
IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 1

The Reliability Wall for Exascale
Supercomputing

Xuejun Yang, Member, IEEE , Zhiyuan Wang,
Jingling Xue, Senior Member, IEEE , and Yun Zhou

Abstract—Reliability is a key challenge to be understood to turn the vision of exascale supercomputing into reality. Inevitably,
large-scale supercomputing systems, especially those at the peta/exascale levels, must tolerate failures, by incorporating fault-
tolerance mechanisms to improve their reliability and availability. As the benefits of fault-tolerance mechanisms rarely come
without associated time and/or capital costs, reliability will limit the scalability of parallel applications.
This paper introduces for the first time the concept of “Reliability Wall” to highlight the significance of achieving scalable
performance in peta/exascale supercomputing with fault tolerance. We quantify the effects of reliability on scalability, by proposing
a reliability speedup, defining quantitatively the reliability wall, giving an existence theorem for the reliability wall, and categorizing
a given system according to the time overhead incurred by fault tolerance. We also generalize these results into a general
reliability speedup/wall framework by considering not only speedup but also costup. We analyze and extrapolate the existence
of the reliability wall using two representative supercomputers, Intrepid and ASCI White, both employing checkpointing for fault
tolerance, and have also studied the general reliability wall using Intrepid. These case studies provide insights on how to mitigate
reliability-wall effects in system design and through hardware/software optimizations in peta/exascale supercomputing.

Index Terms—fault tolerance, exascale, performance metric, reliability speedup, reliability wall, checkpointing.

�

1 INTRODUCTION

IN these past decades, the performance advances
of supercomputers have been remarkable as their

sizes are scaled up. Some fastest supercomputers
crowned in the TOP500 supercomputing list in the
past decade are ASCI White in 2000, an IBM SP
(Scalable POWERparallel) cluster system consisting
of 8,192 cores with an Rpeak of 12 TeraFlops, Blue
Gene/L in 2005, an IBM MPP system consisting
of 131,072 cores with an Rpeak of 367 TeraFlops,
and Tianhe-1A in 2010, currently the world’s fastest
PetaFlop system, a NUDT YH MPP system consisting
of 186,368 cores with an Rpeak of 4.701 PetaFlops.
Therefore, scalable parallel computing has been the
common approach to achieving high performance.

Despite these great strides made by supercomput-
ing systems, much of scientific computation’s poten-
tial remains untapped “because many scientific chal-
lenges are far too enormous and complex for the com-
putational resources at hand” [1]. Planned exascale
supercomputers (capable of an exaflop, 103 petaflops,
or 1018 floating point operations per second) in this
decade promise to overcome these challenges by

• X. Yang, Z. Wang and Y. Zhou are with the School of Computer, Na-
tional University of Defense Technology, ChangSha, Hunan, 410073,
China.
E-mail: {xjyang, zy vxd}@nudt.edu.cn and
wang zhiyuan17@yahoo.com.cn

• J. Xue is with the School of Computer Science and Engineering,
University of New South Wales, Australia.
E-mail: jingling@cse.unsw.edu.au

a revolution in computing at a greatly accelerated
pace [2]. However, exascale supercomputing itself
faces a number of major challenges, including technol-
ogy, architecture, power, reliability, programmability,
and usability. This research addresses the reliabil-
ity challenge when building scalable supercomputing
systems, particularly those at the peta/exascale levels.

The reliability of a system is referred to as the
probability that it will function without failure under
stated conditions for a specified amount of time [3].
MTTF (mean time to failure) is a key reliability metric. It
is generally accepted in the supercomputing commu-
nity that exascale systems will have more faults than
today’s supercomputers do [4], [5] and thus must han-
dle a continuous stream of faults/errors/failures [6].
Thus, fault tolerance will play a more important role
in the future exascale supercomputing.

While many fault-tolerance mechanisms are avail-
able to improve the reliability of a system, their bene-
fits rarely come without time and/or capital costs. For
example, checkpointing [7], [8] improves system relia-
bility but incurs the additional time on saving check-
points and performing rollback-recovery (as well as
the capital cost associated with the hardware used).
According to some projections [9] made based on ex-
isting technologies, the time spent on saving a global
checkpoint may reach or even exceed the MTTF of a
system when the system performance sits between the
petascale and exascale levels. Therefore, reliability will
inhibit scalability in peta/exascale supercomputing.

In this research, we analyze and quantify the effects
of reliability, which is realized at the extra time and

.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 2

dollar cost induced by fault tolerance, on the scalabil-
ity of peta/exascale supercomputing. Our case studies
provide insights on how to mitigate reliability-wall
effects when building reliable and scalable parallel
applications and parallel systems at the peta/exascale
levels.

The main contribution are summarized below:
• We introduce for the first time the concept of

“Reliability Wall”, thereby highlighting the sig-
nificance of achieving scalable performance in
peta/exascale supercomputing with fault toler-
ance.

• For a fault-tolerant system, we present a relia-
bility speedup model, define quantitatively the
reliability wall, give an existence theorem of the
reliability wall, and categorize it according to
the time overhead induced by fault tolerance
(Section 3).

• We generalize our results to obtain a general relia-
bility speedup model and to quantify the general
reliability wall for a system when the dollar cost
induced by the fault-tolerance mechanism used is
also taken into account, by considering simulta-
neously both speedup and costup [10] (Section 4).

• We conduct a series of case studies using two
real-world supercomputers, Intrepid and ASCI
White, both employing checkpointing, the pre-
dominant technique for fault tolerance used in
practice (Sections 5.1 – 5.3). Intrepid is an IBM
Blue Gene/P MPP system while ASCI White
is an IBM SP cluster system, with both being
representatives of the majority of the TOP500
list. As exascale systems do not exist yet, we
use these two supercomputing systems to verify,
analyze and extrapolate the existence of the (gen-
eral) reliability wall for a number of system con-
figurations, depending on whether checkpoint-
ing is full-memory or incremental-memory and
whether I/O is centralized or distributed, as the
systems are scaled up in size. Furthermore, we
show that the checkpoint interval optimization
does not affect the existence of the (general)
reliability wall.

• We describe briefly how to apply our reliability-
wall results to mitigate reliability-wall effects in
system design (e.g., on developing fault tolerance
mechanisms and I/O architectures) and through
hardware/software optimizations in supercom-
puting, particularly peta/exascale supercomput-
ing (Section 5.4).

2 RELATED WORK

Supercomputing systems have mainly relied on
checkpointing for fault tolerance. As this paper rep-
resents the first work on quantifying the Reliability
Wall for supercomputing systems based on a new
reliability speedup model, we review below the prior

work on speedup and costup modeling and on check-
pointing techniques.

2.1 Speedup and Costup
Speedup has been almost exclusively used for mea-
suring scalability in parallel computing, such as Am-
dahl’s speedup, Gustafson’s speedup or memory-
bounded speedup [11], [12], [13], [14]. These models
are concerned only with the computing capability of
a system.

Amdahl proposed a speedup model for a fixed-size
problem [11]:

SP,Amdahl =
P

1 + f(P − 1)
(1)

where P is the number of processors and f is the serial
part of the program. Interestingly, Amdahl’s speedup
argues against the usefulness of large-scale parallel
computing systems.

