
The reliability paradox: Why robust cognitive tasks
do not produce reliable individual differences

Craig Hedge1 & Georgina Powell1 & Petroc Sumner1

Published online: 19 July 2017
# The Author(s) 2017. This article is an open access publication

Abstract Individual differences in cognitive paradigms are

increasingly employed to relate cognition to brain structure,

chemistry, and function. However, such efforts are often un-

fruitful, even with the most well established tasks. Here we

offer an explanation for failures in the application of robust

cognitive paradigms to the study of individual differences.

Experimental effects become well established – and thus those

tasks become popular – when between-subject variability is

low. However, low between-subject variability causes low re-

liability for individual differences, destroying replicable corre-

lations with other factors and potentially undermining pub-

lished conclusions drawn from correlational relationships.

Though these statistical issues have a long history in psychol-

ogy, they are widely overlooked in cognitive psychology and

neuroscience today. In three studies, we assessed test-retest

reliability of seven classic tasks: Eriksen Flanker, Stroop,

stop-signal, go/no-go, Posner cueing, Navon, and Spatial-

Numerical Association of Response Code (SNARC).

Reliabilities ranged from 0 to .82, being surprisingly low for

most tasks given their common use. As we predicted, this

emerged from low variance between individuals rather than

high measurement variance. In other words, the very reason

such tasks produce robust and easily replicable experimental

effects – low between-participant variability – makes their use

as correlational tools problematic. We demonstrate that taking

such reliability estimates into account has the potential to qual-

itatively change theoretical conclusions. The implications of

our findings are that well-established approaches in experimen-

tal psychology and neuropsychology may not directly translate

to the study of individual differences in brain structure, chem-

istry, and function, and alternative metrics may be required.

Keywords Reliability . Individual differences . Reaction

time . Difference scores . Response control

Individual differences have been an annoyance rather

than a challenge to the experimenter. His goal is to

control behavior, and variation within treatments is

proof that he has not succeeded… For reasons both

statistical and philosophical, error variance is to be

reduced by any possible device. (Cronbach, 1957, p.

674)

The discipline of psychology consists of two historically

distinct approaches to the understanding of human behavior:

the correlational approach and the experimental approach

(Cronbach, 1957). The division between experimental and

correlational approaches was highlighted as a failing by some

theorists (Cronbach, 1957; Hull, 1945), whilst others suggest

that it may be the inevitable consequence of fundamentally

different levels of explanation (Borsboom, Kievit, Cervone,

& Hood, 2009). The correlational, or individual differences,

approach examines factors that distinguish between individ-

uals within a population (i.e., between-subject variance).

Alternatively, the experimental approach aims to precisely

characterize a cognitive mechanism based on the typical or

average response to a manipulation of environmental
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variables (i.e., within-subject variance). Cronbach (1957)

called for an integration between the disciplines, with the view

that a mature science of human behavior and brain function

would consist of frameworks accounting for both inter- and

intra-individual variation. Whilst a full integration is far from

being realized, it is becoming increasingly common to see

examinations of the neural, genetic, and behavioral correlates

of performance on tasks with their origins in experimental

research (e.g., Chen et al., 2015; Crosbie et al., 2013;

Forstmann et al., 2012; Marhe, Luijten, van de Wetering,

Smits, & Franken, 2013; L. Sharma, Markon, & Clark,

2014; Sumner, Edden, Bompas, Evans, & Singh, 2010).

Such integration is not without obstacles (e.g., Boy &

Sumner, 2014). Here, we highlight a general methodological

consequence of the historical divide between experimental

and correlational research. Specifically we ask whether tasks

with proven pedigree as Breliable^ workhorses in the tradition

of experimental research are inevitably unsuitable for correla-

tional research, where Breliable^ means something different.

This issue is likely to be ubiquitous across all domains where

robust experimental tasks have been drawn into correlational

studies, under the implicit assumption that a robust experi-

mental effect will serve well as an objective measure of indi-

vidual variation. This has occurred, for example, to examine

individual differences in cognitive function, brain structure,

and genetic risk factors in neuropsychological conditions

(e.g.. Barch, Carter, & Comm, 2008), or where individual

difference analyses are performed as supplementary analyses

in within-subject studies (c.f. Yarkoni & Braver, 2010). Many

of the issues we discuss reflect long-recognized tensions in

psychological measurement (Cronbach & Furby, 1970;

Lord, 1956), though they are rarely discussed in contemporary

literature. The consequences of this are that researchers often

encounter difficulty when trying to translate state-of-the art

experimental methods to studying individual differences

(e.g., Ross, Richler, & Gauthier, 2015). By elucidating these

issues in tasks used prominently in both experimental and

correlational contexts, we hope to aid researchers looking to

examine behavior from both perspectives.

The reliability of experimental effects

Different meanings of reliability For experiments, a Breli-

able^ effect is one that nearly always replicates, one that is

shown by most participants in any study and produces

consistent effect sizes. For example, in the recent BMany

labs 3^ project (Ebersole et al., 2016), which examined

whether effects could be reproduced when the same proce-

dure was run in multiple labs, the Stroop effect was repli

cated in 100% of attempts, compared to much lower rates

for most effects tested.In the context of correlational re-

search, reliability refers to the extent to which a measure

consistently ranks individuals. This meaning of reliability

is a fundamental consideration for individual differences

research because the reliability of two measures limits the

correlation that can be observed between them (Nunnally,

1970; Spearman, 1904). Classical test theory assumes that

individuals have some Btrue^ value on the dimension of

interest, and the measurements we observe reflect their true

score plus measurement error (Novick, 1966). In practice,

we do not know an individual’s true score, thus, reliability

depends on the ability to consistently rank individuals at

two or more time points. Reliability is typically assessed

with statistics like the IntraClass Correlation (ICC), which

takes the form:

ICC ¼
Variance between individuals

Variance between individuals þ Error variance þ Variance between sessions

1Here, variance between sessions corresponds to systemat-

ic changes between sessions across the sample. Error variance

corresponds to non-systematic changes between individuals’

scores between sessions, i.e. the score for some individuals

increases, while it decreases for others. Clearly, reliability de-

creases with higher measurement error, whilst holding vari-

ance between participants constant. Critically, reliability also

decreases for smaller between-participant variance, whilst

holding error variance constant. In other words, for two mea-

sures with identical Bmeasurement error,^ there will be lower

reliability for the measure with more homogeneity. Measures

with poor reliability are ill-suited to correlational research, as

the ability to detect relationships with other constructs will be

compromised by the inability to effectively distinguish be-

tween individuals on that dimension (Spearman, 1910).

In contrast to the requirements for individual differences,

homogeneity is the ideal for experimental research. Whereas

variance between individuals is the numerator in the ICC for-

mula above, it appears as the denominator in the t-test (i.e., the

standard error of the mean). For an experimental task to pro-

duce robust and replicable results, it is disadvantageous for

there to be large variation in the within-subject effect.

1
The two-way ICC can be calculated for absolute agreement or for consisten-

cy of agreement. The latter omits the between-session variance term. Note also

that the error variance term does not distinguish between measurement error

and non-systematic changes in the individuals’ true scores (Heize, 1969).

Some may therefore prefer to think of the coefficient as an indicator of

stability.
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Interestingly, it is possible for us to be perfectly aware of this

for statistical calculations, without realising (as we previously

didn't) that the meanings of a Breliable^ task for experimental

and correlational research are not only different, but can be

opposite in this critical sense.

Present study

The issues we discuss have broad implications for cog-

nitive psychology and cognitive neuroscience. Recent re-

views have highlighted the potential for individual dif-

ferences approaches to advance our understanding of the

relationship between brain structure and function (Kanai

& Rees, 2011). The way in which we measure and con-

ceptualize cognitive processes has largely been built on

within-subject paradigms, though their strengths in ex-

perimental contexts may make these paradigms sub-

optimal for individual differences. Here, in three studies,

we evaluate the re-test reliability of seven commonly

used and robust tasks, spanning the domains of cognitive

control, attention, processing style, and numerical-spatial

associations. In doing so, we not only provide sorely

needed information on these measures, but also evaluate

the relationship between robust experimental paradigms

and reliable individual differences in real data using co-

hort sizes and trial numbers similar to, or greater than,

most imaging studies. In addition, we illustrate how tak-

ing the reliability of these measures into account has the

power to change the conclusions we draw from statistical

tests.

