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Abstract: The work carried out by our research group over the last couple of decades in the context
of quantitative crystal engineering involves the analysis of intermolecular interactions such as carbon
(tetrel) bonding, pnicogen bonding, chalcogen bonding, and halogen bonding using experimental
charge density methodology is reviewed. The focus is to extract electron density distribution in the
intermolecular space and to obtain guidelines to evaluate the strength and directionality of such inter-
actions towards the design of molecular crystals with desired properties. Following the early studies
on halogen bonding interactions, several “sigma-hole” interaction types with similar electrostatic
origins have been explored in recent times for their strength, origin, and structural consequences.
These include interactions such as carbon (tetrel) bonding, pnicogen bonding, chalcogen bonding,
and halogen bonding. Experimental X-ray charge density analysis has proved to be a powerful tool
in unraveling the strength and electronic origin of such interactions, providing insights beyond the
theoretical estimates from gas-phase molecular dimer calculations. In this mini-review, we outline
some selected contributions from the X-ray charge density studies to the field of non-covalent inter-
actions (NCIs) involving elements of the groups 14–17 of the periodic table. Quantitative insights
into the nature of these interactions obtained from the experimental electron density distribution
and subsequent topological analysis by the quantum theory of atoms in molecules (QTAIM) have
been discussed. A few notable examples of weak interactions have been presented in terms of their
experimental charge density features. These examples reveal not only the strength and beauty of
X-ray charge density multipole modeling as an advanced structural chemistry tool but also its utility
in providing experimental benchmarks for the theoretical studies of weak interactions in crystals.

Keywords: non-covalent interactions; electron density; qtaim; multipole modelling; crystal

1. Introduction

The question of what happens to an atom when it participates in the formation of a
molecule and what happens to a molecule when it is put into molecular crystalline forms
has been a central dogma, and answers were sought from various branches of science and
philosophy over the last several decades. After it was evident that X-rays are scattered by
the electrons of the constituent atom, ions, or molecules, mapping of the distribution of
electron density in crystals as a consequence was imminent. However, the success of an
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ambitious experimental venture such as mapping accurate charge density distributions and
their topology was realized only during the last few decades after significant technological
advances in both data acquisition and computation. Charge density analysis occupies a
prominent position in crystallography, particularly based on the pioneering work by Cop-
pens, Stewart, Hirshfeld, and several other prominent investigators [1–5]. There are several
review articles describing the methodology for data collection, analysis, and modeling of
experimental electron density and indeed recent articles also bring in the strength and short-
comings of this technique [6,7]. In the context of structural chemistry, experiments were
designed to evaluate the electron density distribution in a given molecule. The work per-
formed in the Coppens group stands testimony to this approach with the calculation of the
so-called “deformation density maps”. These maps facilitated the estimation of the extent
of polarization in a covalent bond, the electrostatic field generated by the molecules or ions
in a unit cell. However, on realizing the effect of thermal motion and the limitations due to
the resolution of the data will restrain the quantification, the concept of static deformation
density was invoked to ascertain the finer aspects in crystalline space. The use of the multi-
polar model defined a standard protocol and least-squares refinement of the parameters
clearly produced interpretable deformation maps that could be quantified [2,3]. This led
to a wide range of applications in probing unusual chemical bonding situations including
intermolecular interactions. Currently, the methodology has become more feasible within
laboratory X-ray sources and experimental conditions, opening remarkable possibilities for
exploring various chemical bonding features in various classes of compounds. Aspherical
modeling of atoms using multipole formalism against an accurate high-resolution X-ray
diffraction data in combination with the application of the concept of “atoms in molecules”
(AIM) methodology proposed by Richard Bader provides a quantitative assessment of the
topological properties of various bonding features in crystals.

The recognition of the presence of noncovalent interactions, which invoked the concept
of chemical bonding by J. D. van der Waals in his doctoral thesis in 1873, heralded the
quest to understand these so-called “dispersion forces” [8]. Indeed, these forces in recent
times have been recognized to have originated from quantum mechanics due to various
electrostatic interactions between regions of different electronic charge densities. It is
becoming increasingly apparent that the electronic signature of the condensed matter lies
in both qualitative and quantitative understanding of van der Waal forces. Mapping of
charge density features in intra- and intermolecular space is helpful in understanding and
describing the binding properties in molecular systems and providing insights into their
material properties.

The advent of crystal engineering principles recognizing the relevance of intermolec-
ular interactions in molecular assemblies kindled the interest to extend the methodology
to obtain insights into intermolecular interactions including strong and weak H-bonds [9].
This resulted in several applications of the charge density multipole method to crystal
engineering problems, and a large number of publications emerged, particularly exploring
weak and strong hydrogen bonds and their directional preferences explored based on the
AIM methodology [10].

In this mini-review, we describe charge density studies on weak interactions, other
than hydrogen bonds—the highly directional non-bonded contacts like halogen, pnicogen,
chalcogen, and carbon bonding interactions with specific examples which have been
studied in our group in the last few years. Specifically, highlights of non-classical weak
interactions involving group 14–17 elements are presented covering their nature, strength,
and electrostatic origin (Figure 1). Applications of charge density studies in the field
of crystal engineering and pharmaceuticals are briefed with specific examples. Further,
a futuristic viewpoint for such studies is surmised invoking the methods which seek to
overcome the deficiencies in the experimental charge density approach.
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Figure 1. The wide palette of noncovalent interactions explored using X-ray charge density analysis.

Due to the anisotropic packing of molecules or atoms in crystals, the potential field is
never spherically symmetric, and hence approximating the overall crystal electron density
as a sum of spherical atomic densities of constituent atoms may not be a valid consideration.
To account for the aspherical distribution of electron density due to chemical bonding,
Hansen and Coppens formulated the nucleus-centered finite multipole expansion of ρ [2].
In this formalism, the atomic electron density ρ is divided into three components

ρat(r) = Pcρc(r) + Pνκ
3ρv(κr) +

lmax

∑
l=0
κ′3Rl(r)

l

∑
m=0

Plm ± dlm±(ϑ,ϕ)

ρc and ρv represent the spherical atomic scattering factors derived from ground-state
Hartree–Fock wavefunctions, which are available in the form of databases. Pc and Pv
are the spherical core and valence electron densities. Pv, provides a rough estimation of
the net atomic charge by q = Nv − Pv, where Nv is the number of valence electrons in
a free neutral atom. The third term in the summation is the aspherical valence density.
The dlm± are density normalized spherical harmonics of degree l and order m. Plm± denotes
multipole populations and Rl(r) are the Slater type radial functions. The coefficients κ
and κ′ represent the contraction–expansion of spherical and multipolar valence densities,
respectively. The radial function Rl in the deformation valence density is based on single-
zeta Slater-type orbitals with energy-optimized exponents ξ taken from valence orbital
wavefunction calculations.

Rl(r) =
ξnl+3

(nl + 2)!
(r)n(l) exp(−ξl r)

The multipole population parameters Plm±, the expansion–contraction parameters
k and k0 for the radial parts of the electron densities, positional parameters, and ADPs
are refined against the experimental diffraction data using the least-squares refinement
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protocol. Several least-squares refinement packages have been developed to model electron
density based on Hansen and Coppen’s multipole formalism by several groups. However,
the most widely used packages are XD and MoPro for the modeling of electron density
distribution [11,12]. Beyond pure geometrical considerations, the aspherical multipole
modeling of electron density serves as a unique source of chemical bonding information
that can be obtained experimentally.

Multipole modeling of high-resolution X-ray data can be achieved to efficiently de-
convolute the thermal motion and the electron density. The correctness and reliability
of the model are examined by the Hirshfeld rigid body test, residual density, and fractal
dimension distribution of residual density [4,13]. Hirshfeld’s rigid bond test is one im-
portant criterion to assess the physical significance of the thermal parameters included
in the multipole model. This test assumes that the chemical bond is rigid with respect to
vibrational motion. If z2

A,B denotes the mean square displacement amplitude of atom A in
the direction of atom B, for the two covalently bonded atoms,

∆A,B = z2
A,B − z2

B,A = 0

For a good quality multipole model, the anisotropic displacement parameters should
qualify the criteria of the rigid bond test. If some of the bonds in the molecule do not fulfill
the rigid bond postulate, it may be implied that the modeling is not complete and further
structural improvements are required. As per the Hirshfeld test criteria, ∆A,B is required to
be lower than 0.001 Å2, least as for pair of atoms like carbon and those heavier than carbon.
This is considered one of the most critical tests for the experimental electron density model
to be reliable.