To overcome the shortcomings of Amdahl’s
speedup model, Gustafson [12] presented a scaled
speedup for a fixed-time problem, which scales up the
workload with the increasing number of processors in
such a way as to preserve the execution time:

SP,Gustafson = f + P (1 − f) (2)

Later, Wood and Hill considered a costup metric
[10]:

C =
CP

C1
(3)

where CP is the dollar cost of a P -processor parallel
system and C1 is the dollar cost of a single-processor
system. They argued that parallel computing is cost-
effective whenever speedup exceeds costup.

In this work, we have developed our reliability
wall framework based on these existing speedup and
costup models.

2.2 Fault-Tolerant Techniques
A plethora of fault-tolerance techniques have been
proposed to improve the reliability of parallel com-
puting systems. We consider software solutions first
and then hardware solutions.

Of many software techniques developed for fault
tolerance, checkpointing has been the most popular
in large-scale parallel computing. Checkpointing can
occur at the operating system level or the application
level. In the first approach, system-level checkpoint-
ing [15], [16] only requires the user to specify a
checkpoint interval, with no additional programmer
effort. On the other hand, application-level check-
pointing [17], [18], [19] requires the user to decide
the placement and contents of the checkpointing. This
second approach requires more programmer effort
but provides the user an opportunity to place check-
points in such a way that checkpoint contents and



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 3

checkpointing time are reduced. In order to combine
the best of these two approaches, compiler-assisted
checkpointing [20], [21], [22], once coupled with
application-level checkpointing, can provide a certain
degree of transparency to the user. Our case studies
focus on system-level checkpointing techniques. By
checkpointing, we mean system-level checkpointing
from now on unless indicated otherwise.

Saving the states for thousands of processes at a
checkpoint in a system can result in a heavy demand
on the underlying I/O and network resources, ren-
dering this part of the system a performance bottle-
neck. To alleviate this problem, many checkpointing
optimizations have been considered. Instead of full-
memory checkpointing, which involves saving the
entire memory context of a process at a checkpoint,
incremental-memory checkpointing opts to save only
the dirty pages, i.e., the ones that have been modi-
fied since the last checkpoint [23]. Thus, incremental-
memory checkpointing can reduce the amount of
memory contexts that need to be saved, especially
for large systems. In our case studies discussed in
Section 5, both types of checkpointing techniques are
considered.

In diskless checkpointing [24], [25], each processor
makes local checkpoints in local memory (or local
disk), eliminating the performance bottleneck of tra-
ditional checkpointing. Some form of redundancy is
maintained in order to guarantee checkpoint availabil-
ity in case of failures. However, diskless checkpoint-
ing doubles the memory occupation and may not be
well suited to exascale supercomputing [4].

Fault tolerance at the hardware level has been
achieved mostly through redundancy or replication of
resources, either physically (as in RAIDed disks [26]
and backup servers) or information-wise (as in ECC
memory [27], parity memory [28] and data replica-
tion [29]). In the case of N modular redundancy [30],
for example, N systems perform a common operation
and their results are processed by a voting system
to produce a single output, at the cost of employing
N −1 redundant duplicate copies. In data replication,
data are copied into a local node from remote nodes
to facilitate local rather than remote reads, improv-
ing the overall system performance. Due to data
redundancy, data replication may also improve the
reliability of communication, at the cost of additional
storage space.

In summary, the overhead introduced by a fault-
tolerance mechanism includes both a time component
and a dollar cost component, limiting scalability as
the system size is scaled up. Below we analyze and
quantify the effects of reliability achieved through
fault tolerance techniques on scalability in supercom-
puting.

3 THE RELIABILITY WALL

Table 1 provides a list of main symbols used, their
meaning and where they are defined in the paper.

Section 3.1 characterises the time overhead incurred
by fault-tolerance. Section 3.2 introduces a new relia-
bility speedup model. Section 3.3 quantifies the reli-
ability wall based on our reliability speedup model.
Section 3.4 provides a classification of supercomput-
ing systems based on their fault-tolerance time over-
head.

3.1 Analyzing the Fault-Tolerance Time Overhead

Consider a parallel system consisting of P single-core
processor nodes, denoted by N1,. . . ,NP . Let a parallel
program G be executed on the system with one pro-
cess per node, resulting in a total of P processes. (If
a processor has more than one core, then P denotes
the number of cores in the system with cores being
treated as nodes. In this case, there will be one process
running on each core.)

A system is called an R system if it uses some
fault-tolerance mechanism, denoted R, to improve its
reliability and R-free otherwise.

Fig. 1. Execution state of a program on a P -node
system. (a) R-free system. (b) R system.

Figure 1 compares and contrasts the execution
states of a program G on an R-free system and an R
system. Let ti (tRi ) be the execution time of program
G on node Ni in the R-free (R) system. Then the
execution time of G on the R-free system is:

TP = max{ti, i = 1, . . . , P} (4)

Similarly, the execution time of G on the R system is
given by:

TR
P = max{tRi , i = 1, . . . , P} (5)

Thus, the time overhead induced by the fault-
tolerance mechanism R when program G is run on
an R system is found to be:

H = TR
P − TP (6)

In general, most fault-tolerance mechanisms have
positive time overhead values, i.e. H > 0. However,
there are cases where H � 0, when, for example, a
program runs on a data replication system with a

.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 4

TABLE 1
List of main symbols, their meanings and definitions.

Symbol Meaning Definition
P Number of single-core processor nodes Sect. 3.1
R Fault tolerance mechanism Sect. 3.1
G Parallel program with P processes Sect. 3.1
f Serial part of parallel program G Sect. 2.1

TP Execution time of program G on an R-
free system (with P nodes)

(4)

SP Traditional speedup on an R-free sys-
tem

Sect. 3.2

SP,Amdahl Amdahl’s speedup on an R-free system (1)
SP,Gustafson Gustafson’s speedup on an R-free sys-

tem
(2)

EP Traditional efficiency on an R-free sys-
tem

Sect. 3.2

T R
P Execution time of program G on an R

system (with P nodes)
(5)

F Average number of failures that may
occur when program G runs on an R-
free system

(7)

H Time overhead induced by the fault-
tolerance mechanism R when running
program G on an R system

(6)

HP Average time incurred per failure for
fault tolerance on an R system

(8)

MP MTTF of an R-free system Sect. 3.1
R(P ) Fault tolerance time factor (11)
ER

P Efficiency of the fault tolerance tech-
nique R

(12)

SR
P Reliability speedup (9)

SR
P,Amdahl Amdahl’s reliability speedup (14)

SR
P,Gustafson Gustafson’s reliability speedup (15)
C(P ) Fault tolerance cost factor (17)

C Costup (3)
CP Dollar cost of a P -processor parallel

system
Sect. 2.1

C1 Dollar cost of a single-processor system Sect. 2.1
cP Dollar cost of the fault tolerance mech-

anism R
Sect. 4.1

CR Costup of an R system (19)
CR

P Dollar cost of a P -node R system Sect. 4.1
EC

P Efficiency of fault tolerance cost (18)
SGR

P General reliability speedup (16)
sup
P

SR
P Reliability wall Sect. 3.3

sup
P

SGR
P General reliability wall Sect. 4.2

m Average number of checkpoints be-
tween failures

(21)

SR−full
P Reliability speedup for full-memory

checkpointing
(25)

SR−inc
P Reliability speedup for incremental-

memory checkpointing
(26)

sup
P

SR−full
P Reliability wall for full-memory check-

pointing
(28)

sup
P

SR−inc
P Reliability wall for incremental-

memory checkpointing
(29)

SGR−full
P General reliability speedup for full-

memory checkpointing
(31)

sup
P

SGR−full
P General reliability wall for full-

memory checkpointing
Sect. 5.2

CC-NUMA storage architecture. By adopting the first-
touch page allocation strategy, such a system only
copies read-only pages of the program. If the program
reads frequently and seldom modifies the page copies,
then its execution time can be equal to or even smaller
than that on the system without data replication. Ob-
viously, such “overhead-free” fault-tolerance mecha-

nisms do not limit scalability but are rarely achievable
in peta/exascale supercomputing. Thus, this work
focuses only on the fault tolerance mechanisms with
positive time overhead values (when H > 0).