First, we examined the reliability of the Eriksen flanker

task, Stroop task, go/no-go task, and the stop-signal task,

which we then replicated in Study 2. These tasks are all

considered to be measures of impulsivity, response inhibi-

tion or executive functioning (Friedman & Miyake, 2004;

Stahl et al., 2014). In Study 3, we examined the Posner

cueing task (Posner, 1980), the Navon task (Navon,

1977), and a spatial-numerical association of response

codes (SNARC) effect paradigm (Dehaene, Bossini, &

Giraux, 1993). These tasks are used to measure the con-

structs of attentional orienting, perceptual processing style,

and the automatic association between magnitude and

space (i.e., the Bmental number line^), respectively. These

tasks were selected because they were all originally devel-

oped in experimental contexts, and we believed they would

be familiar to most readers. Further, all these tasks have

since been used in the context of individual differences,

and their underlying neural correlates. A Google Scholar

search for the term Bindividual differences^ within articles

citing the original papers for each task produces at least

400 citations for each. For conciseness, we combine the

reporting of our methods and results across all studies.

Method

Participants

Participants in Study 1 were 50 (three male) undergraduate

students aged 18–21 years (M = 19.5 years, SD=0.9).

Participants in Study 2 were 62 (12 male) undergraduate stu-

dents aged 18–47 years (M = 20.5 years, SD=4.98).

Participants in Study 3 were 42 (five male) undergraduate

students aged 18–40 years (M = 20.4 years, SD=3.5). All

participants gave informed written consent prior to participa-

tion in accordance with the revized Declaration of Helsinki

(2013), and the experiments were approved by the local Ethics

Committee.

Design and procedure

Participants completed the tasks (four in Studies 1 and 2, three

in Study 3) in each of two 90-min sessions taking place 3

weeks apart, at the same time of day. Seven participants in

Study 1 and five participants in Study 2 were unable to attend

their second session exactly 3 weeks later, and were

rescheduled to between 20 and 28 days following their first

session. Each participant completed the tasks in the same or-

der in both of their sessions (in order not to introduce between-

session variance associated with order), and the order of tasks

was counterbalanced across participants using a Latin square.

Though counterbalancing is common practice in experimental

studies, it is often preferable to administer tasks in a fixed

order when correlating variables (though not all do, see e.g.,

Aichert et al., 2012; Wöstmann et al., 2013). However, our

primary focus here was the re-test reliability of the tasks, and a

fixed order could cause one task to appear more reliable than

another due to presentation order rather than the task itself.

Following completion of the tasks, participants completed the

UPPS-P impulsive behavior scale (Lynam, Smith, Whiteside, &

Cyders, 2006;Whiteside &Lynam, 2001), which we commonly

administer in our lab. We include reliability information for the

UPPS-P components as a reference for the levels of reliability

attainable in our sample with a measure constructed for the pur-

pose of measuring individual differences.

Participants were tested in groups of up to nine, at separate

stations in a multi-station lab, separated by dividers. The ex-

perimenter was present throughout the session to monitor

compliance with instructions. Participants were instructed to

be as fast and as accurate as possible in all tasks, and were

given written and verbal instructions before each task. Each

task in Studies 1 and 2 consisted of five blocks of approxi-

mately 4 min each, and participants received feedback about

their average reaction times (RTs) and error rates after each

block. The tasks in Study 3 consisted of four blocks. Figure 1

displays the format of the tasks used. The stop-signal task was

implemented using STOP-IT (Verbruggen, Logan, & Stevens,
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2008), all other tasks were implemented in PsychoPy (Peirce,

2007, 2013). An Inter-Stimulus Interval (ISI) of 750 ms was

used for all tasks.

Eriksen flanker task Participants responded to the direction

of a centrally presented arrow (left or right) using the \ and /

keys. On each trial, the central arrow (1 cm × 1 cm) was

flanked above and below by two other symbols separated by

0.75 cm (see, e.g., Boy, Husain, & Sumner, 2010; White,

Ratcliff, & Starns, 2011). Flanking stimuli were arrows

pointing in the same direction as the central arrow (congruent

condition), straight lines (neutral condition), or arrows

pointing in the opposite direction to the central arrow (congru-

ent condition). Stimuli were presented until a response was

given. Participants completed 240 trials in each condition (720

in total). The primary indices of control are the RT cost (in-

congruent RT – congruent RT) and error rate cost (congruent

errors – incongruent errors).

Stroop task Participants responded to the color of a centrally

presented word (Arial, font size 70), which could be red (z

key), blue (x key), green (n key), or yellow (m key). (c.f. Ilan

& Polich, 1999; Macleod, 1991; D. Sharma & McKenna,

1998). The word could be the same as the font color (congru-

ent condition), one of four non-color words (lot, ship, cross,

advice) taken from Friedman and Miyake (2004) matched for

length and frequency (neutral condition), or a color word cor-

responding to one of the other response options (incongruent).

Stimuli were presented until a response was given.

Participants completed 240 trials in each condition (720 in

total). The primary indices of control are the RT cost (incon-

gruent RT – congruent RT) and error rate cost (congruent

errors – incongruent errors).

Go/No-go task Participants were presented with a series of

letters (Arial, font size 70) in the center of the screen. Each

block consisted of four letters, presented with equal probabil-

ity. Participants were instructed to respond with the space bar

to three of the four letters (go trials), and to refrain from

responding if the fourth letter appeared (no-go trials). The

response rule was presented to participants at the beginning

of each block, and displayed at the bottom of the screen

throughout the block to reduce memory demands. A new set

of letters was used for each block, to lessen the impact of

learned, automatic associations (c.f. Verbruggen & Logan,

2008). Stimuli were presented for a fixed duration of 1,250

ms. Participants completed 600 trials in total (75% go). The

primary measures are commission errors (responses to no-go

stimuli), omission errors (non-responses to go stimuli), and

RT to go stimuli.

Fig. 1 Schematic representation of tasks used and their conditions.

Studies 1 and 2 featured the flanker, Stroop, go/no-go and stop-signal

tasks. Study 3 featured the Posner cueing, SNARC and Navon tasks.

Trials were presented intermixed in a randomized order. In the Go/no-

go and Stop-signal tasks, visual stimuli were presented for a fixed

duration of 1,250 ms (c.f. Verbruggen et al., 2008). In all other tasks,

stimuli were presented until a response was given. An Inter-Stimulus

Interval (ISI) of 750 ms was used in all tasks. Stimuli sizes are enlarged

for illustration
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Stop-signal task Participants were instructed to respond to the

identity of a centrally presented stimulus (square or circle:

1.6 cm × 1.6 cm) using the \ and / keys. On 25% of trials (stop

trials), participants heard a tone through a set of headphones

that indicated that they should withhold their response on that

trial. The tone was initially presented 250 ms after the visual

stimulus appeared, and was adjusted using a tracking proce-

dure by which the latency increased by 50 ms following a

successfully withheld response, and decreased by 50 ms fol-

lowing a failure to withhold a response. The latency of the

tone is referred to as the Stop-Signal Delay (SSD). Stimuli

were presented for a fixed duration of 1,250ms. Participants

completed 600 trials in total (75% go). The primary measures

are Stop-Signal Reaction Time (SSRT), and go RT. There are

two common methods of calculating SSRT: the mean method

(SSRTm) and the integration method (SSRTi; Logan, 1981;

Logan & Cowan, 1984). The mean method consists of

subtracting the participant’s mean SSD from their mean go

RT. In the integration method, instead of the mean go RT,

the mean SSD is subtracted from the nth fastest RT, where n

corresponds to the percentage of stop trials on which partici-

pants failed to inhibit their responses. For example, if a par-

ticipant responded on 60% of stop trials, the 60th percentile of

their RT distribution is subtracted from the mean SSD.

