
BioMed Central

Page 1 of 14

(page number not for citation purposes)

BMC Medical Genomics

Open AccessResearch article

The removal of multiplicative, systematic bias allows integration of 
breast cancer gene expression datasets – improving meta-analysis 
and prediction of prognosis
Andrew H Sims*1,2, Graeme J Smethurst3, Yvonne Hey4, 
Michal J Okoniewski3,5, Stuart D Pepper4, Anthony Howell2, Crispin J Miller3 
and Robert B Clarke2

Address: 1Applied Bioinformatics of Cancer Research Group, Breakthrough Research Unit, Edinburgh Cancer Research Centre, Western General 
Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK, 2Breast Biology Group, School of Cancer and Imaging Sciences, University of Manchester, 
UK, 3Cancer Research UK Applied Computational Biology and Bioinformatics Group, 4Cancer Research UK Affymetrix Service, Paterson Institute 
for Cancer Research, Wilmslow Road, Manchester M20 4BX, UK and 5Functional Genomics Center, UNI ETH Zurich, Winterthurerstrasse 190, CH-
8057 Zurich, Switzerland

Email: Andrew H Sims* - andrew.sims@ed.ac.uk; Graeme J Smethurst - graemesmethurst@yahoo.co.uk; Yvonne Hey - yhey@picr.man.ac.uk; 
Michal J Okoniewski - michal.okoniewski@fgcz.ethz.ch; Stuart D Pepper - spepper@picr.man.ac.uk; 
Anthony Howell - anthony.howell@christie.nhs.uk; Crispin J Miller - cmiller@picr.man.ac.uk; Robert B Clarke - rclarke@picr.man.ac.uk

* Corresponding author    

Abstract

Background: The number of gene expression studies in the public domain is rapidly increasing,

representing a highly valuable resource. However, dataset-specific bias precludes meta-analysis at

the raw transcript level, even when the RNA is from comparable sources and has been processed

on the same microarray platform using similar protocols. Here, we demonstrate, using Affymetrix

data, that much of this bias can be removed, allowing multiple datasets to be legitimately combined

for meaningful meta-analyses.

Results: A series of validation datasets comparing breast cancer and normal breast cell lines

(MCF7 and MCF10A) were generated to examine the variability between datasets generated using

different amounts of starting RNA, alternative protocols, different generations of Affymetrix

GeneChip or scanning hardware. We demonstrate that systematic, multiplicative biases are

introduced at the RNA, hybridization and image-capture stages of a microarray experiment. Simple

batch mean-centering was found to significantly reduce the level of inter-experimental variation,

allowing raw transcript levels to be compared across datasets with confidence. By accounting for

dataset-specific bias, we were able to assemble the largest gene expression dataset of primary

breast tumours to-date (1107), from six previously published studies. Using this meta-dataset, we

demonstrate that combining greater numbers of datasets or tumours leads to a greater overlap in

differentially expressed genes and more accurate prognostic predictions. However, this is highly

dependent upon the composition of the datasets and patient characteristics.

Conclusion: Multiplicative, systematic biases are introduced at many stages of microarray

experiments. When these are reconciled, raw data can be directly integrated from different gene

expression datasets leading to new biological findings with increased statistical power.
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Background
Successful microarray experiments are reliant on sufficient
care being taken to minimize and account for experimen-
tal variability. Formalization and control of all stages of
the experimental pipeline is now routine, and the need to
associate experiments with detailed descriptions of proto-
cols and techniques is now widely accepted [1]. However,
despite these efforts, it is still not possible to account for
all potential sources of variation, and even identical exper-
iments performed at different sites have been shown to
produce significantly different results [2]. This makes it
difficult to routinely compare gene expression data gener-
ated from different experiments, even when using samples
from comparable sources that have been processed on the
same microarray platform using similar protocols.

Issues of experimental reproducibility have become
increasingly important with the advent of microarray
databases and repositories (e.g. ArrayExpress [1], GEO
[3]), given the potential they offer for cross-experimental
comparison and data mining. Even if it is possible to suc-
cessfully control inter-experiment variation to a point
where this might be possible, rapid developments in both
the hybridization protocols and in the arrays themselves
have also led to major improvements in the technology.
Lower requirements for the amount of starting RNA have
enabled gene expression profiling to be combined with
cell sorting methods or laser capture microdissection,
while increases in the number of features represented on
the arrays have resulted in progressively more detailed
coverage of the transcriptome. Since each advance in tech-
nology leads to genuine improvements, there is a strong
incentive to use the latest arrays and protocols whenever
possible. This is however, tempered by a lack of backward
compatibility between datasets produced using different
array and protocol versions, and any decision to move to
a newer (better) iteration of the technology must be made
with an appreciation of the difficulty in maintaining com-
patibility with previous studies.

In this study we first demonstrate, using an extended
series of validation data, that Affymetrix datasets cannot
in general be compared at the raw expression level due to
systematic, multiplicative biases. Secondly, we show that
simple batch mean-centering can significantly reduce the
level of inter-experimental variation and that this allows
raw transcript levels to be compared across datasets. The
approach is then applied to a series of published breast
cancer studies and we show that the integrated datasets
possess increased statistical power and improved prog-
nostic ability, compared to the individual datasets alone.

