The remarkable absorption-line systems in the quasar Tololo 1037-27

M. H. Ulrich European Southern Observatory 8046 Garching bei München, FRG
M. A. C. Perryman Space Science Department of the European Space Agency ESTEC, 2200 AG Noordwijk, The Netherlands

Accepted 1985 December 17. Received 1985 December 16; in original form 1985 October 9

Summary. We present the first medium-resolution spectroscopic observations of the quasar Tololo 1037-27 ($z_{\mathrm{em}}=2.18$). We find 49 absorption lines between 3500 and $6000 \AA$, and identify seven absorption-line redshifts. Remarkably, six of the absorption systems are in the small redshift range $z_{\text {abs }}=1.971$ to $z_{\text {abs }}=2.138$.
The two most prominent absorption systems, $z_{\mathrm{abs}}=2.138$ and $z_{\text {abs }}=2.082$ are of high ionization and the full width at half maximum at rest and after correction for the instrumental response of their $\mathrm{Ly} \alpha$ and $\mathrm{C}_{\text {Iv }}$ lines is in the range $600-1100 \mathrm{~km} \mathrm{~s}^{-1}$, i.e. larger than the width of lines which would be produced by absorbing material in a single galaxy. These properties, along with the high density of absorption-line systems, suggest that the Ly α and Civ lines are the superposition of several unresolved lines arising from absorption by individual galaxies in two groups or clusters of galaxies, possibly members of the same supercluster. The gas in these clusters could be influenced by the proximity of this or other quasars, which might explain the high degree of ionization of the absorbing gas. Alternatively, and perhaps less likely, the two absorption systems are intrinsic to the quasar and represent two outflows of gas.
The four other absorption line systems at $z_{\text {abs }}=2.128,2.070,2.028$ and 1.971 respectively, show lower degrees of ionization, and velocity profiles which are consistent with them originating in intervening galaxies or clusters of galaxies.

The significantly lower redshift system at $z_{\text {abs }}=1.077$ is a low-ionization intervening galaxy system.
Three rather strong absorption lines, including one at a wavelength just above that of Ly α in emission, remain unidentified.

1 Introduction

Broad absorption lines are observed in the optical spectra of a small fraction (0.03-0.10) of quasars and provide direct evidence for acceleration of thermal gas by the quasars (Weymann, Carswell \& Smith 1981). The absorbing gas is usually highly ionized with the strongest lines being Civ $\lambda 1549$ and $\mathrm{Nv} \lambda 1240$. Even in the few known cases where there is also broad $\mathrm{Mg}_{\mathrm{II}} \lambda 2800$ in absorption the C iv line is very strong.

Absorption-line systems intrinsic to quasars nevertheless display a large variety in widths and structures of the profiles. High-wavelength resolution observations have revealed that some absorption features are in fact groups of narrow lines, while in other cases the profiles have been found to be smooth. It is difficult to know how narrow the 'broad absorption lines' intrinsic to quasars can be because for values of the full width at half maximum (FWHM) less than $\sim 1500 \mathrm{~km} \mathrm{~s}^{-1}$, they can be confused with absorption features produced by a galaxy cluster whose densest region is crossed by the line-of-sight. Moreover, if the cluster is sufficiently close to the quasar the ionizing flux of the quasar is capable of increasing the degree of ionization of the gas in the cluster beyond that found in normal haloes.

Here, we present the first spectroscopic observations and analysis of the absorption-line systems in the quasar Tololo 1037-27. This quasar was discovered in an objective prism survey by Bohuski \& Weedman (1979) who gave $z_{\mathrm{em}}=2.23$ and $m_{\mathrm{B}}=17.4$. Our observations show that this quasar has a rich and remarkable absorption spectrum. Six absorption-line systems are found between $z_{\text {abs }}=1.971$ and $z_{\text {abs }}=2.138$. The two strongest of these systems are highly ionized and have Ly α and Civ linewidth between 600 and $1100 \mathrm{~km} \mathrm{~s}^{-1}$ wide. These lines could be the superposition of the absorption lines produced in the haloes of galaxies in two separate clusters, where the absorbing material is ionized by the quasar. Alternatively these absorption systems could be intrinsic to the quasars and represent two outflows of gas.