Accurate estimation of SSRT using the mean method relies

upon the tracking procedure converging on successful stop-

ping on 50% of stop trials. It has been argued that the integra-

tion method should be favoured when this assumption is not

met, for example, if participants strategically adjust their re-

sponses by slowing down over the course of the session

(Verbruggen, Chambers, & Logan, 2013). We report the reli-

abilities of both methods here, but restrict subsequent analyses

to only the recommended integration method.

Posner cueing task At the start of each trial, participants

viewed two boxes (6 cm × 6 cm), located 7.5 cm from a

central fixation point to the inside edge. An arrow cue (2 cm

× 1.5 cm) appeared in the center of the screen directing par-

ticipants’ attention to either the left or the right box. After a

stimulus onset asynchrony (SOA) of 300, 400, 500, or 600

ms, an X (2 cm × 2 cm) then appeared in the left or right box.

Participants were instructed to respond as quickly as possible

with the space bar to the critical stimulus, but to not respond

before it appeared. The cue correctly predicted the location of

the stimulus on 80% of trials, and participants were instructed

of this probability beforehand. The SOAs were chosen to

make the onset of the stimulus unpredictable, and previous

research has shown that the cueing benefit peaks at approxi-

mately 300 ms and is consistent throughout this range of

SOAs (Cheal & Lyon, 1991; Muller & Rabbitt, 1989). If par-

ticipants responded before the stimulus appeared, they were

given feedback lasting 2,500 ms instructing them not to re-

spond prematurely. Participants were instructed to maintain

their fixation on the central fixation point/cue. Participants

completed 640 trials (128 invalid) in total. The key measure

of interest is the difference in RTs to stimuli following valid

compared to invalid cues.

Spatial-numerical association of response codes (SNARC)

task Participants were required to determine whether a cen-

trally presented white digit (1–9, excluding 5; Arial, font size

70) was greater or less than five. Before each block, partici-

pants were instructed that theywere to respond either such that

Z corresponded to digits less than five and M digits greater

than five, or vice versa. This rule alternated across blocks,

with the first block being counter-balanced across participants,

and participants receiving consistent order in both of their

sessions. As in previous studies (e.g., Rusconi, Dervinis,

Verbruggen, & Chambers, 2013), eight Bbuffer^ trials were

presented at the start of each block to accommodate the

change in response rules. These buffer trials were subsequent-

ly discarded for analysis. Participants were also presented with

feedback if they gave an incorrect response, lasting 1,000 ms.

Participants completed 640 trials in total (320 with each map-

ping), not including buffer trials. The SNARC effect is the key

variable of interest, which is calculated as the difference be-

tween RTs and error rates on trials in which the required re-

sponse aligns with the relative magnitude of the stimulus com-

pared to when they are misaligned. Participants are expected

to respond more quickly to smaller numbers with the left hand

and larger numbers with the right.

Navon task Participants were presented with composite letter

stimuli; large BH^ or BS^ characters (3 cm × 4.5 cm) com-

prised of smaller BS^ or BH^ (0.4 cm × 0.7 cm) characters.

Stimuli could either be consistent, in which the same character

appeared at the global and local levels, or inconsistent (e.g., a

large H composed of smaller S characters). Stimuli were pre-

sented at one of four possible locations and remained on

screen until a response was given. The stimuli were presented

0.5 cm above or below and 2 cm to the left or right of fixation.

Before each block, participants were instructed that they were

to respond to either the global or local character. The response

rule alternated across blocks, and was counter-balanced, as

with the SNARC task. Further, as with the SNARC task, par-

ticipants were presented with eight buffer trials, and feedback

to incorrect response. Participants completed 640 trials in total

(320 per mapping, of which 160 each were consistent and

inconsistent).We derived five effects of interest from this task.

We calculated the difference between congruent RTs for re-

sponses to global versus local stimuli as an indication of par-

ticipants’ bias towards global or local processing (with healthy

participants typically showing a global bias). Further, interfer-

ence effects in both errors and RTs (Incongruent - congruent)

can be derived for global and local stimuli separately.
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UPPS-P impulsive behavior scale The UPPS-P is a 59-item

questionnaire that measures five components of impulsivity:

negative urgency, premeditation, perseverance, sensation seek-

ing, and positive urgency (Lynam et al., 2006; Whiteside &

Lynam, 2001).

Data analysis

Data were not included if participants did not return for

the follow-up session (3,2,2 for the three studies respec-

tively). Participants' data were not analysed for a given

task if they show very low compliance, defined as: accu-

racy below 60% in either session for overall performance

in the flanker, Stroop, Navon, and SNARC tasks, re-

sponses to go stimuli in the go/no-go task, discrimination

performance on go trials in the stop-signal task. For the

Posner task, participants were also required to have antic-

ipatory response rates (i.e., responding before the stimulus

appears) of less than 10%. For the stop signal task, par-

ticipants’ data were not included if their data produced a

negative SSRT, or if they responded on more than 90% of

stop-signal trials in either session, as an SSRT could not

be meaningfully calculated. A participant’s data was re-

moved entirely if they fell below these criteria for two or

more tasks within a single session, otherwise data were

only excluded for the individual task. After these exclu-

sions, 47 and 57 participants remained for the flanker and

go/no-go tasks in Study 1 and 2, respectively, 47 and 56

in the Stroop task, and 45 and 54 in the stop-signal task.

All participants met the inclusion criteria in Study 3. The

calculation of mean RTs excluded RTs below 100 ms and

greater than three times the each individual’s median ab-

solute deviation (Hampel, 1974; Leys, Ley, Klein,

Bernard, & Licata, 2013).

Reliabilities were calculated using Intraclass Correlation

Coefficients (ICC) using a two-way random effects model

for absolute agreement. In the commonly cited Shrout and

Fleiss (1979; see alsoMcGraw&Wong, 1996) nomenclature,

this corresponds to ICC (2,1). This form of the ICC is sensitive

to differences between session means. In Supplementary

Material A, we perform further analyses to account for poten-

tial outliers and distributional assumptions. The choice of sta-

tistic does not affect our conclusions. We report reliabilities

separately for Studies 1 and 2 in the main text so that consis-

tency across samples can be observed.We combine the studies

in supplementary analyses.

As both measurement error and between-participant vari-

ability are important for the interpretation of reliability, we

also report the standard error of measurement (SEM) for each

variable. The SEM is the square root of the error variance term

in the ICC calculation and reflects the 68% confidence interval

around an individual’s observed score.

Summary level data, as well as the raw data for our behav-

ioral tasks, are available on the Open Science Framework

(https://osf.io/cwzds/)

Results

Task performance

Studies 1 and 2 A full report of the descriptive statistics

for each measure can be seen in Supplementary Material B.

All expected experimental effects were observed, and means

and standard deviations for RTs and error rates for all tasks

were comparable to samples from the general population

reported in the literature (see Supplementary Material C).

Thus, despite a possible expectation that students would

show restricted variance, our sample was not consistently

more or less variable than samples taken from the general

population. Scatter plots for the key measures are shown in

Fig. 2.

Study 3 Again, performance was comparable to previous re-

ports in the literature (Navon, 1977; Posner, 1980; Rusconi

et al., 2013). As in Navon’s original study, the conflict effect in

the RTs did not reach significance when participants were

instructed to respond to the global characters and ignore the

local characters – presumably reflecting the preferential pro-

cessing of global features. Scatter plots for the key measures

are shown in Fig. 3.

