = Fiz
Fa1¢2 - Fa2

1§

which by our assumption that (8.24) does not vanish implies that ¢ = (0,0). Using this
in (8.25) gives that

Apn = FanQE.
The assumption about (8.24) is equivalent to F*v.v # 0. If F*v.y = 0, simply
find an element M of H which is a permutation matrix such that (FM)*v-v # 0 and

apply the preceding result to FM and AM. This is always possible if F*v = 0, QED

PROPOSITION 8.5 Let A and F be matrices. If

F*v = A¥y,
then
HELEV) = THALV) .
Proof According to the previous lemma, A@pnM = FanMQE . By the elementary

fact c¢., we may write

Q= (1+239m)(1+22®m)}1+a3®n3) = E{E;E3, with
a-'n = &-v = nj-v = 0,
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Hence
AgnM = FianME|EsE3E .

By LEMMA 8.3,
T#(AtanM:gaV) = T#(FtanMséy\’) »
and in particular, replacing v by M-Tv, we obtain the conclusion. QED

We may now begin to use the invariance and frame indifférence o determine
additional properties of T#(A,E,v) . First of all, there is a function f(a,E,v) such that

THAEV) = f(A*WEV).

Given v, let (M) cH satisfy the conditions of elementary fact a. Then, noting that M*
= MT for Me H,

(AREY) = FA*MMVEMY) = fA*VEMWY)

— f(A*vE.eq) as k — oo,
Thus,
f = f(AW,5).
Quasiconvexity of t# implies that the function f(a,£) is convex in a, as is well known.
Introduce
a(F*v.EV) = inf axy - pry T(AEV).
For M e H,

S(F*v.EV) = inf pxy = F+v T(AM.E,MTV)
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inf (AMyMTy = EMpMTy TAMEMTV)

S(FM)*MTIvEMTv) = oF*vEMTV).

Once again by elementary fact a, we deduce that ¢ depends on v only through F*v,

hence we may write

W(F*vaa) = G(F*V,F,,V)": inf A*vy =F*y T(A‘lgiv) . (826)

Now we establish (8.10). Since y < 1, itis immediate that

y* < tf = f < 1. (8.27)

We must show the reverse inequality, From the definitions of y and ¥, given F and
€ > 0, we may choose an F¢ such that

fFvE) = tFeLV) < tFLV) S WEWE) + ¢,

with Fv = Fv.

As we have established in PROPOSITION 8.5,

HFEV) =

50

T#(FE:,EJ’V) »

fF*v.E) < y(FvE) + ¢,

hence,

fF*v.E) < wF*Vv.E).

In effect, f(a,&) < y(a,f) and is convex in a. Thus,

f(a,f) < y**@a,f). (8.28)

Combining (8.27) and (8.28), THEOREM 8.1 is proved. QED



Functionals with surface energies 36 1/25/89

Proof of COROCLLARY 8.2. By frame indifference,
YQA*V.QE) = w(QA*V,QE) = w(A*vE),
so for any vectors a5 € R3,
¥(Qa,Qf) = W(a,f..) .

We claim that this implies that y is a function y, of the thre scalar quantitics jal, a- E
and |&|. Indeed, we may suppose that & = | |e; . Then

a
a = (al,a%a’) = E"“:1 +a2ey, ades.

1§ 1

Applying a suitable rotation P about the ep-axis gives

Pa = 28 4 {|a|2-e|2;f))2}§e

FE |
and
. . L
y(@k) = yPaP) = ‘I’(‘Iag_élel + {laiz—(é—él)zﬁ ezl ler ).
This defines a function o{c.,B,y) such that
y@t) = wo(lala-& &)
and hence

YreARE) =y (IAW]A*-E@V,[E]). (8.29)
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It is easily checked that the rank- one convexity of T™(A.E,v) implies that w:*(a,ﬁ;y) is

convex in (o,P) and increasing in ¢, QED

Appendix to section 8: proofs of the elementary facts

The group H is closed under ransposition. Note that to show a. it is equivalent
to show that there is a sequence (Hy ) < H such that

Huer
—sop~l
IHpell""’V as P> oo,

Consider the two dimensional case first. Let v e 8! be given and write

v = limy e 1 Lp2y

132 7 (hl‘-’ [
\JEDT+ (02

where the (h:u hﬁ) are integers. We may obviously assume that h:l, hi are relatively

prime, and thus, there are p:L, pﬁ € Z such that

1.1 2.2 _
hppu + hupjl = 1.