2 Spectroscopic observations

The quasar was first observed for 1 hr on four different nights in 1983 March, using the Boller and Chivens spectrograph of the ESO 3.6-m telescope equipped with an IDS detector. The grating was set at a different angle each night in order that a given wavelength fell on a different location of the IDS phosphor. The wavelength range so covered was $4100-6000 \AA$. The grating and slit combination gave an effective wavelength resolution of $7 \AA . \star$

These observations were complemented in 1985 May by observing Tololo 1037-27 with the ESA Photon Counting Detector (ESA PCD, di Serego Alighieri, Perryman \& Macchetto 1985) and the Boller and Chivens spectrograph at the $2.2-\mathrm{m}$ telescope at La Silla. We obtained spectra totalling 7800 s of integration. These observations spanned the $3420-4500 \AA$ range with an effective resolution of $3.8 \AA$.

The signal-to-noise of the combined spectrum is mediocre at the edges and has a minimum in the interval $4000-4400 \AA$. There, the upper limit to the equivalent width of undetected absorption lines is $\sim 3-4 \AA$, while it is $\sim 1 \AA$ for $\lambda>4400 \AA$. Between 4000 and $3600 \AA$ the 'Lyman forest' is the main source of uncertainty in determining equivalent widths, wavelengths, and linewidths. Below $3600 \AA$ the signal-to-noise is small $(\leqslant 3)$ and the measurements particularly uncertain.

3 Results and discussion

3.1 THE EMISSION LINES

The peaks of the strongest emission features Lyman α, C iv $\lambda 1549$ and Si iv $\lambda 1393,1403$ blended with O Iv] $\lambda 1406$ give $z_{\mathrm{em}}=2.18 \pm 0.05$. The other strong emission features are the blend Si III]

[^0]$\lambda 1892+$ C iII] $\lambda 1909$ and a feature at $\sim 2080 \pm 10 \AA$. The latter has been noted previously (Phillips \& Hawley 1978; Arp 1984). It is unidentified and could be an Fe iI multiplet.

3.2 the absorption lines

The measured characteristics of the absorption lines are given in Table 1 with our suggested identifications.

The lines were measured interactively. The central wavelength of a line was determined from the first moment of the profile (over the range set manually by the cursor). However, in many instances where lines are asymmetrical and/or obvious blends, this central wavelength can differ by several angstroms from the wavelength of the minimum. In such cases, the minimum wavelength is also given in the notes to Table 1. For normal isolated lines the full width at half maximum is taken to be $2.3 \sigma, \sigma$ being the second moment of the profile (which strictly applies only to Gaussian lines). Errors were estimated for the equivalent widths taking into account the propagation of the counting statistics as well as an estimated uncertainty, typically 20 per cent, in locating the continuum level. Evidently, in an object with such strong and numerous absorption features, a systematic error in locating the continuum level may also have occurred. Additional errors affect the measured equivalent widths of blended lines (e.g. lines 6, 7 and 10,11) or lines for which the level of the local continuum is particularly uncertain (e.g. lines 11, 23, 26). In Table 1 , we classify the lines into three categories: According to the estimated internal error attached to them, 'a' designates those for which the equivalent widths are known with an error equal to or less than ± 50 per cent. 'b' designates the lines for which the error on the equivalent width is between ± 50 and ± 100 per cent. Marginal detections and other dubious lines are indicated by ' c '.

In Figs $1 \& 2$, the three best 1-hr IDS spectra were combined to give the spectrum in the range $4200-7000 \AA$. Below $4200 \AA$ the spectrum displayed comes from five exposures of 1200 s , each taken in very good seeing conditions, with the ESA PCD. For display the ESA PCD data have been smoothed with a Gaussian of $10 \AA$ FWHM, while the measurements given in Tables 1 and 2, have been made on unsmoothed data.

3.3 the characteristics of the seven absorption-line systems

We have identified seven absorption-line systems (Table 2). Three lines which we consider certain remain unidentified. Two of them, at 3773 and $3862 \AA$ respectively, are at wavelengths shorter than the Ly α emission peak at $\sim 3870 \AA$. The third one at $3902 \AA$ is longward of Ly α emission.

The properties of the four strongest high-redshift systems are given in Table 3(a,b). Equivalent widths of lines in the galactic disc and halo, and in well-studied narrow-line systems in quasars are also given for comparison. It is a peculiarity of these four redshift systems that there are multiple coincidences between the redshifted wavelengths of several of their lines. For three out of four redshift systems the $\mathrm{N} v \lambda 1240$ line falls at the location of the Ly α line in another system. Similarly in three out of four systems the $\mathrm{Si}_{\mathrm{II}} \lambda 1260.4$ is blended with the Ly α line (two cases) and $\mathrm{N} v \lambda 1240$ line (one case) of other redshift systems. This peculiarity hampers the analysis of the physical conditions of this gas, especially when using data of medium-wavelength resolution.