Another important test for a successful model, and to ensure the quality of the fit,
is to inspect the residual electron density which gives a direct space representation of
the extent to which the model accounts for the observed electron density. The difference
in total electron density distribution ((∆ρbetween the observed and calculated electron
density is the “residual density”, which represents the inadequacy in the fitted multipole
model. A featureless residual map is one of the necessary conditions for the adequacy
of a model; however, knowledge about its distribution in the unit cell is important for
the validation of the model. Fractal dimension plots give information on the amount of
residual density present along with its spatial distribution, i.e., the extent to which the
distribution is featureless. The residual density features on the map indicate noise in
the experimental data and also hint toward modeling shortcomings, suggesting the need
for further improvements to the model. The parabolic shape of the fractal distribution
indicates the presence of Gaussian noise in the residual density and provides a benchmark
for improving the model to be refined further when fractal distribution deviates from this
characteristic shape possibly due to various systematic errors [14].

2. Understanding Noncovalent Interactions in Terms of Descriptors from X-ray Charge
Density Analysis

Here, we describe different classes of NCIs in molecular crystals, explored using the
descriptors derived from X-ray charge density analysis. As most of the classical hydrogen
bonds and weak hydrogen bonds are well explored for their electronic characteristics, here
the focus is on the newer classes of NCIs that gained prominence over the last two decades.

2.1. Halogen Bonds

A halogen bond (XB) is a non-covalent interaction between a halogen atom and a
nucleophile in a supramolecular assembly. Thus, the nature of halogen bonds is similar
to that of the hydrogen bonds, where a polarized halogen atom occupies the position of
the hydrogen atom as an electron density acceptor in the formation of Lewis acid-base
pairs [15]. A halogen bond is defined as R–X···D, where X is a halogen atom with an
electrophilic region (Lewis acid), and R is a covalently bonded group to X and D is a
nucleophile that acts as a halogen bond acceptor (Lewis base). The IUPAC definition of
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the halogen bond is, “A halogen bond occurs when there is evidence of a net attractive
interaction between an electrophilic region associated with a halogen atom in a molecular
entity and a nucleophilic region in another, or the same, molecular entity” [16]. Indeed,
the XB is characterized by an anisotropic electron density (ED) distribution over covalently
bound halogen (X) atoms such that the ED is depleted along with the R–X bond and
resulting in the accumulation of ED on its sides (Figure 2a). Hence, a positive electrostatic
potential (ESP) region is generated along with the covalent R–X bond and acts as the Lewis
acid center for bonding. This effect is known as the “polar flattening effect” [17]. Hence,
the covalently bonded halogen atom simultaneously can act as either Lewis acid or Lewis
base. The positive electrostatic potential region along the R–X bond is also referred to as a
σ-hole [18]. The formation of such positive potential regions along the R–X bond is caused
by the half-filled p-orbital on the halogen atom, which creates an electron deficiency region
in the outer lobe of that p-orbital. The σ-hole feature is observed not only in halogens
but also in the elements of the groups 14–16 in the periodic table. Thus, the subsequent
electrostatic attractive interaction by the σ-hole in the packing of molecules is also known as
σ-hole bonding [19]. Among the halogens, the polar flattening (σ-hole) effect is enhanced in
the order F < Cl < Br < I such that the F-atom has minute σ-hole features. The σ-hole is also
responsible for the directionality of halogen bonds such that the nucleophiles approach the
halogen atom in a straight line along with the R–X bond, whereas electrophiles approach it
at the perpendicular direction of the R–X bond in most of the cases (Figure 2a). The σ-hole
concept has helped to visualize the interaction of electronegative halogens with that of
nucleophiles in the crystal lattice. Recently, the formation of halogen bonds is extensively
utilized in (i) designing organic functional materials with interesting physical properties,
(ii) separation of enantiomers from the mixture, (iii) supramolecular self-assembly of liquid
crystals, (iv) displaying different polymorphic modifications, and (v) in the synthesis of
polymers. Indeed, halogen bonds have received significant importance in biology due to
the selective binding of small molecules to receptors mediated through halogen bonds.
Thus, halogen bonds have become an important class of interaction in understanding
the reaction mechanisms and chemical reactivity in several organic, metal–organic and
biological systems.
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Figure 2. (a) Schematic representation of a typical halogen bond (b) Schematic representation of
different geometries of X···X interactions, where X is a halogen.

From a historical perspective, early structural studies by Hassel in several molecu-
lar complexes of dihalogens with electron donor organic molecules reported the features
of halogen interactions and described them as “halogen bridged molecules”. Among
them, the molecular complex of bromine molecule with 1,4 dioxane displayed an infinite
chain of Br···O interactions in the crystal [20]. Afterward, the angular preference of in-
teractions involving different halogens was systematically analyzed using the statistical
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analysis of reported structures in the Cambridge Structural Database (CSD) [21]. Indeed,
the R–X···X–R interactions are characterized by three geometrical parameters, Rij = X···X,
two angles θ1 = R–X···X, and θ2 = X···X–R. The interaction geometries with θ1 ∼= θ2 are
classified as type I interactions, whereas interactions with θ1 ∼= 180◦ and θ2 ∼= 90◦ be-
long to type II interactions [22]. Additionally, type I interactions are further categorized
into ‘cis’ and ‘trans’ geometries based on the directionality of participating halogens in
the interaction [23]. In most cases, ‘trans’ geometry occurs across the center of inversion
symmetry whereas ‘cis’ is often found across ‘2-fold’ symmetry. The L and X3-synthon
geometries are resulting in type II interactions (Figure 2b) [23]. The strength of the X···X
interactions have found to decrease in the order, I···I > Br···Br > Cl···Cl > F···F. Indeed, the
strength of X···X interactions is related to the polarization effects, which increase in the
order, F < Cl < Br < I for molecular crystals.

An early attempt to experimentally determine the ED distribution of halogens was per-
formed by Stevens using high-resolution X-ray data by solid molecular chlorine crystals [24].
However, the quantitative information about the topology of ED distribution in the covalent
bonding and intermolecular regions of solid molecular chlorine was later determined by
Tsirelson et al. using QTAIM [25]. The attractive non-covalent nature of Cl···Cl interactions
was demonstrated by the charge concentration (CC) and charge depletion (CD) regions in
Laplacian maps and bond paths between interacting chlorines. The topological properties
of the ED further supported the attractive nature of halogen interactions in both experi-
mentally and theoretically obtained EDs. Later, Bui et al. explored the nature of Cl···Cl
interactions in the X3-geometry of C6Cl6 molecule [26]. The multipole modeling of X-ray
data confirmed that the X···X interactions are directional attractive electrostatic (δ +···δ−)
interactions in the crystal structure (Figure 3). The ED and Laplacian values at the bond
critical point (BCP) for Cl···Cl interactions were in the range of 0.03 < ρBCP < 0.06 eÅ−3

and 0.3 < ∇2ρBCP < 0.6 eÅ−5, respectively, and suggesting that the strength of Cl···Cl
interactions were corresponding to that of weak hydrogen bonds. Indeed, the X3 geometry
is resulting in the crystal structure due to a cooperative organization of three side-on type
II interactions and experimentally supported earlier “bumps-in hollow” hypothesis for XBs
(Figure 3d). In another study, type I ‘cis’ and ‘trans’ and type II Cl···Cl interactions were
subjected to both experimental and theoretical ED models in three different compounds,
2-chloro-3-quinolinyl methanol, 2-chloro-3-hydroxypyridine, and 2-chloro-3-chloromethyl-
8-methylquinoline, respectively [23]. The topological properties of the ED listed in Table 1
(for the three types of Cl···Cl interactions) and Table 2 (various other interactions involving
halogens) suggest a closed shell nature of interactions. Both type I ‘cis’ and ‘trans’ interac-
tions are resulting due to the reduced repulsion by polar flattening effects whereas type
II interactions are due to electrostatic (δ +···δ−) attractions by the CC and CD regions
of the participating halogen atoms (Figure 3). Among the halogens, the participation
of “organic fluorine” in intermolecular interactions and structure stabilization is always
controversial mainly due to its small size, high electronegativity, and smaller polarizability
of ED [27]. Even molecular electrostatic potential (MESP) obtained from high-level theo-
retical calculations does not show significant σ-hole features on the organic F-atom [18].
Interestingly, the ED model from the X-ray data depicted a tiny σ-hole region on the organic
fluorine in 2-chloro-4-fluorobenzoic acid and 4-fluorobenzamide, where the C–Cl···F–C
and C–F···F–C interactions are characterized, respectively [18]. In another ED study on
pentafluorophenyl 2,2′-bithiazole, the cooperative role of C–F···F–C and C–F···S–C interac-
tions involving organic fluorine in structure stabilization was demonstrated (Figure 4) [28].
Further, recent ED studies [29–31] further established the ‘σ-hole’ on organic fluorine in
different chemical environments to establish XB involving fluorine as a realistic interaction
in supramolecular assembly.
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Table 1. The topological properties of the ED determined from the experimental multipolar model
for Cl···Cl interactions. Theoretical values from the CRYSTAL calculations are given in italics.
Rij = X1···X2, θ1 = C–X1···X2 and θ2 = X1···X2–C.