Task reliabilities

Studies 1 and 2 None of the behavioral measures in

Studies 1 and 2 (see Table 1) exceeded reliabilities of .8,

typically considered excellent or of a clinically required

standard (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis

& Koch, 1977). Two indices of response control exceeded

a standard of good/substantial reliability (.6) in both ses-

sions: the Stroop RT cost (ICCs of .6 and .66 in Studies 1

and 2 respectively) and commission errors on the go/no-

go task (ICC = .76 in both studies). The reliability of the

RT cost scores, calculated by taking the difference be-

tween congruent and incongruent conditions for example,

are generally lower than their components, and we exam-

ine reasons for this below. For example, the flanker RT

cost in Study 1 has a reliably of .4, whereas the RTs for

congruent and incongruent trials have reliabilities of .74

and .66 respectively. This is despite the flanker RT cost

having a relatively low SEM of 15 ms. Thus, measure-

ment error alone does not predict reliability. The scatter

plots in Fig. 2 show the SEMs for the critical measures to

show the size of the error relative to the variance in the

Behav Res (2018) 50:1166–1186 1171
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data.The results for the stop signal task warrant expan-

sion. Large SEMs were observed for Go RT and mean

SSD in Study 1. We suspect that this is due to proactive

slowing in a subset of participants in one session, who did

not strategically adjust their responses in the same way in

the other session. However, despite a reduced SEM and

higher reliability for go RTs in Study 2, the reliability of

SSRT did not increase. Though the integration method of

calculating SSRT was shown by Verbruggen et al. (2013)

to be robust against gradual slowing within a session, it

will remain sensitive to more substantial strategic changes

between sessions (c.f., Leotti & Wager, 2010). Adopting a

more conservative exclusion criterion did not improve up-

on the reliability estimates for SSRTs (see Supplementary

Material A).

Study 3 (see Table 2) Only one behavioral measure had a

reliability in the nominally excellent range (.82): the con-

flict effect when responding to local characters in the

Navon task. An influential data point (an error cost of

43% in both sessions) contributed to this, though the

measure still shows good reliability (.74) if this individ-

ual is excluded.

Fig. 2 Reliability of key

measures from Studies 1 and 2

combined (Total N=99–104). Red

marker indicates mean group

performance from sessions 1 and

2. Error bars show ± 1 standard

error of measurement (SEM). The

SEM is the square root of the error

variance term calculated from the

intraclass correlation, and can be

interpreted as the 68% confidence

interval for an individual’s data

point. A large SEM relative to the

between-subject variance contrib-

utes to poor reliability
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Fig. 3 Reliability of key

measures from Study 3 (N=40).

Red marker indicates mean group

performance from sessions 1 and

2. Error bars show ± 1 standard

error of measurement. RT reaction

time, SNARC Spatial-Numerical

Association of Response Code

Behav Res (2018) 50:1166–1186 1173



The reliability of the Posner cueing effect was good (.7),

though also influenced by an outlying data point (ICC = .56 if

excluded). The reliabilities for all other behavioral effects of

interest were poor (ICCs <.25).

How many trials should be administered? We found that

the literature on these seven tasks also lacks information to

guide researchers on how many trials to run, and different

studies can choose very different numbers without any explicit

discussion or justification. For those interested in the use of

these tasks for individual differences, we provide information

on the relationship between reliability and trial numbers in

Supplementary Material D.

What happens to variance in within-subject effects?

The relationship between reliability and the sources of vari-

ance in the RT measures is shown in Fig. 4, which plots the

three components of variance from which the ICC is calculat-

ed. Each bar decomposes the relative variance accounted for

by differences between participants (white), differences be-

tween sessions (e.g., practice effects, gray), and error variance

(black). Correlational research (and the ICC) relies on the

proportion of variance accounted for by individual differ-

ences, and the standard subtractions (e.g., to calculate the

Stroop RT cost) do not improve this signal-to-noise ratio – if

anything, it is reduced, explaining why difference scores are

generally lower in reliability than their components. The

Table 1 Intraclass correlations (ICCs) and standard errors of measurement (SEMs) for Studies 1 and 2. SEMs are in the measure’s original units (ms or

% correct). Primary indices of response control are highlighted in bold; 95% confidence intervals in parentheses. Typical interpretations of ICC values

are: excellent (.8), good/substantial (.6), and moderate (.4) levels of reliability (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & Koch, 1977)

Task Measure ICCs SEMs

Study 1 Study 2 Study 1 Study 2

Flanker task Congruent RT .74 (.52–.86) .69 (.40 –.83) 24 (20–30) 20 (17–24)

Neutral RT .73 (.48–.86) .61 (.32–.78) 23 (19–29) 21 (18–26)

Incongruent RT .66 (.36–.81) .62 (.31–.79) 32 (27–40) 28 (24–35)

RT cost .40 (.12–.61) .57 (.36–.72) 15 (13–19) 15 (13–18)

Congruent errors .46 (.20–.66) .37 (.13–.58) 4.78 (3.97–6.0) 5.24 (4.43–6.43)

Neutral errors .45 (.19–.65) .39 (.14–.59) 4.95 (4.11–6.22) 5.16 (4.36–6.33)

Incongruent errors .71 (.54–.83) .58 (.34–.74) 4.67 (3.88–5.86) 5.76 (4.86–7.07)

Error cost .58 (.35–.74) .72 (.57–.83) 3.77 (3.14–4.74) 3.12 (2.64–3.83)

Stroop task Congruent RT .77 (.49–.88) .72 (.49–.84) 33 (27 –41) 31 (26–38)

Neutral RT .74 (.36–.88) .73 (.45–.86) 34 (28–43) 34 (28–41)

Incongruent RT .67 (.25–.85) .70 (.10–.88) 42 (35–52) 33 (28–40)

RT cost .60 (.31–.78) .66 (.26–.83) 21 (17–26) 24 (20–29)

Congruent errors .36 (.10–.58) .42 (.16–.62) 3.35 (2.78–4.20) 3.02 (2.55–3.71)

Neutral errors .45 (.19–.65) .51 (.25–.69) 3.52 (2.92–4.42) 3.17 (2.67–3.89)

Incongruent errors .62 (.40–.77) .39 (.15–.59) 3.78 (3.14–4.75) 3.89 (3.28–4.78)

Error cost .48 (.23–.67) .44 (.20–.63) 3.13 (2.60 –3.94) 2.45 (2.07–3.02)

Go/No-go task Go RT .74 (.58–.85) .63 (.44–.77) 31 (25–38) 37 (31–46)

Commission errors .76 (.58–.87) .76 (.60–.86) 5.36 (4.45–6.73) 6.46 (5.46–7.93)

Omission errors .69 (.51–.82) .42 (.19–.61) 1.52 (1.27–1.91) 3.73 (3.15–4.57)

Stop-signal task Go RT .35 (.08–.57) .57 (.28–.75) 107 (88–135) 57 (48–70)

Mean SSD .34 (.07–.57) .54 (.32–.70 ) 127 (105–161) 71 (60–88)

SSRT mean .47 (.21–.67) .43 (.19–.62) 32 (27–41) 28 (24–35)

SSRT integration .36 (.08–.59) .49 (.26–.66) 39 (32–49) 35 (29–43)

UPPS-P Negative U. .72 (.54–.83) .73 (.58–.83) .30 (.25–.38) .29 (.25–.36)

Premeditation .70 (.51–.82) .85 (.75–.91) .26 (.21–.32) .18 (.15–.22)

Perseverance .73 (.57–.84) .78 (.65–.86) .29 (.24–.36) .21 (.18–.26)

Sensation Seek. .87 (.78–.93) .89 (.82–.94) .24 (.20–.30) .21 (.18–.26)

Positive U. .80 (.66–.88) .81 (.70–.88) .25 (.21–.32) .29 (.24–.36)

RT reaction time, SSD Stop-Signal Delay, SSRT Stop-Signal Reaction Time, UPPS-P impulsive behavior scale
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equivalent plot for errors can be seen in Supplementary

Material E. We also plot the absolute variance components

in Supplementary Material E. In absolute terms, the total

amount of variance is reduced in the difference scores often

by a factor of 3 or 4 relative to their components. This is

desirable in an experimental task, in which any variation in

the effect of interest is detrimental.

How does accounting for reliability affect

between-task correlations?

As noted in the introduction, the reliability of two mea-

sures will attenuate the magnitude of the correlation that

can be observed between them. As an illustration of this

phenomenon, we examine the correlations between the

four response control tasks administered in Studies 1

and 2 before and after accounting for the reliability of

the measures. Response control provides a useful illustra-

tive example of this issue, as it is often assumed that a

common response control trait underlies performance on

these tasks (for a review, see Bari & Robbins, 2013),

though this assumption has received mixed support from

correlational research (Aichert et al., 2012; Cyders &

Coskunpinar, 2011; Fan, Flombaum, McCandliss,

Thomas, & Posner, 2003; Friedman & Miyake, 2004;

Hamilton et al., 2015; Ivanov, Newcorn, Morton, &

Tricamo, 2011; Khng & Lee, 2014; Scheres et al., 2004;

L. Sharma et al., 2014; Stahl et al., 2014; Wager et al.,

2005).