The systems at $z=2.128$ and $z=2.070$ are based on the identification with Ly α of the lines at 3802 and $3733 \AA$ respectively and on the identification with Civ $\lambda 1549$ of the weak absorption lines sitting in the blue wing of the two strong Civ $\lambda 1549$ absorptions at 4857 and $4770 \AA$ respectively. They are considered probable.

The absorption line system at $z=1.077$ displays seven low-ionization lines normally found in the absorption spectrum of intervening galaxies.
M. H. Ulrich and M. A. C. Perryman

Table 1. Absorption-line measurements.

	λ (\AA		$W_{\lambda}(o b s)$ (\AA)	$\begin{gathered} \text { FWHM }_{(\text {obs }} \text { (} \\ (\AA) \end{gathered}$	$\begin{gathered} \text { Suggested } \\ \text { Identifications } \end{gathered}$		Redshift	System	
1	3479.8	c	6.9	-					
2	3518.4	c	23.1	-					
3	3538.1	c	-	-					
4	3556.2	c	4.6	-					
5	3569.3	c	2.9	-					
6	3585.8	a	4.0	-	SiIII	$\lambda 1206.5$	1.97207	6	
7	3609.8	a	8.7	11	Ly α	$\lambda 1215.7$	1.9711	6	
					SiII	$\lambda 1193.3$	2.028	5	
8	3623.0	c	1.8	-					
9	3650.5	a	5.5	6.5	SiIII	$\lambda 1206.5$	2.0257	5	
10	3678.2	a	10.7	10	Ly α	$\lambda 1215.7$	2.0256	5	
11	3706.2	c	1.7	-					
12	3718.5	a	3.4	4	SiIII	$\lambda 1206.5$	2.0820	3	\square
13	3733.9	b	3.5	7	Ly α	$\lambda 1215.7$	2.0714	4	\bigcirc
14	3744.1	b	7.0	9.2	Ly α	$\lambda 1215.7$	2.0798	3	S
15	3773.1	a	7.1	8					\%
16	3788.2	a	4.5	5	SiIII	$\lambda 1206.5$	2.1398	1	$\stackrel{\circ}{\text { ® }}$
17	3803.0	a	4.0	3.8	Ly α	$\lambda 1215.7$	2.1282	2	\bigcirc
18	3815.0	b	14.3	11.5	Ly α	$\lambda 1215.7$	2.1381	1	$\stackrel{\text { O }}{ }$
					NV	$\lambda 1240.1$	2.0764	3	3
					SiII	$\lambda 1260.4$	2.0268	5	F
19	3862.2	b	2.9	4					\%
20	3884.4	a	3.4	>6	NV	$\lambda 1240.1$	2.1323	1	
					SiII	$\lambda 1260.4$	2.0819	3	$\stackrel{ }{0}$
21	3902.4	a	1.8	8					$\stackrel{0}{\circ}$
22	3937.9	c	1.4	-					1
23	3956.6	a	4.2	5	SiII	$\lambda 1260.4$	2.13916	1	$\stackrel{\square}{\circ}$
24	4076.1	c	2.8	-					\bigcirc
25	4149.0	c	<4.5	-	SiIV	$\lambda 1393.8$	1.9767	6	등
26	4167.0	c	<4.5	-	SiIV	$\lambda 1402.8$	1.9705	6	\%
27	4187.4	b	3.0	4.5	CII	$\lambda 1334.5$	2.1378	1	3
28	4217.8	c	<4.5	-	SiIV	$\lambda 1393.8$	2.0261	5	\bigcirc
29	4248.8	c	<4.5	-	SiIV	$\lambda 1402.8$	2.0288	5	,
30	4296.1	b	6.0	8.4	SiIV	$\lambda 1393.8$	2.0823	3	0
31	4324.0	b	6.0	10	SiIV	$\lambda 1402.8$	2.0824	3	$\xrightarrow{0}$
32	4374.1	c	< 5	-	SiIV	$\lambda 1393.8$	2.1382	1	$\stackrel{\text { ® }}{ }$
33	4400.8	c	-	-	SiIV	$\lambda 1402.8$	2.1371	1	$\stackrel{\square}{\square}$
34	4603.9	a	2.8	10	CIV	$\lambda 1549.2$	1.9718	6	N
35	4691.9	a	4.0	12	CIV	$\lambda 1549.2$	2.0286	5	\bigcirc
36	4756.0	c	-	-	CIV	$\lambda 1549.2$	2.0700	4	N
37	4770.8	a	17.5	21	CIV	$\lambda 1549.2$	2.0795	3	N
38	4791.0	c	-	-	SiII	$\lambda 1526.7$	2.1381	1	\bigcirc
39	4844.0	c	-	-	CIV	$\lambda 1549.2$	2.1268	2	O
40	4857.9	b	13.3	19	CIV	$\lambda 1549.2$	2.1357	1	$\stackrel{+}{\circ}$
41	4930.8	b	-	-	FeII	$\lambda 2373.7$	1.0773	7	\bigcirc
42	4946.7	a	1.4	7	FeII	$\lambda 2382.8$	1.0760	7	\bigcirc
43	5246.9	a	2.1	7	AlII	$\lambda 1670.8$	2.1403	1	\bigcirc
44	5370.5	c	-	-	FeII	$\lambda 2585.9$	1.0768	7	¢
45	5397.9	a	2.1	7	FeII	$\lambda 2599.4$	1.0766	7	$\stackrel{+}{+}$
46	5804.9	a	2.3	7	MgII	$\lambda 2795.5$	1.0765	7	\bigcirc
47	5819.5	a	2.2	7	MgII	$\lambda 2802.7$	1.0764	7	N
					AlIII	$\lambda 1854.7$	2.1377	1	D
48	5846.0	b	1.0	-	AlIII	$\lambda 1862.8$	2.1383	1	¢
49	5921.3	a	1.2	7	MgI	$\lambda 2852.1$	1.0761	7	$\stackrel{\sim}{0}$
(a)	Error on W_{λ} (obs) is less than $\pm 50 \%$.								N
(b)	Error on W_{λ} (obs) is between $\pm 50 \%$ and $\pm 100 \%$.								
(c)	Lines are uncertain, possibly spurious.								
(*)	Not corrected for instrumental resolution which is $\sim 3.8 \AA$ for $\lambda<4200 \AA$ (ESA PCD) and $\sim 7 \AA$ for $\lambda>4200 \AA$ (IDS).								