Let
7,
H“, = h2 11 dCtHu = 1,
pota
h!
u
] Hpyer = hy = n2

and (8.14) is satisfied.



Functionals with surface energies 38 | - -1/25/89
Now identify Hy with Hy +e3®e3 and he RZ with (h,0) € R3. Note that if
ke Z and h! and h? are relatively prime with
hlp! + h2p2 = 1,
then
(L+kples®es +kp2es®e3ph = h+kes. _
Therefore it suffices to show that any v € $2 may be written

v = limk_>uo

1 1,2
e (', h%, k),
Vi, 2+ (kp2 M F

where h;lv hﬁ are relatively prime. We may assume that v3 >0 and p2=(v1)2 + (v2)2 >

0. Let by = (h, h%,0) satisfy

L - 1—(\;'1,&'2,0) ' B | —> oo
The T 7

with h111’ hi relatively prime. We may assume that 1 hy | — o= . Consider

1

Vy = —=mmmmre———— (b}, h%, k),
a Vig 2+ k2 M W

. . ) 1-p?
= biggest integer in thyl2 + 1
p2

e
-
I

= 1-02 0 0<g, <1
= p2 n +£P-’ ._Ep__.

Iris evident that vy, — v,
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Proof of b.  This is an immediate consequence of the density of the rationals in the reals.

Proof of ¢,  This is part of the standard twinning calculation. See Fonseca [16] for a
more general fact. Suppose that

and
A=1+de;®e.

2(1 — o)

Then, if B#0, Q- A has rank one for A = . Hence

2
Q = A(+a®n) = [J(1 +2;® ny) (8A.1)
1

is the product of two simple shears. If P=-1, choose Q above with B #0. Consider

QP = Q.
Then
—Q — A hasrankonefor A = -—%,
hence using (8A.1)
3 .
-1 = QA = J]tt +2;8 ny) . QED
1

9 The minimum energy of the elastic crystal

In the examples of §7, the minimum value of E(u) was obtained as the sum of the
separate minima of the bulk and surface terms. This is not true in general, as we should
like to point out for the elastic crystal of §8. To estimate the minimum energy of the
functional of (8.6), we shall impose the kinematical hypothesis that
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inf ¢ E¥u) = infc+ ), 9.1)
C = CY{Q) and C* = {ue CYQ): detVu>0}.

This will be satisfied, for example, provided that y defined by (8.8) fulfills |
Y(F* . E) = inf psy —Fry, det A >0 T(AEV). 9.2)

Recall that by the isoperimetric inequality, Federer [14], there is a constant Co >0
such that

2 _
(ﬂ[det Vvdx)3 < Co JI(Vv)*vids, ve Cl@). (9.3)
r

Let us consider a special case where
y** = g(FvD), : 94

for example, y**(F*v) = yIF*v| for a constant y> 0. We may apply Jensen's
inequality in this circumstance to each of the terms of the integral in (8.11). With F = Vu,

J(p**(detF)dx > 101 0*(g7V),

V = JdetFdx
Q

and

1
IF*v Ddx 2 [T'] g(—0),

lJg( v ) dx g(m)

c:lle*vEdS.

"Adding these, we obtain
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| G 1213
Goll'}

) 2 191 ( V) + [T gl V) ©.5)

In general, the right hand side of (9.5) is larger than
1Q linf ¢** + [[]inf y**,

In case y** also depends on F*v - &, for example, one may use the observation
that

[JF*-u®v dS = 3 [detFdx = 3V.
Q
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