Spearman’s Rho correlations can be seen in Table 3. We

combined the data from Studies 1 and 2 tomaximize statistical

Table 2 Intraclass correlations (ICCs) and standard errors of measure-

ment (SEMs) for Study 3. SEMs are in the measure’s original units (ms or

% correct). Primary variables of interest are highlighted in bold; 95%

confidence intervals in parentheses. Typical interpretations of ICC values

are: excellent (.8), good/substantial (.6), and moderate (.4) levels of reli-

ability (Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & Koch, 1977).

The Global precedence effect was calculated as local congruent RT –

global congruent RT

Measure ICC SEM

Posner task Valid RT .80 (.61–.90) 16 (13–20)

Invalid RT .79 (.56–.89) 21 (18–28)

Cueing effect .70 (.50–.83) 13 (10–16)

SNARC task Congruent RT .69 (.49–.82) 29 (24–37)

Incongruent RT .74 (.56–.86) 26 (21–33)

SNARC effect RT .22 (0–.49) 16 (13–21)

Congruent errors .67(.45–.81) 2.04 (1.67–2.62)

Incongruent errors .58 (.33–.75) 2.66 (2.18–3.42)

SNARC effect errors .03 (0–.34) 2.30 (1.88–2.95)

Navon task Local congruent RT .69 (.49–.83) 29 (24–38)

Local incongruent RT .68 (.45–.83) 30 (24–38)

Local RT cost .14 (0–.43) 19 (15–24)

Local congruent errors .56 (.30–.74) 1.23 (1.01–1.58)

Local incongruent errors .80 (.65–.89) 4.25 (3.48–5.46)

Local error cost .82 (.69–.90) 3.68 (3.01–4.72)

Global congruent RT .63 (.40–.78) 34 (28–43)

Global incongruent RT .70 (.50–.83) 30 (25–39)

Global RT cost 0 (0–.18) 14 (11–17)

Global congruent errors .60 (.36–.76) 2.22 (1.82–2.86)

Global incongruent errors .71 (.51–.84) 1.96 (1.61–2.52)

Global error cost .17 (0–.46) 2.67 (2.19–3.43)

Global precedence effect (RT) 0 (0–.29) 24 (20–31)

UPPS-P Negative U. .78 (.63–.88) 0.22 (0.18–0.29)

Premeditation .88 (.78–.93) 0.14 (0.12–0.18)

Perseverance .90 (.81–.94) 0.18 (0.14–0.23)

Sensation Seek. .91 (.83–.95) 0.16 (0.13–0.20)

Positive U. .85 (.67–.93) 0.20 (0.17–0.26)

RT reaction time, UPPS-P impulsive behavior scale, SNARC Spatial-Numerical Association of Response Code
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Fig. 4 Relative size of variance components for reaction time (RT) mea-

sures in Studies 1 and 2 (A: Total N=99–104) and Study 3 (B: N=40). The

size of the bar is normalized for the total amount of variance in the

measure (see Supplementary Material E), and subdivided into variance

accounted for by differences between participants (white), variance

accounted for by differences between sessions (e.g., practice effects,

gray), and error variance (black). The intraclass correlation (ICC) reflects

the proportion of the total variance attributed to variance between indi-

viduals, and is printed above each bar. SSD Stop-Signal Delay,SSRT Stop-

Signal Reaction Time, SNARC Spatial-Numerical Association of

Response Code

Table 3 Spearman’s rho correlations between measures of response control. Data are combined across Study 1 and 2 (total N = 99–104), and averaged

across sessions 1 and 2. Correlations significant at p<.05 are highlighted

Flanker RT cost Flanker Error cost Stroop RT cost Stroop Error cost Go/no-go Com.

Flanker RT cost

Flanker Error cost .29**

Stroop RT cost .14 -.14

Stroop Error cost -.10 -.01 .28**

Go/no-go Com. -.14 .18 -.14 .05

SSRT Int. -.14 .14 -.06 -.01 .52***

***p<.001

**p<.01

*p<.05

RT reaction time, Go/no-go Com. commission errors in the go/no-go task, SSRT Int. stop signal reaction time calculated using the integration method

1176 Behav Res (2018) 50:1166–1186



power. In order to examine the impact of reliability, in Table 4,

we also estimated the dissatenuated correlation coefficients

using Spearman’s (1904) formula:

}True}correlation x; yð Þ ¼
Samplecorrelation x; yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Reliability xð Þ:Reliability yð Þ
p

Spearman noted that the correlation that is observed be-

tween two measures will be attenuated (weakened) by mea-

surement error. Assuming that the reliability coefficient re-

flects the noise in each measure individually, he proposed

the disattenuation formula as a means to Bcorrect^ the corre-

lation obtained from a sample. As the formula depends on

sample estimates of the correlation and reliabilities, it is itself

an estimate, and not intended here for inference (for

discussions of interpretative issues, see Muchinsky, 1996;

Winne & Belfry, 1982). We present them to illustrate the im-

pact of reliability on theoretical conclusions, especially when

using the traditional approach of statistical thresholds, though

the attenuation of effect sizes is not unique to the null hypoth-

esis significance testing framework. For ease of comparison,

correlations significant at p<.05 are highlighted.

Focusing first on the observed correlations in Table 3 there

is little support for a relationship between these measures.

Consistent with some observations (Reynolds, Ortengren,

Richards, & de Wit, 2006), though inconsistent with others

(Aichert et al., 2012), we observed a strong correlation be-

tween SSRT and commission errors on the go/no-go task.

Otherwise, if we were making a dichotomous decision as to

whether different response control tasks were related, we

would fail to reject the null hypothesis by traditional

standards.

The disattenuated correlations in Table 4 paint a somewhat

different picture. Note that the dissatenuated correlation will

always be higher than the observed correlations when the

reliabilities are less than one. The increase in the correlations

in Table 4 is therefore unsurprising. If we apply the same

statistical thresholds however, the dissatenuated correlations

lead us to different qualitative conclusions about the relation-

ships between measures. Note that not all of these

relationships are consistent with a single underlying response

control construct. For example, whereas SSRT shows a posi-

tive correlation with flanker error costs, it shows a negative

correlation with flanker RT costs. These may suggest other

factors moderating the relationships between these measures,

such as speed-accuracy trade-offs that carry some consistency

across tasks.

For reference, we include the raw and disattenuated corre-

lations for the measures used in Study 3 in the Supplementary

Material F.

Discussion

Across many research, educational, or clinical contexts, when

finding a group level effect, it is often theoretically meaningful

to ask what factors of the individual predict effectiveness. It is

not intuitive, and rarely discussed, that such questions may be

at odds with each other because one requires low and one

requires high variability between individuals (Rogosa,

1988), even though the statistical issues have been long

known. The challenges highlighted by our data are also cause

to reflect upon the way in which researchers evaluate para-

digms for this purpose; it should not be assumed that robust

experimental paradigms will translate well to correlational

studies. In fact, they are likely to be sub-optimal for correla-

tional studies for the same reasons that they produce robust

experimental effects. Our findings, as well as observations

from elsewhere in the literature, indicate that this challenge

currently exists across most domains of cognitive neurosci-

ence and psychology (De Schryver, Hughes, Rosseel, & De

Houwer, 2016; Hahn et al., 2011; Lebel & Paunonen, 2011;

Ross et al., 2015). We discuss the practical and theoretical

implications of this below, including the way in which sub-

optimal reliabilities should be interpreted; the extent to

which these problems generalize to other populations;

and the challenge this poses to resource intensive research

such as neuroimaging, where it is not easy just to increase

participant numbers.

Table 4 Disattenuated Spearman’s rho correlations betweenmeasures of response control. Correlations that would be significant at p<.05 (N=100) are

highlighted

Flanker RT cost Flanker Error cost Stroop RT cost Stroop Error cost Go/no-go Com.

