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The Rembrandt brain cancer dataset includes 671 patients collected from 14 contributing institutions from

2004–2006. It is accessible for conducting clinical translational research using the open access Georgetown

Database of Cancer (G-DOC) platform. In addition, the raw and processed genomics and transcriptomics

data have also been made available via the public NCBI GEO repository as a super series GSE108476. Such

combined datasets would provide researchers with a unique opportunity to conduct integrative analysis of

gene expression and copy number changes in patients alongside clinical outcomes (overall survival) using

this large brain cancer study.
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data integration objective • individual genetic characteristics comparison
design • transcription profiling by array design

Measurement Type(s) transcription profiling assay • copy number variation profiling

Technology Type(s) microarray • DNA microarray

Factor Type(s) age • biological sex • diagnosis • tumor grading

Sample Characteristic(s) Homo sapiens • brain
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Background & Summary
In 2005, cancer became one of the leading causes of mortality in the United States. At the time, new and
innovative initiatives of molecular characterization were developed in an effort to break down the barriers
of insufficient and incomplete data, especially for novel clinical research hypothesis generation and
testing. Consistent characterization of genomic and molecular data in conjunction with clinical data is
needed to improve prognosis for patients with similar molecular profiles. One such initiative was the
Rembrandt project (REpository for Molecular BRAin Neoplasia DaTa), a joint initiative of NIH’s
National Cancer Institute (NCI) and National Institute of Neurological Disorders and Stroke (NINDS).
This project consisted of a large brain cancer patient-derived dataset that contained clinically annotated
data generated through the Glioma Molecular Diagnostic Initiative (GDMI) from 874 glioma specimens
comprising 566 gene expression arrays, 834 copy number arrays, and 13,472 clinical phenotype data
points.

The consistent molecular characterization allowed the data to be analyzed, integrated, and
redistributed through a web based online platform of the same name - REMBRANDT, hosted at the
NCI. This publicly available online platform was built on novel biomedical infrastructure and allowed
analysis of genetic data in conjunction with clinical data and was one of the earliest initiatives aimed at
precision oncology. This project won the Service to America Award in 2005 (https://servicetoamer-
icamedals.org/honorees/view_profile.php?profile= 109). Madhavan et al1 demonstrated the power of the
data portal through several case studies.

In 2015, the NCI retired the REMBRANDT data portal, and all molecular data including microarray
gene expression, copy number, and clinical data were migrated to the Georgetown Database of Cancer
(G-DOC)2. G-DOC makes available clinical and biospecimen data from this study for 671 patients
through its public web portal.

G-DOC is a data integration platform that offers advanced computational tools to handle a variety of
biomedical BIG DATA including gene expression arrays, next generation sequencing (NGS),
metabolomics and medical images so that they can be analyzed in the full context of other omics and
clinical information2,3 (Figs 1 and 2). After migration of the REMBRANDT dataset into G-DOC, we
applied a novel algorithm for summarizing copy number data at the chromosome level called
the Chromosomal Instability Index (CINdex), published as an open source BioConductor package
(http://bioconductor.org/packages/CINdex/)4.

To augment the larger REMBRANDT project, a companion image collection was created that
contained pre-surgical magnetic resonance images from 130 patients from the same REMBRANDT
dataset, linked by Sample id to the G-DOC collection of clinical and molecular data. This image
collection is now hosted at the Cancer Imaging Archive (TCIA) and available for public access
(https://wiki.cancerimagingarchive.net/display/Public/REMBRANDT).

We believe that it would be a great service to the scientific community to make the REMBRANDT
dataset available to the research community i.e. gene expression and matching copy number data from
patients with brain cancers - both at segment level and processed CINdex level data along with de-
identified clinical annotation including overall survival data. Such combined datasets would provide
researchers with a unique opportunity to ask interesting questions of the molecular anomalies and
correlate them to outcomes with the goal of generating novel testable hypothesis for biomarker
development to treat patients diagnosed with Gliomas.