Interaction
Geometry Rij (Å) θ1/θ2 (◦) ρBCP

eÅ−3
∇2ρBCP

eÅ−5 ε

G(rBCP)
(kJ mol−1

bohr−3)

V(rBCP)
(kJ

mol−1

bohr−3)

H(rBCP)
(kJ

mol−1

bohr−3)

|V|
G

Cl1···Cl1
(cis) 3.3172(1) 158.7/158.7 0.05

0.06
0.66
0.72

0.02
0.03

13.5
15.4

−9.2
−11.2

4.3
4.2

0.68
0.73

Cl1···Cl1
(trans) 3.5747(2) 150.6/150.6 0.03

0.04
0.41
0.44

0.11
0.11

7.8
9.1

−4.9
−6.1

2.9
3.0

0.62
0.67

Cl1···Cl1
(L) 3.4668(2) 168.3/103.6 0.03

0.05
0.47
0.57

0.03
0.07

9.0
11.8

−5.6
−7.9

3.4
3.9

0.63
0.68
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Table 2. Topological parameters from the experimental ED for noncovalent halogen interactions.

Interaction Rij (Å) ρ (e Å−3) ∇2ρ (e Å−5) V |V|/G Comment

Cl···Cl 3.3172(1) 0.05 0.66 −10.2 0.73 Hathwar et al. [23]
Cl···Cl 3.5747(2) 0.03 0.41 −5.5 0.66 Hathwar et al. [23]
Cl···Cl 3.4668(2) 0.03 0.47 −6.1 0.64 Hathwar et al. [23]
Cl···Cl 3.4343 0.06 0.6 −11.2 0.81 Bui et al. [26]
Cl···Cl 3.4618 0.05 0.6 −9.7 0.74 Bui et al. [26]
Cl···Cl 3.6129 0.04 0.5 −7.5 0.71 Bui et al. [26]
Cl···F 3.0207(2) 0.05 0.84 −11.9 0.68 Hathwar et al. [32]
F···F 2.8187(1) 0.04 0.82 −10.4 0.63 Hathwar et al. [32]

Cl···O 3.0562(3) 0.05 0.80 −11.5 0.69 Hathwar et al. [33]
Br···O 2.922 0.11 1.33 −27.9 0.87 Pavan et al. [34]
Br···Br 3.6673 0.06 0.54 −10.6 0.84 Pavan et al. [35]
Br···Cl 3.7327 0.04 0.40 −6.6 0.75 Pavan et al. [35]
Br···Cl 3.6133 0.05 0.51 −8.9 0.78 Pavan et al. [35]
Cl···Cl 2.9941 0.12 1.51 −32.0 0.87 Sarkar et al. [36]
Br···Br 3.6673 0.05 0.46 −8.4 0.80 Pramanik et al. [37]
Br···Cl 3.7327 0.04 0.43 −6.8 0.74 Pramanik et al. [37]
Br···Cl 3.313 0.08 0.82 −16.7 0.86 Pramanik et al. [37]
Br···Br 3.2324 0.06 0.67 −11.8 0.79 Pavan et al. [34]
Br···Br 3.7098 0.04 0.51 −7.6 0.70 Pavan et al. [34]
F···F 2.6627 0.06 1.3 −17.6 0.66 Pavan et al. [34]
F···F 2.824 0.04 0.9 −11.1 0.62 Pavan et al. [34]
F···F 2.8091 0.05 1.03 −13.6 0.65 Chopra et al. [38]
F···F 2.569 0.07 0.93 −15.9 0.77 Chopra et al. [38]

Br···O 2.7575 0.135 1.87 −39.2 0.87 Erakovic et al. [39]
Br···N 2.3194(4) 0.379 3.63 −157.0 1.23 Erakovic et al. [39]
N···I 2.6625 0.36 1.95 −131.6 1.42 Wang et al. [40]

Cl···Cl 3.1912(6) 0.11 1.102 −25.8 0.92 Wang et al. [41]
I···N 2.7804 0.24 1.96 −75.7 1.17 Bianchi et al. [42]
I···O 2.7523 0.20 2.04 −61.3 1.05 Bianchi et al. [43]
I···O 2.9824 0.10 1.307 −25.3 0.83 Wang et al. [44]
I···I 2.789 0.40 2.02 −154.0 1.47 Nelyubina et al. [45]

The ED studies on classical XBs like C–Cl···O=C have supported the “bumps-in hol-
low” hypothesis of XBs such that a lone pair of oxygen is facing the CD region of the chlorine
resulting in attractive interaction [33]. The study on a serious environmental pollutant,
octachloronaphthalene, has evaluated both peri and intermolecular interactions to deter-
mine their effects on molecular conformation and the subsequent effect on aromaticity [36].
The steric hindrance by overcrowding as well as peri interactions is overcome by stabi-
lizing intermolecular Cl···Cl and Cl···π interactions. The experimental quantification of
intermolecular interactions involving heavier halogens like bromine and iodine is chal-
lenging due to absorption problems in the data. Even then, the experimental ED results
from a laboratory X-ray data on Br···Br [34,37], Br···Cl [35,37], Br···π [46], C–N···Br [34,47],
and C–I···N [43,45,48], C–I···O [43,44] XBs were remarkably comparable with those ob-
tained from theoretical calculations. The true testament to the strength of halogen bonds
involving bromine can be observed in the mentioned studies, where despite the lack of any
strong hydrogen bond donors, the molecules crystallize as solids at room temperature, via
only halogen bonding motifs. On the contrary, all molecules with halogen bonds involving
fluorine are seldom solids at room temperature and are studied by in situ cryocrystal-
lographic or high-pressure crystallographic techniques to obtain the molecule in a solid
state [30]. In another study, the ED analysis on two isomeric compounds, 4-bromo-2-chloro
benzoic acid (4Br) and 2-bromo-4-chlorobenzoic acid (2Br) could establish the role of tri-
angular XB motif presence in 4Br to dictate the packing of molecules in solid solutions
of 4Br and 2Br [37]. The ED study on the C–I···N halogen bond in a molecular adduct of
quinuclidine and iodobenzene provides one of the weakest halogen bond geometries, as
the iodobenzene lacks electron-withdrawing group [49]. Even though, the N···I contact



Molecules 2022, 27, 3690 9 of 31

distance is the longest (2.9301 Å), the electron density in the BCP is 0.186(4) eÅ−3 and
establishing it as a directional stabilizing interaction in the crystal structure. The ED results
were further supported by 1D and 2D NOESY measurements.

The XBs in coordination polymers and metal complexes are subjected to the experimen-
tal ED studies to evaluate the nature of charge assisted XBs and compare their results with
XBs in organic molecular compounds [44,50,51]. Indeed, the shortest Cl···Cl interaction of
distance 3.1912(6) Å was observed in ZnCl2(3,4,5-trichloropyridine)2 (Figure 5a). The ρBCP
and∇2ρBCP values for the Cl···Cl interaction were 0.107(2) eÅ−3 and 1.102(4) eÅ−5, respec-
tively, and both the values were significantly larger when compared to Cl···Cl interactions
in organic compounds. Further, this study experimentally demonstrated that the chlorine
bonded to an electron-rich arene ligand acts as a nucleophile by donating an electron
density towards the polarized chlorine coordinately bonded to the central Zn metal cation
(Figure 5b). The experimental observations are recently further corroborated by several
theoretical studies based on the topological analysis [52,53].
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2.2. Chalcogen Bonds

One of the earliest experimental charge density studies on the intermolecular chalco-
gen bonding (ChB) interactions and their ability to form robust supramolecular synthons
was reported by Thomas and Row in the Twenty-Second Congress and General Assembly
of the International Union of Crystallography (IUCr2011, Madrid) [54]. At that time, when
halogen bonding was rapidly emerging as a new type of non-covalent interaction and find-
ing its applications in crystal engineering and supramolecular chemistry, we reported the
potential of organic selenium atom to form unusually short Se···O chalcogen bonds in the
polymorphs of the organoselenium antioxidant ebselen and its hydroxy derivative. Se···O
interactions observed in the series of crystal structures analyzed in our study represented
some of the shortest intermolecular Se···O chalcogen bonds known for crystalline organose-
lenium compounds [48]. The robustness and electronic features of the Se···O chalcogen
bonds in ebselen were revealed by the high-resolution X-ray charge density models and
topological analysis. More importantly, the existence of dual σ-hole behavior around the
Se atom was unraveled in the electrostatic potentials mapped on isoelectron density sur-
faces of ebselen—thus pointing to the potential of bifurcated chalcogen bonding in such
molecules (Figure 6). Topological analysis of the Se-N and Se-C covalent bonds along with
the Se···O chalcogen bonds in ebselen and its hydroxy analog provided some fundamental
insights into the Se-N bond cleavage mechanism involved in the drug action of this class
of organoselenium antioxidants. The Laplacian profiles from experimental charge density
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linked the biological activity and low toxicity exhibited by ebselen to the polarized nature
of Se-N bond and a highly covalent Se-C bond (See Table 3). In addition, we reported the
FTIR spectral features of the Se···O chalcogen bonds from solution state to solid crystalline
state in ebselen further characterized this class of supramolecular recognition units.
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density surface (ESP scale in e/Å, the electron density isosurface value =0.5 e/Å3). Adopted from the
reference [48].

