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Abstract

In this paper, we report on classification results for emotional

user states (4 classes, German database of children interacting

with a pet robot). Six sites computed acoustic and linguistic

features independently from each other, following in part dif-

ferent strategies. A total of 4244 features were pooled together

and grouped into 12 low level descriptor types and 6 functional

types. For each of these groups, classification results using Sup-

port Vector Machines and Random Forests are reported for the

full set of features, and for 150 features each with the highest

individual Information Gain Ratio. The performance for the

different groups varies mostly between ≈ 50% and ≈ 60%.

Index Terms: emotional user states, automatic classification,

feature types, functionals

1. Introduction

The study of ‘Speech and Emotion’ during the recent years can

be characterized by three trends: (1) the trend towards more

natural, real-life data, (2) the trend towards taking into account

not only some ‘prototypical’ emotions but emotional, affective

states in a broader sense, and (3) the trend towards a thorough

exploitation of the feature space, resulting in hundreds or even

thousands of features used for classification. The database de-

scribed in section 2 has been recorded and processed in this

vein. First results reported in [2] showed that pooling together

features extracted at different sites indeed improved classifica-

tion performance; however, a systematic investigation examin-

ing the contributions of different types of features has not yet

been carried out.

The ‘holy grail’ of automatic classification is to find ‘the’

optimal set of features, consisting of the most important in-

dependent features. The difficulty of this task, due to factors

such as the huge number of possible features that can be ex-

tracted from speech signals, and due to the computationally de-

manding methods for classifying highly dimensional features

spaces, would have required feature space de-correlation and

reduction, e.g. through transformations like Principal Compo-

nent Analysis (PCA). However, in this paper we did not follow

this approach because we would not have found the answer to

the aforementioned question: which types of features contribute

to which extent to classification performance, and therefore to

modelling the phenomenon we are interested in. Neither did we

opt for comparing selection and classification results obtained at

each site separately; instead we tried to unify as many factors as

possible, such as feature selection and classification itself to en-

able a more reliable comparison between feature types. We ap-

proached these goals by pooling together feature vectors com-

puted at different sites. The various sites are rooted in different

traditions, focussing on acoustics only or on a combination of

acoustics and linguistics; some sites followed a ‘brute-force’

method of exploiting the feature space, other sites computed

features in a knowledge-based way. Of course, this has not been

done in a pure form; thus some hybrid strategies were used as

well. By pooling together all these features we at least come

closer to modelling diversity. In this paper, our intention was to

concentrate on dealing separately with feature types (Low Level

Descriptors LLDs and functionals), and have a closer look at

their respective impact on classification performance.

2. Material and Annotation

The database used is a German corpus with recordings of chil-

dren communicating with Sony’s AIBO pet robot; it is de-

scribed in more detail in [2] and other papers quoted therein.

The children were led to believe that the AIBO is responding

to his or her commands, but the robot is actually being con-

trolled by a human operator who causes the AIBO to perform a

fixed, predetermined sequence of actions; sometimes the AIBO

behaved disobediently, thereby provoking emotional reactions.

The data was collected at two different schools from 51 chil-

dren (age 10 - 13, 21 male, 30 female; about 9.2 hours of speech

without pauses). The recordings were segmented automatically

into ‘turns’ using a pause threshold of 1500 msec. Five la-

bellers (advanced students of linguistics) listened to the turns in

sequential order and annotated each word independently from

each other as neutral (default) or as belonging to one of ten

other classes. If three or more labelers agreed, the label was

attributed to the word (majority voting MV); in parentheses, the

number of cases with MV is given: joyful (101), surprised (0),

emphatic (2528), helpless (3), touchy, i.e., irritated (225), angry

(84), motherese (1260), bored (11), reprimanding (310), rest,
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i.e. non-neutral, but not belonging to the other categories (3),

neutral (39169). 4707 words had no MV; all in all, there were

48401 words. Some of the labels are very sparse. Therefore,

neutral and emphatic were down-sampled, and touchy and rep-

rimanding, together with angry, were mapped onto Angry as

representing different but closely related kinds of negative at-

titude. This more balanced 4-class problem consists of 1557

words for Angry (A), 1224 words for Motherese (M), 1645

words for Emphatic (E), and 1645 for Neutral (N). As seman-

tically meaningful chunks can probably be better mapped onto

emotional units than turns containing up to > 50 words, we

clustered words into chunks. Eventually, these chunks of words

were labelled by mapping word labels onto chunks by MV.

