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Abstract. We study the renormalized volume of asymptotically hyperbolic Einstein (AHE

in short) manifolds (M, g) when the conformal boundary ∂M has dimension n even. Its defi-

nition depends on the choice of metric h0 on ∂M in the conformal class at infinity determined

by g, we denote it by VolR(M, g;h0). We show that VolR(M, g; ·) is a functional admitting

a “Polyakov type” formula in the conformal class [h0] and we describe the critical points

as solutions of some non-linear equation vn(h0) = constant, satisfied in particular by Ein-

stein metrics. In dimension n = 2, choosing extremizers in the conformal class amounts to

uniformizing the surface, while in dimension n = 4 this amounts to solving the σ2-Yamabe

problem. Next, we consider the variation of VolR(M, ·; ·) along a curve of AHE metrics gt

with boundary metric ht
0 and we use this to show that, provided conformal classes can be

(locally) parametrized by metrics h solving vn(h) =
∫
∂M

vn(h)dvolh, the set of ends of AHE

manifolds (up to diffeomorphisms isotopic to the identity) can be viewed as a Lagrangian

submanifold in the cotangent space to the space T (∂M) of conformal structures on ∂M .

We obtain as a consequence a higher-dimensional version of McMullen’s quasifuchsian reci-

procity. We finally show that conformal classes admitting negatively curved Einstein metrics

are local minima for the renormalized volume for a warped product type filling.

1. Introduction

By Mostow rigidity, the volume of complete oriented finite volume hyperbolic 3-manifolds

is an important topological invariant, also related to the Jones polynomial of knots. For

infinite volume hyperbolic 3-manifolds, one should still expect some invariant derived from

the volume form as well. Following ideas coming from the physics literature [41, 63, 44],

Takhtajan-Teo [64] and Krasnov-Schlenker [45] defined a regularized (or renormalized) ver-

sion of the volume in the case of convex co-compact hyperbolic quotients M = Γ\H3, and

studied some of its properties. The renormalized volume is actually related to the uniformiza-

tion theory of the boundary of the conformal compactification ofM . Indeed, such hyperbolic

manifolds can be compactified into smooth manifolds with boundaryM by adding a compact

surface N to M , and the metric on M is conformal to a smooth metric ḡ on M , inducing

a conformal class [ḡ|TN ] on N . The renormalized volume plays the role of an action on the

conformal class [h0] with critical points at the constant curvature metrics, in a way similar
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to the determinant of the Laplacian. It turns out that this action has interesting properties

when we deform the hyperbolic metric in the bulk.

In this paper, we study the higher dimensional analog of this invariant and compute its

variation on the so-called quantum conformal superspace, the higher-dimensional analog of

the Teichmüller space.

1.1. Dimension n+1 = 3. Let us explain in more details the definition of the renormalized

volume of hyperbolic convex co-compact 3 manifolds. Outside a compact set, the hyperbolic

metric on M = Γ\H3 is isometric to a hyperbolic end

((0, ε0)x ×N, g) , g =
dx2 + hx

x2
, hx = h0 + x2h2 +

1
4x

4h22 (1)

for some ε0 > 0, where (N, h0) is a compact Riemannian surface (possibly disconnected),

and h2 is a symmetric 2-tensor on N satisfying the constraints

Trh0(h2) = −1
2Scalh0 , δh0(h2) =

1
2d Scalh0 . (2)

Here δh0 stands for divergence with respect to the background metric h0. The remaining term

h22 is the square of h2, identified to an endomorphism using the metric h0. The manifold

M := M ⊔ N becomes a smooth compactification of M by declaring that the function x is

smooth on M and vanishes to order 1 on the boundary ∂M = N . Near the boundary, x

is the distance function to N with respect to the metric ḡ := x2g. In particular it defines

a foliation with leaves {x = constant} near the boundary. We call x a geodesic boundary

defining function associated to h0. The important observation explained in [27, Lemma

2.1] is that the function x and the metric h0 above are not determined by a given g, but the

conformal class of h0 is. Moreover, for each representative ĥ0 of the conformal class [h0], there

is a unique smooth boundary defining function x̂ onM nearN such that the hyperbolic metric

g near N has the form (1) with x, h0, h2 replaced by x̂, ĥ0, ĥ2 for some tensor ĥ2 satisfying

the constraints (2) with respect to the metric ĥ0. In other words, conformal representatives

of the conformal infinity N of M correspond to certain geometric foliations in the end of M .