Interestingly, the sulfur analog of this chalcogen bonded supramolecular synthons
was observed and characterized by us recently in a series of multi-component crystals of
the drug riluzole, in which two σ-hole regions were found around the S atom, which formed
a variety of S···O, S···F, and S···Cl chalcogen bonds [50]. ESP mapped on the Hirshfeld
surface of riluzole showed regions corresponding to the σ-holes on the S atom, analogous
to those found around the Se atom in ebselen analogs. We also found that the σ-hole
regions around S atom visualized from the ESP plots corresponded to the LUMO (lowest
unoccupied molecular orbital) density mapped onto the Hirshfeld surfaces of riluzole [50].
It should be mentioned in this context that the first experimental charge density study of
the ChBs involving Se and O atoms was reported by Espinosa et al. [51] in which they
characterized the ChBs as electrophilic–nucleophilic type interactions. They established the
strength of Se···O and Se···Se chalcogen bonds (along with Se···H interactions) found in the
crystal structure of chalcogenophthalic anhydrides (Table 3), and that the directionality and
geometrical preferences of the ChBs were driven by the CD···CC nature of chalcogen bonds.

Aside from the hetero-chalcogen interactions, a number of examples of S···S and
Se···Se homo-chalcogen interactions have also been investigated using charge density
multipole modeling. We have explored two different modes of the S···S homo-chalcogen
interactions in the donor−acceptor−donor structured organic conductor crystal of 7,9-
di(thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one (DTCPA), where both the CD···CC
and CC···CC interaction modes were observed from the multipole charge density models
obtained from the theoretical structure factors (Figure 7) [55].
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Figure 7. (a,b) S···S and Se···Se homo-chalcogen interactions explored using charge density multipole
modeling (CDMM) method in a series of crystal structures. (c) Layered structure of TiS2 showing
interlayer S···S interaction. (d) Theoretical (left) versus experimental (right) deformation density
maps for the interlayer S···S interaction region—the overlapping density in the experimental map is
notable. (Figures reproduced from references [55–57]).

Similarly, in the low-temperature crystal structures of the room temperature liquids
thiophenol and selenophenol, we characterized the S···S and Se···Se homo-chalcogen inter-
action regions [56]. While the S···S interaction in thiophenol was of the CD···CC nature,
such an electrostatic complementarity was not found for the S···S interaction in selenophe-
nol. An interesting example of the S···S interactions in the layered structure of the material
TiS2 was investigated by Iversen et al. recently [57]. Their experimental charge density
models were found to be successful in bringing out the features of the interatomic S···S
interaction between the layers, which theoretical calculations failed to capture. The nature
of these interlayer homochalcogen interactions was also found to be CC···CC. In such
examples, the crystal packing and the bind of layers along the crystallographic directions
stabilized by S···S interactions need to be understood in terms of dispersion forces as
opposed to the electrostatic attraction. Table 3 shows bond properties of a collection of
chalcogen bonds explored using charge density analysis. It may be noted that the same kind
of interaction possesses different topological parameters in case of halogen interactions,
such as F···F interaction, Br···Br interaction (Table 2) and chalcogen interactions S···S inter-
actions in Table 3. This is a consequence of the variation of interaction distances, relative
orientations of interacting atoms, and the electronic environment in different molecules.

Table 3. Topological parameters for noncovalent chalcogen interactions.

Interaction Rij (Å) ρ (e Å−3) ∇2ρ (e Å−5) V |V|/G Comment

Se···O 2.5331 0.251 2.452 −84.7 1.12 Thomas, Row et al. [48]
Se-C 1.8842 1.03 0.50 −661.0 1.96 Thomas, Row et al. [48]
Se-N 1.8987 0.94 3.20 −592.7 1.74 Thomas, Row et al. [48]

Se···O 3.355 0.049 0.62 −9.7 0.73 Espinosa et al. [51]
Se···H 2.974 0.05 0.51 −8.9 0.78 Espinosa et al. [51]
Se···Se 3.822 0.051 0.37 −7.7 0.87 Espinosa et al. [51]
S···S 3.227 0.092 0.76 −18.6 0.95 Owczarzak et al. [58]
S···S 3.365 0.083 0.34 −13.0 1.17 Owczarzak et al. [58]
S···S 3.459 0.072 0.65 −13.7 0.87 Owczarzak et al. [58]
S···S 3.443 0.086 0.691 −16.7 0.94 Iversen et al. [57]
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Table 3. Cont.

Interaction Rij (Å) ρ (e Å−3) ∇2ρ (e Å−5) V |V|/G Comment

S···S 3.6291 0.071 0.547 −12.6 0.92 Bai, Row et al. [55]
S···S 3.7927 0.042 0.376 −6.6 0.78 Bai, Row et al. [55]
S···S 3.5837 0.07 0.6 −12.9 0.88 Thomas, Row et al. [56]

Se···Se 3.7562 0.05 0.5 −8.8 0.78 Thomas, Row et al. [56]
S-H···S 3.1078 0.02 0.4 −4.6 0.59 Thomas, Row et al. [56]

Se-H···Se 3.0882 0.03 0.5 −6.3 0.64 Thomas, Row et al. [56]

As opposed to halogen bonds, the directionality of σ-holes around chalcogen atoms
facilitate intramolecular NCIs as well. Among these, the intramolecular S···O chalcogen
bonds found in sulfa drugs are particularly interesting. In the sulfa drugs acetazolamide and
in the salt of sulfamethizole, we characterized the experimental charge density features
of the intramolecular S···O chalcogen bonds which confirmed that these interactions are
closed-shell type in nature (Figure 8) [59,60]. The electron density ρ (accumulation of
density) and ∇2ρ (curvature of density distribution) values in the S···O chalcogen bond
regions were used to obtain the local kinetic energy density (G) and potential energy density
(V) values. Table 4 shows topological parameters for the electron density distribution in
the S···O interaction region from a collection of reported examples for intramolecular
S···O chalcogen bonds based on experimental and computational studies. Notable among
these examples is the detailed charge density study on the polymorphs of sulfathiazole
by Farrugia et al. [61] in which the intramolecular S···O chalcogen bond between the
thiazole sulfur atom and oxygen in the sulfone group is consistently observed in all the
five polymorphs indicating that these intramolecular interactions have the potential for
molecular conformation locking. Our study on a structurally similar drug, sulfamethizole
(in its sulfate salt form) also resulted in similar results indicating the conformation locking
potential of intramolecular S···O ChBs in competition with the relatively stronger N-H···O
hydrogen bonds. Such intramolecular motifs have an indirect but significant role in
crystal packing, as they guide molecular confirmation. Studies on the series of sulfa
drugs discussed here indicate that it is the interplay of intramolecular S···O ChBs and the
intermolecular HBs that dictate the conformations and crystal packing interactions.
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Figure 8. (a,d) The 3D deformation density maps reveal the CD···CC nature of intramolecular S···O
ChBs in acetazolamide and sulfamethizole, respectively. (b) Laplacian isosurface showing the rest
of captionfeatures corresponding to sigma-holes around S atoms, (c) bond orders corresponding to
different bonds, and S···O chalcogen bond in acetazolamide. (e,f) electron density and Laplacian at
the BCPs of intramolecular S···O chalcogen bonds derived from experimental charge density models
reported in the literature. (Figures reproduced from references [59,60]).
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Table 4. Topological parameters of intramolecular S···O chalcogen bonds in a series of sulfa drugs ob-
tained from experimental charge density studies. Table and Figure reproduced from Thomas et al. [62].

Molecule Rij for S···O(Å) ρ(eÅ−3) ∇2ρ (eÅ−5) |V|/G 2G/|V| G/ρ Method

Sulfamethizole-sulfate [60]
2.816 0.13 1.50 0.92 2.18 0.74 MM
2.753 0.15 1.60 0.97 2.06 0.72

Acetazolamide (form I) [59] 2.752 0.14 0.42 1.41 1.42 0.36 XWR
Acetazolamide (form II) [63] 2.608 0.16 2.19 0.91 2.21 0.88 MM

Sulfathiazole
Polymorphs [61]

Ia,
2.9913 0.10 1.11 0.88 2.28 0.69 MM

Ib 2.9694 0.09 1.09 0.83 2.40 0.73 MM
II 2.9583 0.10 0.96 0.92 2.18 0.62 MM

IIIa 2.9382 0.10 1.11 0.88 2.28 0.69 MM
IIIb 2.8834 0.11 1.23 0.89 2.24 0.71 MM
IV 2.9006 0.11 1.16 0.91 2.20 0.68 MM

G = Kinetic energy density, V = potential energy density (au). MM = Multipole model, and XWR = X-ray
wavefunction refinement.