Notes
line 7 - Line is asymmetrical with the red side steeper. Minimum of the line profile is at $3612.0 \AA \begin{aligned} & \text { which if identified }\end{aligned}$ with Ly $\alpha \lambda 1215.7$ gives $z=1.9711$. Possible contributor is Si II $\lambda 1193.3$ in redshift system $z=2.028$ at $3613 \AA$. line 9 - The minimum of the line is at $3650.0 \AA$. There is a weaker component at $3655 \AA$ which, if identified with Si III $\lambda 1206.5$ gives $z=2.0294$, a value which is in fairly good agreement with the values obtained from the other lines in this redshift system. The main contributor to line 9 , then, appears to be an unidentified line at $3650 \AA$, possibly

Ly α at $z=2.0032$; no other line, however, is detected at the same redshift. The FWHM is an estimate for the $3650 \AA$ line only. The equivalent width given in the table is for the blend of which SiiII $\lambda 1206.5$ at $z=2.029$ contributes about one third.
line 10 - Asymmetrical line with extended blue wing. Minimum is at $3681 \AA$ which, if identified with Ly $\alpha 1215.7$ gives $z=2.0279$. Possible contributors to this line are $\operatorname{SiII} \lambda 1193.3$ in the system $z=2.082$ at $3678 \AA$, and $N v \lambda 1240.1$ in the system at $z=1.971$ at $3684 \AA$; the latter is expected to be very weak.
lines 13, 14-The two lines at $\lambda_{\text {obs }}=3733.9$ and $\lambda_{\text {obs }}=3744.1$ are not completely resolved. The narrower line at 3733.9, if $\operatorname{Ly} \alpha \lambda 1215.7$, gives $z=2.0714$. At this redshift Civ $\lambda 1549$ falls at $4758.2 \AA$ in rather good wavelength agreement with the weak feature at $4756 \AA$ in the blue wing of the strong line at centred $\lambda=4774 \AA$.

