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THE REMARKABLE IBN AL-HAYTHAM 

The remarkable Ibn al-Haytham 

JOHN D. SMITH 

'I saw that I can reach the truth only through concepts whose matter are 
sensible things and whose form is rational.' 

The achievements in experimental and theoretical science of the Arab 
scholar al-Haytham (also known as Alhazen, from his latinized first name 
al-Hasan) make him as much a figure of the sixteenth and seventeenth 
centuries as of his own tenth and eleventh centuries. 

When his writings become known in the West the importance of his 
contribution to optics was widely recognized and he was studied by 
Galileo, Kepler, Fermat, Snell and Descartes. Mathematicians remember 
al-Haytham chiefly for Alhazen's Problem on the reflection of light from 
a circular mirror, which he solved by the method of conic sections; 
Huygens, Gregory, l'Hospital, Barrow (and many others) later took up 
the problem with the new analytical methods of geometry. Al-Haytham 
also wrote a commentary on the postulates of Euclid, and his attempted 
proof of the parallel postulate has similarities to Lambert's quadrilateral 
and Playfair's axiom in the eighteenth century. His theory of cognition 
may produce yet further interest in his work. 

This essay includes a sketch of his life and main achievements in 
science; a summary of elementary problems in geometrical optics; a 
derivation by complex numbers of various solutions of Alhazen's 
Problem, including Huygens' famous construction; and further comments 
on optical problems. 

A sketch of al-Haytham's life and scientific achievements 

Al-Haytham was born about 965 and lived in Basra in present-day Iraq. 
According to tradition the eminent mathematician devised a way of 
controlling the flow of the Nile by building a dam across it south of 
Aswan. When the Caliph al-Hakim (996-1021) heard of the plan he 
invited him to Egypt to carry it out. However, on viewing the situation 
al-Haytham realized that the project was unfeasible, and from fear of the 
Caliph feigned madness to save his life. After the Caliph died al- 
Haytham resumed his teaching and writing, and he lived on in Cairo until 
about 1040. 

In the flourishing Arab culture of the middle ages the classical tradition 
was both preserved and studied at a time when Europe had all but 
forgotten it. (Thus Western scholars of the late middle ages had their 
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only access to many of the classical writings through contact with the 
Moslem world). The sources most influential for al-Haytham included 
those of Aristotle; the entire mathematical achievement of the Greeks, 
especially Euclid, Archimedes and Apollonius; and the writings of 
Ptolemy of Alexandria on astronomy and optics. 

His greatest work is the Kitab al-Manazir or Treasury of Optics. Here 
we have the first modem description of physical light rays and their 
reception by the eye. This replaced a confusion of ideas which, in the 
later Greek period, had included the theory of 'visual rays' which leave 
the eye and sense luminous objects within the field of vision. Al- 
Haytham dismissed as preposterous the notion that rays extend outward 
from our eyes to the moon (for example). Instead, he said, luminous 
bodies emit light rays both directly into our eyes, and also onto second- 
ary bodies which are illuminated themselves in various degrees, and 
whose light we receive in similar manner. In this way he accounted for 
the light of the moon. 

He conducted a series of experiments on the rectilinear properties of 
light using a dark room with slits in an intermediate wall; demonstrated 
the laws of reflection of light by an accurate experimental method; and 
then built apparatus to investigate similar laws for refraction of light. He 
both believed in the importance of accurate experimentation and was a 
master of it. Though the conclusions from his experiments on refraction 
are not in error (within the ranges of his observations), he failed to 
discover the law which Descartes and Snell found 600 years later; never- 
theless, his reasoning was similar to theirs, depending as it did on a 
parallelogram of velocities. 

But how is the image of an object formed in our mind? From 
knowledge of the eye's interior he developed a theory of vision in which 
rays from an object enter the eye and are refracted through the crystalline 
humour (lens), to a point. According to al-Haytham, the crystalline 
humour is the organ which is sensitive to light rays and the information it 
acquires is transmitted to the brain via the optic nerve. Thus al-Haytham 
did not come to recognize (as Kepler did) the eye as a camera obscura in 
which rays pass through the lens to form an inverted image of the object 
on the sensitive retina, though he identified many of the key principles of 
vision and conducted experiments on the operation of the eye. 

His contributions to astronomy are less original. Much of al- 
Haytham's work is a commentary on Ptolemy's Almagest and the 
complicated system of epicyclic gears by which Ptolemy modelled the 
motion of the solar system. 
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Alhazen's problem in the history of geometrical optics 
Whilst the concept of mathematical rays and the rules of reflection may 

have been known since Plato's time, the more interesting properties date 
from the later period. 

FIGURE 1. 

If a ray passes from A to B via reflection at a point P on a plane mirror 
(figure 1) Heron of Alexandria recognized in the first century A.D. that the 
sum of the distances IAPI + IPBI is a minimum: if A* is the image of A in 
the plane, for any point Q in the plane IAQI + IQBI = IA*QI + IQBI ; this is 
least when A*QB is a straight line. His explanation, 'nature does nothing 
in vain' was developed by Fermat into a general principle of least time. 

