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Abstract: The adsorption mechanisms of methylene blue (MB) onto olive waste (residue) treated with
KOH (OR-KOH) and onto an OR-KOH and PEG–silica gel composite (OR-KOH/PEG-SG) at various
temperatures were investigated using a combination of experimental analysis and Monte Carlo ab-
initio simulations. The effects of adsorption process variables such as pH, temperature, and starting
adsorbate concentration were investigated. The experimental data were fitted to Langmuir and
Freundlich models. The maximum adsorption capacities of MB onto OR-KOH and OR-KOH/PEG-
SG adsorbents reached values of 504.9 mg/g and 161.44 mg/g, respectively. The experimental FT-IR
spectra indicated that electrostatic attraction and hydrogen bond formation were critical for MB
adsorption onto the adsorbents generated from olive waste. The energetic analyses performed using
Monte Carlo atomistic simulations explained the experimental results of a differential affinity for the
investigated adsorbents and confirmed the nature of the interactions between methylene blue and
the adsorbents to be van der Waals electrostatic forces.

Keywords: adsorption; DFT; Monte Carlo simulations; Langmuir–Freundlich

1. Introduction

To the best of our knowledge, the first use of natural dyes was reported as far back as
2600 BC but only in 1856, when William Henry Perkin attempted to synthesize artificial
quinine from allyltoluidine to treat malaria, was the first dye material synthesized which
he called “mauve” (aniline, a basic dye). After that, the synthetic dye industry was born [1].

Nowadays, synthetic dyes represent a relatively large group of organic chemical
compounds used in our daily life [2,3]. Global production is estimated to be about
700,000 tons/year, of which 140,000 tons are released into effluents during various ap-
plications and manufacturing stages because of wrong or negligent discharges [4,5]. If not
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adequately treated, these effluents, composed of surfactants, biocide compounds, solid
suspensions, dispersal and mooring agents, dyes, and metal traces, are toxic to most living
organisms [6,7]. Their heterogeneous composition makes it difficult to reach pollution
levels less or equal to those imposed by environmental standards when adopting the
traditional treatments commonly used in municipal wastewater plants [8].

One of the primary concerns of water pollution is the dye contamination of wastew-
ater from the textile industry, which is a significant chemical, physical, and aesthetical
pollutant [9]. Eutrophication and disturbance of aquatic life (e.g., limiting access to sunlight
and oxygen) presents a potential environmental danger. Possible bioaccumulation also
represents a further threat, affecting human health and the environment.

Several techniques can be used for pollution treatment, and adsorption has been
commonly considered a reliable, versatile, and efficient option [10]. When applying
this technique, the adsorbents that have been most adopted for use are commercial ac-
tivated carbons, which are usually expensive despite their proven efficiency. In some
cases, their use produces delayed pollution, representing an additional environmental
threat [11,12]. Recently, many adsorbents have been reported by researchers in the context
of dye removal from wastewaters, such as agricultural wastes [13–15], super-absorbent
hydrogels [16], chitosan-based adsorbents [17], Ba/Co-PEG nanocomposites [18], PEG-
Crosslinked biomass polymers [19], and silica-PEG intercalated clay hybrids [20]. Using
agricultural waste as an eco-friendly precursor would provide a valid alternative, assuring
a lower economic and polluting impact [21,22]. Moreover, this is a valuable operation that
simultaneously includes the disposal of waste material, contributing to the production
of added-value material and economic savings, which should be promoted as part of the
circular economy framework.

Although many different agricultural wastes have been proposed as porous adsor-
bents, few activation treatments have been tested and applied to the reuse of olive wastes.
Creating a new synthesis route for the realization of a new adsorbent can be time and
energy-consuming if the end absorbent performance is inadequate. Significant help can
be derived from atomistic simulations such as those based on the Monte Carlo method
to initially assess the suitability of a certain adsorbent for capturing a specific compound.
This simulation at the atomistic level is a powerful tool for the energetic evaluation of
the adsorption pseudoreaction and the determination of the properties of the bonds that
occur upon adsorption. It could be used to extract information about the factors that
have a considerable effect and, subsequently, those that can increase any effects, starting
with the chemical properties of the pseudoreactants (i.e., adsorbent and adsorbate). The
possible relations between adsorbent and adsorbate and the determination of the energy
involved could provide helpful information about the adsorption and magnitude of the
adsorption capacity. The simulation of adsorption processes, based on the possibility of an
experimental check of the retrieved results, is an innovative tool in the field of adsorption
research, which also allows for a quick and easy evaluation of the adsorption properties of
a stated system, helping to understand its potential for real application.