Si II $\lambda 1260.4$ at $z=1.9714$ falls at $3745 \AA$ and is a likely contributor. $\mathrm{N} \mathrm{v} \lambda 1240$ at $z=2.028$ falls at $3755 \AA$, in poor agreement with the observed wavelength, and is expected to be very weak in view of the weakness of Civ $\lambda 1549.2$ in the $z=2.028$ system. Additional contributor at $3744.5 \AA$ is $\operatorname{Si} I I \lambda 1193.3$ at $z=2.138$.
line 15 - Strong unidentified line. Identification with Ly α would give $z=2.104$. The Civ $\lambda 1549$ line at this redshift would fall at $4808 \AA$ where no line is detected. The system, however, could be of very high-ionization or have a low-metal content.
line 17 - The narrowest line observed. If Ly α this line gives $z=2.128$. At this redshift Civ $\lambda 1549$ is at $4846 \AA$ in rather good wavelength agreement with the weak feature at $4844 \AA$ in the blue wing of the strong line centred at $4861 \AA$.
line 18 - This line carves into the blue wing of the quasar Ly α emission line. The line $\mathrm{N} v \lambda 1240.1$ at $z=2.082$ falls at $3822 \AA$ and is very probably the feature seen on the red side of line 17. The line Si II $\lambda 1260.4$ at $z=2.028$ falls at $3816.5 \AA$.
line 19 - Strong unidentified line.
line 20 - This line falls near peak of Ly α emission. It could be much stronger and wider than quoted. Blended with a weaker contributor.
line 21 - Probable. Unidentified.
lines 25, 26 - Uncertain. Wavelengths fit $\operatorname{Siv} \lambda \lambda 1393,1402$ at $z=1.971$.
lines 28, 29 - Uncertain. Wavelengths fit Siiv $\lambda \lambda 1393,1402$ at $z=2.028$.
lines 32, 33 - Uncertain. Wavelengths fit $\operatorname{Siv} \lambda \lambda 1393,1402$ at $z=2.138$.
line 36 - Probable; see note line 13.
line 38 - Very probable. Line is located in steep red edge of the strong absorption line 37 at $4770.8 \AA$.
line 39 - Probable; see note line 17.
line 43 - Certain line but redshift is in slight disagreement with the value, 2.1375 , given by the other lines of the system.

Figure 1. The spectrum of Tololo 1037-27 with the identifications of the strongest lines.

Figure 2. Enlarged section of the spectrum of Tololo 1037-27.

Table 2. Redshift systems in Tololo 1037-27.

System No.	z^{1}	Remarks	$V_{\text {ejection }}{ }^{2}$
1	2.18	Emission redshift	
	2.138	Strong absorption line system of mixed ionization.	0
2	2.128	Ly α and Civ $\lambda 1549$ only. Probable.	4000
3	2.082	Strong absorption line system of high ionization.	4950
4	2.070	Ly α and Civ $\lambda 1549$ only. Probable.	9400
5	2.028	W(Ly $\alpha) / W\left(C_{\text {IV }} \lambda 1549\right) \sim 3$	10600
6	1.971	W(Ly $\alpha) / W\left(C_{\text {IV }} \lambda 1549\right) \sim 3$ Low ionization only. Intervening galaxy absorption spectrum.	-
7	1.077		20400

[^1]$z=2.138$. This is the richest system. It shows a mixture of high- and low-ionization species. From the values given in Table 1 the ratios of the equivalent widths of the Civ and Ly α lines, and of the Civ and N v lines are 0.93 and 4.2 respectively. One source of uncertainty about these values is the fact that the three lines occur in the Ly α and Civ emission lines of the quasar, the profiles of which are themselves uncertain. The possibility that components of the $\mathrm{Ly} \alpha$ forest are blended with the $\operatorname{Ly} \alpha$ absorption line at $z=2.138$ is another source of uncertainty. Finally the $\operatorname{SiII} \lambda 1260$ at $z_{\text {abs }}=2.028$ and the $\mathrm{N} v \lambda 1240.1$ at $z=2.082$ could both contribute $\sim 1.2 \AA$ to the rest equivalent width of $\operatorname{Ly} \alpha$. As a result the ratio of equivalent widths $\mathrm{C} \mathrm{Iv} / \mathrm{Ly} \alpha$ in the system $z_{\text {abs }}=2.138$ could be as high as 2 .

The observed FWHM of the Civ and Ly α lines are 19 and $12 \AA$ respectively. After correction for the instrumental width (7 and $3.8 \AA$ respectively) and for the splitting of the Civ doublet
($\delta \lambda=2.57 \AA$) the FWHM at rest is found to be between 630 and $1150 \mathrm{~km} \mathrm{~s}^{-1}$ for C Iv depending on the doublet ratio and $900 \mathrm{~km} \mathrm{~s}^{-1}$ for Ly α. These values of the FWHM are larger than the width of lines which would arise from one typical galaxy, but consistent with the widths expected if the absorption lines are formed by the superposition of discrete components arising from absorption by individual galaxies in a cluster. In this case the absorbing material would have a high-ionization state indicating significant absorption by halo material. A high value of Civ/Ly $\alpha(\sim 1.25)$ has previously been found in the $z_{\text {abs }}=2.1683$ system in the quasar 0002-422 (Table 3(a), and Sargent, Young \& Boksenberg 1979). Our data give some indication (which needs confirmation from high-resolution spectra) that the low-ionization lines in the system $z_{\text {abs }}=2.138$ are narrower than the high-ionization lines. This is not surprising as the different galaxies along the line-of-sight give rise to sets of absorption components with different line intensity ratios depending on the orientation of the intervening galaxies.