We performed a coarse syntactic labelling manually with the

following chunk triggering boundaries: at main clauses, free

phrases, and between adjacent /Aibo/ instances because repeti-

tions of vocatives make emotional colouring more likely. Spon-

taneous speech, especially in such scenarios as ‘giving com-

mands to a pet (robot)’, are quite often not well-formed syntac-

tically: no clear structural indication is found, let alone inter-

punction. We therefore used a prosodic criterion in addition: if

the pause between words is ≥ 500 msec, we assume a chunk

boundary. The length of the pauses between words was ob-

tained from the manually corrected word segmentation. The

mapping of word-based onto chunk-based labels followed the

basic strategy described in [2]. This procedure yielded 4543

chunks (914 Angry, 586 Motherese, 1045 Emphatic, and 1998

Neutral) with an average length of 2.9 words per chunk. Inter-

labeller correspondence is dealt with in [7].

3. Features: Extraction and Grouping

The following arrangement into ‘knowledge-based’ vs. ‘brute-

force’ has to be taken with a grain of salt; it rather describes

the starting point and the basic approach. FAU for instance

uses a knowledge-based approach for the computation of word-

based features and then a ‘blind’, ‘brute-force’ approach for

the subsequent computation of chunk-based features. The six

part-of-speech (POS) classes used by some of the sites were

AUX (auxiliaries), PAJ (particles, articles, and interjections),

VERB (verbs), APN (adjectives and participles, not inflected),

API (adjectives and participles, inflected), and NOUN (nouns,

proper nouns), annotated for the spoken word chain. Some sites

used Praat [3], the other own procedures for feature extraction.

3.1. ‘knowledge-based’ computation, sequential: chunks,

based on word statistics using correct segmentation

FAU: 92 acoustic features: word-based computation of pauses,

energy, duration, and F0; for energy: maximum (max), min-

imum (min), mean, absolute value, normalized value, and re-

gression curve coefficients with mean square error; for duration:

absolute and normalized; for F0: min, max, mean, and regres-

sion curve coefficients with mean square error, position on the

time axis for F0 onset, F0 offset, and F0 max; for jitter and

shimmer: mean and variance; normalization for energy and du-

ration based on speaker-independent mean phone values; for all

these word-based features, min, max, and mean chunk values

computed based on all words in the chunk. 24 linguistic fea-

tures (# of classes per chunk and normalized as for # of words

in chunk): POS features; higher semantic features: vocative,

positive valence, negative valence, commands and directions,

interjections, and rest.

FBK: 26 acoustic features: similar to FAU but no F0 onset and

offset values, no jitter/shimmer; normalization of duration and

energy done on the training set without backing off to phones

but using information on the number of syllables in addition; 6

linguistic features: POS features.

3.2. ‘knowledge-based’ computation for chunks

LIMSI: 90 acoustic features: min, max, median, mean, quar-

tiles, range, standard deviation for F0; the regression curve co-

efficients in the voiced segments, its slope and its mean square

error; calculations of energy and of the first 3 formants and their

bandwidth; duration features (speaking rate, ratio of the voiced

and unvoiced parts); voice quality (jitter, shimmer, Noise-to-

Harmonics Ratio (NHR), Harmonics-to-Noise Ratio (HNR),

etc.). 13 linguistic features: POS, nonverbals and disfluencies.

TAU: 222 acoustic features: Five families of features: pitch

based, duration based, intensity based, spectral, and voice qual-

ity based; different levels of functionals applied to the raw con-

tours: from basic statistics to curve fitting methods to meth-

ods based on perceptual criteria. Several duration features

computed on the lengths of voiced segments and pauses, and

spectral features based on Mel Frequency Cepstral Coefficients

(MFCC) and Long Term Average Spectrum (LTAS).

3.3. ‘brute force’ computations for chunks

UA: 1586 acoustic features: pitch, energy, 12 MFCCs, 10 cep-

stral coefficients based on wavelet transformation, HNR and

short-term spectra, as well as different views on the time series

such as considering only local max or min, or distances, mag-

nitudes and steepness between adjacent extrema. From each

of these series of values, mean, max, min, range, median, first

quartile, third quartile, interquartile range, and variance. Chunk

length added to the vector as a durational feature. The propor-

tion of voiced to unvoiced frames, several normalised and posi-

tional features of pitch and energy.