Let us use MP to denote the MTTF of an R-free
system. Suppose that TP � MP for a large-scale
parallel program G. When program G runs on an R-
free system, the average number of failures that may
occur can be approximated by:

F =
⌊

TP

MP

⌋
(7)

Statistically, it is assumed that one failure occurs
during every MTTF-sized time interval and no failure
occurs during the last residual interval of length TP

mod MP .
The average time incurred per failure for fault

tolerance is defined as:

HP =
H

F
=

H⌊
TP

MP

⌋ (8)

3.2 Defining the Reliability Speedup
In this section, we generalize the traditional concept
of speedup to reliability speedup. In Section 3.3, we
apply this generalization to analyze and quantify the
effects of fault tolerance time overhead on scalability.

Recall that TP given in (4) represents the (parallel)
execution time of program G on an R-free system.
Let Tseq be the (sequential) execution time of the
sequential version of G. Thus, the traditional speedup
is SP = Tseq

TP
and the efficiency achieved is EP = SP

P .

Definition 1 (Reliability Speedup). When program G
runs on an R system, the reliability speedup achieved
is defined as follows:

SR
P =

Tseq

TR
P

(9)

Our reliability speedup formula SR
P can be refined

below. To this end, let us refine TR
P first. According to

(6) – (8), we have:

TR
P = TP + H = TP +

⌊
TP

MP

⌋
HP

= TP + TP

(
1 − (TP mod MP )/TP

MP

)
HP

≈ TP + TP
HP

MP
= TP

(
1 +

HP

MP

) (10)

where TP mod MP

TP
can be dropped since TP mod MP

TP
<

MP

TP
� 1 when (TP mod MP ) < MP and TP � MP .

Let us define:
R(P ) =

HP

MP
(11)

which represents the ratio of the average fault toler-
ance time per failure over MTTF and is called the fault
tolerance time factor. In addition, we define:

ER
P =

1
1 + R(P )

(12)



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 5

which is called the efficiency of the fault tolerance tech-
nique R.

As a result, our reliability speedup formula SR
P is

refined to:

SR
P =

Tseq

TP (1+ HP

MP
)
=

SP

1 + R(P )
=SP×ER

P = P×EP×ER
P

(13)
In (13), as EP × ER

P means the efficiency of pro-
gram G running on an R system, ER

P represents the
efficiency-preserving rate by R with respect to the
efficiency of G running on an R-free system.

Our analogues of Amdahl’s speedup and
Gustafson’s speedup when SP in (13) is replaced
with SP,Amdahl in (1) and SP,Gustafson in (2) are:

SR
P,Amdahl = SP,Amdahl × ER

P =
P

1 + f(P − 1)
ER

P (14)

SR
P,Gustafson = SGustafson × ER

P = (f + P (1 − f))ER
P (15)

When ER
P = 1, our two reliability speedup mod-

els are simplified into the traditional Amdahl’s and
Gustafson’s speedup models.

3.3 Quantifying the Reliability Wall
Definition 2 (Reliability Wall). When a program G
runs on an R system, the reliability wall is defined
as the supremum1 of the corresponding reliability
speedup SR

P , denoted sup
P

SR
P .

Theorem 1. When a program G runs on an R system,
the reliability wall exists if and only if lim

P→∞
SR

P �= ∞.

Proof: ⇒ By Definition 2, when the reliability wall
exists, the supremum of the corresponding reliability
speedup SR

P exists. Suppose sup
P

SR
P = Z < ∞, where

Z is a positive constant. Then lim
P→∞

SR
P � sup

P
SR

P =

Z < ∞. Thus, lim
P→∞

SR
P �= ∞ holds.

⇐ Since lim
P→∞

SR
P �= ∞, lim

P→∞
SR

P = Z < ∞ holds.

Thus, ∀ ε > 0, ∃ N ∈ Z+ s.t. |SR
P − Z| < ε when

P > N . Then Z−ε < SR
P < Z +ε. So SR

P has an upper
bound. According to supremum principle2 [31], the
supremum of SR

P exists. By Definition 2, the reliability
wall exists for the program G.

This theorem has the following important impli-
cation. If lim

P→∞
SP �= ∞, then lim

P→∞
SR

P �= ∞ since

SR
P < SP . Thus, the reliability wall always exists.
For example, Amdahl’s speedup metric falls into

this special case. According to (14), we always have:

lim
P→∞

SP,Amdahl = lim
P→∞

P

1 + f(P − 1)
=

1
f

1. For a subset Φ of an arbitrary number set Ψ, a supremum or
least upper bound of Φ is an element η in Ψ such that 1) x � η
for all x in Φ, and 2) for any α in Ψ such that x � α for all x in Φ
it holds that η � α.

2. Supremum principle. Suppose SP is a non-empty number set.
If SP has an upper bound, then SP has a supremum.

Since SR
P,Amdahl < SP,Amdahl, sup

P
SR

Amdahl � 1
f holds.

So for Amdahl’s speedup, the reliability wall always
exists, and is bounded at 1

f no matter on what R
system the program runs. In the rest of the paper,
we therefore focus on the cases when lim

P→∞
SP = ∞

holds.

3.4 Categorizing Fault-Tolerant Systems

Observing from our reliability speedup given in (13),
we can see that R(P ) (introduced in (11)) is the key
factor in determining the existence of the reliability
wall, allowing R systems to be classified this way.

By convention, we write f(x) � g(x) if lim
x→∞

f(x)
g(x) is

a positive constant or ∞ and f(x) � g(x) if lim
x→∞

f(x)
g(x)

is ∞ always. In addition, the operators � and ≺ are
used in the standard manner.

Definition 3 (Constant and Incremental R Systems).
Suppose that a program G satisfying lim

P→∞
SP = ∞

runs on an R system. The R system (with G being
executed on it) is said to be a constant system if R(P ) �
Θ(1) and an incremental system if R(P ) � Θ(1).

As is customary, the Θ notation3 describes asymp-
totically both an upper bound and a lower bound.

For example, if R(P ) = kQ � Θ(1), where k and Q
are positive constants (and remain so for the rest of
this paper), then the R system is a constant system.
By (15), we have:

lim
P→∞

SR
P,Gustafson = lim

P→∞
f + P (1 − f)

1 + kQ
= ∞

Then the reliability wall does not exist according to
Theorem 1.

If R(P ) = kP lg P � Θ(1), then the R system is an
incremental system. Similarly, by (15), we have:

lim
P→∞

SR
P,Gustafson = lim

P→∞
f + P (1 − f)
1 + kP lg P

= 0

This time, however, the reliability wall exists by The-
orem 1.