In this paper, we describe the REMBRANDT data set, sampling methodology, data processing
methods that were applied and the online data platform that provides access to this data collection. We
also describe how it can be accessed from other public data repositories.

All the raw and processed gene expression, copy number and the clinical data used for Rembrandt
within G-DOC have been made public as a super series at the NCBI GEO repository (Data Citation 1).

Methods
Tissue samples
The NCI Neurooncology branch obtained an IRB approval from the NIH Clinical Center in 2003 to
collect this dataset. Informed consent was obtained from all subjects. Matched tumor, blood, and plasma
were collected from 14 contributing institutions including the NIH Clinical Center, Henry Ford Hospital,
Thomas Jefferson University, University of California at San Francisco, H. Lee Moffitt Hospital,
University of Wisconsin, University of Pittsburgh Medical Center, University of California at Los
Angeles, The University of Texas M. D. Anderson Cancer Center, Dana-Farber Cancer Center, Duke
University, Johns Hopkins University, Massachusetts General Hospital, and Memorial Sloan Kettering
Cancer Center1. The dataset was fully deidentified to remove all HIPAA identifiers.

RNA samples
Total RNA was extracted from the tumor tissue (50–80 mg) using the Trizol reagent (Invitrogen) and
following the manufacturer’s instructions. The quality of RNA extracted was verified using Agilent’s
Bioanalyzer System with the help of RNA Pico Chips. 5 μg RNA extracted from each sample was
processed using the Affymetrix U133 Plus2 gene expression microarray chips1.
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Gene expression data pre-processing, quality control, and expression data normalization
The raw data files from all Affymetrix arrays that passed the minimal quality-control were normalized
using the package (http://www.dchip.org/). The model-based expression index algorithm was applied
(dChip). This algorithm selects an invariant set with a small within-subset rank difference to serve as the
basis for adjusting brightness of the arrays to a comparable level. The normalization was done at the
perfect match (PM) and mismatch (MM) probe levels, and model-based expression levels were calculated
using normalized probe level data. The average difference model (PM>MM) was chosen to compute
expression values; negative average differences were truncated to 1 or log-transformed values of zeros to
flag negative signal intensities.

Expression data pre-processing
For pre-processing, probe-level data were processed with custom Chip Definition Files that rearranged
Affymetrix probes into gene-based probe sets. Probes mapped to alternatively spliced exons were grouped
into distinct probe sets. Most 3′ probes were selected for processing. Nonspecific probes were masked
before processing. Probe-level data were consolidated into probe-set data using the Affymetrix MAS5
algorithm, with the target scaling value at 500.

Figure 1. Screen shot of the Rembrandt dataset in G-DOC.
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DNA samples
Tissue (∼10 μg; as recommended by the manufacturer) from each tumor was used to extract high
molecular weight, genomic DNA using QIAamp DNA Micro DNA extraction kit (Qiagen) following the
manufacturer’s instructions. The quality of DNA was checked by electrophoresis run in a 2% agarose gel.
Genomic DNA (250 ng) from samples received were hybridized to 100 K single nucleotide polymorphism
chips (http://www.affymetrix.com/support/technical/byproduct.affx?product= 100k), which covered
116,204 single nucleotide polymorphism loci in the human genome with a mean intermarker distance
of 23.6 kb. These arrays give two simultaneous data types: allelic calls and signal intensity, allowing for the
determination of both copy number alterations and regions of allelic imbalances (loss of heterozygosity).

