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Abstract

A stable predictive relationship between inflation and the output gap, often referred to as
a Phillips curve, provides the basis for countercyclical monetary policy in many models. In
this paper, we evaluate the usefulness of alternative univariate and multivariate estimates
of the output gap for predicting inflation. Many of the ex post output gap measures we
examine appear to be quite useful for predicting inflation. However, forecasts using real-
time estimates of the same measures do not perform nearly as well. The relative usefulness
of real-time output gap estimates diminishes further when compared to simple bivariate
forecasting models which use past inflation and output growth. Forecast performance also
appears to be unstable over time, with models often performing differently over periods of
high and low inflation. These results call into question the practical usefulness of the output
gap concept for forecasting inflation.
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1 Introduction

A stable predictive relationship between inflation and a measure of deviations of aggregate

demand from the economy’s potential supply—the “output gap”—provides the basis for

many formulations of activist countercyclical stabilization policy. Such a relationship, re-

ferred to as a Phillips curve, is often seen as a helpful guide for policymakers aiming to

maintain low inflation and stable economic growth. According to this paradigm, when ag-

gregate demand exceeds potential output, the economy is subject to inflationary pressures

and inflation should be expected to rise. Under these circumstances, policymakers aiming

to contain the acceleration in prices might wish to adopt policies restricting aggregate de-

mand. Similarly, when aggregate demand falls short of potential supply, inflation should

be expected to fall, prompting policymakers to consider the adoption of expansionary poli-

cies.1 Even assuming that the theoretical motivation for a relationship between the output

gap and inflation is fundamentally correct, a number of issues may complicate its use for

forecasting in practice. First, the definition of “potential output”—and the accompanying

“output gap”—that might be useful in practice is far from clear. Given a definition of

the output gap, its exact empirical relationship with inflation is not known a priori and

would need to be determined from the data. Second, even if the proper conceptual and

empirical relationships were identified, the operational usefulness of the output gap will be

limited by the availability of timely and reliable estimates of the identified concept. As is

well known, empirical estimates of the output gap are generally subject to significant and

highly persistent revisions. (For example, see Orphanides and van Norden (2002).) The

subsequent evolution of the economy leads to improved historical estimates of the gap by

providing useful information about the state of the business cycle. As a result, considerable

uncertainty regarding the value of the gap remains even long after it would be needed for
1The widespread use of models featuring estimated “Phillips curves” of various forms for monetary policy

analysis at numerous central banks and other institutions is evidence of the appeal of this paradigm. See
Bryant, Hooper and Mann (1993) and Taylor (1999) for collections of monetary policy evaluations that
feature such estimated models.
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forecasting inflation. This suggests that although the output gap may be quite useful for

historical analysis, its practical usefulness for forecasting inflation in real time may be quite

limited.

In this paper we assess the usefulness of alternative estimation methods of the out-

put gap for predicting inflation, paying particular attention to the distinction between

suggested usefulness—based on ex post analysis using revised output gaps, and operational

usefulness—based on simulated real-time out-of-sample analysis.2 First, using out-of-sample

analysis based on ex post estimates of the output gap, we confirm that many concepts appear

to be useful for predicting inflation. This is as would be expected since the implicit Phillips

curve relationships recovered in this manner are similar to the relationships commonly found

in empirical macroeconometric models. To assess their operational usefulness, we generate

out-of-sample forecasts based on real-time output gap measures; those constructed using

only data (and parameter estimates) available at the time forecasts are generated.3 We

compare the resulting forecasts to both autoregressive forecasts of inflation and bivariate

forecasts that employ information from output growth as well as past inflation.

Our findings show that forecasts using ex post estimates of the output gap severely over-

state the gap’s usefulness for predicting inflation. Real-time forecasts using the output gap

are often less accurate than forecasts that abstract from the output gap concept altogether.

And the relative usefulness of real-time output gap estimates diminishes further when com-

pared to simple bivariate forecasting models which use past inflation and output growth.

In some cases, we find certain measures of the output gap produce superior forecasts of

inflation. However, relative performance seems to vary considerably over time, with models

which perform relatively well in some periods performing relatively poorly in others. Thus,
2Our analysis is related to investigations of the usefulness of the unemployment gap for forecasting

inflation, such as Stock and Watson (1999), Atkeson and Ohanian (2001), and Fisher, Liu and Zhou (2002).
In some macroeconometric models, unemployment gaps and output gaps are related through Okun’s law.

3For this exercise, we rely on the real-time dataset for macroeconomists which was created and is main-
tained by the Federal Reserve Bank of Philadelphia. See Croushore and Stark (2001) for background
information regarding this database.
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past forecast performance may provide little guidance in selecting an operationally useful

definition of the output gap going forward.

The remainder of this paper is organized as follows. In sections 2 and 3 we define the

output gap concepts used and detail the methodology of our forecasting exercise. The main

results are presented in section 4 and section 5 concludes.

2 Trends and Cycles Ex Post and in Real Time

One way to define the output gap is as the difference between actual output and an under-

lying unobserved trend towards which output would revert in the absence of business cycle

fluctuations. Let qt denote the (natural logarithm of) actual output during quarter t, and

µt its trend. Then, the output gap, yt can be defined as the cyclic component resulting

from the decomposition of output into a trend and cycle component:

qt = µt + yt

Since the underlying trend is unobserved, its measurement, and the resulting measurement

of the output gap, very much depends on the choice of estimation method, underlying

assumptions and available data that are brought to bear on the measurement problem. For

any given method, simple changes in historical data and the availability of additional data

can change, sometimes drastically, the resulting estimates of the cycle for a given quarter.