A novel adsorbent (OR-KOH/PEG-SG sample) was created by treating olive waste
(residue) with KOH and then mixing it with a PEG-silica gel composite. The removal
of methylene blue (MB) from water, using olive waste activated with KOH (OR-KOH
sample) and OR-KOH/PEG-SG support, was examined under varying temperatures, pH,
and starting adsorbate concentrations. The experimental findings were interpreted and
supported by molecular simulations using a classical modeling approach. Molecular
simulations were used in combination with fundamental data analysis to better study
the adsorption process. Furthermore, grand canonical Monte Carlo (GCMC) atomistic
simulations were used to investigate the microscopic parameters that led to the dye binding
to the two adsorbents. Finally, a comparison of the obtained data was performed to gauge
the usefulness of this new approach for research.
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2. Materials and Methods
2.1. Preparation of Adsorbents

The preparation of the low-cost olive waste adsorbents was passed through different
steps. Firstly, a porcelain mortar was used to reduce the grain size of the raw material down
to a relatively fine particle size of a few µm. A sample of 100 g of the crushed olive waste
was then immersed and stirred at 700 rpm in 1 L of hot water to remove any dust, oil, or
any other adhesive impurities and water-soluble substances until clear rinsing water was
obtained. The sample was then centrifuged, filtrated, and dried in a vacuum oven at 50 ◦C
for 24 h. The total amount retrieved was 86 g from the original 100 g. After purifying the
olive residue, it was dried and crushed to obtain a fine powder with a particle size smaller
than 500 µm. It then underwent a chemical activation with a basic solution of KOH (0.2 M).
An amount of 4.48 g of KOH was dissolved in 400 mL of distilled water. The mixture (16 g
of waste olive powder + KOH basic solution) was stirred for 30 min at room temperature,
filtrated, and then dried; firstly at 50 ◦C for 24 h and then the temperature was increased to
120 ◦C for 1 h 30 min. After that, the recovered sample was washed using distilled water to
eliminate the excess activating agent (KOH) and the soluble fractions of ashes. The rinsing
water was then treated with AgNO3. If this water remained clear, the washing was stopped.
Otherwise, the same rinsing operation is repeated. Finally, the cleaned sample was dried at
50 ◦C for 24 h.

A mixture of Si (OH)4, distilled water, and ethanol (molar ratio 1:10:5, respectively) was
stirred for 30 min to prepare the PEG–silica gel composite. Ethanol was used as a cosolvent
and homogenizing medium [23,24] to reduce Si(OH)4 in water. Then, a hydrochloric acid
solution ([HCl] = 0.611 mol/L, V = 8 mL) was added to the mixture, and the temperature
was increased up to 50 ◦C. After 10 min, a molten amount of PEG3000 was added into
the mix, and after a further 20 min, a sodium carbonate solution ([Na2CO3] = 1.21 mol/L,
V = 4 mL) was also added. The gel was formed immediately. Finally, the product was dried
in a vacuum oven at 50 ◦C for 24 h, and the desired composite PEG–silica gel (70/30 weight)
was obtained. Equal amounts of OR-KOH adsorbent and PEG-SG (mass ratio 1:1) were
added to 30 mL of distilled water to improve the olive waste adsorption capacity. The
mixture was stirred for 24 h at ambient temperature, filtrated, and then dried in a vacuum
oven at 50 ◦C for 24 h so as to obtain the adsorbent (OR-KOH/PEG-SG sample).