2.3. Carbon Bonding, Pnicogen Bonding, and Hydrophobic Interactions

In addition to the predominant halogen bonds and chalcogen bonds, a new class of
tetrel carbon bonding interaction attracted our attention, soon after Mani and Arunan’s
work based on theoretical calculations [64] that “sp3” hybridized carbon atoms could also
offer a σ-hole region (an electrophilic center) towards interactions with charge concentrated
atoms such as oxygen. These non-covalent “carbon bonding” interactions exhibiting
pseudo-hypervalent (pentavalent) carbon atoms were soon experimentally validated by
our X-ray charge density study [65]. Our experimental charge density model showed bond
paths from the nucleophilic O atom to the “sp3” carbon atom in the –CH3 group in the
crystal structure of dimethylammonium 4-hydroxybenzoate, and unraveled its CD-CC
nature (Figure 9a,b). Electron density topological parameters evaluated at the BCP of this
C···O carbon bonding interaction have been to be ρb = 0.03 e Å−3 and ∇2ρb = 0.6 e Å−5 for
a bond path length, Rij = 3.168 Å. This interaction motif was reminiscent of the nucleophilic
attacking mode in the bimolecular substitution reaction (SN2) and hence could have some
link to its supramolecular origin. Further, several detailed studies revealing the existence
and ubiquity of these interactions in small model molecules and even in biomolecules were
reported [66–68]. A recent computational study along with a protein data bank analysis by
Biswal et al. showed that carbon bonding interactions are abundant in proteins and that
they have a significant enthalpic contribution to the binding of nucleobases to proteins,
hydrophobic interactions, and in the photodissociation mechanism of myoglobin [68].
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diagram showing the geometry of carbon bonding at -CH3 atom with the acceptor atom A.
(d) Schematic illustration of a pnicogen bonded motif between a Group VA (Pn) atom and a nucle-
ophile (Nu). (Figures adopted from references [65,69]).

Similar to the donor sites in halogen and chalogen bonding, members of the Group
VA family (Pn = N, P, As, Sb, or Bi) are also characterized by a localized σ-hole. This σ-hole
feature occurs along with the extensions of Pn–X covalent bonds. In the same manner,
as halogen/chalcogen bonding, pnicogen bonding is formed when a nucleophilic (Nu)
entity interacts favorably (lowering of free energy) with an electrophilic site or σ-hole of
the pnicogen atom in the same or another molecule. Thus, a pnicogen atom can act as a
multidentate pnicogen bond donor due to the availability of three potential sigma holes
(Figure 9d). Compared to typical hydrogen bonds, pnicogen bonds are highly directional
and sensitive to angular distortion like halogen bonds. The preference for a linear geometry
X-P···Nu, approaching 180◦ is mainly because of short-range exchange repulsion between
same spin electron densities of pnicogen atom and pnicogen bond acceptor.

Hawkins et al. first observed P···P intramolecular interactions in stereochemically
active phosphanyl-ortho-carborane derivative from 13C NMR [70]. Along with these
experimental observations, they also performed gas-phase computational studies on a
series of phosphorous (III) dimers and concluded that non-bonding P···P interactions in
those dimers are probably due to the negative hyperconjugation of lone pair of electrons at
one of the P center into the σ* antibonding orbital at the adjacent P molecule along P···P
axis [71]. Following this study, numerous theoretical research works were carried out to
understand pnicogen interactions/bonding in P, As, Sb, containing compounds, etc. [72–74].
Typically, only the heavier pnicogen atoms are expected to form pnicogen bonds due to
their high polarizability. Sb and Bi are used as an efficient pnicogen bonding donors for
formation of supramolecular architectures in solution, solid state, catalysis, etc. [75–77].
In this context, the propensity of nitrogen, being the third most electronegative element
with its extremely low polarizability, to act as a pnicogen bond donor remains questionable.

This notion was challenged when a potential pnicogen bonded motif involving N as a
donor was identified in a co-crystal of 2-amino-5-nitropyridine and chloroacetic acid [69].
The accurate electron density of this molecule was determined using 100 K high resolution
(sinθ/λ = 1.08 Å−1) X-ray data based on multipole modeling. QTAIM analysis [10] on the
multipole model confirmed a bond path between the electrophilic N and nucleophilic Cl
atoms (Figure 10); hence, the first experimental evidence of pnicogen bonding in nitrogen.
Low ρ value (~0.05 eÅ−3) and positive Laplacian values at the bond critical point classify
this N···Cl bonding as a weak closed-shell interaction similar to other weak intermolecular
interactions such as type II F···F [28], C···O carbon bonding [65], CH3···CH3 hydrophobic
interaction [78]. Furthermore, this weak N···Cl interaction is supported by strong H-
bonding such as N-H···O and O-H···N.

The experimental static deformation densities, ρdef = ρmodel − ρIAM, reveal interesting
details about the N···Cl pnicogen bonds (Figure 11a). The deformation map shows that
the lone pairs of the Cl atom (blue lumps) face the charge-depleted site or σ-hole (half red
disc) at the nitrogen atom (Figure 11b). From the 2D Laplacian maps, it can be observed
that lone pairs in the valence shell charge concentration (VSCC) region of the Cl atom point
toward the charge depleted region of the N atom (Figure 11b).
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Figure 10. (a) Plausible N···Cl interaction in the co-crystal of 2-amino-5-nitropyridine and chloroacetic
acid. (b) Molecular Graph derived from experimental charge density model shows bond paths along
with BCPs of the N···Cl pnicogen bond and N-H···O hydrogen bond in the structural motif (I)
The yellow dots represents the (3,+1) ring critical points (RCP) while the red dots represent the
(3,−1) BCPs. The curved segments signify the bond paths between atoms. Figure reproduced from
reference [69].
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Figure 11. (a) The 3D static deformation density map drawn on isosurface of ± 0.08 eÅ-3. Blue
regions indicate the charge concentration regions, while red regions indicate charge-depleted regions;
(b) 2D plot of Laplacian map drawn at logarithmic scale. Blue solid lines and red dots represent
positive and negative contours, respectively. (Figure reproduced from reference [69]).

A detailed search was performed in the Cambridge Structural Database (CSD, version
5.39, November 2017) with the two geometric constraints: (a) the distance between the
nucleophilic X atom and pnicogen bond donor nitrogen atom is less or equal to the sum
of the van der Waals radii, (b) the angle ∠X − N···Y (nucleophile) is restricted between
165◦–180◦. This search resulted in 972 crystal structures. The histogram of the dihedral
angle Φ (X1-N-X3-X2) distribution for these structures shows that the probability of pnico-
gen bond formation is higher when the nitrogen moiety is planar (X1-N-X2-X3; inset in
Figure 12a). Due to electron delocalization between N center and neighboring atoms, the re-
pulsion between corresponding lone-pair and bond pair gets reduced in planar N moiety as
compared to pyramidal N. Hence, the widening of ∠X2-N-X3 bond angles (~107◦ to 120◦)
from pyramidal to trigonal planar geometry favors the interaction between the nucleophile
and the σ-hole on the nitrogen atom. Alternatively, it could be argued that σ-hole region in
a planar N (2-amino-5-nitropyridine) is more electropositive than a pyramidal N center
(methylamine) (Figure 12b).
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Figure 12. (a) Histogram of dihedral angle Φ distribution in the trivalent NX1×2×3 molecule found in
972 crystal structures containing pnicogen bond motif. (b) Comparison of 3D electrostatic potential
maps (ESP) between methylamine (Pyramidal N) and 2-amino-5-nitropyridine (Planar N). The σ-hole
region in the N atoms of both molecules is shown by broken arrows. ESP maps are mapped on
isoelectron density surface (at 0.5eÅ−3). Gas-phase DFT calculations of the ESP maps are performed
with a M062X functional and 6–311+g(d) basis set. Electrostatic potential scale is from—2.6 kJmol−1

to 15.8 kJmol−1. (Figure reproduced from reference [69]).

We further extended our charge density analysis of pnicogen bonding on the metastable
polymorphic form of acetazolamide drug [63]. From the experimental electron density analy-
sis, a weak N···O intermolecular pnicogen bonding is observed. The 3D Laplacian map
shows an almost negligible lone pair feature on the planar N center of the sulphonamide
moiety (Figure 13). Interestingly, the pyramidal N atom in the thermodynamic polymorphic
form of acetazolamide does not engage in any form of σ-hole based interaction.
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Figure 13. (a) Experimental 3D deformation density of the N···O pnicogen bond interaction re-
gion drawn at the intervals of ±0.08 e·Å−3. Blue represents charge concentration (CC) and red
represents charge depletion (CD). (b) Experimental 3D Laplacian isosurfaces around the N atom of
sulphonamide group plotted at −40 eÅ−5 contour level. Figure reproduced from reference [63].

