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ABSTRACT 

On ball milling, chromium powder reacted with the water used a s  the grinding 

medium, and hydrogen was evolved. A film composed of Cr203 and CrOZ formed on the 

powder surface during this reaction. This film was calculated to be about 6. I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0 .00061 pm) thick. Although the specific surface area of the powder continuously in­

creases, a large proportion of the particles also became welded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtn each other during the 

milling process. The welding sandwiched the oxide films between the powder particles. 

For this reason, the ratio of oxide formed to measured surface (and apparent thickness 

of the film) increase with ball-milling time. 

STAR Category 20 

ii 



THE RELEASE OF HYDROGEN ON BALL MILLING CHROMIUM IN WATER 

by Alan Ar ias 

Lewis Research Center 

SUMMARY 

Ball milling of high-purity , coarse chromium powder in water released hydrogen, 

and a chromium oxide film formed on the chromium particles at the same time. This 

oxide film was calculated to be about 6 . 7  (0.00067 pm) thick and was composed of 

chromic oxide (Cr203) with smal l  amounts of chromium dioxide (Cr02). 

As judged f rom surface area measurements, the chromium powder continuously de­

creased in size  during ball milling. After 768 hours of ball milling, the average 

particle s ize  of the powder was about 300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd (0.03 pm). The ball-milled chromium 

particles ended up as flakes with a length to thickness ratio of about 10. 

The surface area of the ball-milled powders continuously increased with ball-milling 

time. Yet, it is surmised that during the milling many fine particles became welded 

together sandwiching the oxide fi lms between them. For this reason, the ratio of oxide 

formed to measured surface area of ball-milled powders increased with milling time. 

Because of the sandwiching process ,  it may be difficult to reduce the oxides in these 

ball-milled metal  powders. 

INTRODUCTION 

Ultrafine chromium powder is not commercially available at the present time. This 

type of chromium powder is needed for  various research  projects (including dispersion 

strengthening) which are underway or  contemplated for  the future. Fo r  this reason, a 

program to produce ultrafine chromium powder was undertaken at the NASA Lewis 

Research Center. This prograin included making fine chromium powder by ball milling 

in various liquid media. On grinding chromium with some of these liquids, it was 

observed that the pressure  of gas within the ball mill  increased. The writer and other 

workers in the field have noted pressure buildups on ball milling other metals in a 

variety of liquids. Generally, this pressure increase is relatively slight and has been 

attributed to a temperature increase during ball milling. On ball milling chromium in 



water,  however, the wri ter  observed an unusually high pressure  increase.  This pressure 

increase was s o  large that it could not possibly be attributed to temperature effects. For 

this reason a preliminary investigation of this phenomenon was conducted. It involved 

installing a pressure gage in  the ball mill  to determine the pressure  buildup and analyzing 

the gases evolved in the mil l  by mass  spectrometry. Ball-mill p ressures  in excess of 

10 atmospheres zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(10.13X10 
5 

N/m 
2
) were observed. The gas evolved during ball milling 

was mostly hydrogen. To the wri ter ' s  knowledge, hydrogen release during ball milling 

of metals has not been described previously in the l i terature.  

It was surmised that hydrogen evolution was caused by the reaction of chromium with 

water.  This suggested that chromium oxide could be formed at the same time on the 

surface of chromium. Since most liquids contain water as an impurity, it follows that 

grinding of chromium in many of these media would probably also cause it to oxidize. 

In addition, the water may also modify the grinding characteristics of the milling media. 

The same would be true when using grinding aids containing water of hydration. What­

ever  the origin of the water,  its reaction with the chromium powder could modify the 

properties of the powder. For these reasons, it was decided to look further into the 

reaction of chromium with water. 

The main purpose of this investigation was to study in more detail the reaction which 

occurs on ball milling chromium with water. It was also intended to attempt to correlate 

quantitatively the pressure  buildup (due to hydrogen release) with the oxide content of the 

chromium. 

The experimental work consisted in ball milling chromium in water in gas tight ball 

mills .  The pressure  of the hydrogen released was determined, with a pressure gage in 

the mill, as a function of ball-milling time. From these data, the amount of oxygen 

reacted with the chromium was calculated. The nature of the oxide formed by the 

reaction was determined by X-ray diffraction. From the data s o  obtained, the thickness 

of the chromium oxide layer was calculated. For comparison purposes, the oxygen 

content of the ball-milled powders was also determined by chemical analyses. 