For (M, g) fixed, the renormalized volume VolR(M, g; ·) is a function on the conformal class

[h0] defined by the regular value at z = 0 of the meromorphic function F (z) :=
∫

M xzdvolg
if x is the geodesic boundary defining function associated to h0:

VolR(M, g;h0) = FPz=0

∫

M
xzdvolg (3)

(here FPz=0 denotes finite part). The meromorphic function F (z) has a pole at z = 0, and

the residue is the topological invariant −π
2χ(N) computed from (2) using the Gauss-Bonnet

formula. The functional VolR(M, g; ·), defined on the conformal class [h0], has the following

remarkable properties:

(1) “Polyakov Formula”: If ω ∈ C∞(N), then

VolR(M, g; e2ωh0)−VolR(M, g;h0) = −1
4

∫

∂M
(|∇ω|2h0

+ Scalh0ω)dvolh0 .

(2) Critical points: For fixed g, VolR(M, g; ·) is critical, among metrics in the conformal

class [h0] with fixed area, exactly at constant curvature metrics.
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(3) Extrema: If χ(N) < 0, the critical point is unique in a conformal class (with fixed

area) and is a maximum.

The Polyakov-type formula is easily shown (see Proposition 3.11) and the extremum is ob-

tained by the classical variational approach, see for example [66, Ch. 14.2]. When n = 2, the

renormalized volume VolR is essentially the Liouville functional defined by Takhtajan and

Zograf [65] for Schottky and quasifuchsian hyperbolic manifolds, see [64].

Recall that if N is a smooth compact surface with χ(N) < 0, the Teichmüller space T (N)

is the space of conformal classes of metrics on N quotient by the group D0(N) of diffeomor-

phisms of N isotopic to the identity; equivalently it is given by the quotient G\M(N), where

M(N) is the space of smooth metrics on N and G = C∞(N) ⋊ D0(N) is the semi-direct

product of the conformal group with D0(N). By choosing the unique hyperbolic metric in

each conformal class, one identifies T (N) with the space of hyperbolic metrics up to D0(N).

This can be represented as a slice of hyperbolic metrics transverse to the action of D0(N).

As mentioned above, ends of convex co-compact hyperbolic 3 manifolds are hyperbolic ends

in the sense defined by (1) with h0, h2 satisfying the constraint equations (2). Actually, more

is true: for every surface N , a metric g of the form (1) on (0, ε)×N is hyperbolic if and only

if h0, h2 satisfy (2). A hyperbolic end is thus determined by the pair (h0, h2) and we denote

by E(N) the space of these ends. The gauge group for E(N) is G, acting by:

if g =
dx2 + hx

x2
, then (f, φ).g = ψ∗g, with ψ(x, y) = (x, ψx(y))

where ψx : N → N is the diffeomorphism defined so that ψ0 = φ−1 and y ∈ N 7→ (x̂, ψx ◦
φ(y)) ∈ [0, ε) × N is the flow at time x of the gradient ∇x̂2gx̂ (with respect to x̂2g) of

the function x̂ defined to be the unique boundary defining function of [0, ε) × N satisfying

|dx̂|x̂2g = 1 and (x̂2g)|x=0 = e2f (φ−1)∗h0. This can be seen as an action on the pairs (h0, h2)

which determine the end, and the action on the data h0 gives rise to T (N) as the space of

orbits. The action of the conformal part of G does not have so nice properties on h2, for

instance h2 is not conformally covariant. We then represent each conformal class [h0] by its

hyperbolic metric h0, which is the maximizer of the renormalized volume in the conformal

class of area −2πχ(N). This allows to identify the quotients

G\E(N) ≃ D0(N)\{(h0, h2) ∈ E(N);h0 hyperbolic}
where φ ∈ D0(N) acts by φ.(h0, h2) = ((φ−1)∗h0, (φ

