
The Remote Sensing of Clouds and Precipitation from Space: A Review

GRAEME L. STEPHENS AND CHRISTIAN D. KUMMEROW

Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

(Manuscript received and in final form 19 December 2006)

ABSTRACT

This paper presents a critical review of a number of popular methods that have been developed to

retrieve cloud and precipitation properties from satellite radiance measurements. The emphasis of the paper

is on the retrieval uncertainties associated with these methods, as these shape future data assimilation

applications, either in the form of direct radiance assimilation or assimilation of retrieved geophysical data,

or even in the use of retrieved information as a source of model error characterization. It is demonstrated

throughout the paper how cloud and precipitation observing systems developed around seemingly simple

concepts are in fact very complex and largely underconstrained, which explains, in part, why assigning

realistic errors to these properties has been so elusive in the past. Two primary sources of error that define

the observing system are highlighted throughout: (i) the first source is errors associated with the identifi-

cation of cloudy scenes from clear scenes and the identification of precipitation in cloudy scenes from

nonprecipitating cloudy scenes. The problems of discriminating of cloud clear and cloud precipitation are

illustrated using examples drawn from microwave cloud liquid water path and precipitation retrievals. (ii)

The second source is errors introduced by the forward model and its related parameters. The forward model

generally contains two main components: a model of the atmosphere and the cloud and precipitation

structures imbedded in that atmosphere and a forward model of the radiative transfer that produces the

synthetic measurement that is ultimately compared to the measurement. The vast majority of methods

developed for deriving cloud and precipitation information from satellite measurements is highly sensitive

to these model parameters, which merely reflects the underconstrained nature of the problem and the need

for other information in deriving solutions. The cloud and precipitation retrieval examples presented in this

paper are most often constructed around very unrealistic atmosphere models typically composed of just a

few layers. The consequence is that the retrievals become too sensitive to the unobserved parameters of

those layers and the atmosphere above and below. Clearly a better definition of the atmospheric state, and

the vertical structure of clouds and precipitation, are needed to improve the information extracted from

satellite observations, and it is for this reason that the combination of active and passive measurements

offers much hope for improving cloud and precipitation retrievals.

1. Introduction

The clouds of Earth are fundamental to most aspects

of human life. Through production of precipitation,

they are essential for delivering and sustaining the sup-

plies of freshwater upon which human life depends.

Clouds further exert a principal influence on the plan-

et’s energy balance. It is in clouds that latent heat is

released through the process of condensation and the

formation of precipitation. This form of heat is elemen-

tary to the development and evolution of the planet’s

storm systems and, in turn, to the precipitation pro-

duced by these systems. Clouds further exert a pro-

found influence on the solar and infrared radiation that

enters and leaves the atmosphere. This influence is

complex and not entirely understood, yet it has the

potential to exert profound effects on climate and on

forces that affect climate change (Stephens 2005). It is

for these reasons, among others, that the need to ob-

serve the distribution and variability of the properties

of clouds and precipitation has emerged as a priority in

earth observations. Although most past and current ob-

servational programs unrealistically treat clouds and

precipitation as separate entities, it is the contention of

this paper that there is much to be gained scientifically

in moving away from these artificial practices toward

observing clouds and precipitation properties jointly.
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Past studies that seek to characterize the distribu-

tions of key cloud and precipitation properties and de-

termine the principal factors that govern such distribu-

tions point to the elementary importance of the synop-

tic-scale controls of the atmospheric circulations that

shape our weather systems (Rossow and Cairns 1995).

The vast range of scales that influence cloud and pre-

cipitation properties and the effects of these properties

on weather and climate dictate a sampling strategy that

inevitably requires the use of data collected from sen-

sors flown on earth-orbiting satellites.

A number of methods for determining various cloud

and precipitation parameters primarily using satellite

spectral radiances have evolved over the years. A se-

lection of these methods and parameters derived from

them are listed in Table 1. Many of the parameters

identified and the methods developed to produce them

are reviewed in this paper.

Satellite data records are now long enough and meth-

ods mature enough that meaningful climatologies of

some of the cloud and precipitation properties listed in

Table 1 are emerging. For example, climatologies have

been developed as part of international programs like

the International Satellite Cloud Climatology Project

(ISCCP) and the Global Precipitation Climatology

Project (GPCP) coordinated under the auspices of the

World Climate Research Program (WCRP). Other cli-

matologies have also been developed, as in the example

of the Pathfinder Atmospheres (PATMOS) program

(e.g., Jacobowitz et al. 2003). These programs have

been collecting radiance data from multiple satellite

platforms for more than 20 yr, producing long-term sta-

tistics of cloud cover. ISCCP, for example, converts

these radiances into a classification scheme based on

cloud-top (pressure) height and cloud optical thickness

(Rossow and Schiffer 1999). GPCP was established in

1986 and merges infrared and microwave satellite esti-

mates of precipitation with rain gauge data from more

than 6000 stations (Adler et al. 2003). These merged

data are presented in the form of monthly mean pre-

cipitation data on a 2.5° � 2.5° latitude–longitude grid

beginning in 1979, but more recently GPCP has ex-

panded this effort to include a 1 � 1 daily dataset start-

ing in 1997.

The purpose of this paper is to (i) present a critical

review of the different types of cloud and precipitation

information derived from current satellite measure-

ments, (ii) review the underlying basis for the estima-

tion of this information, and (iii) offer insight into the

nature of the uncertainties that can be attached to such

products. A review of such methods and related uncer-

tainties offers a useful first step to any application of

such data, including the assimilation of data into local-

scale, regional, or global models. The following two

sections provide a general background for discussion of

satellite observing systems and provide the context for

TABLE 1. Selected parameters that commonly define the retrieved state vector of various methods and their relation to the physical

processes involved.

Method Parameter sensed Retrieval state parameter (x)

IR emission

Thin clouds (split-window methods,

section 4a)

Emission from cloud top and atmosphere

below and cloud-top temperature

Cloud-top temperature, optical thickness,

and particle size

Thick clouds Emission from near-cloud-top temperature Cloud-top temperature and surface rainfall

Microwave emission (oceans only)

Cloud only (section 4b) Vertically weighted emission by water

vapor and cloud water and surface

Column water vapor and liquid water

Precipitating clouds (section 4c) Column precipitation water Surface precipitation

Microwave scattering (section 5b) Column ice with weaker contributions by

water vapor and liquid precipitation

Surface precipitation

High-frequency microwave scattering

(section 5c)

Column ice with contributions from

nonprecipitating ice and water vapor

profile

Surface snow rate

Combinations of microwave

scattering and emission (sections

4c, 5b)

Emission and scattering signatures from

different levels in the column

1D precipitation profiles

Radar observations of clouds and

precipitation (section 6d)

Profiles of reflectivity generally

proportional to the sixth power of

particle size; relates to water contents of

hydrometeors

1D cloud water and ice contents and 1D

precipitation water contents

Scattering of sunlight (section 5a) Vertically weighted reflectivity from clouds Cloud optical depth and particle size

Combinations of scattered sunlight

and IR emission (ISCCP example)

Emission and scattering signatures from

different levels in the column

Cloud-top temperature, optical depth, some

indication of multiple layered clouds
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the rest of the paper. Section 3 provides the common

framework used to critique the different methods. Sec-

tions 4 and 5 then critiques a selection of more popular

cloud and precipitation methods. The intent is not to

provide an exhaustive review of different methods, but

rather demonstrate the common threads between the

methods chosen in an effort to illustrate both the hid-

den complexity of what are thought to be simple meth-

ods and common sources of uncertainty. Section 6 then

introduces the more complex topic of multisensor data

analysis and it is suggested that the kinds of issues con-

fronted in this section reflects the future directions of

research on the remote sensing of clouds and precipi-

tation.

2. Satellite observing systems

Understanding and quantifying the real capabilities

of satellite-based cloud and precipitation observing sys-

tems is a complex task. A consequence of such com-

plexities results in the way observing system errors are

typically estimated and validated. Most often, these er-

rors are only superficially derived, overlooking main

error sources, and in some instances no error estimates

are given. Validation of these errors too is a complex

task and is one that generally has remained elusive.

This then raises problems for many applications of the

data, and especially to the problem of data assimilation,

which requires not only credible errors on models but

also credible errors applied to “measurements” or mod-

els of such measurements so as to balance appropriately

the contributions of both in the assimilation system.