Results
Systematic bias in microarray data

All validation datasets (consisting of six GeneChips
each) were produced by hybridizing triplicate RNA sam-

ples from a breast cancer cell line (MCF7) and an immor-
talised normal breast cell line (MCF10A) using a variety
of different array types and sample preparation proto-
cols. In all cases, the aim of the validation study was to
assess the correspondence between the sets of differen-
tially expressed probesets (or transcripts) identified
when using different versions of the same underlying
technology. In the hypothetical situation when all data-
sets yield identical results, the same set of differentially
expressed probesets would be identified, irrespective of
the array type or protocol used to process the data; we
considered how close the data approaches this ideal. For
example, a comparison of the fold changes between data-
sets (MCF7-amplified/MCF10A-amplified vs. MCF7-
unamplified/MCF10A-unamplified) generated using
Affymetrix's small sample protocol and Affymetrix's
standard protocol yields good, but not perfect corre-
spondence (Fig 1A, Table 1). However, when fold
changes are calculated across datasets (MCF7-amplified/
MCF10A-unamplified vs. MCF7-unamplified/MCF10A-
amplified) correspondence falls dramatically (Fig. 1B
grey dots, Table 1).

Batch mean-centering (see methods) of the amplified and
unamplified datasets was found to dramatically increase
the correspondence comparison across the datasets, with
100% of probesets having fold changes within two-fold
between experimental branches (Fig. 1B black dots, Table
1). Similarly, when significance analysis of microarrays
(SAM) was used to identify lists of probesets with statisti-
cally significant changes between the same replicate
groupings used to generate Fig. 1, the intersection
between sets was also found to be greater following mean
batch correction (Table 1) and Pearson correlation of raw
intensities was also found to increase (Figs. 1C, 1D and
Additional File 1). It is notable that while correction
improves fold-change correspondence across protocols,
fold changes between datasets are preserved (Fig. 1E, Table
1).

The same approach was applied to a variety of other vali-
dation datasets that were designed to investigate the effect
of using different generations of Affymetrix GeneChips,
alternative protocols and scanning hardware (Table 1,
Additional File 1). A systematic bias was found to be
present in all datasets, and correspondence improved fol-
lowing mean-centering in all cases (median centering also
performed similarly; data not shown). These results dem-
onstrate that systematic, multiplicative bias is a wide-
spread property within Affymetrix array data, and mean-
centering was found to lead to improvements irrespective
of the summarisation method used (RMA or MAS5 [4]) to
process the data or when using alternative Chip Descrip-
tion Files (CDFs) to group probes according to Unigene
cluster [5] (Additional File 2).
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Integration of published breast tumour datasets

Breast tumours have been classified into five molecular
subtypes; basal, luminal A, luminal B, ERBB2 and normal-
like by identifying a set of genes with significantly greater
variation in expression between different tumours than
between paired samples from the same tumour [6-8].
Since members of this set appear to define properties
'intrinsic' to each subtype, the authors referred to the
genes as an 'intrinsic gene set'. 640 Affymetrix probesets
representing the 534 'intrinsic gene set' from [13] were
identified using NetAffx [9]. These probesets were used to
cluster MAS5 normalised expression data from two pub-
lished Affymetrix gene expression studies [10,11] with
similar numbers and composition of tumours. Despite
using similar starting material (primary tumours) and the
same microarray platform, when combined the two data-
sets formed two distinct, independent clusters represent-
ing the two datasets (Fig. 2A), suggesting a dataset-specific
systematic bias as observed with the validation datasets
described above. Although clusters of known luminal and
basal-specific genes show similar patterns of differential
expression in each of the two datasets (Figure 2A iii, iv),
the majority of the probesets representing the full 'intrin-

sic gene set' show greater differences in expression
between the two studies than between the different classes
of tumours. Following mean-centering as before, the
'basal-like tumours' from the Richardson et al. [10] dataset
were found to cluster alongside the 'basal tumours' from
Farmer et al. [11], and the 'non-basal tumours' with the
'luminal tumours' (Fig. 2B). A third cluster of tumours
was identified with high expression of the ERBB2 cluster
of probesets. This cluster contained all of the molecular
apocrine tumours, plus a mixture of basal/basal-like and
luminal/non-basal-like tumours. Using centroid predic-
tion [12] as described previously, the tumours from both
datasets were assigned to the five Norway/Stanford sub-
types (basal, luminal A, luminal B, ERBB2 and normal-
like [6-8]), one of the tumours in this third cluster was
assigned to the luminal B subtype, thirteen to the ERBB2
subtype and 9 could not clearly be assigned to a subtype
(Fig 2B v).

The greatest single difference between molecular subtypes
has repeatedly been demonstrated to be between estrogen
receptor-positive (ER+) luminal tumours and ER-negative
basal tumours [6-8,13,14]. SAM analysis was used to iden-

Table 1: Summary of the effect of mean batch-centering on data generated from different experiments.

Within two-fold consistent (%) SAM Common, top 1000

Data from different 
experiments

Probesets Between datasets Across datasets Between datasets Across datasets

Before After Before After Before After Before After

Amplified 10 ng and 
unamplified 10 μg protocols, 
RMA, U133A

22283 20645 (92%)
(Fig 1A)

20645 (92%)
(Fig 1A)

13221 (59%)
(Fig 1B)

22283 (100%)
(Fig 1B)

522
(0.031)
(0.032)

522
(0.031)
(0.032)

251
(0.023)
(0.037)

594
(0.025)
(0.035)

U133A and plus 2.0 arrays 
common, MAS5 present = 4/6 
chips

11198 10641 (95%) 10669 (95%) 2675 (24%) 11170 (100%) 493
(0.037)
(0.036)

493
(0.037)
(0.036)

112
(0.026)
(0.027)

954
(0.041)
(0.040)

Exon v U133 plus 2 
(consensus mapping) Plier and 
MAS5

44280 37255 (84%) 37255 (84%) 9485 (21%) 44280 (100%) 528
(0.067)
(0.060)