The following theorem presents a necessary and
sufficient condition for the existence of the reliability
wall on an R system.

Theorem 2. Suppose a program G that satisfies
lim

P→∞
SP = ∞ runs on an R system. The reliability wall

exists if and only if R(P ) � SP .

Proof: ⇒ If the reliability wall exists, then
lim

P→∞
SP

1+R(P ) = lim
P→∞

SR
P �= ∞ by Theorem 1. Thus,

R(P ) � SP holds.
⇐ If R(P ) � SP , then lim

P→∞
SR

P = lim
P→∞

SP

1+R(P ) < ∞.

3. Suppose R(P ) is the set consisting of all functions of P ,
f(P ) ∈ R(P ) and g(P ) ∈ R(P ). f(P ) = Θ(g(P )) if both
lim

P→∞
g(P )
f(P )

and lim
P→∞

f(P )
g(P )

are positive constants.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 6

Thus, lim
P→∞

SR
P �= ∞. By Theorem 1, the reliability wall

exists for the program G.
For an incremental R system, R(P ) � Θ(1), by

definition. Therefore, the reliability wall may exist
according to Theorem 2. On the other hand, a program
that satisfies lim

P→∞
SP = ∞ remains scalable on a

constant R system since R(P ) = Θ(1) ≺ SP , as
summarized below.

Corollary 1. When a program G that satisfies lim
P→∞

SP =
∞ runs on a constant R system, the reliability wall does
not exist.

TABLE 2
Existence of reliability wall for R systems.

System Categorization Reliability wall

Incremental R(P ) � Θ(1)
R(P ) � SP Yes

Θ(1) ≺ R(P ) ≺ SP No
Constant R(P ) � Θ(1) No

The conditions that govern the existence of the
reliability wall for a program that satisfies lim

P→∞
SP =

∞ running on constant and incremental systems are
summarized in Table 2.

2000 6000 10000 14000
0

3000

6000

9000

Number of Nodes, P

R
el

ia
bi

lit
y 

S
pe

ed
up

SP

R(P ) � SP

Θ(1)≺R(P ) ≺ SP

R(P ) � Θ(1)

SP

R(P ) = kP lgP

R(P ) = klgP

R(P ) = kQ

Reliability Wall

Fig. 2. Reliability speedup and wall for a constant
system (in the solid line) and two incremental systems
(in dashed lines).

By instantiating SP with Gustafson’s speedup in
(13), Figure 2 illustrates three different systems when
R(P ) is set to be as kP lg P , k lg P and kQ, respec-
tively, to represent the three conditions R(P ) � SP ,
Θ(1) ≺ R(P ) ≺ SP and R(P ) � Θ(1) in Table 2.

4 GENERALIZATION
We generalize our reliability wall theory introduced
in Section 3 by considering not only speedup but
also costup [10]. This generalization is practically
important for peta/exascale supercomputing systems
as the fault-tolerant mechanisms employed can be
costly. The generalized theory allows us to investigate
the effects of both the time and cost induced by fault
tolerance on scalability.

4.1 General Reliability Speedup

Definition 4 (General Reliability Speedup). When
program G runs on an R system, the general reliability
speedup is defined as:

SGR
P =

SR
P

CR
(16)

where CR is the costup of the R system.

Let us write cP as the cost of the fault tolerance
mechanism R. We define:

C(P ) =
cP

CP
(17)

which is simply the ratio of the cost of fault tolerance
mechanism R over the cost of a P -node R-free system
and is referred to as the fault tolerance cost factor. In
additin, we define:

EC
P =

1
1 + C(P )

(18)

which is called the efficiency of the fault tolerance cost.
Suppose that CR

P is the cost of a P -node R system.
According to (3), we have:

CR =
CR

P

C1
=

CP + cP

C1
= C +

cP

C1
= C

(
1 +

cP

CC1

)

= C

(
1 +

cP

CP

)
= C(1 + C(P )) =

C

EC
P

(19)

Then, the general reliability speedup becomes:

SGR
P =

SP

C(1 + R(P ))(1 + C(P ))
=

P × EP × ER
P × EC

P

C
(20)

If the time overhead incurred by fault tolerance can
be omitted, i.e., if H ≈ 0, then we can make the
following simplification, by using (8):

ER
P =

1
1 + R(P )

=
1

1 + HP

MP

=
1

1 + H
FMP

≈ 1

As a result, the general reliability speedup can be
simplified to:

SGR
P =

P × EP × ER
P × EC

P

C
≈ P × EP × EC

P

C

which considers essentially the effects of only the
dollar costs incurred by fault tolerance on scalability.

For example, parity encoding techniques [28] fall
into this category; they incur some capital cost due to
extra encoding bits added in hardware but negligible
time overhead.

Therefore, our generalization allows us to study the
effects of either the time overhead or dollar cost or
both introduced by a fault-tolerance mechanism on
scalability.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 7

0 0.5 1 1.5 2

10
-2

10
0

10
2

10
4

10
6

R
e

lia
b

ili
ty

 S
p

e
e

d
u

p

(a)

 

 

Number of Nodes, P (×10
4
)

R(P) = kQ

R(P) = kP

R(P) = kP
1.5

lgP

R(P) = kP
2

0 1 2 3 4 5 6
10

-2

10
0

10
2

10
4

10
6

10
8

Number of Nodes, P (×10
5
)

R
e

lia
b

ili
ty

 S
p

e
e

d
u

p

(b)

 

 

k=10
-9

k=10
-6

k=10
-5

k=10
-3

Reliability Wall

Reliability Wall

Fig. 3. Trends of the reliability speedup SR
P and the

existence of the reliability wall, where SP is taken to
be Gustafson’s speedup. The Y axis is drawn in the
logarithmic scale with base 10. (a) Four forms of R(P )
shown with fixed k = 10−3 and Q = 10−3. (b) Four
forms of R(P ) = kP 1.5 lg P shown with varying k as
shown.

4.2 General Reliability Wall

Definition 5 (General Reliability Wall). When a pro-
gram G runs on an R system, the general reliability wall
is defined as the supremum of the corresponding general
reliability speedup SGR

P , denoted sup
P

SGR
P .

Theorem 3. When a program G runs on an R system, the
general reliability wall exists if and only if lim

P→∞
SGR

P �= ∞.

Proof: Proceeds similarly as in the proof of Theo-
rem 1.

As before, this theorem has the following immedi-
ate implication. If lim

P→∞
SP �= ∞, then lim

P→∞
SGR

P �= ∞
since SGR

P < SP . Thus, the general reliability wall
always exists. For example, Amdahl’s speedup metric
falls into this special case.

The general reliability wall is affected by not only
the time overhead but also the dollar cost induced by
fault tolerance. Therefore, the general reliability wall
exists if the reliability wall does.

0 200 400 600 800 1000 1200 1400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of Nodes, P

G
e

n
e

ra
l 
R

e
lia

b
ili

ty
 S

p
e

e
d

u
p

(a)

 

 
(R(P),C(P)) = (kQ,qV)

(R(P),C(P)) = (kQ,qP/lgP)

(R(P),C(P)) = (kP,qV)

(R(P),C(P)) = (kP,qP/lgP)

0 200 400 600 800 1000 1200 1400
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of Nodes, P

G
e

n
e

ra
l 
R

e
lia

b
ili

ty
 S

p
e

e
d

u
p

(b)

 

 

q=1

q=0.1

q=0.01

q=0.001

General Reliability Wall

General Reliability Wall

Fig. 4. Trends of the general reliability speedup SGR
P

and the existence of the general reliability wall, where
SP is Gustafson’s speedup and C = 5000 lg P is the
costup used in (20). (a) Four form combinations of
(R(P ), C(P )) shown with fixed k = 10−3, V = 10, q =
0.01 and Q = 10−3. (b) Four forms of (R(P ), C(P )) =
(kP, qP

lg P ) with fixed k = 10−3 and varying q as shown.