MATERIALS, EQ U I PMENT, AND PROCED URES 

The only materials used in this investigation were chromium metal and water. The 

start ing raw chromium was high-purity-flake chromium. The chemical analyses of this 

chromium is given in table I. The coarse chromium powder used as mill  feed material  

was prepared from this raw flake chromium. 

The flake chromium was first crushed in a stainless-steel  mortar  and pestle. The 

crushed chromium was then pulverized in a small  stainless-steel  hammer mill  until it 

passed a 30-mesh sieve. This coarse chromium powder was used for the ball-milling 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- CHEMICAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND PARTICLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASIZE ANALYSES OF AS-RECEIVED AND AS-MILLED CHROMIUM 

Processing conditio= 

As-received 

chromium 

Crushed and 

hammer-milled 

chromium 

Run zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: 

milled in water 

for  48 h r  

Run 2: 

milled in water 

for  112 hr 

Run 3: 

milled in water 

for 384 hr 

Run 4: 

milled in water 

for 768 hr  
~ 

Chemical analysisa Surface a r e a  

by BET methodb), 

Oxygen, Nitrogen, Iron, Other, 
m2/g

percent PPm percent percent 
____ 

0050 50 do. 001 (e) 

-0086 83 . 3 3  0.125 

.454 (e) (e) 1.23 

1.25 (e) (e) 3.62 

7.19 2 14 4.54 9.65 

b9. 21  

'18.46 146 6.46 17.97 

Chunhs approx. 

5 by 15 by 4 mm] 

4.94 

.452 

.153  

057  

031 

aUnless indicated otherwise, all chemical analyses were done by a commercial  laboratory. 

bIn-house analyses. 

'Particle s ize  was obtained from the surface area S and the density of chromium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I.2 g/cu cm) by the following formula: 

Particle size (pm) = 4/(7.2)S (ref. 6). 

dSupplier's analysis. 

eNot determined. 

experiments. The preparation of the coarse chromium powder was performed entirely 

inside a gas-tight, argon glove box. During this work, the argon glove box was evacuated 

at regular intervals and refilled with high-purity argon so as to keep the oxygen level 

below 100 ppm. 

After hammer milling, the chromium powder was kept in gas tight containers until 

ready for  use. Samples of this powder were packed into tin capsules for  oxygen analysis. 

The chemical analysis of coarse chromium powder is included in  table I. 

The water used as the ball-milling medium was distilled water processed to remove 

dissolved gases. A gas tight vessel  provided with a vacuum valve was used for the gas 

removal. The vessel was partly filled with the distilled water and then evacuated with a 

mechanical vacuum pump until the water boiled. After the water boiled for about 5 min­

utes, the vacuum valve was closed and the vessel  placed in the argon glove box where the 

mills were to be loaded. 
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ressu re gage 

Gage coupl -Cover 
tightening 

Cross screw 

-Pressure 
relief valve 

-Cover 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. - Gas tight ball mill with pressure gage. 

The type of ball mill  used in this work is shown in figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The ball mills were 

made from 410 stainless steel. These mills have an inside diameter of 10.2 centimeters 

and a volume of 1580 cubic centimeters. The covers for  these mills have an O-ring 

gasket to provide a gas tight seal. These mills can withstand up to about 20 atmospheres 

(2.03X10 
5 

N/m 
2
) absolute pressure without leaking. In order  to monitor the pressure 

developed by the hydrogen released on ball milling, the covers are provided with 

7.5-centimeter-diameter pressure gages. These gages were calibrated before installa­

tion in the cover. The accuracy of these gages is better than 1/2 percent of the max­

imum gage reading. The mills also have a vacuum type valve for  the release Of pressure 

or for taking samples of the gases generated during ball milling. 

The balls used for  ball milling were 12.6 millimeter nominal diameter and made from 

type 440 stainless steel. In all runs, 400 of these balls weighing about 3220 grams were 

used. 

The mills were loaded in  the argon glove box. In all runs, 150.00 grams of chromi­

um powder and 750*2 cubic centimeters of water were used. The free volume (head 

space) of the mills was calculated to be 402 cubic centimeters (including pressure gage 
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volume). Four identical mills  were loaded in this manner. All four mills were zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArun 

simultaneously at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 rpm. Run 1 was stopped after 48 hours of milling time. Pressure  

readings were continued for 48 hours after the mill was stopped. Run 2 was stopped 

after 112 hours, run 3 after 384 hours, and run 4 after 768 hours of milling time. The 

pressure readings for run 4 were continued for about 100 hours. The mills were opened 

in the argon glove box, and the milled chromium powders dried under argon. Samples 

of powders were taken for  surface a r e a  determinations and for  chemical analyses. Tin 

capsules were filled with the powders for oxygen analyses. The hydrogen-pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA­
milling-time data and the oxygen-pickup - milling-time data used in  this investigation 

were obtained entirely from run 4. 