TUM: 1718 acoustic features: a systematic generation by

acoustic LLD extraction, filtering, derivation, and application

of functionals on the chunk level. As LLDs pitch, HNR, jit-

ter, shimmer, energy, MFCCs 1-16, formants 1-7 with ampli-

tude, position, and bandwidth, and a selection of spectral fea-

tures; derived LLDs comprising derivatives and crossed LLDs;

functionals covering the first four moments, extremes, quartiles,

ranges, zero-crossings, roll-off, and higher level analysis. 489

linguistic features: frequencies of bag of words using the man-

ual transliteration of the spoken word chain, POS, non-verbals,

and disfluencies.

3.4. Grouping into Low Level Descriptor Types and Func-

tionals

In the following grouping, we shortly describe the breakdown

into types of LLDs on the one hand, and types of functionals on

the other hand. As for LLDs, we concentrate on a characterisa-

tion in phonetic and linguistic terms (what has been extracted);

as for functionals, we concentrate on the way how these features

have been extracted:

voice quality: jitter/shimmer and other measures of micro-

prosody, NHR, HNR and autocorrelation. They are based in

part on pitch and intensity but reflect voice quality such as

breathiness or harshness.

F0: This is the acoustic equivalent to the perceptual unit pitch;

it is measured in Hz and often made perceptually more ade-

quate by logarithmic transformation etc. Intervals, characteris-

ing points, or contours are being modelled.
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spectral and formants: Formants (i.e. spectral maxima) are

known to model spoken content, especially lower ones. Higher

ones however also represent speaker characteristics. Each one

is fully represented by position, amplitude and bandwidth. As

further spectral features band-energies, roll-off, centroid or flux

are used. Long term average spectrum over a chunk averages

out formant information, giving general spectral trends.

cepstrum: MFCC features — as homomorphic transform

with equidistant band-pass-filters on the Mel-scale — tend to

strongly depend on the spoken content. Yet, they have been

proven beneficial in practically any speech processing task.

They emphasise changes or periodicity in the spectrum, while

being relatively robust against noise.

wavelets: Wavelets give a short-term multi-resolution analysis

of time, energy and frequencies in a speech signal. Compared

to similar parametric representations such as MFCCs, they are

superior in the modeling of temporal aspects.

energy: These features model intensity, based on the ampli-

tude in different intervals, with implicit or explicit normalisa-

tion. They can model intervals or characterising points.

duration: These features model temporal aspects; normally the

basic unit is milliseconds for the ‘raw’ values. Different types

of normalization are applied. Positions of prominent energy or

F0 values on the time axis are attributed to this type as well.

non-verbals, disfluencies: Such as laughter or breathing, and

filled pauses or hesitations.

part of speech (POS): A coarse taxonomy of main word classes

based on the spoken word chain.

higher semantics: A coarse taxonomy of (partly scenario-

specific) most relevant words, word classes, and emotional va-

lence (negative vs. positive), based on the spoken word chain.

bag of words: They are well known from document retrieval

tasks [4], and have shown good results for emotion recognition

as well [2]. Each term within a vocabulary is represented by

an individual feature that represents the term’s (logarithmical

and normalized) frequency within the current phrase. Terms are

thereby clustered with Iterated Lovins Stemming [5].

In the following breakdown of the functionals, we mostly

provide figures for the sub-sets as well:

percentiles: quartiles 1/2/3 (245/259/245), quartile ranges

lower/upper/total (74/74/212) and other percentiles (87).

specific functions (distributional, spectral, regressional): a

blend of several more ‘unusal’ functionals: several complex

statistical functionals (95), micro variation (2), number of seg-

ments/intervals/reversal points (6/2/2), ratio (8), error (3), lin-

ear/quadratic regression coefficients (10/15), and DCT coeffi-

cients 1-5 (2 each).

extremes: min/max by value (283/338), min/max position

(107/110), range (285), and min/max of slope (2/5), as well as

on-/off-position (1/1).

higher statistical moments: standard deviance (164), vari-

ance (137), skewness (79), kurtosis (79), length (12), and zero-

crossing-rate (76).

means: first moment by arithmetic mean (353) and centroid

(74).

sequential and combinatorial: functionals of any type under

the premise that a minimum of two functionals has been applied

in either a sequential way (e.g. mean of max) or combinational

way (e.g. ratio of mean of two different LLD).