FIGURE 2. 

The focussing properties of conics date from two or three centuries 
before. The 'burning mirror' theorem of Diocles demonstrates that rays 
which enter a paraboloidal mirror parallel to the axis are brought together 
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at the point which Kepler later called the focus (figure 2); equivalently, 
rays which leave the focus are reflected into a beam parallel to the axis. 

S2 \s S Si 

FIGURE 3. 

For an ellipse, rays which leave one focus are brought together at the 
other focus after one reflection (figure 3); in the case of a hyperbola, the 
reflected rays appear to have come from the other focus. The sum of the 
focal distances IPS1I + IPS21 is constant for the ellipse, and the difference 
of the focal distances is constant for the hyperbola. 

Simple symmetrical problems on the reflection of light from a circular 
mirror were studied by Ptolemy, but it was al-Haytham who, in Book V 
of the Kitab, solved the general optical problem which bears his name: 

An object and an observer are at given positions in a plane; how do we locate 
the point or points on a circular mirror at which a ray is reflected from the 
object to the observer? 

For his construction he used Apollonian methods of conic sections. He 
also solved the general three-dimensional problem for a cylindrical 
mirror, and the similar problem for a cone. 

The problem began to interest mathematicians in the seventeenth 
century because it was amenable to the analytical methods which 
Descartes had introduced into geometry. Al-Haytham's solution is 
extremely long and complicated; the difficult Latin translation of the 
proof may never have been properly understood by these authors, 
although its form could have influenced them. The most important work 
on the problem after al-Haytham's is contained in the correspondence 
which Huygens and Sluse addressed to Oldenberg, secretary of the Royal 
Society, between 1669 and 1674. An infinite family of hyperbolae, 
parabolae and ellipses intersect the circle in the required points, and 
Huygens and Sluse competed with each other to find the most pleasing 
construction. Sluse's method uses a parabola, but no better solution has 
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ever been found than the construction with a rectangular hyperbola which 
Huygens gave in 1672. We now obtain both of their solutions by 
complex numbers. 

Analytical solution of Alhazen's Problem 

In figure 4 a circle has centre 0 and any radius, and a ray passes from 
A to B after reflection at P. We represent A, B and P by the complex 
numbers a, b and z. 

A 

B 

FIGURE 4. 

The angles of reflection APR and RPB are equal to arg((a - z)/z) and 
-arg((b - z)/z) respectively, and by equating them we obtain 

(a- z)(b- z) = . arg 
z2 

The expression in square brackets is real, and therefore 

(a- z)(b- z) _ (a- z)(b- z) 
z2 z-2 ' ( z2 z 

where z is the complex conjugate of z. 

Conversely equation (1) is satisfied either if angles APR and RPB are 
equal or if they differ by t . In figure 4 a ray which is reflected at P' 
appears to have come from B; thus P' also satisfies equation (1). We 
will call both kinds of points 'reflection points', and distinguish 'proper 
reflections' from 'backward reflections'. By rearrangement, 
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abz2 - abz2 = [(a+b)z-(a+b)z]zz. 

If we take the coordinate axes along the angle-bisectors of OA and OB 
then ab is real, and by division 

z2 _ z2 = [(a*+b*)z - (d+b*)z]zz , 

where a* = i/a and b* = I/b. Now write c = (a*+ b*),so that 

z2 - z2 = 2(cz-cz)zz (2) 
If c = Icl ei6 and z = reiO this defines a polar curve shown in figure 5 with 
equation 

.r - sin20 
r = 2csin(0 + ) ' 

which Isaac Barrow derived in his Cambridge Lectures of 1669. 
It is clear from equation (1) that the curve passes through A and B. By 

drawing circles with centre 0 we see how the number of reflexion points 
varies between two and four, depending on the radius of the mirror. For 
the circle drawn in figure 5 there are four intersections; P2 and P4 define 
proper reflections, and P1 and P3 backward reflexions. When A and B 
both lie inside the circle, graphs show that there are between two and 
four intersections; they are all proper reflection points. 

0 B 

FIGURE 5. 

With c = Cl + ic2 we obtain from (2) the cubic form 

xy =(c2x+cly)(x2+y2) (3) 
for Barrow's curve. Apart from degenerate cases when cl = 0 or c2 = 0 
(see below) the curve always has a loop which touches the coordinate 
axes at 0, and an asymptote with equation 
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x y _ 1 
C +I c 2 + C2 

We now assume, without any loss of generality, that the mirror is the 
unit circle I z I = 1. From (3), xy = C2X + c1 y, and hence 

(X- C)(y- C2) = Cl C2. 