−1)∗h2). If h
◦
2 := h2 − 1

2Trh0(h2)h0 is the

trace-free part of h2, we obtain that the pair (h0, h
◦
2) satisfies

Scalh0 = −2, Trh0(h
◦
2) = 0, δh0(h

◦
2) = 0. (4)

The cotangent space T ∗
h0
T (N) to T (N) at a hyperbolic metric h0 is naturally represented by

symmetric 2-tensors on M which are trace-free and divergence-free with respect to h0 (such

a tensor is the real part of a holomorphic quadratic differential on N). Consequently, since

the action of D0(N) on (h0, h
◦
2) coincides with the action of D0(N) on the cotangent space

to the space of hyperbolic metrics, we have

(4) Cotangent vectors as ends: There is a natural isomorphism G\E(N) → T ∗T (N),

given by the correspondence (h0, h2) 7→ (h0, h
◦
2).
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For a hyperbolic end, we call h0 and h◦2 the Dirichlet and Neumann boundary data at

x = 0, by analogy with linear elliptic boundary value problems of order 2. Here the elliptic

equation on the end (0, ε) × N is Einstein’s equation Ricg = −2g and it is solvable near

x = 0 for any choice of boundary data (h0, h
◦
2) satisfying the constraints equation (2) with

h0 hyperbolic.

From a global point of view, it is interesting to understand which pairs (h0, h
◦
2) occur as

boundary data of a convex co-compact hyperbolic manifold. A famous theorem of Ahlfors

and Bers [1, 5] in the quasifuchsian setting, extended by Marden [47, 48], states that for a

given convex co-compact hyperbolic manifoldM = Γ\H3 with conformal boundary N = ∂M ,

there is a smooth map

Φ : T (N) → M−1(M) with [x2Φ(h0)|N ] = [h0] (5)

where [·] denotes conformal class, x is any smooth boundary defining function of the com-

pactification M and M−1(M) is the space of hyperbolic metrics on M which are convex co-

compact, considered up to isotopy. From this viewpoint, the relevant object is the Dirichlet-

to-Neumann map h0 7→ h◦2, where h
◦
2 is the Neumann data of the metric Φ(h0). This map can

be understood as a 1-form on T (N). The following facts were proved by Krasnov-Schlenker

[45] (see also [53] for the Lagrangian property when M is quasifuchsian and [35] for an

alternative proof using Chern-Simons invariants):

(5) Lagrangian submanifold: The space L of couples of boundary data (h0, h
◦
2) cor-

responding to convex co-compact metrics on M is Lagrangian in T ∗T (N), endowed

with the natural symplectic structure.

(6) Generating function: L is the graph of the exact 1-form given by the differential of

h0 7→ VolR(M,Φ(h0);h0) over T (N). More precisely, if ḣ0 ∈ Th0T (N) is a variation

of hyperbolic metrics at h0 ∈ T (N), then

dVolR(M,Φ(h0), h0).ḣ0 = −1
4

∫

N
〈h◦2, ḣ0〉dvolh0 . (6)

Another interesting property of the function h0 7→ VolR(M,Φ(h0);h0) was discovered by

Takhtajan-Teo [64] (using the correspondence with the Liouville action of [65]) and Krasnov-

Schlenker [45] (when M is a Schottky or a quasifuchsian manifold): it generates the Weil-

Petersson Kähler form ωWP on T (N). This was extended by Guillarmou-Moroianu [35] in

the general setting using Chern-Simons invariants:

(7) Kähler potential: The function VolR : h0 7→ VolR(M,Φ(h0);h0) is a Kähler poten-

tial for the Weil-Petersson form:

∂∂̄VolR = i
16ωWP .