2.2. Chemicals

The dye investigated in this work was methylene blue (MB: C16H18N3SC1). Potassium
hydroxide (KOH) was used for the chemical activation of the adsorbent. Both NaOH and
HCl solutions were used to adjust the pH values during adsorption tests. The composite
was prepared using silica gel (Si(OH)4). Sodium carbonate Na2CO3 served as a catalyst.
The use of silver nitrate AgNO3 allowed for the verifying of the clearness of rinsing water.
Ethanol and distilled water were utilized as solvents. Finally, polyethylene glycol (PEG,
C2H4O), also called macrogol in the medical domain (molar weight = 3000 g/mol), was
used to support the dispersion of the adsorbent. All the chemicals were purchased from
Sigma–Aldrich as reagent grade.

2.3. Characterization of OR-KOH and OR-KOH/PEG-SG Adsorbents

The adsorbents were characterized in terms of point of zero charge pHPZC. To this
aim, 20 mL of distilled water at neutral pH was added to 12 Erlenmeyer flasks of 50 mL.
Then, the pH of the 12 solutions was adjusted with either HCl (0.1 M) or NaOH (0.1 M).
After that, 20 mg of the adsorbent powder was added to all the solutions. Each suspension
was stirred for 24 h, and the final pH values were measured using a pH meter (OHAUS).
The final pH minus the initial pH value, as a function of the initial pH values, was plotted
to obtain pHPZC. The pHPZC is calculated as the terminal pH value corresponding to the
intersection of the obtained curve with the abscissa axis.

The infrared spectra of the adsorbents before and after modification and the PEG-SG
were recorded by an FTIR spectrophotometer (Shimadzu) in the range of 4500–500 cm−1.



Polymers 2022, 14, 2396 4 of 15

2.4. Batch Adsorption Experiments

Adsorption isotherms were determined using 10 Erlenmeyer flasks (50 mL) filled with
20 mL of aqueous solutions with different MB concentrations (from 25 to 800 mg/L). Then,
20 mg of either OR-KOH or OR-KOH/PEG-SG adsorbent was added to each solution, and
the batch flasks were stored in an oven at controlled temperatures (30, 40, and 50 ◦C). The
batch flasks were stirred continuously at 200 rpm and stored in an oven at controlled tem-
peratures (30, 40, and 50 ◦C). At the end of the experiment, the solutions were centrifuged
for 30 min at 6000 rpm.

The adsorption tests were repeated twice to assess the reproducibility of the results,
with the average values considered.

MB concentrations were measured using a UV–Visible spectrophotometer (SP-3000
nano OPTIMA) at a maximum absorption wavelength of λmax = 664 nm. UV–Visible
spectrophotometry is a quantitative analysis technique that measures a given chemical
substance’s abundance or optical density in a solution based on the Beer–Lambert law.

The adsorption capacity of BM was calculated using the following relation:

qe =
(C0 − Ce)·V

m
(1)

where qe is the amount of adsorbed BM at equilibrium (mg/g), V is the volume of the solu-
tion (L), C0 and Ce are the initial and equilibrium dye concentrations (mg/L), respectively,
and m is the amount of the adsorbent (g).

MB adsorbed quantities can also be estimated by R (%), which is the BM removal
percentage defined by the following equation [25]:

R (%) =
(C0 − Ce)

C0
× 100 (2)

The effect of pH on the MB adsorption process was investigated at ambient tempera-
ture by adjusting the solution pH using the appropriate amount of either HCl or NaOH.
After equilibrium, the adsorbent was separated by filtration, and the filtrate was analyzed
by UV spectrophotometry.

2.5. Adsorption Isotherms Analysis

Modeling analysis was carried out by considering the classical adsorption mod-
els for a basic interpretation of the experimental data and supporting the subsequent
process simulation.

The following expression gives the Langmuir adsorption model:

qe = qmax
KLCe

1 + KLCe
(3)

where the dye adsorption capacity is qe (mg/g), the equilibrium dye concentration in the
liquid is Ce (mg/L), the maximum adsorption capacity is qmax (mg/L), and the Langmuir
constant is KL (L/mg) which determines the extent of the interaction between the adsorbate
and the surface.

The Freundlich model is given as follows:

qe = K f (Ce)
1/n (4)

where qe is the dye adsorption capacity, K f ((mg/L)(1/n)) is the Freundlich constant, and
1/n is the adsorption intensity, characterizing the heterogeneity of the system [26].