The complexity of satellite observing systems and the

difficulty in estimating the associated uncertainties of

the system can be broadly appreciated by reference to

Fig. 1. This figure identifies the main components of the

observing system transfer function that determines the

relationship between a given input of the system and

the desired output of the system. The transfer function

connects the input signal x(r, t) (referred to as the input

state) that varies in space r and/or time t to the actual

measured quantity y(r, t) (satellite radiances for ex-

ample), which are then connected to the output signal

of the system x̂(r, t) (the retrieved state, which merely

refers to the collection of physical parameters that de-

fine the system being observed and is the desired infor-

mation to be extracted). Under ideal circumstances,

this retrieved state identically reproduces the input sig-

nal. It is thus important to quantify the extent to which

these two states differ from one another and under-

stand the principal factors that define such departures.

The input/output states in this paper are taken to be

any cloud or precipitation parameter or collection of

parameters (as in Table 1) whose measurement over

some prescribed time and space scale is the objective of

the observing system.

Two basic components define the observing system

transfer function. The first component has to do with

the fundamental relationship between the input param-

eters and the measurement. This relationship is most

typically established by the physical principles of radia-

tive transfer and related processes defined by nature’s

forward model F(x, b) and the parameters b that define

this “model”. This part of the transfer function essen-

tially defines the system and shapes the construction of

its second component and in turn the uncertainties of

the system itself. This second component refers to the

entire inversion process, which begins with the relation-

ship f(x̂, b̂) that approximates the forward function.

The measurement y, as well as other extraneous infor-

mation, are the required inputs to this part of the sys-

tem and, in combination with the approximate forward

model, an “inversion” produces the output state x̂. It is

in this second component of the system that several

sources of uncertainty creep into the process, ultimately

establishing the total system error. The various sources

of error arise from the following:

(i) Measurement error (�y) associated with y due to

instrument factors, including calibration uncer-

tainties. For most satellite retrieval problems, and

especially those of cloud and precipitation, this

error source is usually minor compared to all oth-

ers.

(ii) Forward-model error introduced by the approxi-

mate function f(x̂, b̂), which invariably differs from

the real forward model. It is a fundamental chal-

lenge of most retrieval systems, and especially

FIG. 1. A schematic of the observing system transfer function,

identifying the input (x) and output (x̂) of the system, the (physi-

cal) forward model intrinsic to the system [F(x, b)], the observa-

tions and other extraneous inputs (xa, b̂), the approximate for-

ward model [ f (x̂, b̂)], and its inverse I [ f (x̂, b̂), xa, . . .].
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cloud and precipitation retrieval problems, to un-

derstand and quantify such differences. This desire

underscores the motivation of many model inter-

comparison and model development efforts, ex-

amples of which can be found in Soden et al.

(2000) and Weng et al. (2007). This “forward

model” approximation,

F�x, b� � f�x̂, b̂�, �1�

in most cases represents one of the most significant

sources of error of the entire inversion process.

This error is difficult to assess and thus is often

ignored entirely.

(iii) Part of the forward-model approximation involves

the replacement of key model “parameters” b by

approximate parameters b̂. The unbiased compo-

nent of the errors associated with these approxi-

mations are sometimes referred to as “geophysical

noise” since they enter the inversion process in the

same manner as measurement noise. These errors

also often dominate retrievals, which is an indica-

tion that the retrieval problem is not properly

posed and underconstrained. For cloud and pre-

cipitation retrieval problems, uncertainties associ-

ated with microphysical properties of particles

(shape, size, concentrations, etc.) prevail in almost

all applications and underpin many of these model

parameter errors.

(iv) Errors associated with any a priori information

about the “state” xa that may be required to con-

strain the solution. Like many problems, the cloud

and precipitation inverse problem is generally

grossly underconstrained (e.g., Bauer et al. 2005).

However, unlike more traditional sounding meth-

ods, the degree to which the problems are under-

constrained tend to be less obvious, concealed by

the use of overly simple forward models, the as-

sumption of which overly influence the retrieval. A

priori knowledge about the retrieved state cloud

and precipitation parameters too is generally so

poor that it typically offers little in way of a con-

straint. In many cases, retrieval problems are bet-

ter formulated by shifting problematic model pa-

rameters into the retrieval state vector removing

the sensitivity of the model to them. The retrieval

of the backscatter-to-extinction parameter in the

lidar-retrieval problem is one example (Stephens

et al. 2001), as is the split-window emission method

discussed in the following. Under such circum-

stances, a priori knowledge about such parameters

plays a more substantial role in the retrieval pro-

cess than is often expected.

(v) Procedures and related uncertainties required in

the inversion process itself, such as convergence

thresholds, among other factors. There are many

ways that the actual inversion process is carried

out. Some methods [e.g., cloud liquid water path

(LWP) example discussed below] reduce the for-

ward problem to such a simple form that direct

inversion of the model is trivial. Other methods

use forward models expressed in the form of

lookup tables where inversion is achieved via in-

terpolation of observations projected onto this

table. More sophisticated inversion methods that

employ more complex models typically invoke

probabilistic methods like those based on the use

of the Bayesian theorem often articulated in the

form of variational approaches. Such approaches

do not provide a single solution per se, but rather

a probability distribution of solutions (the a pos-

teriori probability) with the most probable or

likely state taken to be the retrieval state. A ver-

sion of this approach, popularized by Rodgers

(1990, 2000) for problems dealing with sounding

retrievals, is generally referred to as the optimal

estimation method. Probabilistic methods have

been applied in a number of cloud and precipita-

tion retrieval problems, including the Tropical

Rainfall Measuring Mission (TRMM) Goddard

Profiling Algorithm (GPROF; Kummerow et al.

2001) and precipitation examples of Evans et al.

(1995) or Mugnai et al. (1993), the CloudSat water

content algorithm (Austin and Stephens 2001;

Benedetti et al. 2003), and in the example of cloud

property retrievals (Evans et al. 2002; L’Ecuyer

and Stephens 2002; Cooper et al. 2003, 2007; Miller

et al. 2000; among others).

Overall, the observing system is composed of the

measurement and its uncertainty, an approximate for-

ward model and related errors, including model param-

eters and their errors, inversion parameters and uncer-

tainties attached to a priori knowledge. The total un-

certainty of the retrieved state x̂ is the accumulation of

errors from all these factors.

Yet another complicating factor arises in defining the

representativeness of cloud and precipitation informa-

tion derived from satellite observations. This additional

complication, although not the focus of this paper, de-

serves mention. Representativeness errors arise, for ex-

ample, when information is aggregated over space and

time. These errors are primarily introduced by the

space–time sampling characteristics of the observing

system as imposed by the chosen orbit of the satellite

platform. The effects of cloud and precipitation sam-

pling due to sensors flown in geostationary orbit versus
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low earth orbit have been studied in some detail (e.g.,

Salby 1982). Furthermore, the effects of the diurnal

cycle on time-mean cloud and precipitation properties

derived from polar-orbiting satellite observations can be

found in studies like those of Salby and Callaghan (1997)

and Nesbitt and Zipser (2003). An important aspect of

both ISCCP and the GPCP projects is the merger of

data from sensors on different satellites, both in geo-

stationary and low earth orbit, in an effort to address

these sampling issues. This is an important aspect that

has to be considered when using any global datasets.

3. The physical basis of forward models

The vast majority of satellite observations of the

earth’s atmosphere are in the form of spectral radiances

that arise as a result of natural processes of emission

and scattering of electromagnetic (EM) radiation by

the atmosphere and surface below. Remote sensing

methods developed around such observations are re-

ferred to as passive methods, and the spectral radiances

used in these methods range from the ultraviolet to the

microwave regions of the EM spectrum. Unlike specific

radiance measurements designed for sounding the clear

atmosphere, the majority of passive methods provide

very little vertical profile information about clouds and

precipitation. Most of this information is in the form of

(vertical) path-integrated quantities, although recent

studies are beginning to suggest that some degree of

cloud and precipitation vertical structure information

may exist in radiance measurements (e.g., Bauer et al.

2005; Chang and Li 2005).

Given that the inherent nature of the interactions

between clouds and precipitation and EM radiation

vary according to the spectral region of interest, then it

might be expected that the information content in such

observations also varies according to where in the EM

spectrum the observations are made.

Figure 2 summarizes three different classes of inter-

actions used as the basis of forward models of satellite

retrievals of cloud and precipitation properties. One

class of retrieval approach relies on measurements of

transmission where the attenuation of a defined source

of radiation is used to determine some property of

clouds. An example of this includes lidar transmission

methods for thin cirrus cloud optical depth (e.g., Mi-

trescu and Stephens 2002) and another example is the

observation of cirrus using Stratospheric Aerosol and

Gas Experiment (SAGE) limb sunrise and sunset ob-

servations (Kent et al. 1993; Wang et al. 1996). A sec-

ond class of method is based on information extracted

from the emission of infrared and/or microwave radia-

tion. A third method utilizes the radiation scattered by

clouds and precipitation. Examples of both scattering

and emission methods are the topics of the following

sections.