Flanker RT cost

Flanker Error cost .50*

Stroop RT cost .25* -.21*

Stroop Error cost -.20* -.02 .51*

Go/no-go Com. -.22* .25* -.21* .09

SSRT Int. -.31* .26* -.11 -.03 .90*

RT reaction time, Go/no-go Com. commission errors in the go/no-go task, SSRT Int. stop signal reaction time calculated using the integration method

Behav Res (2018) 50:1166–1186 1177



Translating experimental effects to correlational

studies

The reliability of a measure is an empirical question and a

prerequisite for effective correlational research. Clearly

reliability cannot be assumed on the basis of robustness

in within-subject contexts. Success in within-subject con-

texts does not necessarily exclude a task from consider-

ation in individual differences contexts, or vice versa.

Hypothetically, an effect could produce reliable between-

subject variation, but also a mean difference large enough

so that it can be consistently reproduced across different

samples. However, the reliabilities of many the measures

reported here, spanning the domains of attention, cogni-

tive control, and processing style, are much lower than

most researchers would expect, and fall short of outlined

standards (Barch et al., 2008; Cicchetti & Sparrow, 1981;

Fleiss, 1981; Landis & Koch, 1977). There are direct im-

plications of this for initiatives recommending and

employing some of the measures we evaluated (e.g., the

Stroop and stop-signal tasks; Barch, Braver, Carter,

Poldrack, & Robbins, 2009; Hamilton et al., 2015), and

for the way in which experimental tasks are evaluated for

this purpose in the future.

It is important to emphasize that these results do not

indicate that these paradigms are not replicable, valid, or

robust measures of their respective constructs. For exam-

ple, the global precedence effect from the Navon task was

highly robust, and generally of a similar magnitude in

each session of each study. It also does not preclude the

use of these tasks for examining between-group differ-

ences in experimental designs. The difference between

group means may be sufficiently large so as to be detect-

able, for example, if one or both groups are located at

extreme points on the continuum. Rather, our results sug-

gest that these measures do not consistently distinguish

between individuals within a population. Such difficulties

with inter-task correlations and reliability have been

discussed previously in studies of executive functioning,

in the context of the Btask impurity^ problem (Friedman

& Miyake, 2004; Miyake et al., 2000). Individual differ-

ences in a given task will likely capture only a subset of

Bexecutive functions,^ in addition to domain specific

mechanisms. Moreover, as Cronbach (1957) highlighted,

the goal of the experimentalist is to minimize individual

differences, and many of the tasks we examine come orig-

inally from this tradition. As a result, these tasks may tap

in to aspects of executive functioning that are relatively

consistent across individuals compared to those that dif-

ferentiate between them.

In noting that measures are constructed to achieve dif-

ferent aims in experimental and correlational research, we

can also consider whether it is problematic to attempt to

experimentally manipulate behavior on measures con-

structed to reliably measure individual differences. For

example, self-report measures such as the UPPS-P are

developed with the explicit purpose of assessing stable

traits (Whiteside & Lynam, 2001), such that they should

be purposefully robust to natural or induced situational

variation. Nevertheless, some studies have looked at the

UPPS-P dimensions as outcome variables, for example, in

a longitudinal study on alcohol use (Kaizer, Bonsu,

Charnigo, Milich, & Lynam, 2016). As noted previously,

whether a measure is effective for a given aim is an em-

pirical question, though we believe these broader consid-

erations can provide useful guidance.

Difficulties with difference scores

Statistical concerns regarding the reliability of difference

scores in correlational research have been noted previous-

ly (Caruso, 2004; Cronbach & Furby, 1970; Lord, 1956).

Generally speaking, the difference between two measures

is less reliable than the individual measures themselves

when the measures are highly correlated and have similar

variance (Edwards, 2001; Rogosa, 1988, 1995; Willet,

1988; Zimmerman & Williams, 1998; Zumbo, 1999). In

part, this reflects the propagation of error from two com-

ponent measures to the composite score, but the main

reason is that any subtraction that successfully reduces

between-participant variance (and thus reduces Berror,^

as defined in experimental research) is likely to increase

the proportion of measurement error relative to between-

participant variance (see Fig. 4). In within-subject de-

signs, we often subtract a baseline of behavioral perfor-

mance or neural activity precisely because we expect

strong correlations between participants’ performance in

multiple conditions, and thus by definition the subtraction

will reduce between participant variance relative to error

variance. There are notable exceptions in our data with

the Flanker and Navon task error scores. Errors in con-

gruent trials in these tasks are uncommon, and there is

little variation in the baseline. As such, the difference

score primarily reflects incongruent errors. The same is

not true of RTs, where individuals strongly co-vary in

their responses to congruent and incongruent trials.

However, it does not follow that tasks without differ-

ence scores are preferable. In principle, subtracting a

baseline measure in order to control for unwanted

between-participant variance is not at odds with the goal

of examining individual differences in performance on

that task. After all, one wants to measure individual dif-

ferences in a specific factor, not just obtain any between-

participant variance. For example, simple and choice RTs

correlate with measures of general intelligence (Deary,
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Der, & Ford, 2001; Jensen, 1998). Omitting the baseline

subtraction from a task could produce between-task cor-

relations for this reason, but would not aid our under-

standing of the specific underlying mechanism(s).

The impact of reliability on statistical power –

is Bgood^ good enough?

The past decade has seen increasing attention paid to the

failure of the biomedical sciences to always appropriately

consider statistical power (Button et al., 2013b; Ioannidis,

2005). Reliability is a crucial consideration for power in

correlational research, and the importance of reliable mea-

surement has been emphasized in many landmark psycho-

metric texts (e.g., Guilford, 1954; Gulliksen, 1950;

Nunnally, 1970). Despite this, there are no definitive

guidelines for interpreting reliability values (Crocker &

Algina, 1986). While .6 is nominally considered good

by commonly cited criteria (Cicchetti & Sparrow, 1981;

Fleiss, 1981; Landis & Koch, 1977), more conservative

criteria have been given as a requirement for the use of

cognitive tasks in treatment development, citing a mini-

mum of .7 and optimal value of .9 (Barch et al., 2008).

Nevertheless, it has been argued that the issue of reliabil-

ity has been somewhat trivialised in contemporary person-

ality research, with one review noting that B…researchers

almost invariably concluded that their stability correla-

tions were ‘adequate’ or ‘satisfactory,’ regardless of the

size of the coefficient or the length of the retest interval.^

(Watson, 2004, p.326). Researchers might also assume

that RT-based measures are inherently more noisy than

self-report (e.g., Lane, Banaji, Nosek, & Greenwald,

2007), and that holding all measures to a clinical standard

is overly restrictive (Nunnally, 1978). While there may be

some truth to these positions, it does not preclude consid-

eration of the implications of poor reliability.

An immediate consequence of a failure to consider

reliability in correlational studies is that effect sizes will

generally be underestimated. If a researcher conducts an

a priori power analysis without factoring in reliability,

they bias themselves towards finding a null effect. A less

intuitive consequence is that the published literature can

overestimate effects (Loken & Gelman, 2017). Though

on average correlation estimates are attenuated by mea-

surement error, noise can also produce spuriously high

correlations on occasion. When spuriously high estimates

are selected for by a bias to publish significant findings

the average published correlation becomes an overesti-

mate. In combination, these factors are challenges to

both reproducibility and theoretical advancement.