In all four runs,  the hydrogen generated on ball milling was released at regular 

intervals inside the argon glove box. During run 4 (the longest), samples of the gas 

generated in the mill  were taken at regular intervals. These gas samples were analyzed 

by mass  spectrometry. The pressure data from run 4 were used for  the calculations 

and plots in this report. 

The surface a reas  of all the milled powders were determined by the BET method 

(ref. 1). 

Both X-ray diffraction and X-ray fluorescence analyses were performed on the pow­

der  f rom run 4. To prevent contamination of the powder used for  X-ray diffraction, the 

powder was loaded in a capillary tube in the argon glove box and the tube was sealed. 

The powders from run 4 were also examined with the electron microscope to deter­

mine the shape of the powder particles and as a check on the surface areas (or particle 

sizes) obtained by the BET method. 

RESULTS 

Chemical and Surface Area Analyses of Mil led Powders 

Unless indicated otherwise, the data in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI will be used for the description of the 

resul ts  of chemical and surface area analyses that follow. 

Both the as-received and the as-hammer-milled chromium have a relatively low 

oxygen content. Some iron was picked up by the milled chromium powder from the 

stainless-steel crusher  and hammer mill. There is no reason to believe that the iron 

pickup, the sulfur in the as-received chromium, or the other impurities could have any 

effect on hydrogen evolution or on the oxidation of the chromium during ball milling. 

The oxygen content of the ball-milled chromium powders increases with milling 

time. The 18.46 weight percent oxygen content of the powder ball milled for 768 hours 

represents 58.56 weight percent of Cr203 .  It appears that if ball milling were continued 
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long enough, all the chromium metal would be oxidized. 

The iron content of the ball-milled chromium powder increases continuously with 

ball-milling time. The i ron is in the stainless steel picked up by the chromium powder 

from the crusher ,  mills, and balls. This stainless steel contains carbon and a smal l  

amount of nitrogen. Hence, these two elements appear in larger  quantities in the ball-

milled chromium than in  the original chromium. However, as the analyses for runs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

and 4 show, the amounts of these two elements are not proportional to the iron pickup. 

0 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUX, 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 600 700 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA800 
Ball-mil l ing time, hr 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. - Surface area (by BET method) of ball-milled 
chromium powder as function of bal l-mil l ing time. 

The surface areas of the ball-milled powders increase (or the particle sizes de­

crease) with ball-milling time, as shown both in  table I and in figure 2. The average 

particle s ize  of the powders ball milled 768 hours is 310A (0.031 pm). By powder 

metallurgy standards, this is a very fine powder. This size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof powder would be well 

suited f o r  dispersion strengthening purposes, were it not for its high oxygen content. 

Evolution of Gases During Ball  Milling 

Table I1 shows the chemical analyses of the gases taken from the ball  mil l  at the 

t imes shown both in this table and in figure 3. 

The argon shown in all the analyses comes from the atmosphere in the argon glove 

box in which the gas  samples were taken o r  the ball-mill p ressure  was released. For 

comparison purposes, a typical analysis of the argon used in the glove box is included in 

tab le '11. 

Table I1 shows that hydrogen represents more than 99 percent of the gases  other than 

argon. It is surmised that the oxygen, nitrogen, and carbon dioxide appearing in all the 

analyses either came from the argon used in the glove box or  are the result  of leakage of 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII. - ANALYSIS OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGASES TAKEN FROM RUN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 AT VARIOUS MILLING TIMES AND 

TYPICAL ANALYSIS OF ARGON BOX ATMOSPHERE 

Gas source Chemical analysisa, percent I 

I
I 

1
I 

Argon box (typical) Balance 0.027 

From ball mill, Balance .051 

48 hr of milling 

(sample 1, fig. 3) 

From ball mill, 7.72 0 

161 hr of milling 

(sample 2, fig. 3) 

From ball mill, .945 0 

387.4 hr  of milling 

(sample 3, fig. 3) 

From ball mill, .445 0 

576 hr  of milling 

(sample 4, fig. 3) 

a ~ s sspectrometric method. 