2.6. Computational Study

Adsorption systems were simulated by adopting the Metropolis Monte Carlo simu-
lations (MCS) [27] using the adsorption locator module [28] in Materials Studio 2017™.
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The MCS process is used to find the adsorbate/adsorbent configuration, corresponding
to the lowest total energy. In an MCS framework, the equilibrium conditions can be pre-
dicted starting from the chemical potential of fluid and solid phases, accounting for the
adsorbent/adsorbate structures with properties at an atomistic level. Simulations were
carried out for both the adsorption systems: MB/OR-KOH and MB/OR-KOH/PEG-SG.
Two different boxes were constructed: (13.6 × 13.6 × 46.50 Å3) and (25.9 × 25.9 × 25.9 Å3),
respectively. The created vacuum ran along the Cz-axis with periodic boundary conditions
to model a representative part of the interface, devoid of arbitrary boundary effects. For
calculating the interaction forces in the whole simulation procedure, the DREIDING force
field [29] was implemented.

3. Results and Discussion
3.1. Point of Zero Charge pH (pHPZC)

The pH of a diluted solution is an essential factor for determining the adsorption
properties of a given adsorbent. In turn, the behavior of an adsorption system is greatly
influenced by the pHPZC (the pH at which OH− and H+ ions are adsorbed to the same
extent). The presence of OH− and H+ ions in the solution can change the surface charge po-
tential of adsorbents. In Figure 1, the zero charge point values are given by the intersection
of the horizontal line y = 0 and the curve pH f − pHi = f (pHi).
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Figure 1. Zero charge points of adsorbents.

OR-KOH/PEG-SG and OR-KOH show zero charge point values around 7.2 and 6.6,
respectively. This pHPZC = pHi point divides the adsorbent area into two subsequent areas:

X In the range of lower values (pHi < pHPZC), the adsorbent surface will be protonated
due to an excess of H+. The positively charged adsorbents are more attractive to
negatively charged compounds.

X In the range of higher values (pHi > pHPZC), the adsorbent surface will be deproto-
nated by the presence of OH− ions in the solution. Adsorbents in this pH range are
more attractive to positively charged compounds [30].

Since MB is a cationic dye, it was expected that the best adsorption performance would
be obtained for pHi > pHPZC.

3.2. Fourier Transform Infrared Spectrometry (FTIR)

The olive residue consists of epidermal cells that contain cellulose, hemicellulose, and
lignin. The latter contains polar functional groups such as alcohols, aldehydes, ketones,
carboxylic, phenolic, and others [31]. Once the adsorbent is synthesized, these groups form
active sites on the material surface. The FTIR spectra of the adsorbents, their raw precursor
(OR, olive residues), and the PEG-SG used for the synthesis are shown in Figure 2.
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Figure 2. IR spectra of OR, OR-KOH, PEG-SG, and OR-KOH/PEG-SG.

The OR-KOH/PEG-SG sample spectrum showed characteristics close to the OR-KOH
precursor spectrum, with slight changes. Both spectra show similar peaks but slightly differ
in intensity (see Figure 2).

The spectra of all the materials showed a hydroxyl characteristic band at 3440–3442 cm−l,
while the band at 2700–2900 cm−1 was attributed to the presence of =C-H stretching. This
peak was more intense for the OR solid, while the subsequent treatments with KOH tended
to progressively reduce it (see the peaks of OR-KOH and OR-KOH/PEG-SG). The peak at
1720 cm−1 corresponds to the aromatic C=0 stretching. The phenol -OH is characterized by
the peak at 1340 cm−1 (OR spectrum) which was not visible for the two materials OR-KOH
and OR-KOH/PEG-SG due to KOH treatment. The aromatic ethers group =C-O- (present in
OR, OR-KOH, and OR-KOH/PEG-SG spectra) is characterized by a peak at 1000–1300 cm−1.
The ether group of PEG was detected at 1240 cm−1. The band at 806 cm−1 might correspond
to either aliphatic or aromatic C-H. Additionally, the existence of C-X bonding could explain
the strong peak observed at 478 cm−1.

Lower intensities were noticed for the PEG-SG peaks recorded at 3341 cm−1,
2917 cm−1, 1340 cm−1 (corresponding to OH groups, C-H aliphatic groups, and C=O,
respectively), in comparison to those of raw olive residue samples. This may indicate a
reduction in these groups, strengthening the hypothesis that they represent the active sites
where bonds form, leading to the further disappearance of these functional groups.