DNA Data Processing
Calls were determined by the GTYPE software (Affymetrix Inc, Santa Clara) version 3.0 with 25% level of
confidence. Only samples with call rates of> 90% were accepted for any analysis. The 100 K arrays were a
set of 2 chips, 50 K each, designed for different restriction enzyme - XbaI and HindIII. So each sample
was analyzed on 2 arrays. These arrays were processed separately and looked for their concordance with
HapMap data as described in Matsuzaki et al5. Genotyping performance was assessed by comparing
subsets of genotypes with calls determined by sequencing and, most importantly, using concordance
measure with data from the HapMap Project as described in Matsuzaki et al5. By tuning the cutoff filter,
one can strike an optimal balance between call reliability and call rates for any given study. The
recommended cutoff of 0.25 was applied and provided the concordance values above 99.5% for both
arrays. In addition, the 100 K arrays platform provided built-in controls to cross-check for consistency of
results between the arrays, Thirty-one SNPs on both the XbaI and HindIII arrays serve as built-in
controls forthe array set. These controls allow researchers to cross-check genotypes from the same sample
on each array to verify that both arrays remain together through array preparation protocols and data
analysis, as described in this Affymetrix datasheet (http://tools.thermofisher.com/content/sfs/brochures/
100k_datasheet.pdf).

Data processing for G-DOC
We obtained the Rembrandt data collection from the NCI for loading to G-DOC. First, the pre-processed
data were checked for integrity so that every patient had one matching clinical metadata, gene expression
data array and (or) copy number data sample. While the gene expression data was already pre-processed,
we applied our unique algorithm for copy number data analysis called Chromosomal Instability Index
(CINdex). CINdex is available to the public as a BioConductor Package: http://bioconductor.org/
packages/CINdex/4.

The CINdex package uses the segment level data to calculate the genomic instability in terms of copy
number gains and losses separately at the chromosome and cytoband level. The genomic instability across
a chromosome offers a global view (referred to as Chromosome CIN), and the genomic instability across
cytobands regions provides higher resolution (referred to as Cytobands CIN) view of instability. This

Figure 2. A screen shot from G-DOC showing the comparison of two groups of patients in the Rembrandt

study–Oligodendroglioma patients with Grade II tumor and Oligodendroglioma patients with Grade

III tumor.
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allows assessing the impacts of copy number alternations on various biological events or clinical
outcomes by studying the association of CIN indices with those events.

The CINdex algorithm was applied on both the XbaI and HindIII Rembrandt copy number arrays,
and made available through our GEO submission. The segment level information was obtained from the
copy number array data in the.CN4.cnchp files, and input into the CINdex algorithm.

The Rembrandt dataset in G-DOC is summarized in Table 1. The Rembrandt clinical data in G-DOC
(summarized in Table 2) had a total of 28 clinical attributes, which includes demographics, primary
diagnosis, tumor stage and race. The complete set of clinical attributes including survival is provided in a
comprehensive table as part of our GEO submission (Data Citation 1). The clinical data was checked for
integrity and then mapped to the existing data structures as a precursor to loading within the G-DOC
database. Several files were created, each that described the clinical attributes with respect to their type
and vocabulary. Special files were also created that described the mapping between the clinical and gene
expression data; and clinical and copy number data. The summary, study characteristics, and contact
information were captured in a separate file. Once all metadata files were created, loading scripts were
used to import the data into the G-DOC database. Duplicate biospecimen samples were excluded from
the G-DOC database2.

The G-DOC system3 uses the Oracle 11 g relational database and consists of 44 common tables. For
each new study loaded, a separate schema is created consisting of a set of 12 study-specific tables. All
processed data files pertaining to a particular study are loaded separately onto a computation-centric
server designed to handle high-throughput data analysis2.

After data processing and cleaning, there were a total of 671 patients with clinical data, of which 541
had gene expression data, and 507 patients had undergone SNP chip profiling. 263 patients had
information about segment level copy number data. 220 patients had both gene expression and copy
number data. Out of the total number of biospecimen files received from NCI, there were a total of 550
gene expression .CEL files and 16 copy number .CEL files. The level 2 gene expression data included 550
CHP files (http://dept.stat.lsa.umich.edu/ ~ kshedden/Courses/Stat545/Notes/AffxFileFormats/chp.html)
that contained the probe set analysis results generated by the Affymetrix software. The level 2 copy
number data included a total of 1,992 files, which consisted of 1,484 CHP files that contained genotype
calls; and 508 CN4.cnchp files (https://www.affymetrix.com/support/developer/powertools/changelog/
gcos-agcc/cnchp-lohchp.html) that included copy number results generated from the Affymetrix CN4
algorithm. Out of these 1,992 files, 1,010 were profiled using Xba array (747 CHP files and 263 CN4.
cnchp files), and 982 profiled on Hind array (737 CHP files and 245 CN4.cnchp files).