528
(0.067)
(0.060)

569
(0.024)
(0.020)

847
(0.110)
(0.089)

Exon v U133 plus 2 (SIF 
mapping) Plier and MAS5

13730 12028 (88%) 12028 (88%) 3626 (26%) 13730 (100%) 524
(0.068)
(0.060)

524
(0.068)
(0.060)

731
(0.026)
(0.026)

916
(0.569)
(0.370)

Standard 10 μg and revised 2 
μg protocols, RMA, U133A

22283 21303 (96%) 21303 (96%) 19779 (89%) 22283 (100%) 688
(0.035)
(0.050)

688
(0.035)
(0.050)

618
(0.039)
(0.044)

901
(0.044)
(0.042)

GeneChip 3000 and 
GeneArray 2500 scanners, 
RMA, U133A

22283 22276 (100%) 22276 (100%) 22282 (100%) 22283 (100%) 883
(0)
(0)

883
(0)
(0)

872
(0)
(0)

879
(0)
(0)

NuGEN 10 ng and EpiStem 2 
ng amplification, RMA, U133 
plus 2

54675 49308 (90%) 49308 (90%) 28276 (52%) 54675 (100%) 530
(0.060)
(0.066)

530
(0.060)
(0.066)

364
(0.035)
(0.034)

743
(0.070)
(0.069)

Sets of differentially expressed probesets comparing MCF7 and MCF10A replicates were identified for each experiment, before and after mean 
batch-centering. Comparisons between and across different validation experiments were performed. The number (%) of probesets with less than 2-
fold deviation in the fold change found for each comparison is reported in the table. SAM Common: for each column two different pairwise 
comparisons using SAM were performed, and the top 1000 probesets identified for each comparison. The number reported is the intersection 
between the two sets. Before: comparison was performed prior to mean batch-centering. After: comparison was performed following mean batch-
centering. Values in brackets are the FDR for each top 1000 probesets. See Additional File 1 for plots.
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tify probesets differentially expressed between the basal/
basal-like and non basal-like/luminal subtypes using the
combined data from both sets of samples. It was only fol-
lowing mean-centering that probesets were identified that
represent genes that are known to characterize the differ-
ences between these subtypes (Additional File 3), includ-
ing the fundamental estrogen receptor alpha and GATA
binding protein 3, which maintains differentiation into
the luminal cell fate in the mammary gland [15]. In addi-
tion, following mean-centering, a greater number of sta-
tistically significant probesets were found to be
differentially expressed between the tumour subtypes
than were found between the two initial sets of samples
(Additional File 4).

These results encouraged us to apply the approach to inte-
grate six previously published datasets [16-21] (Table 2)

of primary breast cancer tumours processed on Affymetrix
U133A, U133AA or plus 2.0 GeneChips. Multidimen-
sional scaling of 1107 tumours based upon the expression
of all common probesets between the three arrays
(22,215) demonstrated that global gene expression is
highly influenced by dataset, with tumours clustering by
study (Fig. 3A), again suggesting a systematic, dataset-spe-
cific bias. However, following mean-centering, the
tumours appear to cluster by breast cancer subtype
(assigned using centroid prediction [12]), regardless of
the dataset from which they were generated (Fig. 3B).

A growing body of evidence has accumulated, supporting
the notion that gene expression profiling of primary
breast tumours can be used to stratify patients by subtype
and the likelihood of disease progression (reviewed in
[22]). The approaches have included both unsupervised

Comparison of Affymetrix gene expression data generated using amplified and unamplified protocolsFigure 1
Comparison of Affymetrix gene expression data generated using amplified and unamplified protocols. A, Com-
paring fold changes between unamplified and amplified datasets demonstrates reasonable correlation. B, Comparing fold 
changes across datasets (unamplified MCF7 with amplified MCF10A and vice versa) is clearly impractical (grey spots), however 
following mean batch-centering there is excellent correlation across the datasets (black spots). C, Comparison of mean raw 
expression levels for amplified and unamplified MCF10A replicates before (grey) and after mean batch-centering (black). D, 
Pearson clustering of the GeneChips representing the same cell lines is tighter following mean-centering. E, Mean-centering has 
no effect on fold changes between datasets. F, Mean-centering of unbalanced datasets (duplicate rather than triplicate amplified 
MCF10A) results in a distortion of the comparison (black spots), however this is rectified with weighted mean-centering (open 
dark grey spots), both methods show a dramatic improvement over uncorrected data (light grey spots).
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(intrinsic gene set [6-8]) and supervised (genes associated
with patient follow up [17,21,23]) methods, along with
studies of cancer-associated pathways or tumor character-
istics [24-27], in all cases these signatures appear to pre-
dict recurrence, despite the lack of overlap in their
respective profiles or signatures [28]. In order to establish
whether integrating multiple datasets can improve prog-
nostic prediction, the six published datasets (described
above) were used individually or in combination as 'train-
ing sets' for supervised principal components analysis
[29,30]. This method has been shown to produce more
accurate predictions than several competing methods on
both simulated and real microarray datasets [29,30].
Using the Superpc [30] package for R [31], a Cox propor-
tional hazards model was fitted to each predictor (gener-
ated for all combinations of one to five datasets used as
the 'training set') and cross validation curves were plotted

to determine the optimum threshold for the predictor of
survival as described previously [30]. The 1st supervised
principal component was found to be the most significant
in the vast majority of cases, which is consistent with the
hypothesis that recurrence is an inherent property of pri-
mary tumour gene expression (examples of cross-valida-
tion and survival curves are shown in Additional File 5).
The remaining dataset(s) were used as a test set for each
predictor and an R2 statistic was computed to assess the
performance. Combining greater numbers of datasets or
tumours significantly improves prediction of prognosis
based upon gene expression data (Fig. 4). Mean-centering
of the datasets significantly increased the correlation
between the supervised principal components and clinical
follow up, therefore improving prognostic performance.
It is clear that the predictive power of some combinations
of training and test sets is more reliable than others.