Evidence of the difference between historical and real-time estimates of output gaps

has been presented by Orphanides and van Norden (2002). In Table 1, we present some

of the summary reliability indicators they examine for twelve alternative measures of the

output gap which we employ in our analysis.4 These results mirror those of Orphanides

and van Norden (2002). We find that revisions in real-time estimates are often of the same

magnitude as the historical estimates themselves and that, for many of the alternative
4Brief descriptions of the various measures appear in Appendix A. Further details, including the output

gaps used in this study, as well as the programs and data used to create them, are freely available from the
authors at http://www.hec.ca/pages/simon.van-norden.

3



methods, historical and real-time estimates frequently have opposite signs.

The importance of ex post revisions to output gap estimates suggests that the presence

of a predictive relationship between inflation and ex post estimated output gap measures

does not guarantee that the output gap will be useful for forecasting inflation in practice.

Simply, the ex post estimates of output gaps at a point in time may differ substantially

from estimates which could be made without the benefit of hindsight. As well, these differ-

ences may hinder the real-time estimation of the presumed predictive relationship, further

complicating the real-time forecasting problem.

2.1 Data Sources and Vintages

We use the term vintage to describe the values for data series as published at a partic-

ular point in time. Most of our data is taken from the real-time data set compiled by

Croushore and Stark (2001); we use the quarterly vintages from 1965Q1 to 2003Q3 for real

output. Construction of the output series and its revision over time is further described in

Orphanides and van Norden (1999, 2002). We use 2003Q3 data as “final data” recognizing,

of course, that “final” is very much an ephemeral concept in the measurement of output.

To measure inflation, we use the change in the log of the consumer price index (CPI). We

use this both for our forecasting experiments and also to estimate measures of the output

gap in multivariate models that include inflation. CPI data are revised much less than

output data, with changes in seasonal factors causing most of the revisions. We therefore

use the 2003Q3 vintage of CPI data for all of our analysis. This allows us to focus on the

effects of revisions in the output data and the estimated output gap in our analysis. One

of our models (Structural VAR) also uses data on interest rates, which are never revised.

2.2 Measuring Output Gaps

We construct output gap estimates using a variety of different models, as listed in Table 1.

Each of the output gap models is used to produce gap estimates of varying vintages. Each
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output gap vintage uses precisely one vintage of the output data. An estimated output

gap is called a final estimate if it uses the final data vintage. Note that all the output

gap estimation techniques (aside from the Hodrick-Prescott filter) require that one or more

parameters be estimated to fit the data. Such estimation was repeated for every combination

of technique and vintage. This means, for example, that in constructing output gap vintages

from an unobserved components (UC) model spanning the period 1969Q1-2003Q3 (139

quarters), we reestimate the model’s parameters 139 times, and then store 139 series of

smoothed estimates.

3 A Forecasting Experiment

We are interested in quantifying the extent to which the output gap concept provides a

practical means of improving forecasts of inflation. The answer will clearly depend on a

large number of factors, such as the time period of interest, the way in which forecasts

are constructed, the benchmark against which such forecasts are compared, and the loss

function used to evaluate the quality of different forecasts. We restrict our attention to

US CPI inflation since 1969 and use the mean-squared forecast error (MSFE) to compare

forecast quality.

3.1 Forecasting Inflation and Benchmarks

Let πh
t = log(Pt) − log(Pt−h) denote inflation over h quarters ending in quarter t. We

examined forecasts of inflation at various horizons but use one year (h=4) as our baseline.

Note that because of reporting lags, data for quarter t first become available in quarter t+1.

Thus, a four-quarter ahead forecast is a forecast five quarters ahead of the last quarter for

which actual data are available.5 Our objective, therefore, is to forecast π4
t+4 with data for

quarter t− 1 and earlier periods.
5Since the last datapoint in our sample is for the 2003Q2 quarter, this implies that 2002Q1 is the last

datapoint available for forming a forecast we can use in our evaluation experiment.
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We examine simple linear forecasting models of the form:

πh
t+h = α +

n∑

i=1

βi · π1
t−i +

m∑

i=1

γi · yt−i + et+h (1)

where n and m denote the number of lags of inflation and the output gap in the equation.

We estimate the unknown coefficients {α, βi, γi} by ordinary least squares. We set n and

m using a variety of different methods; in the results presented here we use the Bayes

Information Criterion (BIC). Results with other lag selection methods were found to give

similar conclusions.

To provide a benchmark for comparison, we estimate a univariate forecasting model of

inflation based on equation (1) but omitting the output gaps. We refer to this model as the

autoregressive (AR) benchmark. Of course, the problem faced by forecasters in practice is

more complex than the one we consider. One obvious and important difference is that the

information set available to policymakers is much richer. It is therefore possible that output

gaps might improve on simple univariate forecasts of inflation but not on forecasts using a

broader range of inputs. For this reason, tests against an autoregressive forecast benchmark

should be considered to be weak tests of the utility of empirical output gap models.

To provide a slightly stronger test, we also consider benchmark forecasts which replace

the output gap in (1) with the first difference of the log of real output. As St-Amant and

van Norden (1998) argue, using output growth in this way can be interpreted as implicitly

defining an estimated output gap as a one-sided filter of output growth with weights based

on the estimated coefficients of equation (1). van Norden (1995) refers to such estimates as

TOFU gaps (Trivial Optimal Filter–Unrestricted). We refer to this as the TF benchmark

forecast and interpret it as a simple reduced-form inflation forecast that uses a slightly

larger information set than the AR benchmark, one which contains historical information

on both prices and output growth. Comparing forecasts based on output gaps to the TF

benchmark aids in isolating the usefulness (or lack thereof) of the economic structure and

other restrictions embedded in the construction of the output gaps.
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3.2 Forecasting and Output Gap Revisions

Several practical issues complicate the use of (1) for inflation forecasting. Since the suitable

number of lags of inflation and the output gap n and m, and the coefficients of the equation

are not known a priori, these need to be estimated with available data. As our sample

increases and additional data become available, these estimates change. In addition, output

gap estimates (like output data) are revised over time. This in turn, can influence the

selected number of lags and the coefficients of equation (1) estimated in any given sample.