Case study using Rembrandt dataset in G-DOC
Bhuvaneshwar et al details a case study comparing Astrocytoma (low grade glioma) patients with
those afflicted with GBM (high grade glioma) from the Rembrandt dataset using the G-DOC platform3

(Fig. 3). The case study compared the two groups of patients using gene expression, Chromosomal
Instability Index (CINdex) and overall survival. The most down-regulated gene RHOF was six fold
under-expressed in the GBM group compared to the Astrocytoma group. This gene is known to be
down regulated in GBM patients through the over expression of their activators6. From comparison of
copy number data between the two glioma types we found a higher level of chromosomal instability
in the Astrocytoma group in chromosome 8q arm (indicated by the bright red colors). Aberrations in the
8q arm in Astrocytoma patients are known in literature7–9 (Fig. 3b). Finally, the Kaplan Meier survival
plot (Fig. 3c) feature in G-DOC Plus showed the expected result that patients with Astrocytoma had
better survival rates than those with GBM with a p-value of less than 0.05 from log rank test. Such case
studies show the power of these kinds of multi-omics data and analyses platforms, which allow users to
generate new hypotheses by a click of buttons without performing any intensive data analyses of
their own.

Usability
The success of clinical research software applications such as G-DOC is dependent on understanding the
complex cognitive processes of the intended user. However, despite recent IOM reports highlighting the
significance of cognitive and human factors approaches for use in clinical research environments10, there
is a paucity of research within this domain. We routinely apply human factors approaches11 to improve
the user interfaces in G-DOC to improve the user experience. For example, the search interfaces follow
the e-commerce shopping cart (Amazon, Zappos) like style sheets to allow users to easily select, filter and
visualize datasets. User-selected analysis routines are moved to an asynchronous thread by the software
application to allow users to use other features while the analysis is run in the background. They can then

Source Protocol 1 Samples Protocol 2 Data

Rembrandt glioma samples RNA extraction 671 patients Microarray hybridization GSE108474

Rembrandt glioma samples DNA extraction 263 patients SNP array hybridization GSE108475

Table 1. Details of the REMBRANDT dataset in G-DOC.
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go to the analysis results page to view the results of analysis at a later time point. Such usability
improvements have attracted over 4,200 users to the G-DOC system for translational research and
training purposes.

Relevance to TCGA cohort
The Cancer Genome Atlas (TCGA) is a comprehensive collection of multiple omics data from 33
different cancers. TCGA has two brain cancer dataset collections. One is a collection of 617 cases with
grade IV gliomas referred to as TCGA-GBM (https://portal.gdc.cancer.gov/projects/TCGA-GBM)12. In
2015, TCGA included a cohort of lower grade glioma cases (TCGA-LGG) (https://portal.gdc.cancer.gov/
projects/TCGA-LGG)13 that included 517 grades II and III brain cancer cases. In contrast, the Rembrandt
dataset contains clinical and molecular data on 671 cases from grade II, III, and IV gliomas. The TCGA
brain cancer collection was used to determine subtype classification of tumors based on multi-omics
profiling of sampless14,15.

The REMBRANDT collection is a large single study collection of brain cancers that was developed
independent of TCGA efforts and provides a unique independent validation dataset for comparative
analysis with TCGA. For instance Cooper et al corroborated the subtype classification obtained from the
TCGA data using the Rembrandt dataset16 (https://cancergenome.nih.gov/researchhighlights/research-
briefs/corroboratesubtypes). This dataset lends itself to development of additional machine learning
approaches including deep learning methods for assessing clinical relevance of biomarkers for diagnostic
or therapeutic development.