Comparison of breast tumour gene expression profiles generated by two published studiesFigure 2
Comparison of breast tumour gene expression profiles generated by two published studies. The Farmer et al. 
study used U133A GeneChips with RNA amplification, whereas the Richardson et al. study used U133 plus 2.0 arrays and the 
standard labeling protocol. A, Before mean batch-centering. B, After mean batch-centering. Hierarchical clustering of tumours 
based upon 640 probesets representing Sorlie et al. [8] 'intrinsic' genes. Thumbnails show all 640 probesets. i) Tumours classi-
fied by Richardson et al. [10] red = basal-like, blue = non-basal like, pink = BRCA1; tumours classified by Farmer et al. [11] red 
= basal, blue = luminal, green = apocrine. Clusters of genes associated with the 'Sorlie subtypes' are highlighted as follows; ii) 
ERBB2 gene cluster, iii) luminal A gene cluster, iv) basal gene cluster. v) Centroid prediction was used to assign the tumours to 
the five Norway/Stanford subtypes – basal (red), luminal A (dark blue), luminal B (light blue), ERBB2 (purple) and normal-like 
(green), unassigned (grey).
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Table 2: Published breast cancer datasets used in this study.

Datasets No. Tumours Array express/
GEO ID

GeneChip ER+ Age Tumour Size 
(cm)

FU (years) Reference

Chin et al. 2006 114 E-TABM U133AA 67% 51 2.3 6.1 [16]

Desmedt et al. 
2007

198 GSE7390 U133A 68% 47 2.0 13.6 [17]

Farmer et al 2005 49 GSE1561 U133A 58% - - - [11]

Ivshina et al. 2006 249 GSE4922 U133A 85% 63 2.0 9.9 [18]

Loi et al. 2007 119, 87 GSE6532 U133A, U133 
plus2.0

100% 65, 62 2.4, 2.1 5.2, 11.4 [32]

Minn et al. 2007 58 GSE5327 U133A 0% - - 7.2 [33]

Pawitan et al. 2005 159 GSE1456 U133A 83% 58$ 2.2$ 7.1 [19]

Richardson et al. 40 GSE3744 U133 plus2.0 38% - - - [10]

Sotiriou et al. 2006 101* GSE2990 U133A 71% 60 2.0 5.8 [20]

Wang et al. 2005 286 GSE2034 U133A 73% 52 - 7.2 [52]

Continuous variables (age, size and follow up) are given as median values,  except where indicated $ the mean was given. The follow up (FU) 
endpoints  for the datasets Loi et al, Pawitan et al. and Sotoriou et al were  recurrence-free survival, for datasets Desmedt et al. and Ivshina et al. it  
was disease-free survival and for datasets Minn et al. and Wang et al. it  was distant metastasis-free survival. *The full dataset of Sotiriou et al.  
includes 189 tumours, but 88 of the Uppsala tumours are included in dataset  Ivshina et al.

Dataset-specific bias in published Affymetrix breast cancer studiesFigure 3
Dataset-specific bias in published Affymetrix breast cancer studies. Multidimensional scaling for all common 
probesets (22,215) for 1107 breast tumours from six published studies [16-21] on U133A, U133AA and U133 plus 2.0 Gene-
Chips. Tumours from different datasets are distinguished by symbol. Tumours assigned to one of the five Sorlie et al. subtypes 
by centroid prediction are discriminated by colours. With uncorrected data the tumours cluster by study, following mean-
centering the tumours cluster by molecular subtype.

Chin et al Desmedt et al Ivshina et al Pawitan et al Sotiriou et al Wang et al

Uncorrected  Mean-centred

Basal, ERBB2, Luminal A, Luminal B, Normal-like, Undetermined
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Although only a limited number of patient and tumour
characteristics were available (Table 2), it seems that the
most accurate predictions are achieved for test datasets
that have characteristics most similar to those of the indi-
vidual or combined training dataset. R2 statistic and p-val-
ues (log rank) for all possible combinations of training
datasets and test datasets are given in Additional File 6.

Dataset composition

We investigated the effect of altering the composition of
luminal (ER+) and basal (ER-) tumours from the two

published datasets of Farmer et al. [11] and Richardson
et al. [10] compared above. Unbalancing the composi-
tion of the datasets from a 1:1 ratio of basal to luminal
tumours to a 2:1 or 5:1 ratio of tumours reduced corre-
spondence between datasets and caused a distortion
across datasets (Additional File 7). Similar results were
also observed with the MCF7/MCF10A datasets
described above (Fig 1F, Table 3). Weighted-mean-
centering for ER status removed the distortion but also
reduced correspondence for the 2:1 ratio of luminal
tumours, and increased correspondence in the 5:1 ratio