12x105 

0 100 200 300 400 500 600 700 800 
Ball-mil l ing time, hr 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. - Pressures developed on ball mi l l ing of chromium 
in water as function of t ime for run 4. 
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atmospheric air into the gas sampling bottles. The carbon monoxide content varied from 

one analysis to another without any definite pattern. This carbon monoxide probably 

came from the argon in the glove box and varied because the carbon monoxide content of 

the argon used a l so  varied. 

The methane shown in table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII was undoubtedly evolved during ball milling. The 

amounts of methane in the last two analyses in the table are almost the same. Hence, it 

may be stated that, within the limits of analytical accuracy, the methane decreases with 

ball-milling time. It is surmised that this methane was produced by the reaction of 

(nascent) hydrogen with the carbides on the surface of the stainless-steel powder picked 

up during ball milling. Since the rate of pickup decreases  with milling time, so does the 

methane. In short ,  only hydrogen and t races  of methane a r e  evolved on grinding chromi­

um in water. 

The pressure that built up as a function of time during the grinding of chromium 

(run 4) is shown in figure 3. The breaks in the curve are a resul t  of the re leases  of 

ball-mill pressure and of the withdrawal of gas samples from the mill. The release of 

pressure was necessary to prevent leakage of gas from the mill. 

For runs 1 (48 hr of milling) and 4 (768 h r  of milling) the pressure that built up was 

monitored after stopping the ball mills. The first showed an additional pressure increase 

of 0.003 atmosphere (304 N/m 
2
) in 48 hours. The second showed a pressure increase of 

approximately 0.05 atmosphere (5066 N/m 2) in  100 hours. In either case,  the pressure 

increases represent less than 1 percent of that obtained by ball milling for the same 

period of time. For this reason, this effect is neglected in  the data shown in this report. 

X-ray Analyses of Bal l-Mil led Powders 

The X-ray diffraction analysis of the powder ball milled for 768 hours shows chro­

mium (Cr), chromic oxide (Cr203), and (weak) chromium dioxide (Cr02). No iron oxide 

lines were detected in the diffraction pattern. Both chemical analysis (table I) and X-ray 

fluorescence analysis show that this powder contains iron. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA s  already indicated, this 

iron is in the stainless s teel  picked up from the equipment used for  crushing and milling. 

The X-ray diffraction pattern also showed broadening of the lines. This line broad­

ening is accounted for  by the small  particle size of the powder. 

Electron Photom icrographs 

A transmission electron photomicrograph of the powder from run 4 is shown in fig­

ure 4. Other samples of the same powder were shadowed and electron photomicrographs 
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Figure 4. - Transmission electron photomicrograph of chromium powder 
after ball m i l l i ng  in water for  768 hours. 

(not shown) taken. From the transmission photomicrographs of shadowed particles, it 

was determined that the powder particles are flake shaped and have an  average length 

to thickness ratio of about 10. The surface area of this sample was calculated (from 

the particles shown in fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) to be about 20 square meters  per  gram. This value agrees  

quite well with the 18 square meters  per gram obtained by the BET method. 

DISCUSSION OF RESULTS 

Hydrogen Evolved D u r i n g  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABall M i l l i n g  

A reaction between chromium and water was shown to occur during ball milling. 

This reaction was evidenced by the increase in pressure in  a gas tight ball mill  due to 

hydrogen evolution. The reaction of chromium with water to form chromium oxides 

with the release of hydrogen can be shown to be thermodynamically feasible. 

For the room-temperature reaction, 
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02Cr (s) + 3 ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I)~= C r 2 0 Q  (s) + 3H2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(g) 

the f ree  energy change is (ref. 2) 

A F  = - 253 150 + 0 - (0 - 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 56 720) 

= - 82 990 cal (- 347 000 J) 

Similarly, for  the room -temperature reaction 

Cr (s) + 2H20 (I) = C r 0 2  (s)+ 2H2 (g) 

the A F  is -16 560 calories (-69 400 J) (ref. 2).  

The probable reason that either of these reactions have not been observed before 

is that chromium is normally covered with a protective layer of its own oxide. Ball 

milling either flattens or  breaks up chromium particles. Flattening of a particle causes 

a n  increase of its surface area.  Breakage of a particle a l so  creates new surfaces. In 

either case,  clean chromium surfaces a r e  exposed and these can react  with water. 