Rembrandt is FAIR-Compliant
The Rembrandt dataset is compliant with FAIR (Findable, Accessible, Interoperable, and Re-usable) data
principles. With respect to these standards, the Rembrandt dataset is ‘findable’–previously as a standalone
portal, and now hosted in G-DOC, with provenance and raw data available in the National Institute of
Health (NIH) Gene Expression Omnibus (GEO) data repository. All these resources mentioned are
publicly available and hence satisfy the ‘accessible’ condition. The gene expression and copy number data
are in standard data matrix (MAGE-TAB) formats that support formal sharing and satisfy the
‘interoperable’ condition. Finally, this dataset is easily ‘reusable’ for additional research through either the
G-DOC platform, or via GEO (Data Citation 1).

Clinical Attribute Number of patients % Of patients

Gender Male 326 48.6%

Female 177 26.4%

Blank/NA 168 25.0%

Disease Type GBM 261 38.9%

Astrocytoma 170 25.3%

Oligodendroglioma 86 12.8%

Non tumor 31 4.6%

Unknown 68 10.1%

Unclassified 1 0.1%

Mixed 13 1.9%

Blank/NA 41 6.1%

WHO Grade I 2 0.3%

II 110 16.4%

III 93 13.9%

IV 140 20.9%

Blank/NA 326 48.6%

Race White 433 64.5%

Black 15 2.2%

Asian 7 1.0%

Hispanic 1 0.1%

Native Hawaiian 3 0.4%

Unknown 7 1.0%

Other 5 0.7%

Blank/NA 200 29.8%

Table 2. Summary of the Rembrandt dataset.
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Figure 3. A case study comparing Astrocytoma and GBM patients using gene expression, copy number,

and clinical data in the G-DOC platform. (a) Heat map comparing Astrocytoma and GBM patients. Over-

expression of genes in the heat map is represented in red color, and under-expression is shown in green color.

(b) Chromosome instability in chromosome 8. Here, black color indicates normal DNA copy number (i.e. no

instability); and the red color indicates instability - higher the instability, the brighter the red color (c) Kaplan

Meier survival plot between Astrocytoma (red line) and Glioblastoma patients (blue line)3.
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Code availability
CINdex package is available to the public as a BioConductor package: http://bioconductor.org/packages/
CINdex/4.

Data Records
The raw gene expression and copy number data are available in Gene Expression Omnibus (GEO) as a
super series (Data Citation 1). The gene expression files include the raw files in the form of .CEL files;
processed data in the form of .CHP files. The raw gene expression is also available at ArrayExpress
(Data Citation 2).

The copy number data deposited in GEO includes raw .CEL files, and probe set analysis results
generated from Affymetrix software in the form of CHP and CN4.cnchp files. In addition, chromosome
instability information obtained from the CINdex package is also available in the form of data matrices.

Technical Validation
Quality Control was conducted on all microarrays according to NCI internal standard operating
procedures. All arrays were confirmed to be within acceptable minimal quality-control variables
following these criteria: (a) A scaling factor of o 5 when the expression values are scaled to a target mean
signal intensity of 500. (b) Signal intensity ratios of the 3′ to 5′ end of the internal control genes of β-actin
and GAPDH o 3. (c) Affymetrix spike control (BioC, BioDN, and CreX) are always present, and
percentage present calls is> 35% for brain tissue1.

Usage notes
The Madhavan et al1 publication that described the Rembrandt portal and dataset has enabled numerous
analyses and has been cited 233 times so far (as of April 2018).

We believe that by making this dataset available to the research community via a public analysis-ready
platform like G-DOC, and access to raw data via a public repository like GEO provides a unique data
science research opportunity to the biomedical and data science research communities. Such combined
datasets would provide researchers with a unique opportunity to conduct integrative analysis of gene
expression and copy number changes alongside clinical outcomes (overall survival) in this large brain
cancer study published to date.
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