3.3. Effect of Initial pH on MB Adsorption

The pH of a solution is a significant parameter, especially when coupled with the
pHPZC, because different electrostatic phenomena can arise during adsorption interactions,
significantly affecting the adsorption capacity [32]. pH may cause a change in the adsor-
bent’s surface charge, the adsorbate’s ionization degree, and the degree of dissociation of
functional groups of both adsorbent active sites and adsorbate molecule [33,34]. The effects
of pH on MB adsorption onto OR-KOH and OR-KOG/PEG-SG adsorbents is illustrated
in Figure 3.



Polymers 2022, 14, 2396 7 of 15
Polymers 2022, 14, x FOR PEER REVIEW  7 of 15 
 

 

 

Figure 3. Effect of pH on MB adsorption onto OR-KOH and OR-KOH/PEG-SG adsorbents. 

Figure 3 shows that strongly acidic solutions exhibit poor removal efficiency. The 
higher the pH, the more efficient the MB removal is from an aqueous solution. Even if OR-

KOH/PEG-SG shows a lower value of adsorption capacity, it is more sensitive to pH var-
iation than OR-KOH, as evidenced by the obtained values of R%, which were primarily 
superior to those shown by OR-KOH/PEG-SG, particularly in the range of 3 < pH < 10. It 

is to be noted that, for the OR-KOH samples, the increase in the removal efficiency (R) 
was very high until 6.2 (<𝑝𝐻𝑃𝑍𝐶), where a maximal removal rate of about 90 % was 
reached; thereafter, the curve exhibits an almost constant quality and a result of about 87 

% removal at pH 12. On the contrary, the OR-KOH/PEG-SG curve tends to vary less 
sharply in a quasi-linear trend, achieving a maximal R% value of 90 % at pH 11. 

It is worth noting that the maximal removal efficiency (R%) reached for OR-KOH is 

90 % at pH 8, whereas the maximal value (R%) achieved by OR-KOH/PEG-SG occurred 

at pH 12. 

• The surface charge below 𝑝𝐻𝑃𝑍𝐶 (𝑝𝐻<𝑝𝐻𝑃𝑍𝐶) is positive, whereas this surface carries 
negative charges when 𝑝𝐻>𝑝𝐻𝑃𝑍𝐶. Therefore, the high elimination percentage in 
high pH values may be caused by an electrostatic attraction between negatively 

charged material and positively charged MB. 
• For low pH, a decrease in the elimination percentage was noticed due to the electro-

static repulsion between positively charged material and MB cations. Additionally, 

the competition with the H+ cations weakens the adsorption capacity [35]. 

In the following, the pH of the solutions is set at pH=6, which is the natural pH of the 
methylene blue solution. 

3.4. Adsorption Isotherms 

The adsorption isotherms of MB onto OR-KOH and OR-KOH-PEG/SG adsorbents, 

measured at different temperatures (30, 40, and 50 °C) and using a wide range of initial 
concentrations, are shown in Figures 4 and 5. 

2 3 4 5 6 7 8 9 10 11 12 13

0

10

20

30

40

50

60

70

80

90

100

R
e
m

o
v
a
l 
e
ff
e
c
ie

n
c
y
, 
(R

%
)

 Solution pH

 OR-KOH

 OR-KOH/PEG-SG

Figure 3. Effect of pH on MB adsorption onto OR-KOH and OR-KOH/PEG-SG adsorbents.

Figure 3 shows that strongly acidic solutions exhibit poor removal efficiency. The
higher the pH, the more efficient the MB removal is from an aqueous solution. Even if
OR-KOH/PEG-SG shows a lower value of adsorption capacity, it is more sensitive to pH
variation than OR-KOH, as evidenced by the obtained values of R%, which were primarily
superior to those shown by OR-KOH/PEG-SG, particularly in the range of 3 < pH < 10. It
is to be noted that, for the OR-KOH samples, the increase in the removal efficiency (R) was
very high until 6.2 (<pHPZC), where a maximal removal rate of about 90% was reached;
thereafter, the curve exhibits an almost constant quality and a result of about 87% removal
at pH 12. On the contrary, the OR-KOH/PEG-SG curve tends to vary less sharply in a
quasi-linear trend, achieving a maximal R% value of 90% at pH 11.