In addition, given the parameters of the equation, revisions in the output gap will directly

change the forecast value of inflation.

We therefore use (1) to construct 3 to 4 different kinds of forecasts for each output gap

model. These forecasts differ in the way lag lengths are determined and in the way the

output gap model is used.

Let yi,j
t be an estimate of the output gap at time t formed using data of vintage i, where

i > t and j = t or i − 1. For non-UC models (i.e. all except the Watson, Harvey-Clark,

Harvey-Jaeger, Kuttner and Gerlach-Smets models) the index j is irrelevant; yi,t
t = yi,i−1

t .

For UC models, j = t denotes a filtered output gap estimate; although the model parameters

are estimated from using data up to i− 1, the Kalman filter recursions to estimate the gap

do not use data beyond t. For these same models, j = i − 1 denotes a smoothed estimate;

although yi,t
t and yi,i−1

t use the same parameter estimates to calculate the output gap, the

latter also uses the data after t to recursively update its estimate of yt. When T= 2003Q3,

the terminology of Orphanides and van Norden (2002) refers to the time series {yT,T−1
t } as

Final estimates of the gap and to {yT,t
t } as Quasi-Final estimates. We will commonly refer

to these as FL and QF estimates.

These different kinds of output gap estimates are used to construct different kinds of

forecasts. The first of these uses fixed lag lengths with final estimates of the output gap to
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recursively estimate the forecasting equation

πh
t+h = α̂t−1 +

n̂∑

i=1

β̂t−1
i · π1

t−i +
m̂∑

i=1

γ̂t−1
i · yT,T−1

t−i + et+h (2)

where T refers to 2003Q3. This replicates the kind of recursively-estimated, out-of-sample

forecasting experiments which are commonly performed but which ignore output gap re-

vision. These forecasts are infeasible because they require information (Final estimates of

output gaps) which is not available at the time the forecast is made. They also estimate

the optimal lag lengths m̂, n̂ ex post. We refer to this Fixed-Lag Final-estimate forecast as

FL-FL.

In the case of UC models, we can construct similar forecasts using Quasi-Final rather

than Final estimates of the output gap

πh
t+h = α̂t−1 +

n̂∑

i=1

β̂t−1
i · π1

t−i +
m̂∑

i=1

γ̂t−1
i · yT,t

t−i + et+h (3)

Orphanides and van Norden (2002) note that the difference between the Final and Quasi-

Final estimates of the output accounts for the bulk of the revisions in the output gaps

they examine. The difference between the accuracy of these and the Final gap forecasts

above helps us to understand the relative importance of errors in gap estimation for forecast

accuracy. Like the Final gap forecasts, these forecasts are infeasible. We refer to these as

FL-QF forecasts.

We also construct feasible forecasts which attempt to mirror closely the forecasts which

practitioners would construct using such output gap models. Specifically, in these forecasts

the lag lengths for both explanatory variables vary over time and are estimated recursively.

The output gap series is also updated with its latest available vintage every time the param-

eters of the forecasting equation are re-estimated. The resulting Variable-Lag Real-Time
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output gap (VL-RT) forecasting equation takes the form6

πh
t+h = α̂t−1 +

n̂t−1∑

i=1

β̂t−1
i · π1

t−i +
m̂t−1∑

i=1

γ̂t−1
i · yt,t−1

t−i + et+h (4)

where the superscripts on (m̂, n̂) indicate the information set used to estimate the lag

lengths. While these are the most realistic forecasts we examine, they are also the most

difficult to compute. Among other things, they require more than just the real-time gap

estimates presented in Orphanides and van Norden (2002); they require all vintages of the

complete estimated output gap series.

To summarize, we can construct two or three series of forecasts for each output gap model

we analyze: (1) using recursive estimation, fixed lag lengths and final output gap estimates,

(2) using recursive estimation, fixed lag lengths and quasi-final output gap estimates (which

are only available for the 5 UC models we examine), and (3) using recursive estimation,

variable lag lengths and all vintages of smoothed output gap estimates. We also examine

one other type of forecast, one which uses variable lag lengths and final output gaps and

which we refer to as VL-FL. Like the FL-QF forecast, this helps to isolate the contribution

of output gap revision to forecast accuracy. As we will see below, however, these methods

differ in the appropriate ways one should conduct inference.

3.3 Forecast Evaluation

We wish to evaluate the quality of the resulting forecasts by testing the null hypothesis that

a given pair of models have equal MSFEs. Various tests of equal forecast accuracy have been

proposed in recent years, notably by Diebold and Mariano (1995) for forecasting models

without estimated parameters and by West (1996) for models with estimated parameters.

While such tests have been popular, the assumptions they require are unfortunately violated
6Note that in equation (4) we use smoothed estimates of the output gap (yt,t−1

t−i ) rather than filtered

estimates (yt,t−i
t−i ). This reflects the common practice of practitioners, which is to use the most accurate

possible estimate of the gap in estimating their forecast equations. Limited experiments which replaced
these smoothed estimates with filtered estimates suggest that this does not have a major impact on forecast
performance. Koenig, Dolmas and Piger (2003) discuss how the use of data of varying vintage affects forecast
accuracy.
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for some of the hypotheses of interest here.