An important class of convex co-compact hyperbolic 3-manifolds are quasifuchsian man-

ifolds, diffeomorphic to a topological cylinder M = Rt × S with basis a surface S of genus

g ≥ 2. The conformal boundary has two connected components S+⊔S−, both diffeomorphic

to S, with conformal classes [h±0 ] corresponding respectively to the limit t → ±∞. Here we

choose the hyperbolic representative h±0 in the conformal classes [h±0 ] on S
±. For each pair

h0 = (h+0 , h
−
0 ) there exists a quasifuchsian hyperbolic metric g = Φ(h0) on M and, as seen
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before, each of the 2 ends e± has a metric of the form x−2(dx2+h±0 +x2h±2 + 1
4x

4(h±2 )
2), with

the trace free part h0±2 of h±2 interpreted as a cotangent vector to T (S). The pair (h+0 , h0−)

then defines two points h0−2 ∈ Th−

0
T (S) and h0+2 ∈ Th+

0
T (S). We can now fix h+0 and consider

the linear maps

φh+
0
: Th−

0
T (S) → T ∗

h+
0
T (S), φh−

0
: Th+

0
T (S) → T ∗

h−

0
T (S)

sending a first-order variation of h∓0 to the corresponding variation of h0±2 .

(8) Quasifuchsian reciprocity: The maps φh+
0
and φh−

0
are adjoint.

This was discovered by McMullen [53] (see also Krasnov-Schlenker [45] for an alternative

proof). Still in the setting of quasifuchsian manifolds, the renormalized volume behaves

essentially like a squared distance for the Weil-Petersson metric near the Fuchsian locus (i.e.,

the diagonal in T (S)× T (S) corresponding to h+0 = h−0 ); this follows from

(9) A local distance in Teichmüller: for h+0 ∈ T (S) fixed, and denoting h0 =

(h+0 , h
−
0 ) ∈ T (S)×T (S) the function h−0 7→ VolR(M,Φ(h0);h0) has a critical point at

h−0 = h+0 , unique near h
+
0 , which is a local minimum (the Hessian is positive definite).

(10) A global distance in Teichmüller: There are constants C0, C1 > 0 such that

dWP(h
+
0 , h

−
0 )

C0
− C1 ≤ VolR(M,Φ(h0);h0) ≤ C0dWP(h

+
0 , h

−
0 ) + C1

where dWP(·, ·) denotes distance with respect to the Weil-Petersson metric.

We give a proof of the first property in Prop 7.1 but it can also be seen as an application of

the computations of [45, Prop 8.10]; the second property follows by combining the result of

Schlenker [61] and of Brock [11].

1.2. Dimension n + 1 odd. We aim to understand here to which extent the theory in

dimension 2 + 1 makes sense in higher odd dimensions. By analogy with n = 2, we are

interested in the set T (N) of conformal classes of metrics on a compact manifold N of even

dimension n, up to the group D0(N) of diffeomorphisms isotopic to identity. This space can

be defined as a quotient of the space of smooth metrics M(N) by the action of the semi-

direct product C∞(N)⋊D0(N). We assume that (N, h0) does not admit nonzero conformal

Killing vector fields, so that a neighbourhood of the image of h0 in the quotient is an infinite

dimensional Fréchet manifold (in contrast to n = 2, where dim T (N) = −3χ(N)). Following

Fefferman-Graham [24], we can view the conformal class (N, [h0]) as the conformal boundary

of a Poincaré-Einstein end, that is a cylinder (0, ε)x ×N equipped with a metric

g =
dx2 + hx

x2
, hx ∼x→0

∞
∑

ℓ=0

hx,ℓ(x
n log x)ℓ (7)

where hx,ℓ are one-parameter families of tensors on M depending smoothly on x, and satis-

fying the approximate Einstein equation as x→ 0

Ricg = −ng +O(x∞).
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The tensor hx,0 has a Taylor expansion at x = 0 given by

hx,0 ∼x→0

∞
∑

j=0

x2jh2j

where h2j are formally determined by h0 if j < n/2 and formally determined by the pair