It is worth noting that the maximal removal efficiency (R%) reached for OR-KOH is
90% at pH 8, whereas the maximal value (R%) achieved by OR-KOH/PEG-SG occurred
at pH 12.

• The surface charge below pHPZC ( pH < pHPZC) is positive, whereas this surface carries
negative charges when pH > pHPZC. Therefore, the high elimination percentage in
high pH values may be caused by an electrostatic attraction between negatively
charged material and positively charged MB.

• For low pH, a decrease in the elimination percentage was noticed due to the electro-
static repulsion between positively charged material and MB cations. Additionally,
the competition with the H+ cations weakens the adsorption capacity [35].

In the following, the pH of the solutions is set at pH = 6, which is the natural pH of
the methylene blue solution.

3.4. Adsorption Isotherms

The adsorption isotherms of MB onto OR-KOH and OR-KOH-PEG/SG adsorbents,
measured at different temperatures (30, 40, and 50 ◦C) and using a wide range of initial
concentrations, are shown in Figures 4 and 5.
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Figure 4. Adsorption isotherms of MB on OR-KOH adsorbent as a function of temperature.
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Figure 5. Adsorption isotherms of MB on OR-KOH/PEG-SG adsorbent as a function of temperature.

An increase in temperature determined the adsorption capacity for both adsorbents,
which was more evident when the equilibrium concentration was higher. This evidence
could be ascribed to the particular affinity of both adsorbents towards the water due to
the presence of OH functional groups from hydrogen bonds (Figure 2). Consequently, an
increase in the temperature results in a nonnegligible decrease in the water adsorbed. In
turn, this decrease can favor the increase in the adsorption of MB, which overall appears
as endothermic adsorption. However, the trend of adsorption isotherms was significantly
different for the two adsorbents. In fact, for OR-KOH, the adsorption capacity gradually
increased with equilibrium concentration, indicating the gradual saturation of the solid
and an increasing interaction between MB and OR-KOH due to the exploitation of different
adsorption sites. This would likely result in a homogeneous surface of the adsorbent being
observed and a gradual increase of MB adsorption capacity with equilibrium concentration.

On the contrary, for OR-KOH/PEG-SG, a rapid increase in adsorption capacity was
observed for a very low value of equilibrium concentration. The curves tend to plateau
at high equilibrium dye concentrations, which was not the case for the tests carried out
with OR-KOH. Thus, we hypothesize the existence of higher energy adsorption sites that
were initially exploited, which are characterized by a higher degree of variability for the
OR-KOH/PEG-SG adsorbent.

A modeling analysis was carried out based on Langmuir and Freundlich models, ex-
pressed by Equations (3) and (4), to further analyze the experimental data. The objective
was to determine which models could best interpret the experimental data by comparing R2

(correlation coefficient) and RMSE (root mean square error) derived from the analytical fitting.
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The RMSE estimates the standard deviation of the random error for the two models
considered in this work. A lower RMSE corresponds to a better fitting model. The RMSE
was calculated by Equation (5):

RMSE =

√
1

n − p ∑n
1

(
qe,exp − qe,calc

)2 (5)

where n is the number of experimental data points, p is the number of parameters in the
isotherm model, and qe(exp) (mg/g) and qe(calc) (mg/g) are the experimental and calculated
values of adsorption capacity in equilibrium, respectively.

Table 1 shows the results of the isotherm data modeling. For T = 30 ◦C, the experimen-
tal data were better interpreted by the Langmuir model for both adsorbents. The values
of RMSE are 8.065 and 3.161 for the OR-KOH and OR-KOH/PEG-SG adsorbents, respec-
tively. The Freundlich isotherm was the best model for the data obtained for OR-KOH
at higher temperatures. For OR-KOH/PEG-SG, the Langmuir model gives better results
than the Freundlich model at 40 ◦C, but when T > 40◦, the Freundlich model is the best for
correlating the experimental data. From the modeling data, it can be confirmed that MB
adsorption was higher onto OR-KOH than OR-KOH/PEG-SG. This is probably because
the polymer acts as a barrier that prevents the passage of MB molecules to the adsorption
sites. Furthermore, in the Freundlich adsorption isotherm, the magnitude of n indicates
the favourability of adsorption; when n is in the range of 2–10, the adsorption is excellent
and poor if n is less than 1 [36,37]. The value of n is greater than 2 for OR-KOH/PEG-SG,
suggesting that MB is more strongly adsorbed onto OR-KOH/PEG-SG.