Lyssenko et al. investigated pnicogen bonding in ammonium chloride (P-43 m) crystal
using 120 K high-resolution (sinθ/λ = 1.2 Å−1) X-ray diffraction data [79]. They observed
four weak σ-hole bonds in tetrahedral ammonium cation (NH4

+) with Cl− anion. Topo-
logical analysis of the experimental electron density reveals ρ (~0.05 eÅ−3) and Laplacian
values similar to pnicogen bonding observed in molecular crystals (Figure 14).
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Figure 14. (a) Ammonium cation environment in NH4Cl (thermal ellipsoids for atoms drawn at
probability of 90%); (b) bond paths between the two interacting atoms (ions) are shown by orange
lines and bond critical points are depicted as orange spheres. Reprinted with permission from
reference [80]. Copyright 2014, John Wiley and Sons [79].

Aside from conventional σ-hole based weak interactions, we have investigated hy-
drophobic interaction (HI) between homopolar alkyl groups, e.g., methyl···methyl (Me···Me)
interactions in molecular crystals [78]. HI, often explored in the solution-state aggrega-
tion of molecules, is the attractive force that induces the aggregation of nonpolar moi-
eties in an aqueous medium [81]. HI are known to play a significant role in enzyme-
substrate/drug-receptor binding [82] and the formation of micelles [83] and lipid bilayer
in cell walls [84]. It is interesting to note that crystal structures of simple molecules such
as propane, dimethylamine, and several drug molecules (fenofibrate, wortmannin, etc.), con-
tain short Me···Me contacts. Additionally, Protein Data Bank (PDB) contains more than
3000 crystal structures with Me···Me HI interaction which indicates its ubiquity. Further,
a detailed search in CSD with C···C intermolecular distance less than the sum of van
der Waals radii of C atoms (3.4 Å), resulted in 3038 crystal structures (without the dis-
order) with Me···Me HI motifs. This motivated us to explore the electronic nature and
importance of HIs in the solid state. We carried out a systematic study on the electronic
nature of Me···Me hydrophobic interactions in a series of multi-component crystals of
biologically active molecules such as caffeine:3-hydroxy-2-naphthoic acid (Caff-3HNA),
caffeine:3,5-pyrazoledicarboxylic acid (Caff-PZCA), theophylline:2,5-diflurobenzoic acid
(Theo-25DFBZA) and 2,3,5,6-tetramethylpyrazine: oxalic acid (TMP-OA) using high reso-
lution X-ray experimental charge density multipole modelling (CDMM). Figure 15 below
shows various intermolecular interactions noted in these molecular pairs.

Quantitative analysis of the experimental EDs using QTAIM shows the presence of ED
bond paths along with (3,−1) BCPs between the constituting atoms of Me groups thereby
establishing the existence of corresponding Me···Me interaction motifs (Figure 16). Interest-
ingly, the observed bond path profiles connecting the two Me groups are inconsistent in
different cases. These findings defy the concept of specific atom···atom interactions in the
HI regions. On the contrary, collective participation of constituting atoms of Me groups are
observed that form different kinds of bond paths, i.e., both homonuclear and heteronuclear
intermolecular bond paths-C···H, H···H, C···C. Hence, HIs are essentially group···group
interactions as opposed to any conventional sigma-hole bonding or donor-acceptor inter-
actions [19]. The values of rho, Laplacian, local kinetic energy densities (G), and the ratio
of potential to kinetic energy densities (|V|/G) at BCPs are comparable to those of other
weak noncovalent interactions discussed earlier in this review (Table 5).
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Figure 16. Bond paths (golden curved segments) along with critical points of hydrophobic Me···Me
interactions derived from experimental CDMM. (3,−1) BCPs, (3,+1) ring critical point (RCP), and
(3,+3) cage critical points (CCP) are represented by the violet, orange, and green spheres. Reprinted
with permission from reference. Ref. [78] Copyright 2019, American Chemical Society.
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Table 5. Experimental topological values of Me···Me HIs at (3,−1) bond critical points.

Molecules Rij (Å) ρ (eÅ−3) ∇2ρ (eÅ−5) ε G a |V|/G

Caff-3HNA 3.0453 0.047(4) 0.451(1) 1.02 10.1 0.81

Caff-PZCA 3.0893 0.037(4) 0.409(2) 2.68 8.7 0.75

Theo-
25DFBZA 3.3037 0.009(4) 0.434(1) 1.51 8.0 0.53

TMP-OA 3.2694 0.037(3) 0.598(1) 0.64 12.1 0.68
a Kinetic energy density (G) is in kJ mol−1 au−1.

The experimental 3D static deformation maps reveal interesting details about Me···Me
HIs. (Figure 17). σ-holes on respective C centers (red lobes) along the C-X bond are
directed towards each other as seen from the deformation maps. A closer look into the
deformation maps suggests a slight “misalignment” in the relative orientation of the sigma
holes. To rephrase it, the pair of X-C···C-X bonds are not collinear in the intermolecular
space. As a consequence, δ+ sigma holes are partially exposed to electron concentrated δ−

C-H bonding pairs (blue lumps as indicated by the black arrows). This possibly reduces
the electrostatic repulsion between the Me groups.
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Figure 17. Experimental 3D deformation density maps for Caff-3HNA (top left), Caff-PZCA (top
right), Theo-25DFBZA (bottom left), TMP-OA (Me3) (bottom right) plotted at a contour level of
0.08 eÅ−3. The blue region indicates charge concentration regions while red region indicates charge
depleted regions, respectively. Reprinted with permission from reference. Ref. [78] Copyright 2019,
American Chemical Society.

In this context, it is worth mentioning that an offset interaction between the two
methyl groups leading to C-H···H-C dihydrogen interactions could be repulsive in nature,
as shown by Thomas, Spackman, and co-workers [85]. They showed with the help of
an X-ray charge density model that these interactions mode could be repulsive despite
showing an interaction bond path in the topological analysis. In addition, the slightly
repulsive C-H···H-C dihydrogen interactions were shown to be playing a role in the plastic
bending behavior of this crystal.

2.4. π-Holes Interactions

The description of π-holes originated from the concept of σ-holes which have similar
properties. The depleted electron density regions perpendicular to portions of a molecular
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framework are characterized as π-holes. The π-holes can form with or without covalent
π-bonds and they could be found in π non-conjugated or π-conjugated (aromatic or non-
aromatic) organic molecules and non-conjugated inorganic molecules, eg., SO2, SeO2,
BX3 (X = F, Cl, Br and I), silenes, etc. [86,87]. It was shown that the positive electrostatic
potentials above carbonyl carbon atoms in acetyl fluoride and acetamide correlate well with
their relative tendencies towards nucleophilic substitution reactions, such as hydrolysis [80].
Both positive σ-holes and π-holes can be present in one molecule and their interactions
with negative sites such as lone pairs and anions are highly directional [53,88,89].

The simultaneous presence of σ-hole and π-hole was observed in the crystals of
Fmoc-Leu-ψ[CH2NCS] (Figure 18a) [90]. It exhibited a temperature-induced reversible
isomorphous phase transition and the low-temperature form at 100 K displayed a unique
short N=C=S···N=C=S intermolecular interaction (Figure 18b) which was characterized by
experimental and theoretical charge density analysis as a stabilizing interaction involving
both σ-holes and π-holes acting cooperatively. The σ-hole was identified on S along the
extension of the N=C=S covalent bond and the π-hole was formed perpendicular to the CN
bond as revealed in the 3D deformation density maps (Figure 19) and electrostatic potential
maps (Figure 20).
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Figure 18. (a) Structural formula of Fmoc-Leu-ψ[CH2NCS], (b) N=C=S···N=C=S interaction motif
present in the low temperature (100K) crystal form. ‘+’ in red represents the 41 screw axis. (Figure
reproduced from reference [90]).
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Figure 19. The 3D deformation density plots (a) experimental and (b) theoretical charge density
analysis highlighting the N=C=S···N=C=S interaction motif. Blue and red: +ve and –ve electron
density, respectively. The deformation density contours are drawn at−0.05 eÅ−3. (Figure reproduced
from reference [90]).



Molecules 2022, 27, 3690 21 of 31

Molecules 2022, 27, x FOR PEER REVIEW 21 of 32 
 

 

 

Figure 19. The 3D deformation density plots (a) experimental and (b) theoretical charge density 

analysis highlighting the N = C=S∙∙∙N = C = S interaction motif. Blue and red: +ve and –ve electron 

density, respectively. The deformation density contours are drawn at −0.05 eÅ−3. (Figure reproduced 

from reference [90]). 

 

Figure 20. Electrostatic potential mapped on 0.5 eÅ−3 isodensity surface; (a) highlights a σ-hole on S 

(blue) along the extension of the N = C = S bond, (b) highlights a π-hole (blue) perpendicular to the 

C = N bond. Blue and red colours: +ve (more electropositive) and –ve regions (less electropositive), 

respectively. (Figure reproduced from reference [90]). 