A special class of approach employs active systems,

such as lidar and radar systems, for probing clouds and

precipitation. Pulsed versions of such systems deliver

range-resolved information about clouds and precipita-

tion that reveals their vertical structures. With the

launch of TRMM in 1997 (Kummerow et al. 2000) and

CloudSat and Cloud-Aerosol Lidar and Infrared Path-

finder Satellite Observation (CALIPSO) in April 2006

(e.g., Stephens et al. 2002), we are now entering a truly

active age of spaceborne remote sensing of clouds and

precipitation. With this era comes a twofold challenge,

one is to learn and prepare how best to use the new

information from these active systems, and the second

is to learn how best to optimally incorporate active and

passive observations together as part of a more integra-

tive observing system approach.

It will become obvious in the following that informa-

tion about clouds and precipitation derived from seem-

ingly different methods are in fact closely related to

each other. Generally, the various products derived

FIG. 2. A schematic of the different physical processes that

establish the forward-model relationships used by different re-

mote sensing methods applied to the study of clouds and aerosol.
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from these methods are arrived at separately using the

observations from sensors flown on different space-

craft, or from different sensors on the same spacecraft,

or even from the measurements of different channels of

the same instrument. Most often, these products are

inconsistent with one another, and this lack of consis-

tency is a source of confusion. With the combination of

sensors flown on the National Aeronautics and Space

Administration’s (NASA) Earth Observing System

(EOS) platforms, the evolution of the A-Train and the

eventual emergence of the National Polar-Orbiting Op-

erational Environmental Satellite System (NPOESS),

the need for methods that optimally integrate or “as-

similate” disparate observation types will only increase

in the future. As we illustrate below, the development

of any such assimilation methodology, however, re-

quires a more stringent and realistic error characteriza-

tion than is typically available today.

4. Examples of emission-based methods

Emission of infrared (IR) and microwave (MW) ra-

diation to space from optically thick clouds tends to be

limited to the upper portions of cloud layers. Apart

from cloud-top temperature estimation, the informa-

tion content contained in such emission measurements

is limited. Consequently, the most useful applications of

emission measurements apply to cases of optically thin

cloud or precipitation layers from which the measured

emission is more integrated throughout the layer in

question.

Most emission methods employ the use of measure-

ments in various atmospheric window regions of the

earth’s atmospheric absorption spectrum. However, a

few methods seek to use measurements of emission in

absorbing regions originally designed for temperature

sounding. The CO2 slicing method, for example, has

been applied to IR emission measurements to map out

thin cirrus clouds (e.g., Wylie et al. 2005). Recently

Bauer et al. (2005) propose the use of selected MW

sounding channels in addition to MW window channels

for retrieving profiles of precipitation over both water

and land.

Emission methods applied to optically thin media are

commonly formulated using very simplistic expressions

of radiative transfer often posed in terms of the transfer

through a single layer in the form

Iobs � Ibelowe���� � B�Tcld��1 � e�����, �2�

where 	 is the optical depth determined by absorption,

Ibelow is the radiance of the surface and/or atmosphere

below the cloud layer, and 
 is cosine of the view angle.

Here B(Tcld) is the Planck blackbody function defined

by a “cloud” temperature Tcld. All emission methods

revert to determining the optical depth 	 from which

other information about the cloud and precipitation is

inferred. It will become apparent from the examples

below that the largest source of uncertainty in these

methods arise more from model parameters, like Ibelow

and B(Tcld) in (2), than from radiance measurement

uncertainties.

a. Cirrus cloud optical properties from

split-window measurements

The differential absorption and emission of infrared

radiation by ice crystals smaller than about 30 
m in

size at two different wavelengths in the atmospheric IR

window spectral region was proposed by Prabhakara et

al. (1988) as a means for determining cirrus cloud op-

tical thickness and particle size. Since then, the method

has been applied extensively to satellite IR radiance

data collected at or near wavelengths of 10.8 and

12 
m. The conceptual idea of the method, referred to

as the split-window (SW) method, is illustrated in Fig. 3.

Shown is a radiance diagram relating the quantity

�TB � TB,10.8 � TB,12 to TB,10.8 where TB is the bright-

ness temperature of the radiance of a specified channel.

The brightness temperature difference �TB is related to

the optical depth differences between the chosen wave-

lengths, which in turn is proportional to particle size;

TB,10.8 is also loosely related to optical depth and the

theoretical relation between �TB and TB,10.8 form an

idealized arch. Each foot of the arch is determined by

the radiances Ibelow and B(Tcld) expressed in brightness

temperatures and the height of the arch is related to

particle size. Simplistic “inversion” methods that use

this approach superimpose the observations, that is,

�TB and TB,10.8, on precomputed arches and interpola-

tion provides the basis for estimating cloud optical

depth and particle size.

Although notionally simple, there are many com-

plexities in the steps described that confound the speci-

fication of uncertainties of the approach. These include

the following:

(i) The radiative transfer approximations, including

the lack of infrared scattering (e.g., Stephens 1980)

and the simplicity of the atmospheric model (single

layer) implicit to Eq. (2) and upon which this trans-

port equation is defined.

(ii) The specification of the forward-model param-

eters. For this problem, these include the lower

boundary radiance Ibelow and the “cloud” tempera-

ture Tcld, and yet more hidden sets of parameters

that relate the optical depths to particle size includ-

ing effects of particle shape on these optical prop-

erties (e.g., Fig. 3b).
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Cooper et al. (2003) formulate the SW method in

terms of optimal estimation inversion and use the char-

acteristics of optimal estimation to provide an assess-

ment of the effects of various model parameters on

cirrus optical property retrievals. They show, as did

Miller et al. (2000), that errors are dominated by a gen-

eral lack of knowledge on the vertical location of clouds

that affects the estimates of Ibelow and B(Tcld) in Eq. (2).

Without specific information about where the cirrus is

located in the atmospheric profile, the uncertainties on

optical depth and particle size typically approach 60%–

80%. With more refined information about cloud

boundaries available, for example, from coincident ra-

dar and/or lidar observations and thus more accurate

information on Tcld, the uncertainties reduce to about

10%–20%.

b. Cloud liquid water path

The differential emission of microwave radiation by

clouds and water vapor at selected microwave frequen-

cies provides the basis for estimating the vertically in-

tegrated cloud water content (LWP). This approach has

mainly been applied over the global oceans (e.g.,

Greenwald et al. 1993; Alishouse et al. 1990; Curry et

al. 1990) although methods have been developed to use

these microwave emission measurements in conjunc-

tion with infrared emission measurements over land

(e.g., Yeh and Liou 1983; Jones and Vonder Haar 1990;

Greenwald et al. 1997).

The simple LWP retrieval approach revolves around

inversion of a form of Eq. (2) with radiances, I, replaced

by microwave brightness temperature,

� � �� ln� Tobs � Tcld

Tbelow � Tcld
�, �3�

where in this case the microwave optical depth 	 is

� � k�W � k�LWP � �ox. �4�

The first term of Eq. (4) represents the water vapor

contribution, which is approximately proportional to

column water vapor W. The second term is the cloud

liquid water droplet contributions, and the third term is

due to the absorption by other gases, chiefly oxygen.

Ignoring any contributions by precipitation and given

microwave frequencies low enough (or conversely

wavelengths large enough), then the absorbing cloud

droplets behave as Rayleigh particles in which case the

cloud optical depth is proportional to cloud liquid water

path LWP (Stephens 1994).

Over ocean, the LWP retrieval approach uses mea-

surements at two frequencies, one near the 22-GHz

water vapor absorption line, for example at 19 GHz,

and a second off the line typically at frequencies near 35

GHz. Measurements at these two frequencies, in prin-

ciple, when substituted in Eq. (3) and combined with

Eq. (4), then offers a way of deriving both W and LWP

simultaneously, assuming all other factors are known.

The inversion of Eq. (2) in the form of Eq. (3) requires

a cold background surface, as over oceans, such that the

differential emission between the surface and cloud is

large enough to be detected above characteristic instru-

ment noise levels. Over land, the emission from land

surfaces is much larger and more variable than that

FIG. 3. (a) Theoretical brightness temperature relationships be-

tween 10.8 and 12.6 
m as a function of the corresponding bright-

ness temperature at 10.8 
m for clouds emitting at 195, 225, and

255 K. The optical depths and effective radius are shown based on

assumptions of spherical ice particles. (b) The same relationship

derived for spherical and columnar ice particles. The different

curves of each correspond to different assumed particle size dis-

tributions. The set of closed points correspond to an optical depth

of (left) 0.5 and (right) 1.0, after Cooper et al. (2003).
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from oceans rendering the inversion of Eq. (2) in the

form of Eq. (3) prone to error. Jones and Vonder Haar

(1990) employ the emission at 85 GHz since clouds are

optically thicker at these frequencies and the measure-

ments are more sensitive to cloud water than are the

lower frequencies. The land surface emission is charac-

terized using the surrounding clear-sky emission and

infrared estimates of skin temperature. Greenwald et

al. (1997) extended the method using the polarization

differences of the 85-GHz channels of the Special Sen-

sor Microwave Imager (SSM/I) and demonstrate a

greater sensitivity to the LWP of low clouds.