4.3 Understanding the General Reliability
Speedup and Wall

According to (13) and (20), R(P ) and C(P ), which
characterize the time overhead and dollar cost in-
curred by the fault tolerance technique R, respectively,
are the key scalability-limiting factors of a program
that satisfies lim

P→∞
SP = ∞ running on an R system.

Their effects on the (general) reliability speedup and
the existence of (general) reliability wall are plotted
in Figures 3 and 4 for a number of representative
function forms.

In order to determine realistically the two param-
eters, k and Q), used in R(P ), we have assumed
an abstract P -node system, where the MTTF of a
single node in the R-free system is 512 × 3600 secs
or 21 days [32], calculated according to the failure
data collected from 22 high-performance computing
systems (mostly NUMA or SMP clusters) between
1996 and 2005 at the Los Alamos National Lab [33].
The two parameters, q and V , used in C(P ), are set
approximately according to the dollar cost of a single
node in the current market.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 8

5 CASE STUDIES

In our case studies, we use existing representative
supercomputing systems with representative fault-
tolerance techniques deployed to verify, analyze, and
extrapolate the existence of the (general) reliability
wall for forthcoming exascale systems. (A simulator
for an exascale system, which does not exist yet,
may not be helpful unless it can keep track of the
execution state of the entire system.) Our case analysis
also provides insights on how to mitigate reliability-
wall effects in system design and through applying
optimizations for large-scale parallel computing.

MPPs and clusters are the two most popular ar-
chitectures in the TOP500 supercomputing list and
checkpointing is a fault-tolerance mechanism widely
adopted in large-scale parallel systems. In our case
studies, we have selected Intrepid [34], an MPP sys-
tem, and ASCI White [35], a cluster system, with their
architectural details discussed later. We have selected
these two systems also because their performance
data, including MTTF, are publicly available. We con-
sider two checkpointing techniques, full-memory and
incremental-memory [23], and two I/O architectures,
centralized and distributed to evaluate their impact
on scalability.

We write Interval to represent the checkpointing
interval used in a system and m to represent the
average number of checkpoints between failures. The
two parameters are related to each other as follows:

m =
⌊

MP

Interval

⌋
(21)

In Section 5.1, we focus on reliability speedup and
wall by considering four system configurations, de-
pending on whether checkpointing is full-memory or
incremental-memory and whether I/O is centralized
or distributed. Both of these affect the existence of
the reliability wall. For each configuration, we first
develop its reliability speedup model and then ana-
lyze the existence of the reliability wall. In Section 5.2,
we move to the general reliability speedup and wall
by considering one configuration with full-memory
checkpointing and a centralized I/O architecture. In
Section 5.3, we further analyze the the existence of the
(general) reliability wall for the above configuration
when checkpoint interval optimization is adopted.
In Section 5.4, we summarize how to mitigate the
reliability wall effects through reducing scalability-
limiting overhead induced by fault tolerance.

In this section, the traditional speedup SP is always
instantiated with Gustafson’s speedup, SP,Gustafson.

In our case analysis conducted in Sections 5.1 and
5.2, we use only a fixed value for m to analyze
the reliability walls for Intrepid and ASCI White. In
Section 5.3, we show that our results are valid when
different values of m are used.

5.1 Reliability Speedup and Wall
In Section 5.1.1, we build reliability speedup models
for both full-memory and incremental-memory check-
pointing techniques. We show that the existence of the
reliability wall depends critically on two key parame-
ters, one is related to checkpoint size and the other to
the bandwidth of the underlying I/O architecture. In
Section 5.1.2, we conduct our analysis using Intrepid
with a centralized I/O architecture by considering
full-memory and incremental-memory checkpointing.
In Section 5.1.3, we repeat this analysis for ASCI White
with a distributed I/O architecture.

5.1.1 Formulating Reliability Speedup for Check-
pointing
If the fault-tolerance technique R used is checkpoint-
ing, then the average time incurred per failure due to
fault tolerance, HP given in (13), consists of mainly
two parts. One part represents the average time
spent on saving checkpoints, enforcing coordination
among processors and orchestrating the communica-
tion among processes between failures. The other part
represents the average time spent on roll-back and
recovery when a failure occurs.

The bandwidth of the underlying I/O architecture
is the bottleneck for checkpointing, which mainly af-
fects the time on saving checkpoints between failures
and the time on recovering a checkpoint per failure.
To simplify our analysis, we assume below that HP

only includes these two components. Thus, we obtain:

HP =
⌊

MP

Interval

⌋
Ds

size

W
+

Dr
size

W
=m

Ds
size

W
+

Dr
size

W
(22)

where Ds
size is the average size of a saved checkpoint

each time and Dr
size is the average size of a checkpoint

per failure to be recovered. For some checkpointing
techniques, such as incremental-memory checkpoint-
ing, Ds

size is not necessarily equal to Dr
size, as will

be discussed below. W is the bandwidth of the un-
derlying I/O architecture in Gbits/sec. The other two
parameters, Interval and m, are introduced in (21).

In 2006, Schroeder [36] tested 22 high performance
computers in LANL and pointed out that failure rates
are roughly proportional to the number of processors
P in a system [36], implying that the time to failure is
inversely proportional to P . Let M > 0 be the MTTF
of a single node in the R-free system. Thus, we assume
that M and MP are related by:

M =
MP

P
(23)

According to (13), we have:

SR
P =

SP

1 + HP

MP

=
SP

1 + (mDs
size+Dr

size)P

WM

(24)

where R(P ) = (mDs
size+Dr

size)P
WM .

In full-memory checkpointing, the entire memory
context for a process at a checkpoint is saved. Thus,

.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 9

the checkpoint saved is of the same size every time,
i.e. the size of the total memory. So is the size of
a checkpoint to be recovered. Thus, Ds

size = Dr
size.

According to (24), the reliability speedup for full-
memory checkpointing is given by:

SR−full
P =

SP

1+ (mDs
size+Dr

size)P

WM

=
SP

1+ (m+1)Ds
sizeP

WM

(25)

Unlike full-memory checkpointing, incremental-
memory checkpointing reduces the amount of check-
point contexts saved. Typically, the size of the first
saved checkpoint file and the size of a checkpoint to
be recovered per failure are equal to that of the entire
memory, but the size of a subsequently saved check-
point file may be smaller. Thus, the average size of a
saved checkpoint between failures, Ds

size, is not larger
than Dr

size, i.e., Ds
size � Dr

size. Thus, the reliability
speedup for incremental-memory checkpointing is:

SR−inc
P =

SP

1+ (mDs
size+Dr

size)P

WM

� SP

1+ (m+1)Ds
sizeP

WM

(26)

In this section, we explain the “if” condition gov-
erning the existence of the reliability wall in Theo-
rem 1. Thus, the instance of the ”if” part of Theo-
rem 1 for full-memory checkpointing or incremental-
memory checkpointing is given as follows.