Hence, during ball milling, the reaction of chromium with water continues as long as 

new surfaces are formed. 

A s  already indicated, the reaction rate of chromium with water immediately after 

stopping the ball mill  is less than 1 percent of that during ball milling. Only a slight 

after-ball-milling reaction would be expected since no new surfaces are formed and the 

gas evolution could result  only by surface diffusion of chromium atoms to the water -

chromium oxide interface. This diffusion would be time dependent. If only a mono-

molecular layer of oxide were formed on the chromium, the slight (1 percent) after-ball­

milling reaction would be expected to be almost instantaneous. It is shown later in this 

report  that the oxide film formed on chromium during ball milling was thicker than a 

monomolecular layer. 

It can be shown thermodynamically that the maximum hydrogen pressures  that can be 

allowed to build up in the mills could not reverse  the reaction. If high hydrogen pres­

sures were generated by the reaction and could be contained, the equilibrium equations 

(eqs. (1) and (2)) would be reversible. From thermodynamic considerations, the hydro­

gen pressure required to reverse  the first reaction is greater than 

P = exp (-AF/3RT) 

= exp (46.8) 

= 2. 24X1020 atm ( 2 . 2 7 ~ 1 0 ~ ~N/m2) 
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-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mole 

This value is obviously too high for any known container. Similarly, pressures  fo r  the 

reversa l  of the second reaction are calculated to be greater than 1.02xlO
6 

atmospheres 

(1.034X1011 N/m 2), again toohigh to be contained. The highest hydrogen mill pressure 

reached in this investigation was 11.6 atmospheres (11. '7x10
5 N/m 2). This pressure is 

deemed to be too low to affect the reaction rate of chromium with water appreciably. 

Since thermodynamics shows this reaction to be feasible, s imilar  behavior can be ex­

pected on ball milling other metals if water is present. 

Oxidation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Chromium Dur ing Ball Mi l l ing 

A s  the equilibrium equations (eqs. (1) and (2)) indicate, the amount of chromium 

oxide formed is proportional to the amount of hydrogen evolved. The amount of hydrogen 

evolved can be approximately determined from the pressure buildup in the mill by use of 

Boyle's law. Boyle's law is valid only for  ideal gases at constant temperature. These 

requirements are believed to have been closely approached in this investigation. 

The constant temperature requirement of Boyle's law was met because, although 

there was a slight temperature increase in the mill during grinding, the mill was allowed 

to cool for 2 hours (to room temperature) before taking pressure readings. Normal 

variations in atmospheric temperatures and pressures  were estimated to affect the pres­

su re  readings by less  than 1 percent. Finally, because of the low crit ical  temperature 

of hydrogen (33.1' K) it can be reasonably assumed that, in  the pressure range reached 

in the mills,  the hydrogen behaves as an ideal gas (ref. 3). 

The moles of hydrogen generated were obtained from the known f ree  volume of the 

mill V (V = 402 cm 
3 

at the beginning of the run) and the increase in pressure A P  in the 

mill,  as follows: 

Moles of H2 generated = 
A P  

~ 

(atm) X V (liter) 

22.4 atm( liter ) 
For every mole of hydrogen generated, 16 grams of oxygen react  with the original 

150-gram charge of chromium. Hence, the moles of hydrogen generated multiplied by 

16/150 gives the oxygen pickup in grams per gram of original chromium. The results 

I  
for  the oxygen pickup s o  obtained are plotted in figure 5. The data points plotted in this 

f igure were corrected f o r  the increase in f r e e  volume V of the mill  with ball-milling 

time. This increase is 

AV = Volume of water reacted - (Volume of chromium oxide formed 

- Volume of chromium converted to  chromium oxide) 

11 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 200 300 400 5M) 800 
Ball-mill ing time, hr 

Figure 5. - Oxygen picked up  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby chromium on ball m i l l i ng  in 
water as funct ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof ball-mil l ing t ime for run 4 (calculated 
from data in fig. 31. 

The X-ray diffraction pattern of the chromium powder ball  milled fo r  768 hours 

showed no iron oxides. The significance of this fact is that the iron picked up during the 

processing of the chromium powder was not oxidized. Thus, iron pickup did not con­

tribute to the hydrogen released during the ball milling of chromium. 