Alternatively the Civ and Ly α lines at $z_{\mathrm{abs}}=2.138$ could be formed by an outflow of gas with $V_{\text {ejection }}=4000 \mathrm{~km} \mathrm{~s}^{-1}$ and $\Delta V_{\mathrm{ej}} / V_{\mathrm{ej}} \leqslant 0.25$. In general the broad absorption-line systems in quasars show only lines of highly ionized elements $\left(\mathrm{C}^{+2}, \mathrm{~N}^{+4}\right)$ and $\mathrm{Ly} \alpha$, but, in a few cases lines of both high and low ionization are observed: in the low-redshift quasar PG $1700+518$, the $\mathrm{Mg}_{\text {II }}$ feature has recently been observed together with lines of C iv and Si iv (Wampler 1985; Pettini \& Boksenberg 1985; Turnshek et al. 1985). In NGC 4151, the outflowing gas producing the blueshifted absorption lines is detected through numerous high- and low-ionization lines (Bromage et al. 1985). The presence of both high- and low-ionization lines in the $z=2.138$ system in Tololo 1037-27 could thus be analogous to these rather exceptional cases.
$z=2.082$. This system is similar to the previous one, the main difference being that it does not have lowly ionized lines. The ratio $\mathrm{W}(\mathrm{C} \mathbf{\mathrm { iv }}) / \mathrm{W}(\mathrm{Ly} \alpha)$ is ~ 2. It is better determined than for the $z_{\text {abs }}=2.138$ system because the local continuum can be better defined, but the uncertainty due to possible blends still exists. The blending with components of the Ly α forest would, like in the previous system, tend to push the ratio $\mathrm{W}(\mathrm{Civ}) / \mathrm{W}(\mathrm{Ly} \alpha)$ to higher values. The rest FWHM of the Ly α line is $2.7 \AA$ or $660 \mathrm{~km} \mathrm{~s}^{-1}$, and the rest FWHM of the Civ doublet is $6.8 \AA$, corresponding to $700-1100 \mathrm{~km} \mathrm{~s}^{-1}$ depending on the doublet ratio. One is thus faced with the same two alternatives as with the $z_{\mathrm{abs}}=2.138$ system. Either the lines Civ and Ly α in the $z_{\mathrm{abs}}=2.082$ system are formed by the superposition of lines arising from halo material in a cluster along the line-of-sight or the lines are formed by an outflow of gas. In the outflow hypothesis the ejection velocity is higher ($V_{\mathrm{ej}}=9000 \mathrm{~km} \mathrm{~s}^{-1}$) while the dispersion of ejection velocity is the same ($600-1100 \mathrm{~km} \mathrm{~s}^{-1}$) giving $\Delta V_{\mathrm{ej}} / V_{\mathrm{ej}} \leqslant 0.1$.
$z=2.128$ and 2.070. These two systems are very close in redshifts to the two previous ones. If the two strong systems at $z_{\text {abs }}=2.138$ and $z_{\text {abs }}=2.082$ are due to intervening clusters then the systems at $z_{\text {abs }}=2.128$ and $z_{\mathrm{abs}}=2.070$ represent individual galaxies in these clusters.
$z=2.028$ and 1.971. In these systems the ratios of the equivalent widths of the Ly α and Civ lines is ~ 3, and the FWHM of the Civ lines is less than $800 \mathrm{~km} \mathrm{~s}^{-1}$. This is consistent with each of these two systems being produced by absorption arising from one galaxy or group of galaxies.
$z=1.077$. This system defined by seven low-ionization lines which all have the instrumental profile is produced by the disc of an intervening galaxy.

Conclusions

The first medium-resolution observations of Tololo 1037-27 have led to the identifications of seven absorption-line redshift systems. Six absorption-line systems have redshifts between $z_{\mathrm{abs}}=1.971$ and $z_{\mathrm{abs}}=2.138$. The two strongest ones, $z_{\mathrm{abs}}=2.138$ and $z_{\mathrm{abs}}=2.082$, are rather similar in character: the ratio of equivalent widths $\mathrm{W}(\mathrm{Civ}) / \mathrm{W}(\mathrm{Ly} \alpha)$ is ~ 2 for the $z_{\mathrm{abs}}=2.082$ system and between 1 and 2 for the $z_{\text {abs }}=2.138$ system. After correction for the instrumental resolution the
Table 3. (a) Properties of absorption-line systems.
$0215+015^{3}$
$z=1.345$
$\left.0002-422^{4}\right)$
$=2.1683$
(λ)
 Line is present but uncertain.
Line is present but uncertain. line has instrumental width
blend with MgII $\lambda 2802.7$
at $z=1.077$ Former blended with Ly α at
$z=2.082$. Latter blended with
Ly α at 2.070
blend with weaker lines
blend with weaker line $\begin{array}{cl}4.1 & 630-1150 \\ 0.7 & 400 \\ - & \\ 0.3 & \end{array}$ 6) Not corrected for instrumental resolution which is
$\sim 300 \mathrm{~km} \mathrm{~s}^{-1}$ near Ly α and 400 km s

- near CIV $\lambda 1549$.