First, the use of Diebold-Mariano statistics with standard normal critical values for

asymptotic inference is justified only if the two models being compared are not nested.

However, when using suitable lag lengths, the output gap models nest the AR benchmark

model. Clark and McCracken (2001) suggest alternative tests for the case of nested models,

while Clark and McCracken (2002) find that the limiting distribution of these statistics is

non-pivotal for forecast horizons greater than one period. To compare these models, we

therefore use the MSE-F statistic proposed by McCracken (2000), which takes the form

MSE-F = P · (MSFE1 −MSFE2)
MSFE2

(5)

where P is the number of forecasts, MSFE1 is the MSFE of the restricted model and

MSFE2 is the MSFE of the unrestricted model. The distribution of the statistic under

the null hypothesis of equal MSFE is estimated via a bootstrap experiment with 2000

replications, as detailed in Appendix B. Because these distributions are non-pivotal, the

test statistics are bootstrapped anew for every different choice of (P, h, y, m, n). This means

that every p-value we report for the AR benchmark is based on its own set of 2000 bootstrap

experiments.

Second, while the available asymptotic theory underlying all such tests allows for the

coefficients in an equation like (1) to be re-estimated over time, it assumes that lag lengths

are fixed during the recursive estimation, that the data remain fixed during the recursive

estimation, and that the data are not estimated.

All these assumptions are violated for the VL-RT forecasts we construct, so no p-values

are presented for this case.

Inference in the case of the TF benchmark is more straightforward as the models of

interest are no longer nested. Accordingly, we base our inference on the test statistics

proposed by Diebold and Mariano (1995) and West (1996). Specifically, letting dt ≡ e2
it − e2

jt

be the difference in squared forecast errors between model i and model j at time t, d ≡
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T−1 ·∑T
t=1(dt) the mean difference, and ρτ ≡ T−1 ·∑T

t=τ+1(dt−d) · (dt−τ −d) the estimated

autocovariance of dt at lag τ , we compute the test statictic:

z =
d√
Ω/T

(6)

where Ω ≡ ∑6
l=−6(1− |l|/7) · ρl is the Newey-West (1986) Heteroscedasticity and Autocor-

relation (HAC) robust estimator of the long-run variance of dt. West (1996) shows that

under conventional assumptions this statistic is asymptotically normally distributed under

the null hypothesis of equal forecast accuracy when the parameters of the forecast model are

estimated by ordinary least squares. We therefore calculate and report 2-sided p-values for

the TF benchmark using the standard normal distribution. Again, this asymptotic theory

is not applicable to the VL-RT forecasts, so no p-values are reported in this case.

4 Does the Output Gap Improve Forecasts of Inflation?

4.1 Are Improvements in Forecast Accuracy Significant?

Our next step is to examine the results of the forecasting experiments described above. Ta-

ble 2 shows the results of formal tests for differences in MSFE between the two benchmark

models and the twelve output gap models. The upper panel of the table compares forecasts

constructed using final output data, final estimates of the output gap, and constant lag

lengths in the forecasting equation (FL-FL). The middle panel of the table shows the com-

parable results when using quasi-final rather than final (i.e. filtered rather than smoothed)

estimates of the output gap (FL-QF). Since such estimates can only be constructed from

UC models of the output gap, only results for the five UC models are presented. In both

cases, we see the MSFE of the benchmark models, the fractional improvement in MSFE

relative to the benchmark models ((MSFEBenchmark − MSFEGap)/MSFEGap) and the

p-value for the test of the null hypothesis that the MSFEs of the benchmark and the gap

model are equal. Differences between these two panels are entirely due to the effects of ex

post revisions of output gaps.
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The first thing apparent from the top panel of the table is that all the gap models

forecast better than the autoregressive benchmark model when using final output gaps. In

all but one case the differences in MSFE are greater than 10 per cent, and in four of the

twelve cases they are greater than 30 per cent. The suggested improvement is statistically

significant at the 5 per cent level for all but the SVAR model and at the one per cent level

for nine of the twelve models. These results confirm the conventional wisdom that ex post

output gaps appear to help forecast inflation. They also show that out-of-sample tests have

sufficient power to detect relevant differences in MSFE.

The evidence supporting the usefulness of output gaps is weakened when the benchmark

model is changed by adding real output growth to the forecasting equation (the TF model).

As can be seen on the right side of the top panel, three of the twelve gap models now have

larger MSFEs than the benchmark, and only five of the twelve show an improvement of

more than 10 per cent. The differences in MSFE are significant at the 10 per cent level in

only three cases and are never significant at the 5 per cent level. However, comparison of

the significance of the differences in MSFE across the two benchmarks is complicated by

differences in the tests used for nested and non-nested models, as explained in section 3.3.

Note, in particular, that the reported p-values for nested models (the AR benchmark) are

based on one-sided tests, while those for non-nested models (the TF benchmark) are based

on two-sided tests. In addition, Clark and McCracken (2001, 2002) suggest that the MSE-F

statistic, which is used for the AR benchmark, is more powerful than the z statistic used

for the TF benchmark.

The apparent superiority of output-gap based forecasts is also weakened by the use of

quasi-final rather than final estimates of the gap, shown in the middle panel. Improvements

over the AR benchmark are now lower in every case, falling 10 to 20 per cent, and in one case

output-gap-based forecasts are less accurate than the benchmark. However, improvements

in forecast accuracy are still significant at or near the 5 per cent significance level in the four
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remaining cases. The situation changes further if we instead use the TF benchmark. Four

of the five models now forecast less accurately than the benchmark model. Ignoring the

effects of output gap revisions evidently tends to overstate the importance and significance

of output gaps for forecasting inflation.