Combining datasets or tumours and mean-centering significantly increases prognostic predictionFigure 4
Combining datasets or tumours and mean-centering significantly increases prognostic prediction. A, Before 
mean batch-centering. B, After mean batch-centering. The R2 statistic (Cox proportional hazards model) is an assessment of 
the performance of the predictor generated using each combination of training datasets and the remaining test datasets, gener-
ated using supervised principal components analysis. Median values are used where a training dataset was used to assess more 
than one test dataset (up to 5). R2 and p-value results for all possible combinations of training datasets and test datasets (1016) 
are given in the matrix in Additional File 6.
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luminal to basal comparison, at the expense of high false
discovery rates (Table 3). An extreme example of the
effect of dataset composition was seen when looking at
the expression level of the estrogen receptor in homoge-
neous datasets from Loi et al. [32] and Minn et al. [33]
composed wholly of ER+ or ER- tumours. Following
mean-centering it appears that these datasets contain a
mixture of ER+ and ER- tumours (Additional File 8A).
Replacing any of the six heterogenous datasets above
(containing 67–85% ER+ tumours) with homogeneous
datasets (containing only ER+ or ER- tumours) showed a
dramatic reduction in the correlation between dataset or
tumour number and prediction of recurrence (Addi-
tional File 8B). Using weighted mean-centering to
account for the differences in the composition of ER+
tumours in five out of the six datasets (individual ER sta-
tus by immunohistochemistry for tumours in the Paw-
itan et al. dataset was not available) did not significantly
improve prognostic performance over mean-centering
alone (Additional File 9).

The mean-centering approach was compared with a previ-
ously described method for integrating breast cancer
tumour microarray data generated on different platforms,
using a distance weighted discrimination (DWD) method
to adjust for systematic microarray data biases [34]. For
both the validation datasets and the published datasets,

mean-centering out-performed DWD (Table 3 and Addi-
tional File 10).

Most variable genes

An alternative approach to assess whether mean-centering
improves comparisons across published datasets was to
identify lists of the five hundred most highly differentially
expressed probesets across each dataset (those with the
highest variance) and compare these gene lists with the
most differentially expressed probesets from other single
or combined datasets. Bringing together greater numbers
of datasets or tumours increased the overlap in differen-
tially expressed probesets (Figure 5). The number of
probesets in common was significantly greater with mean-
centering (p = 3.6 × 10-107) or weighted mean-centering (p
= 9.2 × 10-106) over uncorrected data, although there was
no significant improvement between the two methods (p
= 0.5). The mean number of genes in common was higher
following weighted mean-centering than mean-centering
when the dataset was made up of less ER-positive tumours
(Chin et al., Farmer et al. and Richardson et al.) and lower
when the dataset was made up of more ER-positive
tumours (Ivshina et al., Sotoriou et al., Wang et al.).

Discussion
Mean-centering has been widely used in the past to com-
pare relative gene expression of high and lowly expressed

Table 3: Effect of dataset composition on differential gene expression.

SAM Common, top 1000

Uneven comparisons Between datasets Across datasets

UC MC wMC DWD UC MC wMC DWD

Unamplified MCF7 (3) v MCF10A (3)
Amplified MCF7 (3) v MCF10A (3)

522
(0.031)
(0.032)

522
(0.031)
(0.032)

- 427
(0.029)
(0.028)

251
(0.023)
(0.037)

594
(0.025)
(0.035)

- 447
(0.023)
(0.032)

Unamplified MCF7 (3) v MCF10A (3)
Amplified MCF7 (3) v MCF10A (2)

495
(0.031)
(0.036)

495
(0.031)
(0.036)

495
(0.031)
(0.036)

469
(0.03)
(0.031)

232
(0.026)
(0.035)

600
(0.024)
(0.037)

597
(0.026)
(0.040)

550
(0.028)
(0.0)

Richardson et al. Non-basal (12) v basal (12)
Farmer et al. Luminal A (12) v basal (12)

394
(0.003)
(0.019)

394
(0.003)
(0.019)

- 389
(0.003)
(0.019)

368
(0.001)
(0.019)

708
(0.047)
(0.02)

- 695
(0.046)
(0.014)

Richardson et al. Non-basal (7) v basal (19)
Farmer et al. Luminal A (15) v basal (14)

380
(0.019)
(0.001)

380
(0.019)
(0.001)

380
(0.019)
(0.001)

373
(0.001)
(0.017)

346
(0)
(0)

725
(0.003)
(0.078)

608
(0.002)
(0.038)

658
(0.005)
(0.021)

Richardson et al. Non-basal (3) v basal (19)
Farmer et al. Luminal A (15) v basal (3)

283
(0.1)

(0.194)

283
(0.1)

(0.194)

283
(0.1)

(0.194)

258
(0.195)
(0.099)

290
(0)

(0.027)

480
(0.093)
(0.9)

684
(0.001)
(0.789)

506
(0.112)
(0.9)

Sets of differentially expressed probesets comparing MCF7 and MCF10A replicates or basal/basal-like and luminal/nonbasal-like tumours were 
identified for each experiment, before and after mean batch-centering, comparisons both between and across datasets were performed. SAM 
Common: for each column two different pairwise comparisons using SAM were performed, and the top 1000 probesets identified for each 
comparison. The number reported is the intersection between the two sets. Before: comparison was performed prior to mean batch-centering. 
After: comparison was performed following mean batch-centering. Values in brackets are the FDR for each top 1000 probesets. Weighted mean-
centering for datasets with even numbers of samples are not shown as the values are identical to mean-centering. UC = uncorrected, MC batch 
mean-centered, wMC = weighted mean-centered, DWD = distance-weighted discrimination.
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genes together within a single dataset, particularly for
heatmaps and clustering programs [35]. However, this is
the first study to assess the utility of mean-centering for
minimising the effects of dataset-specific bias and integra-
tion of multiple datasets. An unknown, systematic, multi-
plicative bias associated with each group of arrays
processed together ('dataset') is simply removed when the
GeneChips are considered relative to each other. The
approach clearly shows significant improvements in the
degree of correspondence found across datasets, without
any loss of internal coherence within each of the initial
datasets from which the integrated dataset is assembled.
Relative intensities within each individual dataset are left
unchanged (Figure 1D), with the consequence that both
fold-changes and p-values produced by techniques such
as SAM, remain identical to those found prior to correc-
tion (Table 1). Therefore, balanced corrected datasets can
be treated with at least as much confidence as the initial
uncorrected data. We have also demonstrated that com-
bining greater numbers of datasets or tumours increases
the overlap in differentially expressed probesets between
studies and that this is further improved with mean-
centering.