Table 3 (b). Properties of strong absorption line system.

Line	$\mathrm{W}(\lambda)_{\text {rest }}$ (Å)	$\begin{aligned} & \mathrm{FWHM}_{\mathrm{rest}}{ }^{7} \\ & \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{aligned}$	Remarks
$z=2.082$			
Si ii $\lambda 1193.3$	-	-	blended with $\mathrm{Ly} \alpha$ at $z=2.028$
Si III $\lambda 1206.5$	1.1	320	
Ly $\alpha \lambda 1215.7$	2.3	740	
Nv 1 1238.8, 1242.8	-		blend with Ly α at $z=2.138$
Si iI $\lambda 1260.4$	-		blend with $\mathrm{Nv} \lambda 1240$ at $z=2.138$
Siiv $\lambda 1393.8$	2.0	600	
Sifv $\lambda 1402.8$	2.0	700	
Civ $\lambda 1548.8,1550.8$	5.0	600-1100	
Al $\mathrm{III} \lambda 1670.8$	<0.3		
$z=2.028$			
SiII $\lambda 1193.3$	-	-	blended with $\operatorname{Ly} \alpha$ at $z=1.971$
SiliII $\lambda 1206.5$	0.6	-	blended with unidentified line
Ly $\boldsymbol{\alpha} \lambda 1215.7$	3.5	800	blend with weaker lines
Nv $\lambda 1238.8,1242.8$			
Siif $\lambda 1260.4$	-		blend with $\operatorname{Ly} \alpha$ at $z=2.138$
Simv $\lambda 1393.8$	$\leqslant 1.5$		
Sifv 1402.8	$\leqslant 1.5$		
Civ $\lambda 1548.8,1550.8$	1.3	$\leqslant 800$	
Alii $\lambda 1670.8$			
$z=1.971$			
Si iI $\lambda 1193.3$			
Si iII $\lambda 1206.5$	1.3	500	
Ly $\alpha \lambda 1215.7$	2.9	900	
Nv 11238.8, 1242.8			blended with Ly α at $z=2.028$
SiII $\lambda 1260.4$			blended with Ly α at $z=2.082$
Silv $\lambda 1393.8$	<1.5		
Sifv 1402.8	<1.5		
Civ $\lambda 1548.8,1550.8$	0.95	$\leqslant 650$	
Aliil $\lambda 1670.8$			
${ }^{7}$ Not corrected for in	mental reso	on. See note 6	le 3(a).

rest FWHM of these lines is in the range $500-1100 \mathrm{~km} \mathrm{~s}^{-1}$ which is close to the highest values found for the velocity dispersion in a cluster of galaxies. These properties suggest two possible origins for these systems: outflows of gas intrinsic to the quasar or, more likely, absorption by gas in two clusters of galaxies along the line-of-sight.

In the case of gas outflows, the dispersion of the ejection velocities is remarkably small. Two Seyfert galaxies, NGC 3516 (Ulrich \& Boisson 1983) and NGC 4151 (Bromage et al. 1985) have outflows of gas producing absorption lines as narrow as in Tololo $1037-27$ but V_{ej} is only $\sim 1000 \mathrm{~km} \mathrm{~s}^{-1}$ in these intrinsically faint active nuclei.

A more likely alternative is that these two absorption-line systems result from the superposition of discrete components arising from the haloes of galaxies in two different groups or clusters of galaxies possibly members of the same supercluster as the quasar. The high degree of ionization of the gas in these clusters could be due to the proximity of Tololo 1037-27 or other sources of ionizing photons.

The properties of the other four systems $z_{\mathrm{abs}}=2.128,2.070,2.028$, and 1.971 respectively, are also consistent with the intervening galaxies or groups of galaxies. They and the low-ionization system at $z=1.077$ raise to seven the minimum number of galaxies along the line-of-sight.