The bottom panel of Table 2 shows the results of tests for differences in MSFE between

the two benchmark models and the twelve output gap models when the forecasts are con-

structed with time-varying lag lengths and real-time output gap estimates (VL-RT). This

change also increases the MSFE of the benchmark AR model by a little over 10 per cent.

The relative accuracy of these real-time forecasts is almost always lower than that of

the ex post forecasts analysed in the top panel of the table. Drops in relative MSFE are

substantial for many models. As noted earlier. the normal asymptotic theory results are

not valid in this case so no p-values are reported. Crude simulations based on bootstrapped

MSE-F statistics, however, suggested that several output gap models which appeared to

forecast significantly better than the AR benchmark in the top panel no longer showed a

significant difference in accuracy.

The reversal in the performance of the output gap models relative to the output growth

(TF) benchmark, is even more striking. This can be seen by comparing the top and bottom

panels on the right-hand side of the table. In real time, none of the output gap models

examined forecasts better than the TF benchmark.

4.2 The Effect of Output Gap Revisions on Relative Forecast Accuracy

To better understand the causes for the changes in MSFE noted above, Table 3 compares the

MSFEs of three different forecasting experiments. The first is identical to that documented

in the upper panel of the previous table, using final output data and gap estimates as well

as constant lag lengths in the forecasting equation (FL-FL). The second experiment uses

the same output data and gap estimates, but now updates the lag lengths each time the

forecast coefficients are recursively re-estimated (VL-FL). The third experiment is identical
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to that documented in the bottom panel of the previous table, using time-varying lag lengths

and real-time output gap estimates (VL-RT). Differences in outcomes between the first two

experiments isolate the effects of variations in lag length. Differences between the second

two experiments similarly isolate the effects of output gap revision.

The table shows that the introduction of time-varying lag lengths has important effects

on forecast accuracy. A priori, such time-variation may improve forecasts if the underlying

relationship is unstable over time. On the other hand, it may introduce another source of

estimation error, which could reduce forecast accuracy. The table shows that all forecasts

see a reduction in accuracy, averaging 15 per cent. The benchmarks forecasts see changes

in MSFEs which are very close to the average.

Moving from Final to real-time output gap estimates has no effect on the AR benchmark

forecast, but tends to make other forecasts less accurate. While the average effects of this

change are smaller than those of changes in lag length, the impact varies much more across

models. Four models see their accuracy improve while three see their MSFE rise by more

than 20 per cent. Note that the TF benchmark sees the greatest improvement in accuracy.

Evidently, revisions in output growth contain useful information about future inflation.

The net effect of the changes in lag length determination and data vintage worsens

forecast accuracy in all but one case. The net effect on the AR benchmark is somewhat less

than average, while the TF benchmark improves more than any other model.

The results above suggest that some output gap models forecast inflation more ac-

curately than an autoregressive model, even when using real-time output gap estimates.

However, none of the output gap models we examine forecasts inflation as well as simple

models which use both past inflation and output growth. Further, the relative performance

of different models is greatly affected by the use of real-time rather than ex post output gap

estimates. Finally, uncertainty about the lag structure also adds considerably to MSFEs.
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4.3 The Robustness of Changes in Forecast Accuracy

We now investigate the robustness of the results presented in Table 2. Table 4 examines

the effects of changing the period over which forecasts are evaluated. The full 1969-2002

sample is split into two roughly equal halves, with the 1969-1983 portion characterized by

relatively high and volatile inflation, whereas prices were more stable over the 1984-2002

period. The greater volatility of inflation in the former period implies that least-squares

methods applied to the full sample tend to emphasize the fit of the model over the former

period. Perhaps as a consequence, the full-sample results presented in Table 2 largely reflect

forecast performance over the first half of the sample. Results for the low-inflation period

after 1983 may be a more relevant guide for contemporary decision-making, but they differ

from the full-sample results in several ways.

First, looking at forecasts with final output gaps, we see that the AR benchmark has

become harder to beat. Nine of the 12 models see their relative MSFEs decline, and only

five can reject the null of equal forecast accuracy at the 5 per cent level (compared to 11 in

the earlier portion of the sample). This decline in the predictability of inflation has been

noted previously in other studies, for example, Atkeson and Ohanian (2001), and Fisher,

Liu and Zhou (2002). The picture for the TF benchmark is less clear; while the relative

performance of the output gap models improves somewhat in the latter sample, there is

little evidence of significantly different forecast accuracy.

Second, looking at forecasts with real-time output gaps, it appears that it has become

increasingly difficult to forecast as well as the benchmarks. Out of 12 models 11 (10) have

larger MSFEs than the AR (TF) benchmark in the post-83 period. The Band-Pass filter

is the only model to forecast inflation better than either benchmark in the recent period,

giving over a 20 per cent reduction in MSFE. It is also interesting to note that, consistent

with the reported decline in the predictability of inflation, the AR benchmark now forecasts

slightly better in real time than the TF benchmark.
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One possible explanation for the difference in results across the two sample periods

is parameter instability, a feature which has been noted by other research on inflation

forecasts, in particular, Stock and Watson (1996, 1999), and Clark and McCracken (2003).

Indeed, examination of changes in the period over which the forecasting model is estimated

suggested some evidence of such instability for some of our output gap forecasting models.