Table 1. Langmuir and Freundlich parameters for MB adsorption onto bioadsorbent.

OR-KOH

Langmuir Freundlich

qmax KL R2 RMSE Kf n R2 RMSE
30◦ 122.22 ± 5.44 0.1229 ± 0.023 0.97418 8.065 37.218 ± 9.12 4.296 ± 1.04 0.79652 17.45
40◦ 504.9 ± 40.50 0.0096 ± 0.0040 0.94522 28.84 17.16 ± 5.49 1.77 ± 0.21 0.95474 23.41
50◦ 492.60 ± 63.78 0.015 ± 0.004 0.96697 23.38 25.013 ± 3.51 1.88 ± 0.11 0.98561 14.01

OR-KOH/PEG-SG

30◦ 114.28 ± 1.71 0.2462 ± 0.026 0.99430 3.161 69.038 ± 7.18 11.355 ± 2.81 0.74946 8.46
40◦ 135.09 ± 3.055 0.084 ± 0.011 0.97626 6.39 56.8162 ± 4.69 6.935 ± 0.758 0.90406 7.32
50◦ 161.44 ± 7.85 0.1028 ± 0.027 0.96388 12.50 59.077 ± 6.83 5.73 ± 0.73 0.93551 9.78

Adsorption at low temperatures is monolayer and occurs at specific homogeneous
adsorbent sites. In these conditions, the competition with water is probably intense, causing
surface saturation of the adsorbents to occur. For higher temperatures, the endothermicity
of the adsorption mechanism helps capture more adsorbate molecules. The adsorption
may turn multilayer, probably because of new sites becoming available for MB adsorption.

3.5. Comparison with Other Adsorbents

The maximum sorption capacity of the OR-KOH and OR-KOH/PEG-SG was com-
pared with the results reported in recent work on MB removal, detailed in Table 2. The
olive waste activated with KOH (OR-KOH) exhibits the highest adsorption capacity. The
bio-based adsorbent OR-KOH/PEG-SG demonstrated greater adsorption of the dye when
compared to activated carbon obtained from banana stem [38], Silica–PEG intercalated
clay hybrids [20], Fe3O4/biochar nanocomposite [39], chitosan/laterite/iron oxide-based
bio-composite [40] and PEG-Crosslinked β-CD polymers [19].
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Table 2. Adsorption capacities of OR-KOH, OR-KOH/PEG-SG, and other adsorbents.

Adsorbents qmax (mg/g) Ref.

PEG-Crosslinked β-CD polymers 15 [19]
Chitosan/laterite/iron oxide 16 [40]

Iron oxide coated biocharnanocomposite (Fe3O4-BC) 62.1 [39]
Silica–PEG intercalated clay hybrids 98.42 [20]

Banana stem activated carbon 101.01 [38]
OR-KOH/PEG-SG 161.44 This study

Cu-doped BTC (Cellulosic woven waste) 197.90 [41]
Ba/Co@PEG Nanocomposite 215.08 [18]
Sulfonic acid functionalized

mesoporous silica [S-MSNs]-S[Na] 224.43 [42]

Aminated polyacrylonitrile (AMPAN) 227.2 [43]
Activated carbon derived

from sucrose and melamine (ACS) 454.57 [44]