Considering the various sources of e r r o r  already discussed (gage accuracy, temper­

ature  and pressure variations, etc.) the overall accuracy of the data in figure 5 is 

estimated to be better than 5 percent. The accuracy of the correlation between the as-

analyzed oxygen content and the as-calculated oxygen content is discussed later.  

The monitoring of hydrogen pressure during the ball milling of chromium could be 

used to study ball-milling variables such as the effect of ball size,  ball charge, mill  

speed, e tc . ,  on grinding speed. 

Thickness of Chromium Oxide Fi lm 

For a better understanding of the phenomena that occur during ball milling, it was 

fel t  that a calculation of the thickness of the oxide layer formed by the reaction of 

chromium with water would be helpful. The average, hypothesized, or  apparent, oxide 

layer thickness can be calculated with the aid of figures 2 and 5 if the following assump­

tions are made. 

(1)All the chromium oxide formed on the chromium surface is Crg03. This 

assumption can be made because the X-ray diffraction pattern for  CrOa is very weak. 
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c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

(2) The ball-milled powders have no preferred orientation, since the widening of the 

X-ray diffraction pattern l ines may be accounted for  by the small  s ize  of the powder par­

ticles. 

To aid in the calculations, the data at low ball-milling t imes (up to 160 hr)  from 

figures 2 and 5 were replotted in figure 6. From the density and molecular weight of 

Cr203, the molar volume was calculated. From the molar volume and Avogadro's num­

ber, it was calculated that a 'Prandomly oriented" monomolecular layer of 1 mole of 
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Figure 6. - Calculated oxygen pickup and surface area 
(by BET method) of chromium powder as function of 
ball-mil l ing time. (Data from figs. 2 and 5 enlarged 
t o  show early stages of ball-mil l ing run.) 

Cr203  would cover an area of 79 800 square meters  (see appendix for detailed calcula­

tions and comments). This is equivalent to 1669 square meters  per gram of oxygen (in 

Cr203). If a powder has a surface area of S square meters  per gram and W grams of 

oxygen per gram of chromium, the number of apparent monomolecular oxide layers N 

wil l  be (approximately) 1669 W/S. An equivalent expression that gives the number of 

monomolecular oxide layers for surfaces formed between two milling time intervals is 

AW
N = 1669 -

AS 

The number of monomolecular layers N calculated in the manner described previ­

ously for  run 4 is shown in table LII and in figure 7. The data for  these calculations were 

obtained from figures 2, 5, and 6. From the data in table 111and in the appendix, the 

thickness of the oxide layer at the early stages of the ball-milling run (up to 48 hr) is 

calculated to  be 6.7 A (0.00067 pm). Although the number of monomolecular layers  N 
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L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

TABLE ID.zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- APPARENT NUMBER OF MONOMOLECULAR CHROMIC OXIDE LAYERS 

AT VARIOUS TIME INTERVALS DURING BALL-MILLING RUN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

Milling time 

intervals, 

hr  

0 to 24 

24 to 48 

48 to 112 

112 to 384 

384 to 768 

Increase in oxygen 

(g/g of Cr), 

AW 

0.00055 

.000631 

.00373 

.0593 

.0698 

20 
z  
vizyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 16 
-m 

-
2 12-
0 

E 
= 8 E-
0 
L  

B 4
E  
3  
z  

Increase in surface area  

b 2 / g  of Cr) ,   

AS  

0.535 

.56  

2.42 

6.03 

8. 32 

Apparent average number 

of C r 2 0 3  monomolecular 

layers, 

N 

1.71 

1.88 

2.57 

16.38 

14.0 

0 100 200 UK) 400 500 600 700 
Ball-mill ing time, hr 

Figure 7. -Apparent number of monomolecular layers of 
chromic oxide formed on chromium as funct ion of ball-
mi l l ing  time. (Data from figs. 2 and 5. ) 

apparently increases with additional milling, the actual oxide layer thickness is believed 

to have remained at 6.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb (0.00067 pm), as discussed later. 

a 

Welding of Particles During Ball  Milling 

Table III(and fig. 7) shows that the calculated "apparent" number of monomolecular 

layers  N generally increased as ball-milling time increased; N goes from about 2 at 

the beginning to about 15 toward the end of the ball-milling run. This increase in N 

with ball-milling time could be the result  of one or  more of three causes. 
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(1)The surfaces newly created on the ball-milled chromium continue to react  with 

water for  a long time after they are formed. 

(2) The chromium oxide formed on the chromium particles spalls off the surface 

during ball milling. Hence, the same surfaces can react  several  times with water.  