Finally, regarding the density of C Iv systems in Tololo 1037-27, we note that six systems satisfy the criteria used in the statistical anaysis of Young, Sargent \& Boksenberg (1982), all having an apparent velocity relative to the quasar of $\beta=V / c<0.07$ (Table 2). In this case, Tololo 1037-27 has a density of absorption-line systems very similar to the broad-absorption-line quasar Q1309-056 (Young et al. 1982), with a concentration of C iv systems towards smaller values of β, and a line density in that region much higher than the value found in non-troughed quasars. These properties were used by Young et al. to argue that ejection of material with velocities up to $\beta=0.1$ is likely for Q1309-056.

High-resolution observations will show whether the absorbing gas is in several components or whether the lines have smooth profiles. The resolution of the lines into several components will be consistent with the components being caused by individual galaxies in a cluster, but will not prove it as many BAL quasars show broad absorption lines which break up, at high spectral resolution, into many narrow discrete components (e.g., Weymann \& Foltz 1983). Finding that the absorption lines have smooth profiles would be consistent with gas outflows, but it is interesting to note that ionized gas spread throughout the cluster could also produce lines with smooth profiles. In this case the lines would statistically be symmetrical with respect to the cluster average velocity. Accurate determination of the line profiles with the potential of unveiling such asymmetries would enable one to investigate this possibility. Finally, better signal-to-noise spectra in the range $4000-4400 \AA$ will provide measurements of or significant upper limits to a number of low-ionization lines, which are necessary to obtain a better determination of the state of the gas in the various absorption systems.

Acknowledgments

We thank Max Pettini for helpful comments on the manuscript and Peter Jakobsen for assistance in the reduction of the PCD data.

References

Arp, H. C., 1984. Astrophys. J., 283, 59.
Blades, J. C., Hunstead, R. W., Murdock, H. S. \& Pettini, M., 1984. Preprint.
Bohuski, T. J. \& Weedman, D. W., 1979. Astrophys. J., 231, 653.
Bromage, G. E., et al., 1985. Mon. Not. R. astr. Soc., 215, 1.
Morton, D. C., 1978. Astrophys. J., 222, 863.
Pettini, M. \& Boksenberg, A., 1985. Astrophys. J., 294, L73.
Phillips, M. M. \& Hawley, S. A., 1978. Publs astr. Soc. Pacif., 90, 650.
Sargent, W. L. W., Young, P. J. \& Boksenberg, A., 1979. Astrophys. J., 230, 49.
Savage, B. D. \& de Boer, K. S., 1981. Astrophys. J., 243, 460.
di Serego Alighieri, S., Perryman, M. A. C. \& Macchetto, F., 1985. Astrophys. J., 149, 179.
Turnshek, D. A., et al., 1985. Astrophys. J., 294, L1.
Ulrich, M. H. \& Boisson, C., 1983. Astrophys. J., 267, 515.
Wampler, E. J., 1985. Astrophys. J., 296, 416.
Weymann, R. J., Carswell, R. F. \& Smith, M. G., 1981. Ann. Rev. Astr. Astrophys., 19, 41.
Weymann, R. J. \& Folz, C., 1983. In: Proc. 24th Liège Inter. Ap. Colloq., Quasars and Gravitational Lenses, p. 538, Université de Liège, Institut d'Astrophysique, Liege.
Young, P., Sargent, W. L. W. \& Boksenberg, A., 1982. Astrophys. J. Suppl., 48, 455.

Note added in proof: The quasar Tololo 1038-27 located at 17.9 arcmin from Tololo 1037-27 has been found to have four absorption line redshift systems at $z_{\mathrm{abs}}=2.145,2.08,2.013$ and 1.955, very close to the redshifts of four of the absorption systems in Tololo 1037-27 (P. Jakobson, M. A. C. Perryman, M. H. Ulrich, F. Macchetto and S. di Serego Alighieri, Astrophys. J., in press).

[^0]: * These first observations of Tololo 1037-27 were conducted in the course of a study of the C iv $\lambda 1549$ and $\mathrm{C}_{\text {III }} \lambda 1909$ line profiles, in a list of about 20 quasars which we had selected for their redshift and their apparent magnitude (Ulrich \& Collin-Souffrin, in preparation). A few of the selected quasars turn out to be inadequate for a study of the line profiles because of their prominent absorption lines. Tololo 1037-27 is one of them.

[^1]: ${ }^{1}$ Error on emission redshift: ± 0.05, on absorption redshifts: ± 0.001.
 ${ }^{2}$ Using $V / c=\left(r^{2}-1\right) /\left(r^{2}+1\right)$ where $r=\left(1+z_{\mathrm{em}}\right) /\left(1+z_{\mathrm{abs}}\right)$.