4. Classification of feature types

The data was partitioned into three balanced splits meeting

the following requirements (in order of priority): no splitting

of within-subject chunks, similar distribution of labels, bal-

ance between the two schools, and balance between genders.

For the training set, we upsampled all classes but Neutral: 3x

Motherese, 2x Emphatic, and 2x Angry. We computed a 3-

fold cross-validation with support-vector-machines SVM (lin-

ear Kernel, one-against-one multiclass discrimination, Sequen-

tial Minimal Optimization SMO) and Random Forests RF from

[8]. Results are given in Table 1 where we report the F value

which is used in the interest of having a unique performance

measure; here, F is defined as the uniformly weighted harmonic

mean of RR and CL: 2 · CL · RR/(CL + RR). RR is the

overall recognition rate (number of correctly classified cases di-

vided by total number of cases or weighted average); CL is the

‘class-wise’ computed recognition rate, i.e. the mean along the

diagonal of the confusion matrix in percent, or unweighted av-

erage. The F measures for SVMs and RFs represent a trade-off

between CL and RR. Results are reported for the full set of fea-

tures in each sub-group, and for the best 150 features per group

using Information Gain Ratio (IGR) selection. Note that we did

not optimize the whole sets but choose features with individ-

ual high IGR. This is not the best feature selection but it is fair

across the sub-groups because the number of features is very un-

equal, cf. 1699 cepstral vs. 153 voice quality features. For the

reduced set, groups with less than 150 features were not taken

into account. Due to the problem of repeated measurements [2],

we refrain from interpreting differences in terms of significance.

Note that some 22 features computed at different sites could not

be attributed to the LLDs; in addition some 40 features used for

the types could not be attributed to the functionals.

5. Discussion and concluding remarks

Now we shortly address the most important results:

feature selection, classifiers, and full vs. reduced set:

Our setting displays very high dimensionality (thousands of at-

tributes) and a comparatively small number of patterns (4543).

Moreover, many features are extracted by different sites adopt-

ing similar strategies and algorithms. These are the well-known

problems curse of dimensionality and feature correlation which

both can trouble a reliable classification process. Therefore we

present two groups of results, one with the complete feature

sets, and another with IGR reduced sets. IGR allows perfor-

mance gain for SVMs for highly dimensional groups (such as

cepstral and spectral), although it is probably not the best ap-

proach for dealing with correlated features as it maximizes rel-

evance rather than minimizes redundancy. Therefore, we should

refrain from interpreting SVM results without feature reduction.

On the other hand, RFs are almost insensible to feature reduc-

tion as they basically work on many small, random sub-samples

of the features’ domain. The two classifiers yield comparable

trends for the individual groups.

acoustic features: we can tell apart three groups, most rel-

evant being duration and energy, of medium relevance all other

types except voice quality which is least relevant. Grosso modo,

this is in accordance with the literature. All acoustic features to-

gether obtain better results than single groups, revealing that, in

principle, no group should be left out.

linguistic features: most relevant is the full set of words

(bag-of-words) but higher semantics and even the very coarse

POS modelling are competitive. It might turn out that POS are

most robust if it comes to real ASR processing. If ASR is ro-

bust, linguistic features will obviously be a good choice. The

linguistic features are better exploited by SVMs than by RFs.

Differently from acoustics, all linguistic features do not perform
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better than the outstanding bag-of-words set. This probably de-

pends on the fact that other groups (such as POS) are simply

looser ‘quantizations’ of the vocabulary.

functionals: Classification of functionals must be car-

ried out with caution: differences might depend for exam-

ple on the underlying speech contours. Therefore we de-

cided to keep linguistic features aside. Means, higher statis-

tical moments, and esp. sequential+combinatorial functionals

are most relevant; means might not be that prone to outliers as

extremes/percentiles are; higher statistical moments might be

good at approximating curve shapes; a sequential processing

might better model the contribution of both smaller (words) and

higher (chunks) units, and specific prosodic structuring.