There are a number of complicating factors that

dominate the uncertainties in the estimation of LWP by

these approaches, including the following:

(i) The problem of cloud identification. This is an im-

portant part of any cloud retrieval scheme, as any

misclassification of clear and cloudy scenes intro-

duces large biases (as shown later). Unambiguous

cloud detection from microwave measurements

alone is most difficult given the typical large foot-

print of microwave radiometers.

(ii) Discriminating precipitating from nonprecipitating

clouds. The assumption of Rayleigh absorption

implies no precipitation-size particles present in

that portion of the atmosphere observed. Simple,

empirical LWP thresholds employed in both LWP

retrievals and precipitation retrievals are most

commonly used to classify those MW radiance

scenes that are most likely to contain precipitation.

In reality, drizzle and light precipitation are ubiq-

uitous features of warm layered clouds and shal-

low convection (e.g., Stevens et al. 2003) and the

separation between precipitation and cloud and its

relationship to LWP is certainly not simple nor

entirely understood. (As discussed in relation to

Fig. 14, this same issue also causes parallel diffi-

culties to the estimation of precipitation, especially

in regions where aerosol influences are likely.)

(iii) Model parameters, including absorption coeffi-

cients k�, k�, and 	ox, all functions of atmospheric

state, are typically parameterized in terms of sur-

face temperature Ts. The uncertainties in these pa-

rameterizations are, however, quantifiable, and

except for the cloud liquid water absorption coef-

ficient these uncertainties are typically small rela-

tive to other sources. The cloud liquid absorption

uncertainties tend to be much larger than the un-

certainties of the other components because of its

dependence on the uncertain cloud temperature.

(iv) The assumptions of the atmospheric model inher-

ent to Eq. (2) require specification of the vertical

location of the cloud layer as well as the water

vapor structure above and below this layer. The

assumed structure of the atmosphere implicit not

only to this problem but also to most applications

of forward models is often unrealistically simple

and rarely considered as a source of error of the

retrieval process.

(v) Modeling the below-cloud emission, Tbelow, mostly

from the ocean or land surface, is also a complex

problem. The ocean-leaving radiance is a function

of ocean surface state, which in turn is dependent

on ocean surface winds and other complicating

factors that introduce further model parameters.

The land-leaving radiances have to be accurately

characterized if microwave measurements are to

be used for extracting LWP information over land

as the cloud signal is small relative to the back-

ground surface emissions. Effects such as soil

moisture changed by recent precipitation events,

for example, can introduce significant sources of

error (e.g., Greenwald et al. 1997).

Although microwave radiance has been applied to

estimate LWP for over 20 yr, detailed assessment of the

uncertainties attached to the estimates of LWP are gen-

erally lacking. Greenwald et al. (1993) describe a sen-

sitivity analysis for ocean-based LWP retrievals and

show how the LWP retrieval errors and the factors that

contribute to the errors vary according to the surface

and atmospheric conditions. Their analysis considered

contributions to errors from brightness temperature

measurement error and model parameter error that in-

cluded contributions from surface winds, sea surface

temperatures, cloud temperatures, liquid water absorp-

tion coefficients (also a function of cloud temperature

as noted), and the parameterization of the uniform gas

contribution in Eq. (4). They estimated typical ranges

of uncertainties on these parameters ignoring any pos-

sible contribution by misclassification of precipitation.

With these assumptions, the LWP errors ranged from

51% for the thinnest clouds to 24% for thick clouds, the

former being dominated by surface parameter uncer-

tainties (such as surface wind errors) and the latter by

cloud temperature uncertainties. Like the error esti-

mates of other products discussed below, these errors

most probably represent a lower error limit. Detailed

error analysis of overland LWP retrievals has not yet

been performed but some work (e.g., Diak 1995) sug-

gest these retrievals can be subject to large errors.

The potential contaminating effects of precipitation

on cloud LWP, generally ignored in most LWP studies,

are illustrated in Fig. 4. An optimal estimation method

developed to estimate LWP using MW radiance data
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also provides 2 statistics, which is a measure of how

well the “model” fits the observations. Given that most

of the issues in cloud and precipitation retrieval prob-

lems revolve around the models assumed and the geo-

physical noise they introduce, then such information is

most relevant to these retrieval problems. This infor-

mation offers additional insight on the formulation of

the retrieval problem as illustrated in the example of

Fig. 4. For this case, the MW model of emission from

low-level cloud layers poorly fits the observations when

2 � 12 and it appears that this fit gets progressively

worse (and 2 progressively larger) as the intensity of

precipitation increases. This is illustrated in Fig. 4

where the correspondence of large values of 2 is shown

to match regions of increasing rain rate as deduced

from matching TRMM precipitation radar observa-

tions. This simple example hints at the potential value

of the 2 retrieval diagnostic as a flag of precipitation,

specifically, and more generally its value as in indicator

of failure of the forward model in representing the at-

mosphere observed.

c. Precipitation from microwave emission

A number of different microwave emission algo-

rithms have been developed over the years, each invok-

ing slightly different forms of atmospheric model, and

different solution forms of radiative transfer equation

(see, e.g., Wilheit 1986 and Wilheit et al. 1994 for a

general review). Figure 5 contrasts two extreme ex-

amples of the characteristics of atmospheric models

constructed in forward-model simulations of radiances

from precipitating cloud systems and also reflects the

different nature of the retrieval state vector. The ex-

ample of Fig. 5a is a very simple model of the precipi-

tating atmosphere as used in the retrieval procedures of

Wilheit et al. (1994). Despite the apparent simplicity of

the model, it includes many extraneous parameters,

such as the assumed lapse rate, height of the freezing

level, the assumed humidity in the precipitating layer

and the relationship between the ice layer properties

FIG. 4. The swath distribution of 2 (a direct measure of how

well the forward model fits the observations) derived from an

optimal estimation cloud LWP method developed for the TRMM

TMI. Also shown is the precipitation from the equivalent swath of

the TRMM PR. The largest values of 2 correspond to a failure of

the model to fit the observations and coincide with regions of

precipitation (G. S. Elsasser and C. D. Kummerow 2006, personal

communication).

FIG. 5. (a) A simple model of the precipitating atmosphere used

in the construction of the forward model as used by Wilheit (1986)

for retrieving surface precipitation. (b) An example of hydrome-

teor profiles extracted from a cloud model as used in the GPROF

method.
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and the precipitation. The second example shown (Fig.

5b) is an example of the output of an entirely different

model approach as used in the TRMM GPROF algo-

rithm (e.g., Kummerow et al. 2001) that provides pre-

cipitation profiles as well as surface rain rates. Shown is

one set of profiles of cloud condensate and precipita-

tion structures derived from a cloud resolving model

(CRM; Tao and Simpson 1993). These profiles are ex-

tracted from a larger library of profiles that serve as a

priori inputs to the retrieval scheme. In this case, the

forward model of this system is complex with uncer-

tainties now defined not only by the radiative transfer

component of the model but also by (generally un-

known) errors of the CRM model and the representa-

tiveness (or lack thereof) of these CRM profiles. Bauer

et al. (2005) describe a different profile retrieval

scheme using combinations of microwave window and

sounding channel radiances and a priori profiles of

clouds and precipitation drawn from the (background)

state of a forecast model of the scenes observed (see

Fig. 12 and related discussion).

Many other factors contribute to the overall uncer-

tainty of the precipitation estimates derived from mi-

crowave emission methods:

(i) Distinguishing precipitating cloudy scenes from

nonprecipitating scenes. Like the cloud/no-cloud

identification problem, discrimination of cloud

from cloudy scenes containing precipitation is an

important first step in any precipitation retrieval

method and misclassification of such scenes is a

source of retrieval bias. An example of how such a

misclassification affects comparisons among differ-

ent algorithms from the same sensors is illustrated

in Fig. 6. This figure shows results from the Precipi

tation Intercomparison Project (PIP-2; e.g., Smith

et al. 1998) applied to a swath of microwave radiance

data. The different microwave emission algorithms

contributing to this figure use a threshold cloud

LWP to discriminate precipitation from cloud with

this threshold varying from algorithm to algo-

rithm. Shown are the percentages of all algorithms

that flag a given pixel as precipitation, and for only

some of the pixels do these algorithms completely

agree on the occurrence of precipitation.