(h0, hn) for j > n/2; for ℓ ≥ 1, the tensors hx,ℓ have a Taylor expansion at x = 0 formally

determined by h0, hn. Like h2 in (2), hn is a formally undetermined tensor which satisfies

some constraints equations: there exist a function Tn and a 1-form Dn, natural in terms of

the tensor h0 (see Definition 2.4), such that

Trh0(hn) = Tn, δh0(hn) = Dn. (8)

The formula for Tn, Dn is complicated and not known in general, but in principle it can

be computed reccursively. An Asymptotically Hyperbolic Einstein (AHE) manifold is an

Einstein manifold (M, g) with Ricg = −ng which compactifies smoothly to some M so that

there exists a smooth boundary defining function x with respect to which g has the form (7).

The conformal boundary N = ∂M inherits naturally a conformal class [x2g|TN ]. Exactly

like when n = 2, each conformal representative h0 ∈ [x2g|TN ] determines a unique geodesic

boundary defining function x near N so that g has the form (7). The renormalized volume

VolR(M, g;h0) was apparently introduced by physicists [41], and appeared in [27] in the

mathematics literature. We define it using a slightly different procedure from [41, 29], using

the same approach as for n = 2 above, that is using the formula

VolR(M, g;h0) := FPz=0

∫

M
xzdvolg; (9)

the function F (z) =
∫

M xzdvolg has a pole at z = 0 with residue
∫

N vndvolh0 , where vn is

the function appearing as the coefficient of xn in the expansion of the volume form near N :

dvolg = (v0 + v2x
2 + · · ·+ vnx

n + o(xn))dx dvolh0 , v0 = 1. (10)

This method for renormalizing the volume was used for AHE manifolds e.g. in the work

of Albin [2]. The quantities v2j for j ≤ n/2 are formally determined by h0 (they are local

expressions in terms of h0), the term vn is called a conformal anomaly in the physics literature

and its integral L :=
∫

N vndvolh0 is a conformal invariant [33]. For instance in dimension

n = 4,

4v4 = σ2(Schh0)

is the symmetric function of order 2 in the eigenvalues of the Schouten tensor Schh0 =
1
2(Ricg − 1

6Scalh0h0), see Lemma 3.9. We first show

Theorem 1.1. Let (M, g) be an odd dimensional AHE manifold with conformal boundary

N equipped with the conformal class [h0].

(1) Polyakov type formula: Under conformal change e2ω0h0, the renormalized volume

VolR(M, g;h0) satisfies

VolR(M, g; e2ω0h0) = VolR(M, g;h0) +

∫

∂M

n/2
∑

j=0

v2j(h0)ωn−2j dvolh0
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where v2i are the volume coefficients of (10) and ω2j are polynomial expressions in

ω0 and its derivatives of order at most j.

(2) Critical points: The critical points of VolR(M, g; ·), among metrics of fixed volume

in the conformal class [h0] are those metrics h0 satisfying vn(h0) = constant.

(3) Extrema: Assume that [h0] contains an Einstein metric h0 with non-zero Ricci

curvature. Then h0 is a local extremum for VolR(M, g; ·) in its conformal class with

fixed volume: it is a maximum if Rich0 < 0 or n/2 is odd, it is a minimum if n/2

is even. Moreover if (N, [h0]) is not the sphere, then for each conformal classes [h]

close to [h0], there is a a metric h ∈ [h] solving vn(h) = constant and VolR(M, g;h)

is a local extremum in [h] with fixed volume.

These properties are proved in Section 3. Property (2) follows directly from the discussion

after [27, Th. 3.1] and is certainly known, but to be self-contained we give an elementary

proof.