We also considered the effects of changing the forecasting horizons, forecasting changes

rather than levels of inflation, using different lag selection criteria, and using nominal rather

than real income growth as a benchmark. (Detailed results are available from the authors

upon request.) Based on a review of these findings, it appears that the results shown in

Table 2 are among the best that can be obtained for inflation forecasts from simple linear

forecasting models using output gaps.

Having considered this evidence, one might also ask which of the output gap models

examined here a practitioner should use to forecast inflation (if forced to do so.) It would

appear that the deterministic trend models (Linear, Quadratic and Breaking) were often

among the worst-performing in real-time, and should probably be avoided for that reason.

UC models which estimated Phillips Curves (Kuttner and Gerlach-Smets) had some of the

largest differences in performance when used with real-time rather than final estimates.

The Band-Pass and the Beveridge-Nelson methods perform better in our simulated real-

time experiments. However, their success appeared to be sensitive to the forecast horizon

used. Rather than rely on any of these output gap models, our analysis suggests that a

practitioner could do well by simply taking into account the information contained in real

output growth without attempting to measure the level of the output gap—the TOFU

model. This model was consistently among the best performers, particularly over the post-

1983 forecast sample.
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5 Conclusion

Forecasting inflation is a difficult but essential task for the successful implementation of

monetary policy. The hypothesis that a stable predictive relationship between inflation and

the output gap—a Phillips curve—is present in the data, suggests that output gap measures

could be useful for forecasting inflation. This has served as the basis for empirical formu-

lations of countercyclical monetary policy in many models. We find that many alternative

measures of the output gap appear to be quite useful for forecasting inflation, on the basis

of ex post analysis. That is, a historical Phillips curve is suggested by the data, and final

(constructed ex post) estimates of the output gap are useful for understanding subsequent

movements in inflation.

However, this historical usefulness does not imply a similar operational usefulness. Our

simulated real-time forecasting experiment suggests, instead, that the predictive ability of

many different output gap measures may be illusory. Output gaps typically can not forecast

inflation as well out of sample as simple linear models of inflation and output growth (al-

though the differences are mostly not statistically significant.) This is particularly true if we

restrict our attention to the post-1983 period. These rather pessimistic findings regarding

the output gap mirror earlier investigations regarding the predictive power for forecasting

inflation of “unemployment gaps,” that is the difference between the rate of unemployment

and estimates of the NAIRU. As demonstrated by Staiger, Stock and Watson (1997a,b) and

Stock and Watson (1999), estimates of the NAIRU are inherently unreliable, and simulated

out-of-sample forecasting exercises do not indicate a robust improvement in inflation fore-

casts from using information about unemployment. Stock and Watson (1999) also show

that better inflation forecasts may be obtained by indicators other than the unemployment

gap. Our analysis suggests similar conclusions regarding the output gap as well. Instead

of using output gaps, forecasts of inflation which simply incorporate information from the

growth rate of output appear to forecast inflation as well or better.
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Finally, we note that these negative findings regarding the usefulness of real-time mea-

sures of the output gap do not necessarily invalidate the potential usefulness of the the-

oretical Phillips curve framework per se, nor that of ex post constructed output gaps for

historical analysis. That said, the dubious contribution of real-time measures of the output

gap for forecasting inflation brings into question their role in the formulation of reliable

real-time policy analysis.
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Table 2

Relative Improvement in MSFE

Method AR AR p-value TF TF p-value
Fixed Lags, Final Gaps
Benchmark MSFE 0.494 0.436
Linear Trend 0.302 0.009 0.148 0.164
Quadratic Trend 0.168 0.010 0.030 0.779
Breaking Trend 0.106 0.034 −0.024 0.778
Hodrick-Prescott 0.149 0.000 0.013 0.900
Band-Pass 0.134 0.000 0.000 0.997
Beveridge-Nelson 0.139 0.000 0.004 0.309
SVAR 0.047 0.121 −0.077 0.474
Watson 0.319 0.001 0.163 0.060
Harvey-Clark 0.270 0.002 0.120 0.162
Harvey-Jaeger 0.109 0.001 −0.022 0.811
Kuttner 0.336 0.008 0.178 0.079
Gerlach-Smets 0.362 0.001 0.201 0.052
Fixed Lags, Quasi-Final Gaps
Watson 0.132 0.043 −0.002 0.979
Harvey-Clark 0.070 0.068 −0.056 0.374
Harvey-Jaeger −0.032 0.811 −0.146 0.382
Kuttner 0.248 0.030 0.100 0.250
Gerlach-Smets 0.091 0.070 −0.038 0.414
Variable Lags, Real-time Gaps
Benchmark MSFE 0.559 0.416
Linear Trend 0.045 −0.219
Quadratic Trend 0.021 −0.237
Breaking Trend 0.043 −0.221
Hodrick-Prescott 0.132 −0.154
Band-Pass 0.283 −0.042
Beveridge-Nelson 0.211 −0.095
SVAR −0.093 −0.323
Watson 0.121 −0.163
Harvey-Clark 0.147 −0.143
Harvey-Jaeger 0.080 −0.193
Kuttner 0.107 −0.173
Gerlach-Smets 0.099 −0.179