Theorem 4. Suppose that a program G that satisfies
lim

P→∞
SP = ∞ runs on an R system using full-memory

checkpointing with its reliability speedup given in (25)
or incremental-memory checkpointing with its reliability
speedup given in (26), where SP is instantiated with
SP,Gustafson. If Ds

size

W � Θ(1), then the reliability wall exists.

Proof: In (25), m and M are positive constants
independent of P and SP,Gustafson = Θ(P ). If Ds

size

W �
Θ(1) then P � (m+1)Ds

sizeP
MW , which implies that

P

1+
(m+1)Ds

size
P

MW

has a supremum. Note that

SP,Gustafson

1 + (m+1)Ds
sizeP

MW

= Θ

(
P

1 + (m+1)Ds
sizeP

MW

)

So SR−full
P with SP being replaced by SP,Gustafson has

a supremum. Given (25) and (26), the reliability wall
exists in both cases.

Let us examine the two key parameters [4] in The-
orems 4 that determine the existence of the reliability
wall, and consequently, the scalability of a program
G that satisfies lim

P→∞
SP = ∞ on an R system.

Ds
size. For full-memory checkpointing, Ds

size is the
size of the total memory, which increases lin-
early with the number of system nodes. For
incremental-memory checkpointing, Ds

size is
related to the characteristics and scalability
of program G. In general, the amount of
data required for computing the execution
state of program G increases with P . So does

Ds
size. However, the dirty pages of a non-

first checkpoint does not necessarily increase
with P . Thus, Θ(1) � Ds

size � P holds.
W . The I/O bandwidth W is determined by

the underlying I/O architecture. The stor-
age systems used in some modern large-
scale MPP supercomputing systems are de-
coupled from the compute nodes [37], as
in the IBM Blue Gene series, giving rise
to a centralized I/O architecture. However,
this design puts the storage system of a
supercomputer on a separate network from
the compute nodes, limiting the available
I/O bandwidth. As a result, today’s limited
I/O bandwidth is choking the capabilities of
modern supercomputers, particularly mak-
ing fault-tolerance techniques, such as check-
pointing, prohibitively expensive. Thus, a
scalable I/O system design, referred to as the
distributed I/O architecture, may overcome
this limitation. For example, the clusters such
as ASCI White with local disks have cer-
tain advantages when adopting checkpoint-
ing techniques.

Below we take two systems, Intrepid and ASCI
White, as examples to investigate the existence of reli-
ability wall for two different checkpointing techniques
and two different I/O architectures.

5.1.2 Intrepid
The BlueGene/P Intrepid system at Argonne National
Laboratory is one of IBM’s massively parallel super-
computers consisting of 40 racks of 40, 960 quad-core
computer nodes (totalling 163, 840 processors) and
80 TB of memory. Each compute node consists of
four PowerPC 450 processors, and has 2 GB memory.
The peak performance is 557 TeraFlops. A 10-Gigabit
Ehternet network, consisting of Myricom switching
gear connected in a non-blocking configuration, pro-
vides connectivity between the I/O nodes, file servers,
and several other storage resources. The centralized
I/O architecture of Intrepid is shown in Figure 5,
where the compute node / I/O node ratio can be
16, 32, 64 or 128, resulting in the number of I/O
controllers as n = 2560, 1280, 640 or 320. (We use
Intrepid rather than BlueGene/L since Blue Gene/P
is newer.)

The peak unidirectional bandwidth of each 10-
Gigabit Ethernet port of an I/O node is 6.8 Gbits/sec
by the internal collective network that feeds it. P
stands for the number of cores as one process is
assumed to run on one core. The MTTF of Intrepid
(40 racks) is MP = 12.6 days [38]. By (23), the MTTF
of a single core is M = MP × P = 1.8 × 1011 secs.
Generally, large-scale parallel computing systems take
a checkpoint interval according to the system’s MTTF
MP , and current systems have a checkpoint interval
in the order of several hours. Thus, our analysis has



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 10

Fig. 5. The centralized I/O architecture with n I/O
controllers.

assumed m = 100, implying that Interval = 3 hours
for Intrepid (with P = 163, 840 processors).

Since Θ(1) � Ds
size � P , W is positive constants.

Then Θ(1) � Ds
size

W � P . According to Theorem 4, the
reliability wall exists for an program G that satisfies
lim

P→∞
SP = ∞ running on Intrepid when either full-

memory or incremental-memory checkpointing tech-
nique is used. Below we calculate the smallest size of
the system when the reliability wall is hit.

5.1.2.1 Centralized I/O + Full-Memory Check-
pointing: Ds

size = 2 × P
4 × 8 = 4P Gbits since

each quad-core node has 2GB memory an P is the
total number of cores. Observing from (25), we have
R(P ) = kP 2 = Θ(P 2), where

k =
4(m + 1)

WM

Substituting SP,Gustafson for SP into (25), we obtain:

SR−full
P =

f + (1 − f)P
1 + R(P )

=
f + (1 − f)P

1 + kP 2
(27)

Suppose SR−full
P reaches the reliability wall at P0,

called the optimal system size, then we can find P0 as
follows:

dSR−full
P

dP

∣∣∣∣∣
P=P0

=
(1−f)(1+kP 2

0 )−2kP0(f+P0(1−f))
(1+kP 2

0 )2
=0

Because f is small for a large-scale parallel program
and can thus be omitted, we obtain P0 ≈

√
1
k and

SR−full
P

∣∣∣
P=P0

≈ P0
2 . By Definition 2, the reliability

wall is found to be:

sup
P

SR−full
P =

√
MW

16(m + 1)
≡

√
MWP

4(m + 1)Ds
size

(28)

5.1.2.2 Centralized I/O + Incremental-Memory
Checkpointing: As discussed earlier, the total size of
all saved checkpoints is at least equal to that of the
entire memory, since that is the size saved at the first
checkpoint. Thus, Ds

size is at least the ratio of the
total memory size to the number of checkpoints when
program G runs on Intrepid. Suppose that program
G runs on Intrepid for a month (of 30 days). Then
Ds

size = 4P
30×24

Interval

Gbits. Each checkpoint, except the

0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

Number of Nodes, P(×10
6
)

R
e
lia

b
ili

ty
 S

p
e
e
d
u
p
(×

1
0

5
)

 

 n=2560

n=1280

n=640

n=320

P
0

Reliability Wall

×

×

×

×
×

Fig. 6. Trend of SR
P,Gustafson for Intrepid with full-memory

checkpointing (m = 100).

first one only, saves only the modified pages, while
the size to be recovered at a checkpoint, Dr

size, is the
same as in the case of full-memory checkpointing, i.e.,
Dr

size = 4P Gbits.
Based on (26), we also have R(P ) = kP 2 = Θ(P 2),

where

k =
4(m Interval

30×24 + 1)
WM

Substituting SP,Gustafson for SP into (26), we obtain
SR−inc

P of the same form as in (27) except that k
represents a different coefficient.

Proceeding exactly as in full-memory checkpoint-
ing, we obtain P0 ≈

√
1
k and SR−inc

P

∣∣
P=P0

≈ P0
2 .