Following the theory in dimension n = 2, after choosing representatives in the conformal

class satisfying the condition vn = constant, it is natural to expect a correspondence between

Poincaré-Einstein ends and cotangent vectors to the space T (N) of conformal structures

(i.e. conformal classes modulo D0(N)). A Poincaré-Einstein end is determined by the pair

(h0, hn). When T (N) (or an open subset) has a Fréchet manifold structure, we can use

a symplectic reduction of the cotangent space T ∗M(N) of the space of metrics M(N) by

the semi-direct product C∞(N) ⋊ D0(N), and we can identify T ∗
[h0]

T (N) to the space of

trace-free and divergence-free tensors on N (with respect to h0). Unlike for n = 2, even after

choosing a metric h0 with vn(h0) = constant, the formally undetermined tensor hn is neither

divergence-free, nor is its trace constant. However, we show the following

Theorem 1.2. There exists a symmetric tensor Fn, formally determined by h0, such that

Gn := −1
4(hn + Fn) satisfies

Trh0(Gn) =
1
2vn, δh0(Gn) = 0. (11)

(4) Cotangent vectors as ends: Assume that there exists an open set U ⊂ T (N)

and a smooth Fréchet submanifold S0 ⊂ M(N) of metrics h0 solution to vn(h0) =
∫

N vn(h0)dvolh0 so that the projection π : M(N) → T (N) is a homeomorphism from

S to U . Then there is a bijection between the space of Poincaré-Einstein ends with

h0 ∈ S and the space T ∗
UT (N) given by (h0, hn) 7→ (h0, G

◦
n), where G

◦
n is the trace-free

part of Gn.

The existence of a slice S0 is proved for instance in Corollary 4.5 in a neighbourhood of a

conformal class containing an Einstein metric which is not the sphere. We have learnt from

Robin Graham that there is a result related to the first part of the Theorem about Gn in

the physics literature [20], although the renormalization for the volume seems a bit different

from ours.

As for n = 2, we can define the Cauchy data for the Einstein equation to be (h0, G
◦
n)

where h0 solves vn(h0) =
∫

N vn(h0)dvolh0 . We may ask if those Cauchy data which are ends

of AHE manifolds span a Lagrangian submanifold of T ∗T (N).
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Theorem 1.3. Assume that there is a smooth submanifold S0 ⊂ M(N) of metrics h0 solving

vn(h0) =
∫

N vn(h0)dvolh0 so that the projection π : M(N) → T (N) is a homeomorphism

from S0 to U . Let M be a smooth manifold with boundary N and assume that there is a

smooth map Φ : S0 → M(M) such that RicΦ(h0) = −nΦ(h0) and [x2Φ(h0)|N ] = [h0] for

some boundary defining function x.

(5) Lagrangian submanifold: The set L of Cauchy data (h0, G
◦
n) of the AHE metrics

Φ(h0) with h0 ∈ S0 is a Lagrangian submanifold in T ∗T (N) with respect to the

canonical symplectic structure.

(6) Generating function: L is the graph of the exact 1-form given by the differential

of h0 7→ VolR(M,Φ(h0);h0) over S0. More precisely, if ḣ0 ∈ Th0S0 is a variation of

metrics satisfying vn =
∫

N vn and h0 ∈ S0, then

dVolR(M,Φ(h0), h0).ḣ0 =

∫

N
〈G◦

n, ḣ0〉dvolh0 . (12)

Here, what we mean by Lagrangian is an isotropic submanifold such that the projection

on the base is a diffeomorphism. In Section 6, we show that the assumptions of Theorem 1.3

are satisfied for instance in a neighbourhood of what we call a Fuchsian-Einstein manifold,

in a way similar to the quasifuchsian metrics near a Fuchsian metric. A Fuchsian-Einstein

metric is a productM = Rt×N with a metric g0 := dt2+cosh2(t)γ where γ is a metric on N

such that Ricγ = −(n− 1)γ and the sectional curvatures of γ are non-positive. By Corollary

4.5, near an Einstein metric γ on a compact manifold N with negative Ricci curvature, there

is a smooth slice S0 ⊂ M(N) of metrics solution to vn =
∫

N vn and so that the projection

π : M(N) → T (N) is a homeomorphism from S0 to a neighbourhood U of [h0]. Using a

result by Lee [46], and possibly after taking an open subset of S0 instead of S0, for each pair

(h+0 , h
−
0 ) ∈ S0 × S0 there exists an AHE metric g = Φ(h+0 , h

−
0 ) satisfying

Ricg = −ng on M, Φ(γ, γ) = g0, [x2g|t=±∞] = [h±0 ] for x := e−|t|.