(ii) The nature of the atmospheric model. As noted in

reference to Fig. 5, these models vary considerable

in complexity and in the number and types of pa-

rameters that define them. A general sense for the

influence of the atmospheric state on precipitation

retrievals is provided in Fig. 7 showing simulated

brightness temperatures at 10.7 GHz presented as

a function of surface rain rates. The general rela-

tion between the two is primarily determined by

radiative transfer, but the broad spread in this re-

lationship is a function of the atmospheric and sur-

face model states. The simulations shown use

cloud and precipitation profiles drawn from the

aforementioned GPROF database. The profiles

shown in the panel to the right of Fig. 7 are those

GPROF water precipitation profiles that, when in-

put into a radiative transfer model, produce the

same simulated top-of-atmosphere (TOA) micro-

wave brightness temperature at 10.7 GHz. Clearly,

no unique relation exists between the (pseudo-)

measurement and the state of precipitation and

cloud, which merely underscores the undercon-

strained nature of this retrieval problem (L’Ecuyer

and Stephens 2002; Bauer et al. 2005). This ambi-

guity translates into significant uncertainty ap-

proaching 60% according to L’Ecuyer and Stephens

(2002) and this error estimate is consistent with

those of Bauer et al. (2005) who find that 80% of

the retrievals they perform lie within 100% errors

and 60% lie within 50% errors. One of the impor-

tant future challenges for removing this trouble-

some ambiguity and presumably reducing uncer-

tainty on estimating precipitation from satellites is

to provide more definitive information about the

atmospheric state.

FIG. 6. The pixels of a swath of microwave radiometer data that

are identified by different algorithms participating in PIP-2 as

precipitation. Pixels colored 100% are those for which all algo-

rithms agree that rain is falling at those locations.
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(iii) Approximations to radiative transfer and rain mi-

crophysics. Uncertainties on atmospheric state

form one part of the forward-model error budget.

Other model error sources derive from the radia-

tive transfer model itself, such as in the assumption

of 1D geometry and in the approximations to both

cloud and precipitation absorption and scattering

properties. Uncertainties associated with assump-

tions about the microphysical properties of rain-

fall, including melting particles, underpin much of

the geophysical noise in the system (e.g., Petty

1999; Biggerstaff et al. 2006; Fiorino and Smith

2006; Kummerow et al. 2006; among many others).

A better understanding of the microphysical prop-

erties of rainfall is needed to constrain passive mi-

crowave algorithms and is one of the underlying

bases of the planned Global Precipitation Mission

(Smith et al. 2002). This mission concept includes a

dual-frequency radar as part of the core satellite

with the intent to provide a more explicit source of

information about the microphysical state of the

precipitation. The remote sensing not only of pre-

cipitation microphysics but also cloud microphys-

ics and the combination of both will be an area of

active research in the coming years.

5. Examples of scattering-based methods

a. Cloud optical properties from scattered sunlight

The retrieval of cloud optical properties using mea-

surements of sunlight reflected by clouds has a rela-

tively long history compared to some of the methods

discussed previously. Sagan and Pollack (1967), for ex-

ample, introduced the concept in the study of the clouds

of Venus. Hansen and Pollack (1970) employ the ob-

servations of spectrally reflected sunlight made by Blau

et al. (1966) to study terrestrial clouds. Twomey and

Seton (1980) introduced a bispectral reflectance

method (BSR) to estimate cloud optical depth and ef-

fective particle radius (re), and Nakajima and King

(1990) popularized this method with its application to

Moderate Resolution Imaging Spectroradiometer

(MODIS) measurements. This approach, with some

variations, has also been adopted to many other types

of satellite data including LandSat data (Wielicki et al.

1990) and Advanced Very High Resolution Radiom-

eter (AVHRR) radiance data (e.g., Arking and Childs

1985; Stone et al. 1990; Ou et al. 1993; Nakajima and

Nakajima 1995; Platnick and Valero 1995; Han et al.

1994).

The BSR method revolves around the relation be-

tween reflection of sunlight and cloud optical depth and

single-scatter albedo. Radiative transfer theory, invari-

ably set on plane-parallel (i.e., one dimensional) geom-

etry, predicts that the spectral reflectance from cloud

layers has a general functional form:

R � � R���, g, �o, �sfc, �, ���, �5�

underscoring the dependences on spectral optical depth

	 ; the (spectral) single-scatter albedo �o; the properties

of underlying surface reflectance �sfc; some character-

istic of the scattering phase function as represented, for

FIG. 7. (left) Illustration of the effects of atmospheric profile on TOA microwave radiances and (right) the

numerous collection of profiles that give rise to a single value of the TOA brightness temperature.
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instance, by the asymmetry parameter g; and the scat-

tering geometry defined by the angle � between the

incident solar radiation �� and the view direction �,

namely cos� � �� · �. One-dimensional radiative trans-

fer theory further predicts that the reflectance, in fact,

functionally depends on the scaled optical depth,

	(1 � g) (e.g., van de Hulst 1980a,b).

The BSR approach uses narrow-band reflectances

measured in two spectral regions (spectral channels).

For one spectral region, characteristically at visible

wavelengths, �o is assumed known since particle (and

gas) absorption is negligible implying �o � 1. In this

case the reflectance varies principally as a function of

	(1 � g). For the second channel, typically located

within the near-infrared region, the solar radiation is

slightly absorbed as well as scattered by cloud particles

and the reflection is a function of some combination of

	(1 � g) and �o. When the two reflectance measure-

ments are taken together, then 	(1 � g) and �o can be

independently inferred under most conditions. Assum-

ing also that g is known a priori, and surface albedo

effects are adequately removed, and given some a

priori relation between �o and re, then 	 and re follow.

The conceptual simplicity of the BSR retrieval ap-

proach is portrayed in Fig. 8. A forward model estab-

lishes the relationships between model BSRs, 	 and re

as illustrated. The two measured reflectances then de-

fine a point superimposed on this model space that, in

turn, is simply interpreted as 	 and re through interpo-

lation. Although simple, there are many factors that

complicate the uncertainty of the method, including the

following:

(i) The simplicity of the atmospheric model structure,

which is typically taken to be constructed assuming

one or two layers. Where the bulk of the water

vapor lies relative to the cloud layer, for example,

is just one of the influential assumptions of such

models.

(ii) The radiative transfer model assumptions that dic-

tate the way the BSRs are mapped to 	 and re. The

common assumption of 1D transport introduces

substantial errors for retrievals applied to nonho-

mogeneous cloud scenes. Figure 9 from P. Gabriel

(2006, personal communication) illustrates this

point showing panels of data derived from a 3D

large eddy simulation (LES) model (Stevens et al.

2002). Synthetic satellite radiances were produced

using a 3D Monte Carlo radiative transfer model

with the cloud LES data as input (left panel). The

panel on the right is a mask of optical depth error

obtained as the difference between the known op-

tical depth (calculated from the LES cloud field

data) and a retrieved optical depth value obtained

using the synthetic radiances with a 1D radiative

transfer model. The areas highlighted in white are

regions of optical depth errors exceeding 50% oc-

curring in regions where the cloud layer is broken.

(iii) Model parameter uncertainty. The BSR approach

requires the identification (and removal) of all

noncloud-related contributions to the measured

radiances. Reflection from the surface and the

added complexity of the thermal emission from

the atmosphere when 3.7-
m radiances are used

are two examples of these corrections. Other

model parameters that influence the retrieval out-

come are those parameters that define the scatter-

ing phase function, embodied, for instance, by the

parameter g. The quantity (1 � g) is poorly known

for ice crystal clouds being influenced by the

shapes, sizes, and mixtures of ice crystals that are

so variable in real clouds, and a priori knowledge

about them so poor, that it is generally not realistic

to assert a given specific phase function such as

defined from intricate scattering calculations (e.g.,

Yang and Liou 1998) without assigning any uncer-

tainty attached to it. Studies such as Heidinger and

FIG. 8. Theoretical relationships between the reflection at 0.75

and 2.16 
m for various values of optical depth (vertical, dashed

lines) and effective radius (solid lines) for a particular solar ge-

ometry that match aircraft data obtained during a field campaign

conducted in July 1987. The theory established a gridlike relation-

ship between reflectance, optical depth, and particle size that is

nonunique at low reflectances. Data from the aircraft measure-

ments are superimposed on this theoretical grid (from Nakajima

and King 1990).
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Stephens (2000) and Cooper et al. (2007) that at-

tempt to account for such uncertainty suggest that

these model parameter errors are dominant (50%

and greater for thinner cirrus 	 � 2) depending on

surface albedo and other atmospheric parameters

but become less influential for optically thicker cir-

rus. Cooper et al. (2007) also show not only how

the bispectral reflection relationships of Fig. 8

change dramatically through the effects of ice crys-

tal habit on the phase function but also how this

influence introduces ambiguity to the interpreta-

tion of these reflectances, further complicating the

inversion process (Fig. 10). This result merely

serves to highlight the grossly underconstrained

nature of the ice crystal cloud optical property re-

trieval problem.