By Definition 2, the reliability wall for incremental-
memory checkpointing is:

sup
P

SR−inc
P =

√
MW

16(m×Interval
30×24 +1)

≡
√

MWP

4(mDs
size+Dr

size)
(29)

5.1.2.3 Reliability Wall: For a few combina-
tions of different values taken by n (number of
I/O controllers), Figure 6 and 7 display the trend
of SR

P,Gustafson for Intrepid with full-memory and
incremental-memory checkpointing techniques, re-
spectively.

The optimal system size P0 lies between 106 and 107

before the system hits the reliability wall, indicating
that the reliability wall will exist at the Peta/exascale
levels. By comparing full-memory and incremental-
memory checkpointing techniques, we find that we
can push the reliability wall forward by using less
expensive fault-tolerance techniques, as further illus-
trated by an example given in Figure 8. In each case,
the reliability speedup increases initially and starts
to drop as soon as it hits the reliability wall, i.e.,
the maximum of the speedup achievable. Based on
our earlier analysis results given in (28) and (29),
the system designer can also increase M or W , i.e.,
adopt more reliable system components or improve
the bandwidth, to push the reliability wall forward.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 11

0.5 1 1.5 2 2.5
0

2

4

6

8

10

12

Number of Nodes, P(×10
7
)

R
e
lia

b
ili

ty
 S

p
e
e
d
u
p
(×

1
0

6
)

 

 

n=2560

n=1280

n=640

n=320

Reliability Wall P
0

×
×

×
×

×

Fig. 7. Trend of SR
P,Gustafson for Intrepid with

incremental-memory checkpointing (m = 100).

2 4 6 8 10 12
0

1

2

3

4

5

6

Number of Nodes, P(×10
6
)

R
e
lia

b
ili

ty
 S

p
e
e
d
u
p
(×

1
0

6
)

 

 

Full-memory

Incremental-memory

P
0

Reliability Wall ×

×

×

Fig. 8. Comparison of SR
P,Gustafson for Intrepid between

full-memory checkpointing and incremental-memory
checkpointing when n = 640 (m = 100).

5.1.3 ASCI White

We now turn to ASCI White with local disks to study
the existence of the reliability wall for systems with
scalable I/O architectures.

ASCI White is the third step in the DOE’s five
stage ASCI plan, with a peak performance of 12.3 Ter-
aFlops. It is a computer cluster built based on IBM’s
commercial RS/6000 SP Power3 375MHZ computer.
Each compute node contains 16 Power3-II CPUs built
with IBM’s latest semi-conductor technology (silicon-
on-insulator and copper interconnects), with 16 GB
memory. ASCI White uses a faster switching network
(IBM’s SP switch) to exchange information across the
computer nodes. The number of compute nodes is
512 (totalling 8192 CPUs). The local disk per compute
node is 70.9 GB, with the I/O bandwidth to local disk
being 40 MBs/sec. As discussed below, ASCI White
with scalable I/O bandwidth is better suited to check-
pointing techniques than Intrepid with a centralized
I/O architecture.

The MTTF of ASCI White is MP = 40 hours (in
2003 with 8192 CPUs) [39]. P denotes the number of
(single-core) CPUs with one process running per CPU.
By (23), the MTTF of a single CPU is M = MP ×P =

1.2 × 109 secs. As in the case of Intrepid, we assume
m = 100. This implies that Interval = 0.4 hours for
ASCI White (with P = 8192 processors).

Fig. 9. The distributed I/O architecture.

The distributed I/O controller in ASCI White is
shown in Figure 9. When the system size increases,
the I/O bandwidth of the system increases too, i.e.,
W = 0.04×P×8 = Θ(P ) Gbits/sec. According to The-
orem 4, the reliability wall exists when Ds

size

W � Θ(1).
Thus, for ASCI White, the criterion for the existence
of the reliability wall is Ds

size � Θ(P ). Note that
Θ(1) � Ds

size � Θ(P ) as discussed in Section 5.1.1.
According to Theorem 4, when a program G that
satisfies lim

P→∞
SP = ∞ runs on the ASCI White sys-

tem with either full-memory or incremental-memory
checkpointing, the reliability wall always exists be-
cause Ds

size/W = Θ(1) holds.
5.1.3.1 Distributed I/O + Full-Memory Check-

pointing: Ds
size = 16× P

16 ×8 Gbits = 8P Gbits as each
compute node has 16 CPUs sharing 16 GB memory
and P is the number of CPUs in ASCI White. In (25),
we find that R(P ) = kP = Θ(P ), where

k =
m + 1
0.04M

Substituting SP,Gustafson for SP into (25), we obtain:

SR−full
P =

f + (1 − f)P
1 + R(P )

=
f + (1 − f)P

1 + kP
(30)

Since dSR−full
P

dP > 0 for all P , the reliability wall is
calculated as:

sup
P

SR−full
P = lim

P→∞
SR−full

P = lim
P→∞

f+(1−f)P
1+kP

=
1−f

k

Again, f is small and thus omitted. and we have:

sup
P

SR−full
P ≈ 1

k
=

0.04M

m + 1
≡ MW

(m + 1)Ds
size

5.1.3.2 Distributed I/O + Incremental-Memory
Checkpointing: As in the case for Intrepid, we con-
sider running program G on the ASCI White for a
month (of 30 days). By conducting a similar analysis,
we have Ds

size = 8P
30×24

Interval

Gbits and Dr
size = 8P Gbits.

In this case, we continue to have R(P ) = kP = Θ(P ),
where

k =
m Interval

30×24 + 1
0.04M

.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 12

Substituting SP,Gustafson for SP into (26), we obtain
SR−inc

P of the same form as (30) except that k rep-
resents a different coefficient.

Proceeding exactly as in full-memory checkpoint-
ing, we obtain the reliability wall as follows:

sup
P

SR−inc
P ≈ 1

k
=

0.04M

m Interval
30×24 + 1

≡ MW

mDs
size + Dr

size

5.1.3.3 Reliability Wall: The same observations
made earlier for Intrepid also apply here and are thus
omitted.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of Nodes, P(×10
8
)

R
e
lia

b
ili

ty
 S

p
e
e
d
u
p
(×

1
0

7
)

 

 

Full-memory

Incremental-memory

P
0

×

×

×

Fig. 10. Comparison of SR
P,Gustafson for ASCI White

between full-memory checkpointing and incremental-
memory checkpointing (m = 100).

Consider an example illustrated in Figure 10 for
the two checkpointing techniques. In each case, the
speedup function increases monotonically and ap-
proaches its supremum, i.e. reliability wall eventually.

In each case, the optimal system size can be de-
termined by some simple heuristics. For example, let
threshold represent the growth rate (i.e. the first order
derivative) of a given reliability speedup function, SR

P .
If the growth rate of SR

P is slower than threshold,
then any attempt for boosting performance by increas-
ing the system size will be futile. Thus, the optimal
system size P0 can be calculated by simply solving
dSR

P

dP

∣∣∣
P=P0

= threshold.

If threshold = 0.01, then P0 is found to be 4.28×106

for full-memory checkpointing and 3.04 × 108 for
incremental-memory checkpointing as shown in Fig-
ure 10. This implies that the reliability wall exists at
the peta/exascale levels when the size of ASCI White
increases and moves over the range between 106 and
108.

5.2 General Reliability Speedup and Wall

We consider Intrepid with a centralized I/O architec-
ture using full-memory checkpointing for fault toler-
ance, due to the price information publicly available.
We derive its general reliability speedup and discuss
the existence of the general reliability wall.