A number of previous studies have also investigated the
level of consensus found between different experimental
datasets. The mean-centering approach out-performed a
distance weighted discrimination method [34] that
attempted to adjust for systematic microarray data biases
for integrating breast cancer tumour microarray data gen-
erated on different platforms. This group stated that they
had also applied this technique to 'merge two distinct
Affymetrix breast tumor datasets together' and 'saw simi-
lar, but less dramatic results due to fewer systematic biases
present in datasets performed on the same Affymetrix
microarrays' [34]. Our results suggest that there are many
sources of systematic biases in Affymetrix data, which are
highly significant and multiplicative, but that these can be
largely corrected for, allowing the integration of datasets.
An empirical Bayes method to adjust for batch effects [36]
(ComBat; http://statistics.byu.edu/johnson/ComBat/)
has also been used to integrate published datasets for
meta-analysis [37]. This approach generated plots analo-
gous to those in Additional File 8 for mean-centering and
weighted mean-centering when ER status was used as a
covariate (data not shown). The mean-centering method
described in this study was used in a recent meta-analysis

Combining greater numbers of datasets leads to a greater overlap in differentially expressed probesetsFigure 5
Combining greater numbers of datasets leads to a greater overlap in differentially expressed probesets. Lists of 
the five hundred probesets with the highest variance were generated for each dataset and combinations of up to six datasets 
and the number of probesets in common between these lists were plotted for each dataset. A, Plots show the number of com-
mon probesets between each individual dataset and other single or combined datasets. B, Overall mean numbers of genes in 
common for each dataset.

Uncorrected Mean-centered Weighted Mean-centered ER+
Chin et al. 264.8 294.1 294.3* 67% 
Desmedt et al. 315.0 357.5 357.5 68% 
Farmer et al. 287.5 320.2 321.1* 58% 
Ivshina et al. 309.4 338.5 338.2$ 85% 
Richardson et al. 264.6 282.0 282.7* 38% 
Sotoriou et al. 310.5 337.4 337.3$ 83% 
Wang et al. 317.3 343.3 343.0$ 73% 
   Mean 71% 
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whilst our manuscript was under review [38], although no
attempt was made to account for differences in dataset
composition.

Combining two published studies without mean-center-
ing, clearly demonstrated how dataset-specific biases can
mask the biological differences between breast cancer
tumour subtypes (Figure 2). The Farmer et al. [11] dataset
was generated from trucut tumour biopsies (4 × 2.5 μm
sections), necessitating RNA amplification prior to
hybridization to U133A GeneChips. By contrast, RNA in
the Richardson et al. 2006 study [10] was derived from
tumours following surgical removal, so amplification was
not required prior to hybridisation to U133 plus 2.0
GeneChips. Despite the experimental differences between
the studies, both of which have been shown above to lead
to significant deviations in measured raw intensities in
our validation datasets, mean-centering appears to recon-
cile the data and leads to the identification of biologically
plausible relationships not found when combining
uncorrected data.

The gold standard for demonstrating the power of a gene
expression classifier is to test it against independent data-
sets. However, if the molecular profile of a set of tumours
is representative of its patient characteristics, then any
prognostic signature will be dependant upon the compo-
sition of the patient cohort and therefore be dataset-spe-
cific. Thus in order to generate accurate prognostic
predictions, the characteristics of this second 'test' dataset
must have similar characteristics to the first 'training' set
[22]. Recently, strong time dependence was identified for
a prognostic signature when comparing an independent
validation dataset with a longer median follow-up time
(14 years) compared to the original study (8 years) [17].
A number of recent microarray studies have been per-
formed after increasing the size of a dataset with addi-
tional samples [8,18,20,33], however it is unclear whether
subsequent changes in the results are due to changes in
the sample composition of the extended dataset or simply
to technical effects arising from the microarrays being
processed in different batches. Some studies have also
based their findings upon combined data from more than
one type of Affymetrix GeneChip without evaluating any
GeneChip-specific effects.

By integrating six published datasets with patient follow-
up information we have demonstrated that combining
breast cancer datasets can increase the accuracy of progno-
sis prediction and that this can be improved by removing
systematic, multiplicative bias. The most accurate progno-
sis predictions are generated when the test-sets closely
share the patient and tumour characteristics of the train-
ing-sets. An alternative approach to building ever larger