Platnick et al. (2004) also analyze the errors of the

BSR method applied to a MODIS scene of boundary

layer marine stratocumulus clouds off the Peru–Chile

coast. Their study includes error contributions from

measurements (assumed to be 3% for all MODIS chan-

nels) and contributions from a limited, but incomplete

selection of model parameters including the specifica-

tion of the surface albedo (assumed to be uncertain to

20% for all ecosystems and spectral bands) and atmo-

spheric correction uncertainties. The principle source

considered for the latter are those due to the uncertain-

ties in specification of the above-cloud water vapor

amount assumed to be uncertain to about 20%. The

error estimates derived from their analysis do not in-

clude all error sources and thus represent some form of

minimum system error. Their analysis indicates that the

optical depth error characteristic of all low-cloud pixels

is about 10% over most of the range of 	, with much

larger errors occurring for smaller 	’s for clouds over

land because of the creeping influence of the surface

FIG. 9. A 2D plan view of visible radiances reflected by a low-level cloud layer. (left) The radiances are derived

from a 3D Monte Carlo model with input from an LES model. This input defines the true optical depth. (right) A

BSR retrieval of optical depth assuming 1D radiative transport produces the optical error patterns where the white

pixels are errors exceeding 50%.

FIG. 10. The bispectral reflectance plot shown for cirrus cloud

layers of different particle sizes and optical depths. The relation-

ships are shown for two different assumed crystal habit types

(adapted from Cooper et al. 2007).
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albedo uncertainties. The errors on effective radius

(not shown) are generally larger, approaching 20% but

exceeding 100% under some conditions.

b. Microwave scattering and rainfall

As MW frequencies increase beyond about 50 GHz,

the effects of scattering due to the ice particles com-

monly found aloft in raining clouds begins to become

appreciable. At even higher frequencies, approaching

the submillimeter range of wavelengths, the scattering

by even smaller crystals typical of high cirrus clouds is

detectable (e.g., Evans and Stephens 1995; Evans et al.

2005). The theoretical relation between microwave

scattering and the ice water path (IWP) of clouds is

presented in Fig. 11 for five different frequencies and

for a fixed assumption about the ice crystal size distri-

bution (from Liu and Curry 1996). As the frequency

increases the sensitivity to IWP also increases. The scat-

tering signal shown is referred to as the microwave de-

pression—that is, the reduction in microwave radiation

detected by a hypothetical satellite sensor due to the

presence of a given amount of ice relative to an ice-free

observation. These depressions occur from the effects

of scattering that reflects upwelling microwave radia-

tion back to the surface, thus lowering the brightness

temperatures observed from space. These depressions

are a strong function of assumed microphysics and typi-

cally for the types of frequencies shown in Fig. 11, the

signatures observed are more related to precipitation-

sized ice and depressions. Depressions of as much as

150 K can be observed over convective updrafts at 89

GHz. The sensitivity of scattering parameters to ice

microphysics for precipitating systems is illustrated in

Bennartz and Petty (2001).

Empirical relationships between precipitation and

these microwave brightness temperature depressions,

expressed in some methods as combinations of depres-

sions (which are referred to as “scattering indices”), are

used to map out precipitation over land (Spencer et al.

1989; Kidd and Barrett 1990; Adler et al. 1994; Ferraro

and Marks 1995; Conner and Petty 1998). Such rela-

tionships, however, are indirect and nonunique as high-

lighted in the study of Dinku and Anagnostou (2005)

and vary significantly from region to region.

Unlike physically based schemes, quantifying the un-

certainty of the semiempirical methods that employ

simple brightness temperature indices must rely exclu-

sively on the existence of independent validation data.

This approach to error characterization has generally

not proven fruitful, being complicated by many factors.

Typically validation data collected from observing sys-

tems—such as surface-based networks of rain gauges,

surface radar, or even airborne systems—observe pre-

cipitation on completely different spatial scales than is

observed by satellites. These surface data too have their

own form of uncertainties and often involve significant

corrections to them (e.g., Conner and Petty 1998). Most

important, however, is the lack of a unique relationship

between ice scattering and rainfall, which makes vali-

dation results susceptible to variations caused by the

regions in which they were performed.

Figures 12a–d are taken from the study of Bauer et

al. (2005) and present a convenient contrast of the dif-

ferent capabilities of emission and scattering methods

applied to synthetic MW measurements derived for

four regions: two areas over Canada, one of frontal

precipitation over the North Atlantic Ocean, and the

fourth of convective precipitation over the Florida

landmass. Shown is the sensitivity of the measured

brightness temperatures at the frequencies defined due

to (i) errors in the measurements, (ii) variabilities in

surface emissivity, (iii) variabilities in liquid, and (iv)

frozen precipitation. The first four frequencies repre-

sent window channels commonly used in precipitation

retrievals today and the 150-GHz channel being con-

sidered by Global Precipitation Measurement (GPM)

for snow retrievals (refer to next section). The other

frequencies refer to sounding channels considered in

that study. In the case of liquid and solid precipitation,

the sensitivities shown represent a form of information

content such that the larger the sensitivity with respect

to the given parameter of the retrieved state (liquid and

solid precipitation), the greater the information content

FIG. 11. Microwave brightness temperature depressions caused

by scattering from layers of ice particles for selected microwave

frequencies for a specific assumed size distribution of ice particles

(after Liu and Curry 1996).
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in the measurement (e.g., L’Ecuyer et al. 2006). It is

clear that for all cases in this figure the typical uncer-

tainties of the measurements exert only a minor influ-

ence on the retrieval uncertainties. The different levels

of information content of measurements over land and

ocean is also clearly revealed. The sensitivity to rainfall

in the two cases over Canada are very low, in part

because of the low rainfall rates but also because of the

lack of sensitivity of measurements over land, which is

also evident in the case of convective precipitation over

Florida. Only over oceans (case 3, Fig. 12c) do the

lower window channels provide large sensitivity to (liq-

uid) rainfall. The scattering channels, 89 and 150 GHz,

possess disconcertingly little sensitivity to rain, a result

also consistent with the marginal performances of scat-

tering algorithms, although these channels contain

greater information about lofted solid precipitation

(Fig. 12d).

c. Snowfall from microwave scattering

Obviously the scattering signatures noted in refer-

ence to Fig. 11 also imply that it may be possible to

retrieve snowfall from passive microwave scattering sig-

natures. Because snow water contents are typically less

than 1 kg m2, Fig. 11 also makes a clear case for the

need for higher-frequency microwave channels (i.e.,

�89 GHz) than is generally found on imaging radiom-

eters. Indeed, most snow algorithms rely on the higher

frequencies (i.e., 150, 183 GHz) used in sounding radi-

ometers such as Advanced Microwave Sounding

Unit-B (AMSU-B), Special Sensor Microwave Imager/

Sounder (SSM/IS), and also planned for the GPM mis-

sion. A number of techniques exploiting the AMSU

channels (e.g., Kongoli et al. 2003; Skofronick-Jackson

et al. 2004) have been proposed. In addition, Bennartz

and Petty (2001) have performed a detailed sensitivity

analysis of scattering by various ice particles at 85 GHz

on SSM/I as a precursor to a possible snow algorithm

exploiting this sensor.

Similar to the precipitation retrievals using scattering

methods, retrievals of snow from passive microwave

sensors are fraught with uncertainties that must be

made in the forward model:

(i) What are the size distributions, shapes and densi-

ties of ice particles, and how are these related to

the vertical cloud development? Scattering signa-

tures and thus the depression of TB due to ice

particles is shown clearly to be very sensitive to

these assumptions (Bennartz and Petty 2001).

Making progress in these areas is also the primary

recommendation from an International Precipita-

tion Working Group (IPWG) workshop (Bennartz

and Ferraro 2005) defining needs for improved

snowfall retrievals in the future.

(ii) What is the nature of the below-cloud emission?

Snow has often accumulated on the ground and

this poses serious problems when trying to identify

the below-cloud emission. In addition, the snow on

the ground has similar scattering properties as the

snow aloft (snow identification problem), but its

emissivity is a strong function of its temporal evo-

lution and thus difficult to model (Kelly et al.

2004). While water vapor channels such as the 183-

GHz spectral channels on AMSU-B become

opaque to the surface when enough water vapor is

present, even the center frequency is sensitive to

the ground under very dry conditions.