(3) The finer particles weld with each other or onto larger ones during ball milling. 

Since these particles already have an oxide film, this film is (partially) sandwiched 

between the welding particles. 

It has already been mentioned that, after ball milling is stopped, the amount of hydro­

gen generated is l ess  than 1 percent of that generated by ball milling during the same 

period of time. Hence, although it occurs, the continued reaction of the newly created 

surfaces with water cannot be the reason for  the observed increase in N with ball-milling 

time. 

The well-known resistance of chromium to oxidation is the result of the toughness 

and adherence of its own oxide film. If repeated temperature cyclings fail to spall off 

its thick oxide fi lm, it is highly unlikely that ball milling can spall off a thin film in a 

very small  particle. The reasons why this is unlikely a re ,  first, that thin oxide films 

are more pliable than thicker ones and, second, that under stress (either mechanical or  

thermal) small  particles are less likely to lose coherence with their oxide film than 

larger  ones. Hence, cause (2) for the increase in N with ball-milling time is deemed to 

be improbable. 

Cause (3) for the increase in N with ball-milling time appears to be the most 

logical of the three and, in addition, is supported by work described in the literature 

(to be discussed later). If the oxide weight increase or  the N value (apparent number of 

monomolecular layers) increased linearly with S, the ratio of calculated oxide pickup to 

S would be approximately constant. However, the increase in these values is linear only 

during the first zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA48 hours o r  so of the ball-milling run. These values increased very 

rapidly when the surface area increased beyond about 3.6 square meters  per gram 

(i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, ball-milling times greater  than about 100 hr),  as shown in table III and figure 7. 

The increase in N while chromium continues to oxidize with increasing ball-milling 

time means that while new, smaller  particles are being formed by comminution of larger 

ones, other large particles are being formed by welding of smaller ones. The surface 

a r e a  between the welded particles is not measured by the BET method of surface area 

analysis. The net effect is that the ratio of oxygen to surface area increases with ball-

milling time and so does N. The author believes that water can also be trapped between 

the welded particles. 

The idea that particles both decrease and increase in  size during ball milling is not 

new. That this is correct  has been experimentally verified. In reference 4 it is shown 

that fine fractions of ground sand can be made to weld into larger ones by grinding. The 

same phenomenon has been reported for nickel ball milled in a variety of liquid media 
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(ref. 5). The ball-milling reactions may be better understood with the aid of figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 and 

the following hypothesized explanations: 

(1)Up to about 100 hours of ball-milling time, the predominant mechanism is that 

large particles of chromium are flattened into large single flakes and welding of particles 

is minimal. The ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAW/AS, and hence N, remains approximately constant. 

(2) As the predominantly single flakes become thinner and are broken into smaller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' flakes, the welding rate of particles increases and agglomerates of welded particles 

increase in  number. The increased welding of particles causes an  increase in the 

AW/AS ratio. This explains the sharp r i s e  in the curve for N against time (fig. 7) 

between about 100 and 200 hours. 

(3) As the single flakes disappear to form agglomerates by welding, the agglomerates 

become flattened into new flakes and these flakes are (eventually) fractured. However, 

these flakes have now more oxide in them than the original ones, since the oxide film 

formed by reaction with water remained on the particles. Hence, the new surfaces 

created on the agglomerates by flattening and by fracturing reac t  with less water and N 

decreases.  

This explanation of the data f rom this investigation indicates that a large proportion 

of the oxygen picked up by the chromium powder may be sandwiched between chromium 

particles. It is surmised that the same may be true for  other ball-milled metal and 

alloy powders. Hence, it may be more difficult to reduce the oxides formed in some 

milled metal powders than in the pure oxide powders. 

As-Calculated and As-Analyzed Oxygen Content of Mi l led  Powders 

As shown by the analyses in table I, the oxygen content of the ball-milled powders is 

invariably larger than that calculated from the hydr.ogen generated during ball milling 

(fig. 5). (Note that in table I the oxygen is in percent basis, while in figure 5 it is in 

grams per gram of original chromium.) Correlation of the data was surprisingly good to 

384 hours, but the added samples were done a t  another source and higher values obtained 

at 384 and 768 hours of ball-milling time. The reasons for  the higher values given by the 

chemical analyses from the latter source a r e  not clear at this time. 