combined datasets representing the whole breast cancer
population, would be to concentrate on generating gene
expression classifiers for clearly defined groups of patients
(e.g. node-negative, ER-positive from patients aged 50–
60, with 10 years of follow-up). Strict entry criterion
would severely restrict the number of tumours eligible for
inclusion, whilst taking no account of possible unknown
confounding factors. In clinical practice, we urgently need
single sample predictors [14], applicable to all patients
and our work strongly suggests that these will be best gen-
erated from the largest possible cohorts (or integrated
datasets) representing the wider population, which will
involve large international collaborations and public
sharing of data. The current consensus for best practices
for breast cancer treatment are based upon bringing
together data for hundreds of trials representing thou-
sands of women within the Early Breast Cancer Trialists'
Collaborative Group (EBCTCG). If we can begin to bring
together many large datasets of gene expression data free
from dataset-specific bias the opportunity exists to create
a highly valuable resource. A possible 'new' breast cancer
subtype characterized by the high expression of interferon
regulated genes [14] was identified by cluster analysis of a
combined (non-Affymetrix) dataset of 315 breast
tumours, which is consistent with the notion that rare
molecular subtypes will only be detected with larger data-
sets. Our findings are in agreement with the conclusions
of a recent study [39] that integrated breast tumour data-
sets generated on two different microarray platforms; they
also showed that the gene expression profile generated by
integrated analysis of multiple datasets achieves better
prediction of breast cancer recurrence, and that the per-
formance of profiles is confounded by the known and
unknown clinical background of patients [39]. In the cur-
rent study however, we demonstrate improved prediction
of prognosis in datasets derived from the same platform
integrated using a simpler scaling method of the raw data
rather than a normalisation method reliant on fold
changes. One limitation of our study is that it was not pos-
sible to use a single definition of follow-up endpoint
across the published datasets, in each case we used the
most conservative indicator of relapse available (recur-
rence-free survival, disease-free survival and distant
metastasis-free survival) rather than overall survival. There
was also some variation in both patient age and tumour
size between the studies (Table 3). Variation in gene
expression due to the heterogeneity of patient characteris-
tics has begun to be addressed by studies that investigate
the effects of age [40], race [41,42] and differences in risk
factors [43,44] for breast cancer. Integrating large breast
tumour gene expression datasets will potentially enable us
to uncover more subtle population-level associations,
providing that all clinical details and follow-up informa-
tion is consistent, complete and made publicly available.
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Conclusion
Systematic multiplicative biases are introduced at many
stages of microarray experiments, however they can easily
be accounted for, which can enable raw data to be directly
integrated from different gene expression datasets in order
to generate results with improved statistical power and
greater biological significance.

Methods
RNA preparation

Generation and processing of RNA comparing the two
breast cell lines, MCF7 (cancer) and MCF10A (normal
immortalised mammary epithelial) was described previ-
ously [45,46]. Briefly, cells were grown in Dulbecco's
modified Eagle's medium (DMEM) with 10% fetal calf
serum (MCF7) or DMEM/F12 with 5% horse serum, 2 ng/
ml, 0.5 μg/ml hydrocortisone, 0.5 μg/ml cholera toxin,
and 5 μg/ml insulin (MCF10A). Minimally passaged cells
(< 20) were obtained from the American Type Culture
Collection ATCC. RNA was isolated using Trizol®

(Ambion) according to manufacturer's instructions, puri-
fied using Qiagen RNeasy columns (Qiagen, Valencia,
CA) and quantified using a Nanodrop spectrophotometer
(Labtech). The quality and amount of starting RNA was
confirmed with an Agilent Bioanalyzer 2100 (Agilent)
prior to labelling and hybridisation to HG-U133A, HG-
U133 plus 2.0, or Human Exon 1.0ST GeneChips
(Affymetrix) using either the Affymetrix standard or small
sample preparation protocols as previously described
[45].

GeneChip processing and analysis

Each experiment was repeated in triplicate, with three
samples per cell line for each amount of starting total
RNA, protocol or GeneChip used (1 dataset = 3 × MCF7
and 3 × MCF10A = 6 GeneChips). The HGU133A Gene-
chips for the standard protocol and amplification experi-
ments were scanned using a GeneArray 2500 scanner and
the HG-U133 plus 2.0, and Exon 1.0ST Genechips were
scanned using a GeneChip Scanner 3000. All MCF7 and
MCF10A microarray data is MIAME compliant and acces-
sible via MIAME VICE [47]. All protocols are described in
full here, http://bioinformatics.picr.man.ac.uk/mbcf/
downloads/. Raw spot readings were processed using R
[31] and Bionconductor [48]. Probeset summarisation
was done using MAS 5.0 and RMA [49] as implemented in
the Simpleaffy package [50] or plier algorithm from
Affymetrix ExACT software. Mappings between the Exon
and U133A plus 2.0 GeneChips were performed as

described previously [46]. Alternative cell description
files, relating probesets to unigene sequences were imple-
mented as described previously [5]. Lists of common sig-
nificantly differentially expressed genes before and after
mean batch-centering were identified using SAM [51]
analysis (siggenes BioConductor package) by adjust Δ
value to find the top 1000 differentially expressed
probesets using each protocol, as described previously
[46].

Correction by batch mean-centering

The mean expression level per probeset for a given dataset
is subtracted from the individual GeneChip expression
level on the Log2 scale. This can simply be performed in R
using the 'rowMeans' function. Whilst preparing the man-
uscript we also noticed that this can be achieved using the
'pamr.batchadjust' function within the pamr Bioconductor
package.

Published data

Affymetrix data was downloaded from a total of ten data-
sets from published studies listed in Table 2 from the
Gene Expression Omnibus [3] or Array Express [1] repos-
itories. Raw .cel files were not available for the Wang et al.
dataset, so all other datasets were normalized as in this
study using the MAS 5.0 algorithm with a target intensity
of 600 as implemented in the Simpleaffy package [50],
using R [31] within BioConductor [48]. NetAffx [9] was
used to identify Affymetrix probesets representing the
'intrinsic gene set' previously used to classify human
breast tumours [8]. Centered average linkage clustering
was performed using the Cluster [35] and TreeView pro-
grams as described previously [7]. Supervised principal
components analysis using the Superpc for R package was
used as previously described [29,30], in order to compare
the predictive power of combining different published
datasets. The follow up endpoints for the Loi et al., Paw-
itan et al. and Sotoriou et al. datasets were recurrence-free
survival, for Desmedt et al. and Ivshina et al. datasets it
was disease-free survival and for the Minn et al. and Wang
et al. datasets it was distant metastasis-free survival.
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Additional material