(iii) The assumptions about the atmospheric model be-

FIG. 12. The variability of the observed brightness temperature

to measurement error (black), surface emissivity uncertainty

(dark gray), and liquid (light gray) and frozen (white) precipita-

tion for (a), (b) Canadian snowstorm, (c) a North Atlantic front,

and (d) Florida convection (after Bauer et al. 2005).
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come important when the water vapor (i.e., 183

GHz) channels are used. In particular, the water

vapor above the snow cloud must be known if the

scattering signatures are to be physically interpreted.

6. Multisensor product comparison and methods

The examples of the previous sections show how ap-

parently the same parameters are derived from differ-

ent measurement types and retrieval schemes based on

different physics. This raises a number of questions:

(i) To what extent can comparisons of retrievals of

the same parameters, based on entirely different

physical assumptions, identify problem areas of in-

dividual methods?

(ii) To what extent can comparisons be used quanti-

tatively to evaluate these retrieval assumptions?

(iii) To what extent do differences or inconsistencies

reflect different information contained in the com-

bination of observations? Stated differently, is

there more information to be obtained from the

combination of different measurement types than

is available from the sum of individually applied

retrievals?

(iv) If different observations are to be combined on the

basis of information content, what then do we

mean by information, how do we define its content

quantitatively and how should this information

guide the blending of observations (e.g., L’Ecuyer

et al. 2006)?

The combination and blending of different types of

observations serve as the basis of the ISCCP and GPCP

programs so the value of combining observations has

long been realized. ISCCP, for example, combines mea-

surements of IR emission and scattered sunlight to

characterize clouds and GPCP blends MW and IR

emission measurements of precipitation. Here we pro-

vide further examples of comparisons of cloud and pre-

cipitation products derived from different but matched

observations in an attempt to begin to address some

aspects of these questions.

a. The LWP example

The optical depth–effective radius information de-

rived from the BSR method can be combined to deduce

the cloud LWP through the relation (Stephens 1978)

� �
3

2

LWP

re

.

Simultaneous measurements of the spectral reflec-

tances and MW radiances, such as available from

MODIS and the Advanced Microwave Scanning Radi-

ometer (AMSR) for EOS (AMSR-E) instrument on

Aqua, provides an opportunity to compare the two dif-

ferent inferences on LWP based on entirely different

physical assumptions. Comparisons of low-cloud LWP

retrieved by these two different approaches applied to

data obtained simultaneously from MODIS and

AMSR-E are reproduced in Fig. 13 (from T. J. Green-

wald et al. 2006, personal communication). The com-

parisons are shown as probability distribution functions

of the differences between LWP obtained from

AMSR-E radiances and from MODIS reflectances

matched to the AMSR-E 37-GHz channel footprint.

The LWP comparisons apply to nonprecipitating scenes

deemed so by AMSR-E observations. The comparisons

reveal a systematic and repeatable bias between the

LWP obtained by both methods. The bias, of order 50

gm�2, is substantial when measured in terms of solar

energy reflected by such clouds.

Figure 14 provides another perspective on the biases

revealed in Fig. 13 but in this case the data shown apply

to TRMM and TRMM Microwave Imager (TMI) ob-

servations. Shown is the LWP distribution taken from

the version-3a TMI Ocean Products when all Visible

and Infrared Scanner (VIRS) pixels within the TMI

footprint are deemed to be cloud free. The significant

amounts of cloud water retrieved from the TMI mea-

surements under cloud free conditions point to prob-

lems with cloud misidentification in the TMI.

b. TRMM TMI and PR comparisons

Precipitation products derived from TRMM observa-

tions include precipitation derived independently from

FIG. 13. Comparison AMSR-E cloud LWP and the MODIS-

derived LWP for matched footprints and for nonprecipitating

clouds and grouped by different solar zenith view angles (SZA; T.

J. Greenwald et al. 2006, personal communication).
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both the precipitation radar (PR) and TMI as well as

precipitation derived from the combination of these ob-

servations. The two instrument-centric products are ex-

pected to contain significant random variations because

of the differences in view angle, spatial resolution, and

information content of the different sensors, but when

averaged over time and space many of these differences

should disappear. However, comparisons between the

two rainfall products averaged on time and space scales

pertinent to climate studies reveal systematic differ-

ences between the two that do not disappear with av-

eraging. Berg et al. (2006), for instance, find regional

and seasonal signatures of differences that are corre-

lated to the total precipitable water for reasons not yet

understood. Robertson et al. (2003) suggest that clima-

tological discrepancies between the active and passive

FIG. 15. Comparison of the precipitation derived from (top) TMI pixels when the PR indicates no returns and

conversely the (bottom) PR precipitation when the TMI algorithm indicates no precipitation (Berg et al. 2006).

FIG. 14. The TMI-deduced distribution of cloud LWP for those scenes determined by all

VIRS pixels within the TMI footprint to be clear (T. J. Greenwald et al. 2006, personal

communication).
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TRMM rainfall products during the ENSO event of

1997/98 could in part be explained by assumptions

made in precipitation microphysics in retrievals.

Figure 15 is taken from the study of Berg et al. (2006)

and shows precipitation derived from TRMM TMI

(top) and PR (bottom) observations when the other

respective sensor (PR for the results of the upper panel

and TMI for the lower panel) indicates no precipita-

tion. In this way, the differences shown highlight the

problems with rainfall detectability associated with

both methods. Comparisons reveal, for example, that

the TMI consistently misses rainfall events behind cold

fronts in the extratropics, presumably because of the

fact that these systems are spatially too small to be

properly captured by the relatively large TMI foot-

prints. Regions also exist where the TMI consistently

identifies rainfall when the PR detects none. Such dif-

ferences can occur as a result of misclassification of

precipitation within the TMI footprint and can also oc-

cur through the lack of sensitivity of the PR in light

rain. The differences, notably in regions of high levels

of aerosols (such as off the east coast of the Asian

continent), hint at the possible influence of aerosols on

precipitation in these regions. Further analysis (not

shown) reveals that such regions contain extremely

high liquid water contents but are not precipitating.

These water contents fall well above the rain/no rain

LWP threshold used to flag precipitation and are mis-

takenly interpreted as rain.

Another synergy that has recently been exploited is

the adjustment of the median volume diameter, D0, by

the passive microwave radiometer when precipitation is

light. In this case, the PR cannot exploit the surface

reference technique and the median volume diameter is

essentially the assumed value. This initial guess of the

rainwater content can be used to simulate radiances

and, if not consistent with the observed TMI radiances,

can be used to adjust D0 to make both measurements

more consistent as in Masunaga and Kummerow (2005)

or Grecu and Olson (2006).

c. Low cloud effective radius

Low cloud effective radius derived from three differ-

ent combinations of MODIS channels is shown in Fig.

16. The results apply to a low cloud layer, and the

MODIS-derived values are compared to the re obtained

from a retrieval scheme that uses matched TRMM

VIRS observations. The particle sizes retrieved vary

significantly—not only between VIRS and MODIS but

between the different MODIS products themselves, in

some cases by as much as a factor of 2. At first glance,

it is not clear as to whether these differences result from

different retrieval assumptions or whether they reflect

some other characteristic of the physical world not rep-

resented by the physical retrieval model.

The effective radius quantities derived from the BSR

method are vertically averaged quantities with the av-

eraging dictated by the weighting function characteris-

tic of the specific spectral channels used (e.g., Platnick

2000; Chang and Li 2002). The characteristics of these

functions suggest that the particle size derived using

different channel combinations (e.g., the 0.75–2.2-
m

channel combination versus the 0.75–3.7-
m combina-

tion) are weighted differently, with information coming

from different levels within the clouds. Chang and Li

(2003) employ a version of the BSR method with dif-

ferent combinations of channels and use the differences

in re like those of Fig. 17 to provide some measure of

the vertical profile of effective radius in clouds. Chen et

al. (2007) further demonstrate a correlation between

the sign of the difference between particle sizes at cloud

top and base and the presence of precipitation (Fig. 17).