The reflection points therefore lie at the intersection of the circle with a 
rectangular hyperbola (figure 6). Now c = (a*+ b*)/2 and a* and b* 
represent the inverses A*, B* of A, B in the circle. Therefore the centre 

C(C1, C2) of the rectangular hyperbola is the mid-point of the inverse 
images of A and B in the mirror, the asymptotes are parallel to the angle- 
bisectors of OA and OB, and the hyperbola passes through the centre of 
the circle: this is the very elegant solution of Huygens. The hyperbola 
is the inverse image of Barrow's curve in the circle, and therefore passes 
through A* and B* as well ! 

o B 

FIGURE 6. 

The principal axes of a rectangular hyperbola are inclined at 45? to the 
asymptotes. If new coordinate axes lie in these directions, ab is 
imaginary and (2) becomes 
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Z2 + Z = 2(CZ + CZ), 
where upper case letters refer to the new axes. 
Hence 

X2-Y 2 = 2(C,X - C2Y) 
The equation of any conic which passes through the common points of 
the rectangular hyperbola and the circle is a linear combination of (4) and 
X2 + y2 = 1. By adding and subtracting we obtain two parabolae with 
perpendicular axes of symmetry: 

CiX + (Y-!C2) = 1(C2+2) 

and (X-C)2 + C2Y = (C+2) 

These are the parabolae in Sluse's solution. Their axes intersect at the 
midpoint of OC, and they touch Barrow's curve at points on the lines 
X = 0 and Y = 0 respectively. 

Two symmetrical cases of the problem were solved in antiquity: 
(i) A and B lie on a diameter and 

(ii) A and B are at equal distances from the centre 0. 
If the x-axis is the line of symmetry, in both cases c2 = 0. The rect- 
angular hyperbola degenerates into the two lines x = cl and y = 0, and 
Barrow's curve becomes the line y = 0 and a circle which passes through 
0. In case (ii) this circle passes through A and B (figure 7). 

FIGURE 7. 

Optical problems in general 

During the same period as Huygens' and Sluse's work, James Gregory 
attempted an analytical solution of Alhazen's Problem but without the 
same success. However, in Proposition 34 of his Optica Promota of 
1663 he states that if a ray is reflected from A to B at a surface, reflection 
occurs at a point where the surface touches an ellipsoid which has its foci 
at A and B. This is, of course, an application of the reflection property of 
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the ellipse. In Alhazen's Problem there are up to four real confocal 
conics which touch the circle, and they may be ellipses or hyperbolae; 
the hyperbole defmine backward reflections. 

A smooth surface can be approximated near any point by the tangent 
plane there; since IAPI + IPBI is a minimum for reflection in a plane it 
follows that at a proper reflection point on any smooth surface the total 
distance is stationary. The curvature of the surface can change the 
minimum character, but the total distance remains 'nearly constant' for 
small deviations away from the reflection point. Similarly, for backward 
reflection from a plane the difference I PA I - I PB I is a maximum, and for 
reflection from a general surface the difference is therefore stationary. 
(In the case of an ellipse or hyperbola with A and B at the foci these 
functions are exactly constant!). 

This does not, however, exhaust the stationary values; on any smooth 
surface IPAI + IPBI is stationary when APB are collinear in that order, 
and IPA I - IPBI is stationary when the points are collinear in the order 
ABP or BAP. Thus in Alhazen's Problem the reflection points do not 
necessarily define the global extrema of these functions. 

The connexion with reflection gives a particularly satisfying character 
to extremal problems for paths which visit given curves and surfaces. 
For example: find the shortest closed path which visits all three sides of a 
given triangle ABC. If the triangle is acute-angled, the shortest path 
follows a continuous light ray which is reflected at the sides [8]; if the 
reflection points are L, M, N then LMN is the pedal triangle which joins 
the feet of the perpendiculars from the vertices. But if angle A (say) is 
not acute then the shortest path is the altitude from A to BC and back 
again. So what is the significance of the pedal triangle in this case? The 
corresponding problem for a quadrilateral is even more interesting, and 
we will not spoil the reader's enjoyment by saying more about it. 

Heron's observation that the reflected ray takes the shortest distance 
was elevated by Fermat to a general optical principle of least time, from 
which he derived the law of refraction. If a light ray passes from a point 
A in one medium to a point B in a different medium and the separating 
surface is smooth, the minimum time is achieved when the ray is 
refracted at the surface in such a way that the incident and refracted rays 
and the normal are coplanar, and the sines of the angles of incidence and 
refraction are proportional to the speeds of light in the two media. This 
is often presented as a calculus exercise in the form 

A life-guard is standing well back on the beach and along the coast sights a 
child in trouble in the sea. If he runs and swims at given rates, where should 
he enter the sea to reach the child as quickly as possible? 

The problem can in fact be solved without calculus by 'Ptolemy's 
inequality', as shown in [6] and [8]. 
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In general Fermat's principle only demands a stationary value of the 
time; nevertheless, any two points sufficiently close on a path do satisfy 
the minimum condition. The idea generalizes to the 'principle of least 
action', which is an astonishingly economical way to formulate all 
fundamental physical laws [4]. It is satisfying that classical mechanics 
and the classical limit of wave mechanics can both be interpreted in 
terms of a ray or wave passing through a refracting medium of non- 
uniform density. 
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