In this paper, we confined classification to feature types,

and for feature reduction, to individual IGR. This made the

comparison across types reasonably fair. Further, this approach

allowed to consider features that display interesting behaviour

in conjunction with other, but not alone. The next steps to be

taken are to find out most important features — both for indi-

vidual types and for the whole set of features — and to have a

look at specific combinations of types: for instance, we could

imagine an added value if we combine the temporal aspects en-

coded in wavelets with the spectral aspects encoded in MFCCs.

The caveat has to be made that there is no strict balance as

for functionals and LLDs; for instance, the more powerful se-

quential functionals were only computed for F0, energy, and

duration but not for other types of LLDs. Moreover, acoustic

features can ‘hide’ linguistic information; a simple example is

overall length which is of course highly correlated with number

of words. Thus we should not take our results as final proof but

as indication and guidelines for future research. Then we will

find out whether any LLD profits from sequential modelling;

it might as well be the case that this holds only for the ‘tradi-

tional’ prosodic feature types, modelling types of rhythmicality,

but not for the other LLDs.

The overall performance reported is within the expected

range; an adequate feature selection and reduction for the whole

set will most likely result in higher performance. Better results

could as well easily be produced by processing only the more

selective sub-set of prototypes with a higher MV, cf. [1]. As we

were interested in the relative importance of feature types, we

extracted values based on manual word and chunk segmentation

and on the spoken word chain. One of the next steps to be taken

is thus classification based on automatic segmentation and word

recognition output. If the figures from [6] can be reproduced,

this will not result in a marked deterioration of performance.
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Tales of Tuning – Prototyping for Automatic Classification

of Emotional User States. In Proc. 9th Eurospeech - Inter-

speech 2005, pages 489–492, Lisbon, 2005.

[2] A. Batliner, S. Steidl, B. Schuller, D. Seppi, K. Laskowski,

Table 1: Classification results: number of features #, F values

for full (#) and for reduced (150, by IGR) set.

feature set full reduced

type # FSVM FRF FSVM FRF

Low Level Descriptors

voice quality 153 51.5 51.1 51.6 50.8

F0 333 56.1 56.6 55.1 55.1

spectral/formants 656 54.4 57.1 56.0 56.6

cepstral 1699 52.7 55.7 57.1 56.3

wavelets 216 56.0 56.5 56.3 56.7

energy 265 58.5 59.3 60.0 60.0

duration 391 55.1 60.1 60.6 59.8

all acoustic 3713 57.7 62.5 61.2 60.9

disfluencies 4 26.8 25.2 – –

non-verbals 8 24.8 24.2 – –

part of speech 31 54.7 54.1 – –

higher semantics 12 57.6 57.7 – –

bag of words 476 62.6 60.2 62.3 58.6

all linguistic 531 62.6 60.2 61.7 59.0

all 4244 61.0 64.0 63.1 61.7

functionals (without linguistic features)

percentiles 1196 53.8 55.5 56.6 54.1

specific 153 54.5 57.0 54.3 56.6

extremes 1132 53.4 57.1 57.0 57.1

higher stat. mom.s 547 57.6 58.6 58.9 59.0

means 427 59.8 59.8 61.3 60.4

sequential+comb. 218 61.2 61.2 60.5 61.6

all functional 3673 57.4 62.3 61.2 60.8

T. Vogt, L. Devillers, L. Vidrascu, N. Amir, L. Kessous, and

V. Aharonson. Combining Efforts for Improving Automatic

Classification of Emotional User States. In Proceedings of

IS-LTC 2006, pages 240–245, Ljubliana, 2006.

[3] P. Boersma. Praat, a system for doing phonetics by com-

puter. Glot International, 5:341–345, 2001.

[4] T. Joachims. Text categorization with support vector

machines: learning with many relevant features. In

C. Nédellec and C. Rouveirol, editors, Proceedings of

ECML-98, 10th European Conference on Machine Learn-

ing, number 1398, pages 137–142, Chemnitz, DE, 1998.

Springer Verlag, Heidelberg, DE.

[5] J. B. Lovins. Development of a stemming algorithm.

Mechanical Translation and Computational Linguistics,

11:22–31, 1968.

[6] B. Schuller, D. Seppi, A. Batliner, A. Meier, and S. Steidl.

Towards more Reality in the Recognition of Emotional

Speech. In Proc. of ICASSP 2007, pages 941–944, Hon-

olulu, 2007.

[7] S. Steidl, M. Levit, A. Batliner, E. N öth, and H. Niemann.
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