For each of the two ends (t → ±∞) we have a traceless symmetric 2-tensor G◦±
n . We

denote G◦±
n := G◦±

n ⊗ dvolh±

0
, and consider G◦±

n as a vector in T ∗
h±

0

T (N): if ḣ±0 ∈ Th±

0
T (N)

are symmetric 2-tensors on N , then

G◦+
n (ḣ+0 ) =

∫

N
〈G◦+

n , ḣ+0 〉h+
0
:=

∫

N
〈G◦+

n , ḣ+0 〉h+
0
dvolh+

0

and similarly for ḣ−0 .

Theorem 1.4. Fix h+0 , h
−
0 ∈ S0 and consider the linear maps

φh+
0
: Th−

0
S0 → T ∗

h+
0
T (N), φh−

0
: Th+

0
S0 → T ∗

h−

0
T (N)

defined as

φh+
0
: ḣ−0 7→ (dG◦+

n )(h−

0 ,h+
0 )(ḣ

−
0 , 0)

φh−

0
: ḣ+0 7→ (dG◦−

n )(h−

0 ,h+
0 )(0, ḣ

+
0 )

where G◦±
n and its variation are obtained using the AHE metrics g = Φ(h+0 , h

−
0 ). Then
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(7) Quasifuchsian reciprocity: The linear maps φh+
0
and φh−

0
are adjoint.

A more general statement holds, which states that (dG◦
n)h0 is self-adjoint if G◦

n is the

cotangent data coming from an Einstein filling in the bulkM and dG◦
n is its linearisation (see

Corollary 6.12).

Finally, we study the second variation of h0 = (h+0 , h
−
0 ) 7→ VolR(M,Φ(h0), h0) at the

Fuchsian-Einstein metric, i.e., when Φ(h0) = g0.

Theorem 1.5. In the setting of Theorem 1.4, consider the function VolR : S×S → R defined

by VolR(h0) := VolR(M,Φ(h0), h0) for h0 = (h+0 , h
−
0 ) ∈ S × S, and set n = 4. Assume that

Lγ − 2 > 0 where Lγ := ∆γ − 2R̊γ ≥ 0 is the linearized Einstein operator at γ acting on

divergence-free, trace-free tensors (see Section 7 for precise definition).

(8) Hessian at the Fuchsian-Einstein locus: The point h0 = (γ, γ) is a critical

point for VolR, i.e., dVolR(h0) = 0 on TγS ×TγS, the Hessian at (γ, γ) is positive in

the sense that there exists c0 > 0 such that for all ḣ0 = (ḣ+0 , ḣ
−
0 ) ∈ TγS × TγS with

δγ(ḣ
±
0 ) = 0

Hessh0(VolR)(ḣ0, ḣ0) ≥ c0||ḣ0||2H2(N)

where H2(N) is the L2-based Sobolev space of order 2.

The lower bound Lγ−2 > 0 is for instance satisfied if γ has constant sectional curvature −1

and ker dD = ker d∗D = 0 where dD is the exterior derivative on T ∗N -valued 1-forms and d∗D
its adjoint. In Proposition 7.6, we compute the Hessian explicitly: the quadratic form acting

on divergence-free tensors tangent to S × S is given by a self-adjoint linear elliptic pseudo-

differential operator H, Hess(γ,γ)(VolR)(ḣ0, ḣ0) = 〈Hḣ0, ḣ0〉L2 , and H is in fact a function of

Lγ (the condition ḣ±0 ∈ TγS and δγ(ḣ
±
0 ) = 0 actually implies that Trγ(ḣ

±
0 ) = 0). If Lγ − 2

has non-positive eigenvalues, the same result remains true along deformations orthogonal to

(the finite dimensional) range of 1lR−
(Lγ − 2).