Notes: The AR benchmark is a univariate autoregressive forecast of inflation; the TF benchmark
forecasts from a linear regression on lagged inflation and real output growth. Mean squared forecast
errors (MSFE) for the two benchmark models are shown multiplied by 1000. The remaining figures
in the AR and TF columns denote the relative improvements in MSFE for the output gap models,
measured as (A − B)/B where A is the MSFE of the benchmark and B is that of the output gap
model. The p-values for the AR benchmark are for the null that B ≥ A, based on the statistic in
equation (5). The p-values shown for the TF benchmark are for two-sided test of the null that A = B,
based on the statistic in equation (6). See section 3.3 and Appendix B for further discussion of the
construction and interpretation of the p-values. The forecast horizon is 4 quarters and forecast
performance is evaluated over the period from 1969Q1 to 2002Q1. Forecast equation estimation
starts in 1955Q1. Fixed lag lengths are (1,1) while varying lag lengths are reset every quarter using
BIC.
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Table 3
The Effect of Lag Selection and Data Vintage

MSFE Change in MSFE (percent)
Method FL-FL VL-FL VL-RT FL to VL FL to RT Total
AR benchmark 0.494 0.559 0.559 −13.0 0.0 −13.0
TF benchmark 0.436 0.496 0.416 −13.7 16.0 4.6
Linear Trend 0.380 0.438 0.533 −15.4 −21.7 −40.4
Quadratic Trend 0.423 0.500 0.545 −18.1 −9.0 −28.8
Breaking Trend 0.447 0.494 0.534 −10.6 −8.0 −19.5
Hodrick-Prescott 0.430 0.556 0.492 −29.2 11.5 −14.4
Band-Pass 0.436 0.502 0.434 −15.2 13.5 0.4
Beveridge-Nelson 0.434 0.482 0.460 −11.0 4.5 −6.0
SVAR 0.472 0.502 0.614 −6.4 −22.3 −30.1
Watson 0.375 0.433 0.497 −15.4 −14.9 −32.6
Harvey-Clark 0.389 0.448 0.486 −15.1 −8.4 −24.7
Harvey-Jaeger 0.446 0.577 0.516 −29.5 10.7 −15.7
Kuttner 0.370 0.402 0.503 −8.5 −25.3 −36.0
Gerlach-Smets 0.363 0.426 0.507 −17.3 −19.0 −39.6
Mean −15.6 −5.2 −21.1
Std Dev 6.7 14.5 14.4

Notes:
MSFE denotes the mean squared forecast error (shown multiplied by 1000.)
FL-FL refers to forecasts using fixed lag lengths and final output gap estimates.
VL-FL refers to forecasts using variable lag lengths and final output gap estimates.
VL-RT refers to forecasts using variable lag lengths and real-time output gap estimates.
FL to VL refers to the change from FL-FL to VL-FL.
FL to RT refers to the change from VL-FL to VL-RT.
Total refers to the change from FL-FL to VL-RT.
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Table 4
Relative Improvement in MSFE: Sub-sample Evaluation

1969Q1–1983Q4 1984Q1–2002Q1
Method AR p-value TF p-value AR p-value TF p-value
Fixed Lags, Final Gaps
Benchmark MSFE 0.863 0.739 0.191 0.187
Linear Trend 0.247 0.025 0.068 0.573 0.555 0.003 0.517 0.043
Quadratic Trend 0.194 0.014 0.023 0.838 0.079 0.139 0.054 0.859
Breaking Trend 0.120 0.038 −0.041 0.664 0.060 0.164 0.035 0.870
Hodrick-Prescott 0.178 0.000 0.009 0.942 0.051 0.063 0.025 0.868
Band-Pass 0.172 0.003 0.004 0.974 0.013 0.254 −0.011 0.938
Beveridge-Nelson 0.174 0.000 0.005 0.202 0.025 0.086 0.000 0.953
SVAR 0.013 0.359 −0.133 0.263 0.199 0.012 0.170 0.405
Watson 0.331 0.001 0.140 0.154 0.277 0.009 0.247 0.197
Harvey-Clark 0.320 0.002 0.131 0.152 0.113 0.070 0.086 0.674
Harvey-Jaeger 0.140 0.001 −0.024 0.841 0.006 0.308 −0.018 0.864
Kuttner 0.317 0.024 0.128 0.278 0.411 0.020 0.377 0.042
Gerlach-Smets 0.432 0.001 0.226 0.048 0.154 0.028 0.126 0.519
Fixed Lags, Quasi-Final Gaps
Watson 0.091 0.117 −0.065 0.422 0.311 0.010 0.280 0.024
Harvey-Clark 0.081 0.074 −0.074 0.326 0.032 0.267 0.007 0.931
Harvey-Jaeger 0.252 0.002 0.072 0.595 −0.474 1.000 −0.487 0.198
Kuttner 0.194 0.088 0.023 0.815 0.494 0.019 0.458 0.045
Gerlach-Smets 0.115 0.076 −0.045 0.404 0.010 0.418 −0.015 0.865
Variable Lags, Real-time Gaps
Benchmark MSFE 1.010 0.689 0.191 0.196
Linear Trend 0.225 −0.165 −0.357 −0.341
Quadratic Trend 0.228 −0.163 −0.405 −0.390
Breaking Trend 0.172 −0.201 −0.289 −0.272
Hodrick-Prescott 0.508 0.028 −0.451 −0.438
Band-Pass 0.301 −0.113 0.215 0.244
Beveridge-Nelson 0.288 −0.122 −0.035 −0.011
SVAR −0.106 −0.391 −0.018 0.006
Watson 0.209 −0.176 −0.144 −0.123
Harvey-Clark 0.205 −0.179 −0.046 −0.023
Harvey-Jaeger 0.445 −0.015 −0.480 −0.468
Kuttner 0.205 −0.179 −0.177 −0.158
Gerlach-Smets 0.153 −0.214 −0.081 −0.059