Additional file 1
Comparison of Affymetrix gene expression data generated using dif-

ferent generations of GeneChips, scanning hardware and protocols. A, 

Comparing the fold change between replicates across datasets is clearly 

impractical (grey). However, following mean batch-centering there is 

good correlation (black). B, Comparison of mean raw expression levels for 

amplified and unamplified MCF10A replicates before (grey) and after 

mean batch-centering (black). C, Overall transcriptome similarity of indi-

vidual GeneChips demonstrated with Pearson clustering. D, Fold changes 

are unaffected by mean batch-centering.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S1.pdf]

Additional file 2
Concordance of mean expression values of data generated from differ-

ent experiments. Pearson correlation coefficients are given for uncor-

rected and mean batch-corrected data, for RMA and MAS5 data, and 

using alternative cdf files [5].

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S2.pdf]

Additional file 3
The top 50 differentially expressed probesets between basal and non 

basal-like/luminal tumours were identified across datasets. Those 

probesets in common are listed. Before: comparison was performed prior 

to mean batch-centering. After: comparison was performed following 

mean batch-centering.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S3.pdf]

Additional file 4
Summary of the effect of mean batch-centering on data generated 

from published studies. Lists of the top 50 differentially expressed 

probesets between basal and non basal-like/luminal tumours were identi-

fied within and across datasets, before and after mean batch-centering. 

SAM Common: for each column two different pairwise comparisons using 

SAM were performed, and the top 50 probesets identified for each com-

parison. The number reported is the intersection between two lists. UC = 

uncorrected. MC = Mean centering correction.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S4.pdf]

Additional file 5
Examples of cross-validation and survival curves from supervised prin-

cipal components analysis. Cross validation plots (A, C) and Kaplan 

Meir recurrence curves (B, C) using the Wang et al. dataset as the test set 

and either a single (Pawitan et al.) dataset (A, B) or five (Chin et al., 

Desmedt et al., Ivshina et al., Pawitan et al. and Sotoriou et al.) datasets 

(C, D) combined as the training set. Values at the top of the cross valida-

tion plots are the numbers of probesets used to create the profiles; the black, 

red and green lines represent the 1st, 2nd and 3rd principal components 

respectively.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S5.pdf]

Additional file 6
Full matrix of the 1109 R2 and p-values for all possible combinations 

of the six training and test sets. The R2 statistic (Cox proportional haz-

ards model) measures the percentage of the variation in time to recurrence 

that is explained by each combination of test datasets. The p-values are 

the associated log-rank statistic obtained when applying the test dataset to 

the training dataset.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S6.xls]

Additional file 7
Comparison of published datasets composed of different ratios of basal 

and luminal tumours. The number of basal (red) and luminal (blue) 

tumours from The Farmer et al. (italics) and Richardson et al. studies 

was varied in order to compare the effect of dataset composition, between 

(A, B, C) and across (D, E, F) the studies. The datasets were either uncor-

rected (light grey dots), mean-centered (black open squares) or weighted 

mean-centered (dark grey open circles). UC = uncorrected, MC = mean-

centered.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S7.pdf]

Additional file 8
Effects of combining datasets composed solely of ER+ or ER- breast 

tumours. Datasets from Loi et al. [32] and Minn et al. [33] that are 

composed wholly of ER+ or ER- tumours have distorted levels of ESR1 

transcript if integrated with datasets composed of both ER+ and ER- 

tumours. Replacing any of the six heterogenous datasets with homogene-

ous datasets results in a dramatic reduction in the correlation between 

dataset or tumour number and the association with principal components 

and recurrence (B).

Click here for file

[http://www.biomedcentral.com/content/supplementary/1755-

8794-1-42-S8.pdf]
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Additional file 9
Weighted-mean centering does not significantly improve prognostic 

prediction when combining datasets or tumours of mean-centering. 

Five datasets with recorded ER status from immunohistochemistry were 

used to assess the correction methods as in Figure 4. The R2 statistic (Cox 

proportional hazards model) is an assessment of the performance of the 

predictor generated using each combination of training datasets and the 

remaining test datasets, generated using supervised principal components 

analysis. Median values are used where a training dataset was used to 

asses more than one test dataset (up to 5). R2 and p-value results for all 

possible combinations of training datasets and test datasets (1016) are 

given in the matrix in Additional Table 5.
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Additional file 10
Distance-weighted discrimination (DWD) method. Comparison of the 

DWD method (green dots) between (A, B) and across (C, D) validation 

(A, C) and published (B, D) datasets with mean-(red dots) and weighted 

mean-(blue circles) centering (see Table 3 for SAM analysis). E, DWD 

correction of the two breast tumour gene expression profiles generated by 

the two published studies as in Figure 2. Clustering of tumours based upon 

640 probesets representing Sorlie et al. [8] 'intrinsic' genes. Thumbnail 

shows all 640 probesets. i) Tumours classified by Richardson et al. [10] 

red = basal-like, blue = non-basal like, pink = BRCA1; tumours classified 

by Farmer et al. [11] red = basal, blue = luminal, green = apocrine. Clus-

ters of genes associated with the 'Sorlie subtypes' are highlighted as fol-

lows; ii) ERBB2 gene cluster, iii) luminal A gene cluster, iv) basal gene 

cluster. v) Centroid prediction was used to assign the tumours to the five 

Norway/Stanford subtypes – basal (red), luminal A (dark blue), luminal 

B (light blue), ERBB2 (purple) and normal-like (green), unassigned 

(grey).
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