3. Applications of Charge Density Analysis in Crystal Engineering and Pharmaceuti-

cal Sciences 

We have demonstrated that the charge density topological features at the intermo-

lecular interaction regions of the supramolecular synthons (certain recurring interaction 

motifs which act as supramolecular recognition units) are roughly conserved, at least in 

the examples we analyzed [91]. In earlier work, Munshi and Row classified hydrogen 

bonds into weak and strong classes on a quantitative scale based on the topological fea-

tures of experimental and theoretical charge density models [92]. The charge density stud-

ies on the C-H∙∙∙F, C-H∙∙∙Cl, and C-H∙∙∙Br hydrogen bonds, which were considered to be in 

the weak regime of interactions, revealed the strength and significance of these new 

Figure 20. Electrostatic potential mapped on 0.5 eÅ−3 isodensity surface; (a) highlights a σ-hole on S
(blue) along the extension of the N=C=S bond, (b) highlights a π-hole (blue) perpendicular to the
C=N bond. Blue and red colours: +ve (more electropositive) and –ve regions (less electropositive),
respectively. (Figure reproduced from reference [90]).

3. Applications of Charge Density Analysis in Crystal Engineering and
Pharmaceutical Sciences

We have demonstrated that the charge density topological features at the intermolecu-
lar interaction regions of the supramolecular synthons (certain recurring interaction motifs
which act as supramolecular recognition units) are roughly conserved, at least in the ex-
amples we analyzed [91]. In earlier work, Munshi and Row classified hydrogen bonds
into weak and strong classes on a quantitative scale based on the topological features of
experimental and theoretical charge density models [92]. The charge density studies on
the C-H···F, C-H···Cl, and C-H···Br hydrogen bonds, which were considered to be in the
weak regime of interactions, revealed the strength and significance of these new classes
of hydrogen bonds. Notably, we demonstrated the strength of the trifurcated C-H···O
hydrogen bond motifs [93] which can even match or overcome the strength of a classical
O-H···O hydrogen-bonded motif via charge density derived interaction descriptors, thus
providing quantitative evidence for the supramolecular co-operative effect of weak interac-
tions (often referred to as the “Gulliver effect”). Within the context of crystal engineering,
Lyssenko et al. attempted to rationalize the anomaly in the densities and the relative stabil-
ities of the two commonly known polymorphs of paracetamol using charge-density derived
descriptors [94], in terms of the strength of H-bonds in the higher stability of polymorph I,
and relatively weaker H-bonds for the higher density polymorph II. In an attempt to quan-
tify the lattice energies of polymorphs, Farrugia and co-workers used X-ray charge density
derived interaction energy sums of sulfathiazole polymorphs. Their study demonstrated
that the energy values from experimental multipole populations are heavily dependent
on the refinement models, revealing a serious limitation of the technique. A more widely
employed energy descriptor in quantifying interactions is the hydrogen bond energy for-
mula obtained by Espinosa et al., an empirical relationship between interaction energies of
a hydrogen bond (EHB) and the potential energy density at the bond critical points of the
electron density bond paths [95]. However, a comparative study by Spackman has critically
reviewed this method and cautioned of the caveats of employing the EML correlation to
estimate interaction strengths [96]. For more insights into the applications of charge density
studies in crystal engineering, the readers are directed to a recent review by Krawczuk and
Macchi [97]. Some representative examples are discussed in this section.
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Charge density studies contribute to pharmaceutical research in two major ways
namely, the study of high-resolution structural features of drug molecules, i.e., active
pharmaceutical ingredients (APIs), and understanding minute details of drug–protein inter-
actions providing insights into rational drug design. A comprehensive review by Dittrich
and Matta highlights the importance of charge density studies in a variety of applications
in Medicinal Chemistry [98]. Some of the notable examples are discussed below.

3.1. Charge Density Studies of Pharmaceutical Compounds (APIs)

Experimental charge density distribution studies have unraveled several interesting
aspects of pharmaceutically important molecules. Topological properties, such as reactive
surface (zero Laplacian function) and variation in the electrostatic potential of the molecule
derived from electron density distribution (EDD) analysis have been helpful in identifying
the most preferred regions for intermolecular interactions. Findings from EDD experi-
ments are often compared with high-level theoretical gas-phase calculations to find out
the effects of periodic arrangements of molecules in the crystalline environment on the
electronic configuration of the API. In most cases, the underlying non-covalent interactions
provide specific attributes for the observed or predicted the phenomenon of crystal effects.
An antithrombotic agent, Terbogrel [88], a neurotransmitter Taurine 2-aminoethane sulfonic
acid [89] an angiotensin II receptor antagonist, LR-B/081 [99,100], and an anti-TB drug
molecule, Pyrazinamide [101] are among some of the earliest drug candidates studied by
high-resolution X-ray crystallography. A detailed analysis of topological properties and ESP
indicated preferred sites of intermolecular interactions, and the covalent, ionic, and non-
covalent nature of interactions, along with the influence of the crystal effect. These studies
highlighted specialty applications of EDD methodology in determining relative strengths
of various intermolecular interactions present in the crystal, rational for stabilization of a
particular molecular conformation through quantitative estimation of different intramolecu-
lar interactions. Investigation of electrostatic nature of interactions and estimation of dipole
moments of molecules/molecular fragments, assessment of charge depletion and charge
concentration regions of the molecule, etc. All intra- and intermolecular chemical bonding
features (covalent and non-covalent) can be quantitatively described by the topological
analysis of EDD. Key pharmacophoric features that are responsible for performance of the
molecule as a drug are estimated through attractive electrostatic interactions. The overall
structure may be deconvoluted highlighting importance of essential groups that provide
significant energetic contributions towards binding energy and hence are critical for the
biological activity of the drug. In general, electrostatic potential φ(r) maps of the molecule
derived from the experimental EDD display signatures that provide hints towards probable
drug-receptor recognition and other pharmaceutically important attributes of APIs. Some
of the specific applications of EDD that are directly relevant to pharmaceutical science are
discussed below.

Comparative studies on the experimentally derived EDD of a series of related com-
pounds often provide important clues for structure–activity correlations. A study by
Wagner et al. [102] on the two related penicillin derivatives, the active penamecillin as
well as the inactive penamecillin-1β-sulfoxide provided insights into structure–activity re-
lationships with respect to submolecular features. Importantly, the activity differences
between these two molecules seemed to be not due to the difference in cleavage of the
amide bond of the β-lactam ring, a feature generally perceived of extreme importance in
explaining the mechanism of action of penicillins. The strength of this bond was found
to be equal in both compounds as revealed by the topological analysis, therefore ruling
out the correlation of bond strength on the drug activity of the molecule. Importantly,
the two analogs were shown to be significantly different in their experimental electrostatic
potentials, which may be attributed to their respective activity profiles. In a comparative
study by Zhurova et al. [103], the steroidal estrogens were explored by experimental EDD
determinations showing a correlation between the electronic properties of the molecules
and their biological function. The relative binding affinities for four different conformers
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of 17α-Estradiol and its chemical analog 17β-estradiol were estimated using the observed
electrostatic potentials. Grabowsky et al. demonstrated application of experimental EDD
studies in lead optimization during rational drug design by examining three potential
protease inhibitors (aziridine, oxirane, and acceptor-substituted olefin), known to facilitate
inhibition of the proteases’ active sites through covalent bonding with the nucleophilic
amino acids [104]. Collectively, through EDD-derived interaction energies and electro-
static potentials, it was shown that the aziridine analog was the most suitable for drug
design toward the target protein. In addition, the charge density analysis also indicated
a regioselective nucleophilic attack for this derivative and even provided hints about the
reaction’s stereoselectivity. A high-resolution study of a series of anion receptor complexes
of urea derivatives carried out by Kirby et al. demonstrated the utility of experimental EDD
to understand different host–guest systems [105]. These multi-component systems were
studied to quantify different N–H···anion interactions and to deduce the contributions
of respective intermolecular bonds to the resultant receptor anion attraction. One of the
major outcomes of this study was a realization that the standard geometric criteria for
intermolecular interactions may not necessarily always be followed, especially in cases of
weak intermolecular interactions. The presence of such weaker interactions could only be
ascertained by experimental EDD studies.

3.1.1. Insights on Polymorphism and Relative Stability of Polymorphs

Accurate electron density measurements on the polymorphs of API can provide
insights into electronic differences at the subatomic levels which may be associated with
observed differences or properties. For example, studies on a pair of conformational
polymorphs, namely A and B of anti-ulcer drug famotidine [106] showed striking similarities
among electronic as well as electrostatic features of the two conformers in the respective
polymorphs without any major differences in the interatomic interactions or in the atomic
charges. In addition, similarities in the derived properties of the polymorphs, e.g., molecular
dipole moment was noted. However, the differences between the polymorphs A and B in
the ESP mapped on the molecular isodensity surface unraveled the variations between the
two polymorphs. Interestingly, both the conformer had comparable areas of electronegative
as well as electropositive regions; however, the average ESP in the electronegative region
of polymorph A was found to be −40 kJ mol−1, while it was found to be −55 kJ mol−1 in
case of polymorph B. Corroborating observations of molecular shape and dimensions in
the two polymorphs, the EDD study concluded that the polymorphs may have different
binding affinities and hence activities towards the target receptor site. Another interesting
and outstanding example of the application of EDD study is in the characterization of the
polymorphs of a classical analgesic drug molecule, paracetamol [94]. As mentioned earlier,
the exceptional behavior of paracetamol polymorphs suggesting that “Higher density does
not mean higher stability” was unraveled by the EDD study. It was demonstrated that the
higher stability of a low-density form (polymorph I) over a higher density form (polymorph
II) is dictated by the presence of stronger H-bonds in polymorph I. This resolved the debate
on density-based relative stabilities of the two paracetamol polymorphs unambiguously.
An unusual case of “hybridization induced polymorphism” of diuretic drug acetazolamide
was rationalized by systematic experimental charge density studies on polymorphs I and
II [63]. The change in electronic configuration features on the nitrogen atom (sp3 vs. sp2

hybridization state) and concomitant changes in the adjacent S-N covalent bond were found
to be responsible for the occurrence of the so-called kinetic form, i.e., form II.