The results shown on this diagram are consistent with

the existence of larger precipitation drops low in the

cloud that are apparently detectible from near-infrared

measurements of sunlight reflected by clouds. This ex-

ample demonstrates, in a small way, the value of joint

observations of cloud and precipitation in studying the

precipitation-related processes.

d. Cirrus cloud optical properties

The output states of both the SW and BSR methods

are the optical depths and effective radii of thin cirrus

clouds. Using MODIS airborne simulator (MAS) data

obtained during the Cirrus Regional Study of Tropical

Anvils and Cirrus Layers-Florida Area Cirrus Experi-

ment (CRYSTAL-FACE), Cooper et al. (2007) con-

FIG. 16. Example of a comparison of the three MODIS effective

radius (two channel) products (identified by the near-infrared

channel used) compared to a new three-channel retrieval scheme

developed for VIRS for layered water clouds over the ocean.
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trast the properties derived from these two methods for

a cloud observed on 23 July 2004. At approximately

1830 UTC, the ER-2 over flew a progressively thicken-

ing cirrus cloud shield off the east coast of Florida as is

indicated by the combined airborne lidar (CPL) and

cloud radar (CRS) observations shown in Fig. 18. Fig-

ures 19a and 19b present retrieved effective radius and

ice water path (in this case, a combination of optical depth and effective radius) as a function of the

alongtrack position of the aircraft matching the same

period of time of Fig. 18. These retrieved quantities are

derived from three different algorithms: one corre-

sponds to results from a two-channel BSR method

analogous to that of Nakajima and King (1990), a sec-

ond to results from a two-channel SW method, and a

third is from a method that incorporates five channels

that include both the SW and BSR channels. Retrieval

results show clearly how different are the estimates of

effective radius between the two methods (Fig. 19b),

and it is not obvious a priori which one is more realistic.

The five-channel method weights the channel informa-

tion differently according to how model errors are

specified. The smooth transition of the solution of this

five-channel method from the SW to the BSR as optical

depth increases occurs as a consequence of this error

specification. For thin cirrus, the phase-function errors

exert such an influence on the BSR method that the

solution tends to be weighted toward the SW method,

since, in this case, the cloud location and hence cloud

temperature is known, producing errors that are smaller

than those of the BSR. As the cloud thickness in-

FIG. 17. The histogram of effective radius differences as a func-

tion of precipitation as detected by the PR (Z. Li 2006, personal

communication).

FIG. 18. Composite of airborne lidar and radar observations of

clouds. The red indicates portions of clouds detected by radar

only, the blue indicates where the lidar detected cirrus but the

radar did not, and the green indicates that portion of the cirrus

where both sensors detected cirrus.

FIG. 19. The retrieval of (a) cloud ice water path and (b) effec-

tive radius derived from MODIS airborne simulator data. Five

different retrieval versions are shown, modified from Cooper et

al. 2007.
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creases, the SW method becomes less reliable because

of the lack of sensitivity of the method that enhances its

related error, such that the solution now tracks the BSR

method, which now is less prone to phase-function er-

ror under these thick cloud conditions.

The important message conveyed in the example of

Fig. 19 is that any blending of different types of obser-

vations requires a proper disclosure of retrieval errors

as these largely establish the relative weighting of the

different observations used in the blending. Poorly

specified errors result in improperly weighted observa-

tions. As a way of underscoring this point, the retrievals

of Figs. 19a and 19b were repeated using two different

error assumptions in the five-channel scheme, and both

are also shown in Figs. 19a and 19b. One assumption

adds substantial error to that part of the model that

represents the SW channels. In this case, the solution

indicated as on the figure resembles more closely the

original BSR result. Conversely, the second assumption

shifts error to the portion of the model associated with

the BSR channels, with the result that the solution now

resembles the SW solution.

e. Active and passive: A CloudSat example

The benefit of combining active and passive obser-

vations for deriving cloud and precipitation properties

has been demonstrated for more than 20 yr using mea-

surements from both aircraft- and ground-based lidar,

radar, and radiometer systems (e.g., Platt et al. 1998;

Matrosov et al. 1992; Mace et al. 1998; Skofronick-

Jackson et al. 2003; and many others). The value of this

sort of combination of observations is also emerging

from TRMM, with the kinds of studies described above.

The complementary nature of the active and passive

measurements is exploited in the CloudSat liquid water

and ice water content algorithms that combine radar

observations with MODIS radiance data. The essence

of the method is illustrated in Fig. 20a, which presents

graphically the relation between integrated radar re-

flectivity IZ and optical depth on cloud LWP and geo-

metric mean particle size rg. These relationships are as

follows (see Austin and Stephens 2001 for details):

lnIZ 	 lnLWP � 3 lnrg,

ln� 	 lnLWP � lnrg,

where

IZ � �
zbase

ztop

Z�z� dz.

Contours of constant particle size rg and LWP are

shown as functions of IZ and 	 in Fig. 20a. The near

orthogonality of the contours graphically indicates that

measurements of IZ and reflection measurements in the

form of 	 contain independent information about rg and

LWP. Austin and Stephens (2001) develop a retrieval

method that combines both pieces of information to

obtain rg and W. An example of an optimal estimation

retrieval obtained using this method applied to data

collected at the Atmospheric Radiation Measurement

Program (ARM) southern Great Plains site is provided

in Fig. 20b, in which values of LWP retrieved from a

combination of cloud radar and optical depth data are

compared to LWP values retrieved from a microwave

radiometer.

7. Summary

This paper presents a critical review of a number of

popular methods that have been developed to retrieve

cloud and precipitation properties from satellite radi-

FIG. 20. (a) Relation between geometric mean radius rg, liquid

water path W, integrated reflectivity IZ, and optical depth 	 for a

hypothetical 1-km stratus cloud with uniform rg. (b) Comparison

of cloud liquid water path retrieved from radar plus visible optical

depth (RVOD) retrieval and value retrieved from microwave ra-

diometer (MWR) data (Austin and Stephens 2001).
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ance measurements. Properties typically derived from

these measurements may be classified into two broad

types: cloud optical properties that characterize the in-

teraction of clouds with radiation, and water content

properties of clouds and precipitation. One common

thread that affects retrievals of both types of properties

are the necessary, simplifying assumptions introduced

for the microphysical properties of clouds and precipi-

tation.

The emphasis of the paper concerns the nature of

retrieval uncertainties, as these shape future data as-

similation applications in the form of direct radiance

assimilation, product assimilation, or even in the use of

retrieved information as a source of model error char-

acterization. It is demonstrated throughout the paper

how cloud and precipitation observing systems devel-

oped around seemingly simple methods of retrievals

are in fact very complex, which thus explains, in part,

why assigning realistic errors to the properties derived

from them has been so elusive in the past. Two primary

sources of error, common to the cloud and precipitation

retrieval problem, that define the overall uncertainty of

the observing system were stressed:

(i) Errors associated with the identification of cloudy

scenes from clear scenes and the identification of

precipitation in cloudy scenes from nonprecipitat-

ing cloudy scenes. Examples of problematic dis-

crimination of cloud clear were highlighted in the

case of MW estimates of cloud liquid water path

(Figs. 13 and 14), in which unphysical biases in the

LWP information were shown in regions that were

most probably clear. The problem of precipitation

discrimination too was evident in the examples of

Figs. 6 and 15, underscoring problems with overly

simplistic methods of separating cloud from pre-

cipitation based primarily on simple LWP thresh-

olds. A more unified approach to observing clouds

and precipitation properties jointly would clearly

help such problems.

(ii) Errors introduced by the forward model and its

related parameters. The forward model generally

contains two main components: a model of the at-

mosphere and the cloud and precipitation struc-

tures imbedded in that atmosphere, and a forward

model of the radiative transfer that produces the

synthetic measurement that is ultimately compared

to the measurement. The vast majority of methods

developed for deriving cloud and precipitation in-

formation from satellite measurements are highly

sensitive to these model parameters, which merely

reflects the underconstrained nature of the prob-

lem and the essential nature of other information.

The cloud and precipitation retrieval examples pre-

sented in this paper tend to be constructed around very

unrealistic atmospheric models typically composed of

just a few layers. The consequence is that the retrievals

become highly sensitive to the unobserved parameters

of those layers and the atmosphere above and below.

For example, the MW-emission-based LWP method

and the IR SW cirrus cloud optical property method

were shown to be very sensitive to the assumptions

about the temperature of the cloud layer, which con-

tribute significantly to retrieval errors. Cloud methods

based on scattered sunlight also are highly sensitive to

assumptions of the model, including the inherent form

of radiative transfer model (e.g., Fig. 9 and discussion)

as well as heavy reliance on poorly known specific

model parameters (e.g., Fig. 10). Assumptions of the

vertical cloud and precipitation structures (Fig. 7) as

well as the details of ice particle properties and size

distributions are a dominant source of uncertainty in

the estimation of precipitation. Clearly a better defini-

tion of the atmospheric state, and the vertical structure

of clouds and precipitation are needed to improve the

information extracted from satellite observations. The

combination of active and passive measurements,

briefly touched on in section 6, offers much scope for

improving cloud and precipitation retrievals.

We also suggest that we are embarking on a new age

of remote sensing of clouds and precipitation, starting

with TRMM and continuing on with the A-Train, and

that this new age provides us with the opportunity to

move away from present artificial practices of “observ-

ing” and analyzing clouds and precipitation as separate

entities. A more unified approach to observing clouds

and precipitation properties jointly, for many reasons

illustrated in this paper, would not only greatly improve

these retrieval problems but also advances our under-

standing of important cloud and precipitation pro-

cesses.
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