Corncob-activated carbon (AHC-KOH) 489.560 [45]
OR-KOH 504.9 This study

3.6. Monte Carlo Computational Study

Monte Carlo atomistic simulations were carried out to deepen our theoretical investi-
gations. The adsorption locator’s simulated annealing (SA) optimization method allows
for specific parameters that control the simulated annealing temperature cycle and define
the relative probabilities (ratios) of the different types of Monte Carlo steps. The adsorption
energy is defined as the energy released during the adsorption of MB onto OR-KOH or
MB/OR-KOH/PEG-SG. It is the sum of the rigid adsorption (unrelaxed adsorbate) and
deformation (for relaxed adsorbate) energies. The term (dEad/dNi) accounts for the energy
needed to remove the adsorbate from the surface. Higher negative adsorption energy
values indicate a more stabilized and robust interaction between MB and the adsorbents.
The results reported in Table 3 show the different energies obtained for the MB/OR-KOH
and MB/OR-KOH/PEG-SG adsorption systems. Table 2 shows that MB is more strongly
adsorbed on OR-KOH/PEG-SG than it is on OR-KOH (adsorption energy), showing consis-
tency with the experimental and modeling results (cf. Langmuir and Freundlich adsorption
constants, Table 1). The regeneration of the OR-KOH adsorbent requires less energy to des-
orb MB with −14.498 kcal mol−1 compared with −24.565 kcal mol−1 for OR-KOH/PEG-SG.
In addition, for water desorption, a higher amount of energy is required for the OR-KOH
adsorbent, which accounts for the higher increment in MB adsorption capacity with the
maximum investigated temperature.

Table 3. Adsorption energies (kcal/mol) of MB in aqueous solution on OR-KOH and OR-KOH/PEG-
SG adsorbents.

Adsorbent Total Energy Adsorption
Energy

Rigid Adsorption
Energy

Deformation
Energy MB dEad

dNi
H2O dEad

dNi

OR-KOH 53.854 −12.587 −13.550 0.963 −14.998 1.504
OR-KOH-PEG-SG 10.913 −55.529 −56.051 0.523 −24.565 0.516

Figure 6 shows that the structure of OR-KOH is less sterically hindered than the
structure of OR-KOH/PEG-SG. This can be explained by the fact that PEG-SG plays the
role of a barrier (at a macroscopic scale), thus hindering the passage of MB towards the
adsorption sites (OR-KOH). This may partially explain why MB is less adsorbed on OR-
KOH/PEG-SG. It should be noted that MB must pass through all of this congestion to
arrive at the OR-KOH sites (Lignin). Energy distributions, such as total energy, average
total energy, van der Waals energy, electrostatic energy, and intermolecular energy (plotted
after 15,000 steps per cycle of adsorption locator module) for MB/OR-KOH and MB/OR-
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KOH-PEG-SG systems, are presented in Figure 7. The dominant form of interaction energy
for the two adsorbents was the van der Waals energy.
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adsorbents: (a) OR-KOH and (b) OR-KOH/PEG-SG.

4. Conclusions

In this work, the adsorption of methylene blue onto two different adsorbents derived
from olive residues, namely OR-KOH (treated with KOH) and OR-KOH-PEG (after further
treatment with PEG-SG), was experimentally investigated. MB was found to adsorb better
onto OR-KOH/PEG-SG at low temperatures (30 ◦C), whereas KOH (olive residue treated
by KOH (0.2 M)) produced better results at higher temperatures (40 ◦C and 50 ◦C). For
both the adsorbents, an increase in temperature produced a significant increase in MB ad-
sorption capacity, likely due to a reduction in water adsorption. The FTIR characterization
data confirmed the affinity of the adsorbents towards the water by hydrogen bonding.
MB adsorption capacity also increased with solution pH, and for the OR-KOH/PEG-SG
adsorbent, a higher pH value was necessary to grant the maximum adsorption capacity, in
line with the results derived from pHPZC investigation.

Monte Carlo atomistic simulations were carried out to support the experimental
investigations, along with thorough energy characterizations of MB adsorption onto the
two adsorbents in an aqueous solution. The results indicated that MB is more strongly
adsorbed on OR-KOH/PEG-SG than on OR-KOH, consistent with the experimental and
modeling results. van der Waals electrostatic forces are those involved in the adsorption
phenomena. The simulations also showed that the presence of PEG-SG exerts a hindrance
effect on MB molecules, thus explaining the reduction in adsorption capacity.
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This work has demonstrated the possibility of integrating two different methodologies
(experimental and theoretical–simulative) as an innovative tool for investigating newly
synthesized adsorbents and for determining the energetic interactions that can significantly
influence adsorption capacity.
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