Consideration of reliability is not completely absent

from the cognit ive and imaging li terature (e.g. ,

Salthouse, McGuthry, & Hambrick, 1999; Shah, Cramer,

Ferguson, Birn, & Anderson, 2016; Yarkoni & Braver,

2010). However, our informal discussions with colleagues

and peers suggest that it is not routine to factor reliability

estimates into power analyses, and it is exceedingly rare

to see this reported explicitly in published power calcula-

tions. It is also potentially problematic that researchers

tend to underestimate the sample sizes necessary to detect

small effects (Bakker, Hartgerink, Wicherts, & van der

Maas, 2016). To illustrate these issues concretely,

Table 5 shows some numerical examples of the impact

of different reliabilities on sample size calculations. This

compares the sample size required for the assumed under-

lying correlation with that required for the attenuated cor-

relation. This calculation, sometimes attributed to

Nunnally (1970), rearranges Spearman’s (1904) correction

for attenuation formula that we applied earlier:

r measure A; measure Bð Þ ¼ r true A; true Bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

reliability Measure Að Þreliability Measure Bð Þ
p

Two things are apparent from Table 5. First, the mag-

nitude of reliability for a measure has a substantial impact

on required sample sizes. Even for reliability nominally

considered to be Bgood^ (>.6) by commonly cited criteria

(Cicchetti & Sparrow, 1981; Fleiss, 1981; Landis & Koch,

1977), the required sample sizes are about three times

higher than what would be specified if reliability had

not been taken in to account. Second, even with moderate

(r = .3) true effect sizes assumed, the sample sizes

required greatly exceed those typically used in most cog-

nitive and neurophysiological research.

Challenges for cognitive neuroscience and clinical

research

Though the required sample sizes indicated in Table 5 are not

insurmountable in all research contexts, they are particularly

challenging for areas that are resource intensive, or access to
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participants is difficult. Concerns about measurement reliabil-

ity has also been raised in neuroimaging (e.g., Bennett &

Miller, 2010; Mikkelsen, Singh, Sumner, & Evans, 2015;

Vul, Harris, Wimkielman, & Pashler, 2009; Wang, Abdi,

Bakhadirov, Diaz-Arrastia, & Devous, 2012). For example,

it has been estimated that the average reliability of voxel-

wise blood-oxygen-level-dependent functional magnetic res-

onance imaging is .5 (Bennett & Miller, 2010). This is similar

to the average of the estimates for our behavioral measures

(.45). Assuming reliabilities of .5 for both measures and a

large (R= .5) Btrue^ underlying correlation, a sample size of

123 would be required to adequately power correlations be-

tween cognition and functional imaging. Such sample sizes

are rare, including in our own previous work (Boy, Evans,

et al., 2010; see also Yarkoni and Braver, 2010).

Given the prohibitive time and costs of behavioral, imag-

ing, and neuropsychological studies, one might question the

utility of pursuing individual differences research. It has been

argued that it is not optimal to pursue large sample sizes in

neuroimaging because effects that require large samples are

not sufficiently large to be of practical or theoretical impor-

tance (Friston, 2012, though see commentaries; Button et al.,

2013a; Friston, 2013; Ingre, 2013; Lindquist, Caffo, &

Crainiceanu, 2013). The extent to which an effect size is con-

sidered meaningful will vary according to the research ques-

tion, though there is little guidance on what our normative

expectations should be. A recent meta-analysis of 708

correlations in personality and behavioral research observed

that <3% of effects were large by Cohen’s (1988) commonly

cited criteria of .5, and 75% of effects were .29 and below

(Gignac & Szodorai, 2016). There is certainly a higher range

of effect sizes reported in imaging studies (e.g., Vul et al.,

2009), though it is likely that these are inflated by the preva-

lence of small samples, publication bias and questionable re-

search practices (Button et al., 2013b; John, Loewenstein, &

Prelec, 2012). Therefore, we believe that the effect sizes and

sample sizes reported in Table 5 are representative, even op-

timistic, for the ranges common to most research questions.

Measurement error or state-dependence

We have largely discussed issues of task construction and

measurement. An alternative possibility is that participants

simply fluctuate in their ability to perform these tasks over

time and contexts. There is evidence, for example, that

SSRTs are sensitive to strategic changes (Leotti & Wager,

2010), and that SSRTs and go/no-go performance are

disrupted by alcohol (e.g., Caswell, Morgan, & Duka, 2013;

de Wit, Crean, & Richards, 2000; Dougherty, Marsh-Richard,

Hatzis, Nouvion, & Mathias, 2008; Mulvihill, Skilling, &

VogelSprott, 1997; Weafer & Fillmore, 2008), indicating that

performance on these tasks is not impermeable.

Nevertheless, there is evidence for stability for some tasks

in our data. Low ICCs in a homogenous sample are not nec-

essarily indicative of substantial changes in performance. The

low SEMs in the flanker RT cost indicate that participants

generally perform the task similarly in both sessions, even

though the relative ranking between individuals is not consis-

tent. Further, if the low ICCs we observe were primarily due to

variation in psychological or physiological factors over the

course of 3 weeks, we might expect high reliabilities when

comparing performance in the first half of each session to the

second half, or comparing odd and even numbered trials.

However, these within-session reliabilities (Supplementary

Material G) show similarly sub-optimal reliability for the

key measures (see also Khng & Lee, 2014). An exception to

this is the stop-signal reaction time, where the odd vs. even

trial comparison produces estimates between .82 and .89 for

the integration method. This is likely in part because the track-

ing procedure used will produce a high reliability for the SSD

when taking alternating trials.

We would generally expect measurements taken closely

together in time to yield higher estimates of reliability than

those taken at more distant points, even within a single testing

session. However, there are sources of variance outside the

construct of interest that could increase or decrease reliability

estimates. Time-series analysis of RTs suggests that there is a

Table 5 The relationship between the true correlation, reliabilities, and

observable correlation in two variables. The BTrue r^ is the correlation we

would expect to observe given a reliability of 1 for both measures. The BN

true^ is the sample size that would be required to observe the underlying

effect, which is what is normally reported from power calculations. The

BObservable r^ is the expected correlation after accounting for reliability,

corresponding to a recalculated sample size requirement (N obs.). Power

calculations were performed usingG*Power (Faul, Erdfelder, Buchner, &

Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007), assuming α = .05

and β = .8

Reliability

True r Measure A Measure B Observable r N true N obs.

.7 .8 .8 .56 13 22

.7 .6 .6 .42 13 42

.7 .4 .7 .37 13 55

.5 .8 .8 .4 29 46

.5 .6 .6 .3 29 84

.5 .4 .7 .26 29 113

.3 .8 .8 .24 84 133

.3 .6 .6 .18 84 239

.3 .4 .7 .16 84 304
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correlation between the speeds of consecutive responses given

by an individual, which decreases as the number of interven-

ing trials increases (Gilden, Thornton, & Mallon, 1995;

Wagenmakers, Farrell, & Ratcliff, 2004). Estimates compar-

ing odd to even numbered trials may appear to be more reli-

able because they encompass such short-scale fluctuations.

Alternatively, factors such as practice effects or fatigue may

decrease reliability by increasing measurement error, or by

producing systematic shifts in performance between measure-

ment points (e.g., individuals being slower in the second half

of trials compared to the first). The analyses we conduct in

Supplementary Materials D and G explore these as possible

reasons for the sub-optimal reliabilities that we observed.

Taken together, these suggest that the key issue is simply that

individuals do not differ enough from one another to reliably

overcome measurement fluctuations.

Generalizability of findings to other populations.

If between-participant variance differs markedly between pop-

ulations, the population with higher variance will show higher

reliability, unless measurement noise increases proportionally.

We used a (predominantly female) student sample, who might

show restricted variance compared to a general population.

However, our comparisons indicate that they have similar levels

of variability to samples taken from a general population, which

also did not show consistently higher reliability estimates (see

Supplementary Material C1 and C2). Further, the components

of UPPS-P, a self-report measure of impulsivity, showed reli-

abilities between .7–.9, indicating that reliable measurement is

attainable in a student sample on measures designed to differ-

entiate between individuals. Finally, examples of sub-optimal

reliability for robust within-subject effects are not limited to

student samples (e.g., attention networks in schizophrenic

patients and healthy controls; Hahn et al., 2011). Therefore,

the issues we discuss are likely to generalize to other samples.

Though our sample sizes are larger than many previous

retest reliability studies of these tasks, it has been argued that

samples approaching 250 are necessary for a stable estimate of

the (Pearson’s) correlation effect size (Schonbrodt & Perugini,

2013). Using simulations, they defined stability as the point at

which the Bobserved^ correlation did not deviate from a spec-

ified window (±.1) around the Btrue^ effect with the addition

of more data points. However, the point of stability is depen-

dent on the size of the underlying correlation, and the degree

of uncertainty one is willing to accept. For example, assuming

a confidence (power) level of 80% and a population correla-

tion of R = .7, the point of stability for a window of ±.15 was

N=28. Therefore, ICCs as low as the ones we observe are

unlikely if the population ICC is excellent.