For full-memory checkpointing, the cost of disks
that are used to save checkpoint files is the cost
incurred by checkpointing. cP is the cost of RAIDs
with a size being equal to the size of the total memory
available in Intrepid.

TABLE 3
List prices for Intrepid in July, 2010 (US$)

Rack 100 TB RAIDs Interconnect per Node C1

1.5 million 500, 000 290 1170

According to Table 3, the cost of 100 TB RAIDs is
500, 000 dollars. So the cost of 1 GB is 5 dollars. Given
that P = 40, 960 × 4 = 163, 840, the (hardware) cost
of full-memory checkpointing is cP = 40, 960 × 2 ×
5 = 2.5P dollars. Suppose program G consumes 6 GB
of the RAIDs when it runs on Intrepid without full-
memory checkpointing, the (hardware) cost is 6×5 =
30 dollars. Thus, the cost of a P -node Intrepid system
with full-memory checkpointing is CP = 1.5 × 106 ×
40 + 40, 960 × 290 + 30 = 71.9 million dollars.

Suppose the costup (without checkpointing) is C =
CP

C1
= Θ(lg P ), i.e., C = � lg P , where � is a positive

constant. Then, we find that � = CP

C1 lg P ≈ 1.2 × 104

when P = 163, 840.
According to (20) and (25), when n = 640, the

general reliability speedup for full-memory check-
pointing is:

SGR−full
P =

SR−full
P

CR
=

SP

1+
(m+1)Ds

size
P

W M

C(1 + cP

CP
)

=
SP

C

1

1 + 4(100+1)P 2

WM

1
1 + 2.5P

C1llgP

=
f + (1 − f)P

1.2 × 104lgP (1+5.2 × 10−13P 2)(1+ 1.8×10−7P
lgP )

.

(31)

It is easy to see that lim
P→∞

SGR−full
P = 0. Thus,

the general reliability wall exists in this situation
according to Theorem 3.

Proceeding similarly as we did when analyzing
the reliability wall for Intrepid with full-memory
checkpointing in Section 5.1.2, the optimal system
size P0 for the general reliability wall can be calcu-
lated by solving dSGR−full

P

dP

∣∣∣
P=P0

= 0. We find that

P0 = 1.26 × 106 and the general reliability wall is
sup
P

SGR−full
P = 8.21 as further illustrated in Figure 11.

Due to the high costup being taken into account, the
general reliability wall and its optimal system size are
both much smaller than if the costup is ignored.

We can observe easily that the general reliability
wall exists if the reliability wall does, but the converse
is not always true.

.



IEEE TRANSACTIONS ON COMPUTERS, VOL. *, NO. *, * * 13

0.5 1 1.5 2 2.5
0

2

4

6

8

10

Number of Nodes, P(×10
6
)

G
e
n
e
ra

l 
R

e
lia

b
ili

ty
 S

p
e
e
d
u
p

 

 

P
0

General Reliability Wall
×

Fig. 11. Trend of SGR−full
P,Gustafson for Intrepid when n = 640

(m = 100).

5.3 On the Optimum Checkpoint Interval
In Sections 5.1 and 5.2, we consider m = � MP

Interval�,
i.e., the average number of checkpoints between fail-
ures as a constant. However, m can be optimized for
a particular configuration by optimizing Interval to
obtain the optimum checkpoint interval [40] as follows:

Interval=

{ √
2Ds

sizeMP

W −Ds
size

W ,
Ds

size

W < MP

2

MP ,
Ds

size

W � MP

2

(32)

There is a broad consensus in the fault-tolerance
community that when the system size is scaled up
continuously, the time spending on saving a global
checkpoint will eventually reach and even exceed the
MTTF of a system [9]. This implies that Ds

size

W � MP

2

will hold eventually when P is in [P ′,∞) and Ds
size

W <
MP

2 will hold when P is in [1, P ′ − 1], where Ds
size

W is
roughly the time spent on saving a global checkpoint,
and P ′ is a certain system size when Ds

size

W = MP

2 .
When P is in [1, P ′ − 1], i.e., Ds

size

W < MP

2 holds,
both SR−full

P and SR−inc
P are bounded and have the

supremums. When P is in [P ′,∞), i.e., Ds
size

W � MP

2

holds, we have m = � MP

Interval� = 1, which falls into
the cases discussed earlier where m is a constant. In
both cases, Theorem 4 is still applicable when Interval
is instantiated with the optimum checkpoint interval.

Thus, the existence of the (general) reliability wall
does not change for the four system configurations
discussed earlier in Sections 5.1 and 5.2.

5.4 Mitigating Reliability-Wall Effects
As demonstrated in our case studies, the reliability
wall may exist in the future exascale supercomput-
ing. Our reliability-wall theory provides us insights
on reducing fault-tolerance overhead for improved
scalability in a number of principal directions.

• Based on our (general) reliability-wall theory, the
relationship between reliability and scalability
can be revealed. A (general) reliability speedup
function can be developed and the existence of

the (general) reliability wall can be analytically
predicted.

• By performing a reliability-wall analysis, the
key scalability-limiting parameters, such as Ds

size,
Dr

size, Interval, M and W , can be identified.
The system designer can push the reliability-wall
forward by deploying more reliable components
and increasing the I/O bandwidth to optimize
system-wide parameters M and W . For exam-
ple, scalable diskless checkpointing [24] is de-
signed for optimizing W . Simultaneously, appli-
cation programmers or compiler researchers can
develop optimizations to reduce fault-tolerance
overhead by choosing appropriate values for
the other parameters, such as Ds

size, Dr
size and

Interval, which are the main design decisions to
be made in application-level checkpointing [17],
[18].

• As illustrated in Figures 8 and 10, the develop-
ment of new fault-tolerance techniques and I/O
architectures can be guided by our theory to focus
on optimizing the key scalability-limiting factors.

6 CONCLUSION

This paper introduces for the first time the con-
cept of “Reliability Wall” and proposes a (general)
reliability-wall theory that allows the effects of re-
liability on scalability of parallel applications to be
understood and predicted analytically for large-scale
parallel computing systems, particularly those at the
peta/exascale levels. The significance of this work is
demonstrated with case studies using representative
real-world supercomputing systems with commonly
used checkpointing techniques for fault tolerance. Our
work enables us to push the reliability-wall forward
by mitigating reliability-wall effects in system design
(e.g., by developing cost-effective fault-tolerance tech-
niques and I/O architectures) and through apply-
ing compiler-assisted optimizations at the application-
level.

ACKNOWLEDGMENTS

The authors thank the reviewers for their helpful
comments and suggestions, which greatly improved
the final version of the paper. This work is supported
by the National Natural Science Foundation of China
(NSFC) No.60921062 and 61003087.

REFERENCES
[1] D. B. Kothe, “Science prospects and benefits with exas-

cale computing,” Oak Ridge National Laboratory, Tech. Rep.
ORNL/TM-2007/232, 2007.

[2] H. Simon, T. Zacharia, and R. Stevens, “Modeling and Sim-
ulation at the Exascale for Energy and the Environment,”
Website, http://www.sc.doe.gov/ascr/ProgramDocuments/
ProgDocs.html.

[3] J. Stearley, “Defining and measuring supercomputer Reliabil-
ity, Availability, and Serviceability (RAS),” in Proceedings of the
Linux Clusters Institute Conference, 2005.