3.1.2. Predicting Chemical Reactivity/Mechanism of Action of APIs

Reactivity and mechanism of action of APIs are often related to the nature of certain
chemical bonds in the molecules. Charge density study is one of the very few techniques
wherein such hypotheses can be validated experimentally by the visualization and quan-
tification of various interatomic bonding features. Thomas et al., in their pioneering work
on a series of organoselenium drug candidates, ebeselan, and its analogs, uncovered the
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mechanism of action of this class of antioxidant drug molecules through systematic analysis
of intra- and intermolecular bonding features using the EDD approach [56]. A direct corre-
lation between the intermolecular Se···O chalcogen bond and electron density at the Se-N
covalent bond further supported the mechanism of action of the drug which ultimately
involves breakage of the Se-N bond.

3.1.3. Applications in Formulation Development

The physicochemical properties of an API play an important role in its formulation as
a viable drug product. Ghermani et al. explored the feasibility of a novel cyclodextrin-based
formulation of a classical drug Busulfan through an experimental charge density study [107].
With the help of observed electrostatic features of the molecule, authors were able to explain
the high crystallizability of the drug—a factor hindering the development of liquid phase
(liposomal) formulations based on drug encapsulation through the liposomes. The high
propensity of crystallization was attributed to the presence of terminal methylsulfonate
groups due to its strong polar character. Additionally, the electrophilic carbon chain
was indicated to stabilize association with β-cyclodextrin corroborating the viability of
experimentally obtained busulfan/β-cyclodextrin formulation.

3.1.4. Investigations on Exotic Non-Covalent Interactions in APIs

Revealing and validating the nature of interatomic interactions is among the prime
applications of experimental EDD studies. In pharmaceuticals, with increasing complexities
of new drug candidates, a variety of intermolecular interactions are manifested their solid
forms. Sometimes, a detailed study of interactions, beyond classical hydrogen bonds, is nec-
essary to explain the observed physicochemical properties of the molecules. Zhurova et al.
demonstrated the existence of intermolecular hydrogen–hydrogen (H···H) bonding for
the first time in a steroid molecule, Estrone [108]. In another interesting study [109], it was
confirmed that some of the strong intermolecular O···H-O H-bonds in a nonsteroidal
phytoestrogen, genistein possess a partial covalent character (incipient hydrogen bonds).

3.1.5. Salt vs. Cocrystal Nature

Salts of APIs have been classically used for enhancement of bioavailability, stability
as well as physical properties (density, flowability, etc.). In recent years, cocrystals are
emerging as one of the alternative approaches as modified drug substance candidates.
The major characteristic difference between salt and a cocrystal is with respect to the
transfer of proton between a salt former/coformer and an API. While this difference can be
identified using routine crystal structure determination, the differential becomes difficult
for borderline cases. Hathwar et al. demonstrated the application of charge density analysis
in clearly distinguishing a salt vs. a cocrystal in terms of analysis of EDD features in the
intermolecular region of proton transfer [110]. The authors proposed a methodology for the
quantification and verification of the cocrystal to salt continuum by assessing the interaction
energies, integrated atomic charges, and other topological indicators. This approach is
independent of any assumptions, (e.g., ∆pKa rule) and provides a fool-proof mechanism to
assign “Salt” or “Cocrystal” nature to a molecular complex based on bond properties as
per QTAIM considerations.

3.2. Charge Density Studies to Understand Protein-Ligand Interactions

Structural problems in medicinal chemistry can be tackled in an excellent way by
combining CD studies and protein crystallography to address biological processes at
the molecular and sub-molecular levels. While macromolecules (proteins or protein–
ligand complexes) are generally not amenable to classical CD work due to experimental
limitations and various structural dynamics and disorders, the availability of various
multiple model databases comes to help. With such transferable models, macromolecular
systems with normal data resolution and quality can be studied therefore bringing large
molecule structures (proteins, DNA, and many other biological molecules) within the reach
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of CD research [111–113]. The CD properties in the interaction region of interest can be
studied for such systems and intramolecular interaction energies can be calculated from
the aspherical atoms refinement model [114]. This provides a fair idea of the reorganization
of electron density of a drug molecule while associated with the active site and hence helps
in understanding drug–receptor interactions in a quantitative manner.

The pioneering work on aldose reductase [115] was among the breakthroughs in
the field. This was the first example wherein an enzyme of a significantly larger size,
crystallized with an inhibitor, was studied at a significantly higher resolution, employing
the charge density modeling where atoms are refined as aspherical moieties. Suspected
electrostatic complementarity was confirmed in the system [116,117]. Dominiak et al.
studied a series of high-resolution structures where derivatives of sialic acid and other
inhibitor compounds were crystallized with influenza neuraminidases and successfully
quantified various intermolecular interactions analyzed using charge density analysis. [118]
Malińska et al. studied structures of sunitinib malate as well as molecular complexes of
sunitinib cocrystallized with several protein kinases. [119] EDD study coupled with Hirsh-
feld surface analysis brought out similarities in interaction modes in the sunitinib malate
structure and that at the active sites in the drug-enzyme cocrystals. Precisely, nine bond
paths corresponding to various intermolecular interactions were found to be preserved in
the API which was also observed in the API-kinase crystal structures. Interestingly, this
study confirmed that sunitinib develops attractive interaction with different kinases with a
comparable electrostatic driving factor and adjusts the molecular conformation that suites
the binding site so as to enhance the electrostatically driven non-covalent interactions/H-
bonds drug–receptor complexes. This attribute of the drug sunitinib explained its activity as
a broad-spectrum kinase inhibitor. Additionally, studies on mid-sized peptide antibiotics
trichotoxin A50E [120] and thiostrepton [121] are some notable examples in this field.

Despite several promising reports that assure wide applications of EDD estimations
for drug–receptor complexes [112–123], the challenge of obtaining highly accurate datasets
remains to be a major problem in the crystallographic studies of large molecules. While
the more commonly encountered challenge is data resolution, the issues with positional
inaccuracy of hydrogen and other atoms mainly due to the disorder of various components
of the structure such as side chains, water molecules, and solvent molecules make the
overall modeling exercise very difficult and sometimes erroneous. The derived properties
need to be critically evaluated and validated as the correctness and reliability of parameters,
e.g., estimated interaction energy values are highly dependent on the accuracy of the
refined model.

4. Summary and Outlook

In summary, the studies on weak non-covalent interactions presented here demon-
strate the power and limits of experimental charge density analysis by X-ray diffraction
using the multipole modeling (CDMM) approach. Characterizing new types of inter-
molecular interactions using CDMM-derived descriptors could be useful in quantitatively
classifying them based on their strengths and bonding features. Here, we have attempted
to demonstrate how such studies could contribute to the field of crystal engineering and
in the context of pharmaceutical drugs. In general, for organic molecular crystals, a rea-
sonable agreement is observed between experimental and theoretical CDMM and derived
properties. Extensive theoretical studies on a broad spectrum of NCIs by several compu-
tational research groups have helped understand, identify and classify them in terms of
their energies, electron density features, and electrostatic origin. The research contributions
from Politzer et al. [86] Frontera et al. [124] and Scheiner [125] is particularly significant in
this context. While most computational studies focus on pairwise interactions of molecular
dimers (“gas phase” dimers), X-ray charge density analysis offers the means to experimen-
tally visualize and quantify them in crystalline environments. As a result of the combined
research outputs from experimental CDMMs, it is now well established that for most
small molecule organic crystals, computational estimates of molecular electronic properties
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might be a sufficient substitute for experimental charge density models—except in cases of
unusual bonding or NCIs. However, this is not yet the case with crystalline materials con-
taining heavy elements such as iodine. This poses challenges in accurately characterizing
interactions involving heavy atoms (for example the robust halogen bonding interactions
such as I···N or I···O). With the advent of quantum crystallography, including a variety
of techniques such as Hirshfeld Atom Refinement (HAR), X-ray wavefunction refinement
(XWR), along with libraries of extremely localized molecular orbitals (HAR-ELMO), exper-
imental electron density studies might emerge into newer and wider applications in the
field of non-covalent interactions.
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