The student population we used is typical of most cognitive

and imaging studies, but regardless of population, the main

points of this paper will remain true: experimental designs aim

to minimize between-subject variance, and thus successful

tasks in that context should be expected to have low reliability;

taking reliability into account could entirely change theoreti-

cal inferences from correlational structure.

Future directions and recommendations

Our consideration of reliability issues form part of a broader

concern that studying individual differences is challenging for

laboratory-based research, particularly in resource-intensive

contexts such as neuroimaging. With these global issues in

mind, we discuss approaches that could help to optimize re-

search designs using cognitive tasks. Note that although the

majority of discussion focuses on analysis methods, one

should not expect to create inter-subject variability from a task

that is designed to produce homogenous performance.

Researchers should bemindful of these properties at the stages

of task design/selection and power analysis. For several of

these approaches, it is undetermined or untested whether they

improve reliability estimates for the contexts we focus on

here, though some have shown promise in other areas.

Alternative measurement approaches The independent ex-

amination of mean RTs or mean error rates belies the richness

of the data provided bymany behavioral tasks. The practice of

considering RT and errors costs as independent and inter-

changeable measures of performance has been questioned in

several areas (e.g., Draheim, Hicks, & Engle, 2016; Ratcliff &

Rouder, 1998; Wickelgren, 1977). In the domain of task

switching, it has been suggested that composite scores of RT

costs and error rates are better able to predict performance in a

working memory task than RT costs alone (Draheim et al.,

2016; Hughes, Linck, Bowles, Koeth, & Bunting, 2014).

Further, Hughes et al. observed higher within-session reliabil-

ities for composite RT-accuracy scores, relative to RT costs or

accuracy costs in isolation, but only when using a response

deadline procedure.

Alternatively, mathematical models of decision making

such as the drift-diffusion model (Ratcliff, 1978; Ratcliff &

Rouder, 1998; Ratcliff, Smith, Brown, & McKoon, 2016)

decompose RTand accuracy into parameters thought to reflect

decision processes. The combination of modelling techniques

with imaging methods has also been discussed (Forstmann,

Ratcliff, & Wagenmakers, 2016; Forstmann &Wagenmakers,

2015). Recently, Lerche and Voss (2017) observed that the

retest reliability of key diffusionmodel parameters was similar

to that of overall accuracy and mean RT in lexical decision,

recognition memory, and an associative priming task.

However, the parameters they extracted reflect processes

(e.g., information processing speed) in individual conditions

or across conditions, rather than a within-subject effect anal-

ogous to an RT cost. It is possible to create difference scores
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from model parameters, though these may be subject to the

same statistical issues noted previously. Thus, while there may

be theoretical value in such modelling approaches, whether

they improve reliability estimates for experimental effects is

an open question.

Another suggested alternative to difference scores is to use

residualized differences (Cronbach & Furby, 1970; DuBois,

1957; Friedman & Miyake, 2004). This entails a regression

approach in which scores in the baseline condition (e.g., con-

gruent RT) are used to predict incongruent RTs, and an indi-

vidual’s residual from their predicted value is taken as the

index of performance. Residualized scores show improved

reliability over standard difference scores in some situations,

though their interpretation is not straightforward (for a review,

see Willet, 1988). Evaluating the theoretical strengths and

weaknesses of all these approaches is beyond the scope of

the current paper. From a methodological perspective, the re-

liability of any composite measure or modelled parameter will

not be perfect, and thus needs to be empirically measured and

accounted for.

Alternative statistical approaches In our reliability analyses,

we adopted the ANOVA-based approach to estimating com-

ponents of variance (McGraw & Wong, 1996; Shrout &

Fleiss, 1979). This is perhaps the most commonly used meth-

od in psychology, produced by popular packages such as

SPSS. Variance components can alternatively be estimated

via the use of linear mixed-effects (LMMs) and generalized

linear mixed-effects models (GLLMs; Nakagawa &

Schielzeth, 2010). These models allow greater flexibility in

dealing with distributional assumptions and confounding var-

iables. Structural equation models have also grown increas-

ingly popular in psychology (Anderson & Gerbing, 1988) as a

method to examine relationships between constructs theorized

to underlie observable behaviors (Anderson & Gerbing,

1988). Factor analysis and structural equation modelling have

been used previously to examine commonality among re-

sponse inhibition and executive functioning tasks (see, e.g.,

Aichert et al., 2012; Friedman & Miyake, 2004; Stahl et al.,

2014). An attractive feature of this approach is they allow for

measurement error to be modelled separately from variance

shared between measures. Latent variable models have also

been applied to reliability estimates in the form of latent state-

trait models. (Newsom, 2015; Steyer, Schmitt, & Eid, 1999;

Steyer & Schmitt, 1990). They typically use data from three or

more sessions, and can dissociate variance that is stable across

sessions from session specific and residual (error) variance.

Notably, one study has also applied this approach to the pa-

rameters of the drift-diffusion model derived from multiple

tasks (Schubert, Frischkorn, Haemann, & Voss, 2016). A lim-

iting factor is that structural equation models typically require

large samples, with suggestions typically falling in the 100s

(c.f. Wolf, Harrington, Clark, & Miller, 2013). This, in

addition to the time required to administer multiple tasks or

sessions, may make the approach infeasible for many re-

searchers. Finally, Item Response Theory (IRT; see, e.g.,

Hambleton, Swaminathan, & Rogers, 1991; Lord & Novick,

1968) has arguably superseded classical test theory in educa-

tional testing. The goal of IRT is to characterize the relation-

ship between typically a single latent trait (e.g., maths ability)

and the probability of a binary response (e.g., correct or incor-

rect) on individual test items. The resulting item response

curve captures both the location of each item with respect to

the latent trait (i.e., its difficulty), and the sensitivity of the

item to differing levels of ability (i.e., its slope). Though not

easily applicable to the current format of most experimental

tasks, the contribution of IRT to educational testing is notable

if constructing new tests for the purposes of cognitive and

clinical measurement.

Interactions in experimental designs In addition to factoring

reliability into power calculations as detailed above, within-

subject designs can be used to examine associations and dis-

sociations between measures. For example, the absence of

correlations in our data between SSRT and the Stroop task

implies no relationship between performance in these tasks.

In contrast, shared mechanisms have been implicated in ex-

perimental studies that have combined the tasks, where Stroop

stimuli are used in place of the typical two choice stimuli used

in the SST (Kalanthroff, Goldfarb, & Henik, 2013;

Verbruggen, Liefooghe, & Vandierendonck, 2004).

Verbruggen et al. observed longer SSRTs on incongruent trials

relative to neutral trials, suggesting that the mechanisms un-

derlying the resolution of conflict between stimuli overlaps

with the mechanisms underlying response inhibition in the

SST. Within-subject designs may be more appropriate to ex-

amine interactions and dissociations between underlying

mechanisms when individual differences per se are not the

primary focus (for further examples in cognitive control and

other areas, see, e.g., Awh, Vogel, & Oh, 2006; Boy, Husain,

et al., 2010; Hedge, Oberauer, & Leonards, 2015).

Conclusions

In concluding their prominent discussion of the reliability of

difference scores, Cronbach and Furby (1970) offered the ad-

vice, BIt appears that investigators who ask questions regard-

ing gain scores would ordinarily be better advised to frame

their questions in other ways^ (p. 80). This damning statement

has been qualified in subsequent work (Rogosa, 1988;

Zimmerman & Williams, 1998; Zumbo, 1999), though as il-

lustrated by our findings, robust experimental effects do not

necessarily translate to optimal methods of studying individ-

ual differences. We suggest that this is because experimental

designs have been developed and naturally selected for

1182 Behav Res (2018) 50:1166–1186



providing robust effects, which means low between-

participant variance. Cronbach (1957) called for a bridging

of the gap between experimental and correlational research

in psychology, and we support this goal. However, our find-

ings suggest more caution is required when translating tools

used to understand mechanisms in one context to the other.
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