Notes: The AR benchmark is a univariate autoregressive forecast of inflation; the TF benchmark
forecasts from a linear regression on lagged inflation and real output growth. Mean squared forecast
errors (MSFE) for the two benchmark models are shown multiplied by 1000. The remaining figures
in the AR and TF columns denote the relative improvements in MSFE for the output gap models,
measured as (A − B)/B where A is the MSFE of the benchmark and B is that of the output gap
model. The p-values for the AR benchmark are for the null that B ≥ A, based on the statistic
in equation (5). The p-values shown for the TF benchmark are for two-sided test of the null that
A = B, based on the statistic in equation (6). See section 3.3 and Appendix B for further discussion
of the construction and interpretation of the p-values. The forecast horizon is 4 quarters and forecast
equation estimation starts in 1955Q1. Fixed lag lengths are (1,1) while varying lag lengths are reset
every quarter using BIC.
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Appendix A: The Construction of Real Time Output Gaps

The output gaps used in this study, as well as the data and programs used to create them, are

freely available from the authors. The estimates examined here include all those examined in

Orphanides and van Norden (2002) plus the Band-Pass, Beveridge-Nelson, Harvey-Jaeger

and SVAR methods described below; this is identical to the list of models considered in

Orphanides and van Norden (2003). The range of available estimates were updated so that

the “final” data vintage now corresponds to 2003Q3 (i.e. data available as of mid-August

2003, so data series end in 2003Q2) rather than 2000Q1 as in these two earlier papers. Data

for real output were taken from the Real Time Data Archive of the Federal Reserve Bank

of Philadelphia in September 2003. Observations span the period from 1947Q1 to 2003Q2.

Vintages for output run from Nov. 1965 to August 2003. All CPI data are from the 2003Q3

vintage. The SVAR method also uses data for 3-month US treasury bills. Data for this

rate (secondary market) from January 1934 to August 2003 were obtained from the FRED

database of the Federal Reserve Bank of St Louis.

All output gap models we consider decompose the logarithm of output into trend and

cycle components. The linear trend (LT) and quadratic trend (QT) models are from OLS

regressions with linear and quadratic deterministic trends. The breaking trend model is

identical to the LT model until 1976Q4. Starting in 1977Q1, it allows for an estimated break

in the trend at the end of 1973. The Hodrick-Prescott(HP) method is based on the filter

proposed by Hodrick and Prescott (1997) with their recommended smoothing parameter of

1600 for quarterly data. The band-pass method (BP) is based on the Stock and Watson

(1998) adaptation of the Baxter and King (1999) approach. Following Stock and Watson

(1998), we use a filter 25 observations in width and pad the available observations with

forecasts from an AR(4) model. The Beveridge-Nelson follows Beveridge and Nelson (1981)

in modelling output as an ARIMA(p,1,Q) series. Based on results for the full sample, we use

an ARIMA(1,1,2), with parameters re-estimated by maximum likelihood methods before
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each recalculation of the trend.

We examine five unobserved component (UC) models, all of which are estimated by

maximum likelihood. Three of the five are univariate models. The Watson (WT) model is

based on Watson (1986) and models the output trend as a random walk with drift while

the cycle is assumed to follow a stationary AR(2) process. The Harvey-Clark (CL) model

follows Harvey (1985) and Clark (1987), replacing the constant drift in the trend of the

WT model with a random walk. The Harvey-Jaeger (HJ) model has the same trend as the

CL model but replaces the AR(2) component with a stochastic cycle. All three of these

univariate models require estimation of five parameters, including variances for the assumed

Gaussian shocks. The Kuttner (KT) model appends a Phillips curve, as specified in Kuttner

(1994), to the WT model, giving a bivariate model with eight more estimated parameters

than its univariate counterpart. The Gerlach-Smets (GS) model similarly adds the Phillips

curve specified in Gerlach and Smets (1997) to the CL model, yielding a bivariate model

with six more estimated parameters than its univariate counterpart.

The Structural VAR measure of the output gap (BQ) is based on a VAR identified via

restrictions on the long-run effects of the structural shocks, as proposed by Blanchard and

Quah (1989). Our implementation is identical to that of Cayen and van Norden (2002),

who use a trivariate system including output, CPI and yields on 3-month treasury bills.

Lag lengths for the VAR are selected using finite-sample corrected LR tests and a general-

to-specific testing approach.
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Appendix B: Evaluation of Forecast Performance

As noted in section 3.3, our statistical inference for the forecast performance of the output

gap models relative to the AR benchmark model is based on the MSE-F statistic proposed

by McCracken (2000). This takes the form

MSE-F = P · (MSFE1 −MSFE2)
MSFE2

(B.1)

where P is the number of forecasts, MSFE1 is the mean squared forecast error (MSFE) of

the restricted model and MSFE2 is the MSFE of the unrestricted model.

The distribution of the MSE-F statistic under the null hypothesis of equal MSFE is

estimated via a bootstrap experiment. The bootstrap begins by estimating a constrained

VAR(12) in π1
t , y

T,T−1
t in which we impose the restriction that y does not Granger-cause

π. 2000 simulated realizations of this DGP are created by simulating the estimated model

with shocks randomly drawn with replacement from the estimated residuals. πh
t+h is then

constructed as the sum of h consecutive observations of π1
1. For each simulation, the dy-

namic model is initialized with historical observations starting with πh
k+h, π1

k−i, y
T,T−1
k−i for

an independently drawn value of k. MSE-F statistics are then calculated for each simulated

series and their empirical distribution is used to estimate p-values for the true data’s MSE-F

statistics. Because these distributions are non-pivotal, the distribution of the test statistics

is bootstrapped anew for every different choice of (P, h, y,m, n). The p-values for every

reported MSE-F are therefore based on independent bootstrap experiments.
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