CONCLUSIONS 

From the results of the present investigation it is concluded that 

1. Because of the reaction of chromium with water during ball milling, hydrogen is 

generated and a chromium oxide film is formed on the chromium particles. It is sur ­

mised that the same phenomenon may occur on ball milling of other metals in water. 
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2. The amount of oxygen reacted with chromium on ball milling can be quantitatively 

monitored by the increase in pressure due to hydrogen evolution. This monitoring of 

hydrogen pressure on ball-milling chromium could be used to study ball-milling variables 

such as the effects of ball size, ball charge, mill speed, etc. ,  on grinding speed. 

3. The oxide film formed on chromium during ball milling in water was calculated 

to be about 6.7 (0.00067pm) thick. This film is composed of chromic oxide and small  

amounts of chromium dioxide. 

4. Under the conditions used in this investigation, hydrogen was continuously gen­

erated, and the surface area of the chromium continuously increased during ball milling. 

A powder with 300 (0.03 pm) average particle s ize  was obtained on ball-milling 

chromium in water for  768 hours. It is deduced that welding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the finer particles onto 

larger ones o r  with each other was also taking place during ball milling. 

5. Because of the welding action taking place concurrently with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgrinding, a large 

proportion of the chromium oxide formed may be sandwiched between chromium particles. 

6. Since most of the chromium oxide may be a t  the interface between welded 

particles, the reduction of this oxide (with hydrogen, carbon, etc. ) may prove difficult. 

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio, February 1, 1968, 
129-03-01-05-22. 
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APPENDIX - AVERAGE NUMBER OF CHROMIC OXIDE (Ct-203) 

LAYERS ON CHROMIUM POWDER 

For the analysis that follows, it will be assumed that only C r 2 0 3  is present as an 

oxide film on chromium and that this film is randomly oriented. It can be imagined that 

chromium oxide fi lms can be obtained by peeling off monolayers of C r 2 0 3  from a "molar 

cube" (cube shaped molar volume) and building up the oxide film to the required thickness 

by piling up these monolayers. 

The molar volume Vm of C r 2 0 3  is 

Molecular weight of C r 2 0 3  
vm = 

Density of C r 2 0 3  

-- 152.02 g/mole­

5.21 g/cm3 

= 29.18 cm 
3
/mole 

The "molar cube" has edge em given by 

em = Vm1/3 

= 29.18 1/3 

= 3.079 cm 

and each of the faces of the molar cube has surface a rea  sm given by 

= 9.48 cm2 

The number ne of C r 2 0 3  molecules lying along one edge of the molar cube is 

n = A  1/3 
e 

= (6.023X10 23) 1/3 

= 8.45X10 
7 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 6 . 0 2 3 ~ 1 0 ~ ~is Avogadro's number. The ne monomolecular layers (of which 

the molar cube can be imagined to be made up) each of area sm can cover a total area 

Sm given by 

'm-
- n  s

e m  

= 80 100 m2/mole 

Since a mole of C r 2 0 3  has 48 grams of oxygen, the area s that can be covered with 

the amount of C r 2 0 3  that has 1 gram of oxygen is 
g 

= 1669 m2/g of oxygen (in Cr203)  

A monomolecular layer of C r 2 0 3  with W grams of oxygen would cover an  area 

s W = 1669W square meters .  Now, if a chromium powder has W grams of oxygen per
g

gram of powder and the powder has a surface area of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS square meters  per  gram, the 

oxide must cover the S square meters  of surface with N monomolecular layers 

N = 1669 
W-
S 

If during a ball-milling time interval the oxygen content increases by AW and the 

surface area of the powder increases  by AS, the apparent number of monomolecular 

layers N formed on the surface of powder created in the same time interval is 

AW
N = 1669 -

AS 

and each of these layers has thickness 

em - 3. O79x1O8 

ne 8 . 4 5 ~ 1 0 ~  

= 3 . 6 4  (0.000364 pm) 
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The preceding expressions for  N are valid only for  large particles and/or thin oxide 

layers for two reasons. The first reason is that the BET method of surface area measure­

ment measures the surface on the outside of the oxide film and not in  its mid-thickness, 

as is required by the equations. The second reason is that the BET method gives the 

surface area per  unit weight of oxide-metal mixture. In this report ,  the calculated oxy­

gen content is expressed in grams of oxygen per  gram of original chromium. With these 

objections in mind, more accurate expressions for  N could have been derived but the 

ones given suffice for  the purposes of this investigation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA more accurate value of N 

would not have altered the conclusions reached. E
B 

! 
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