The equivalent of the Kähler potential property valid in dimension n = 2 does not seem

to extend to general dimensions without additional geometric assumptions.

1.3. Dimension n+ 1 even. When n+ 1 is even, the renormalized volume defined by (9)

has been more extensively studied. It is also an interesting quantity, more tractable than

in the case n + 1 odd, but has quite different properties. For instance it is related to the

Chern-Gauss-Bonnet formula and does not depend on the choice of conformal representative

h0 (i.e., it is independent of the geodesic boundary-defining function x). Anderson [3] gave

a formula when n + 1 = 4 for VolR(M, g) in terms of the L2 norm of the Weyl tensor and

the Euler characteristic χ(M) if g is AHE. This was extended by Chang-Qing-Yang [18] in

higher dimensions (see also Albin [2] for Chern-Gauss-Bonnet formula), while Epstein [57,

Appendix A] proved that for convex co-compact hyperbolic manifolds it equals a constant

times χ(M). When n = 4, Chang-Qing-Yang [17] also proved a rigidity theorem if the

renormalized volume is pinched enough near that of hyperbolic space H
4. As for variations,

Anderson [3] and Albin [2] proved that the derivative of the renormalized volume for AHE

metrics is given by the formally undetermined tensor −1
4hn, see Theorem 5.2. A byproduct
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of our computation in Section 7 is a formula for the Hessian of the renormalized volume when

n+ 1 is even, at a Fuchsian-Einstein metric, see expresion (87) in Proposition 7.6.

Aknowledgements. We thank Thomas Alazard, Olivier Biquard, Alice Chang, Erwann

Delay, Yuxin Ge, Robin Graham, Matt Gursky, Dima Jakobson, Andreas Juhl, Andrei Mo-

roianu and Yoshihiko Matsumoto for helpful discussions related to this project. Thanks also

to Semyon Dyatlov for his help with matlab.

2. Moduli space of conformal structures and Poincaré-Einstein manifolds

2.1. Spaces of metrics and conformal structures. We use the notions of tame Fréchet

manifold and Fréchet Lie groups as in Hamilton [40]. Let N be a compact smooth manifold

of dimension n, and M(N) the set of Riemannian metrics on N . This set is an open convex

subset in the Fréchet space C∞(N,S2N) of symmetric smooth 2-tensors on N . It has a

tautological non-complete Riemannian metric given on ThM(N) = C∞(N,S2N) by the L2

product with respect to h ∈ M(N):

〈k1, k2〉 :=
∫

N
〈k1, k2〉hdvolh, k1, k2 ∈ ThM(N)

where 〈k1, k2〉h = Tr(h−1k1h
−1k2) is the scalar product on S

2N induced naturally by h (here

K = h−1k means the symmetric endomorphism defined by h(K·, ·) = k). Let D(N) be the

group of smooth diffeomorphisms of N and D0(N) the connected component of the identity.

The groups D0(N) and C∞(N) are Fréchet Lie groups, the latter being in fact a Fréchet

vector space. Consider the map

Φ : C∞(N)×D0(N)×M(N) → M(N), (f, φ, h) 7→ e2f (φ−1)∗h.

This map defines an action of the semi-direct product G := C∞(N) ⋊ D0(N) on M(N),

and this action is smooth and proper if N is not the sphere Sn (see Ebin [22], Fischer-

Moncrief [25]). The isotropy group at a metric h for the action Φ is the group of conformal

diffeomorphism of (N, h) isotopic to the Identity; by Obata [55] it is compact if N is not the

sphere.

Definitions. The object studied in this paper is the moduli space of conformal structures

on N (called quantum conformal superspace in physics), denoted by

T (N) := G\M(N). (13)

This space is the Teichmüller space when n = 2 and N has negative Euler characteristic.

In higher dimension, it is infinite dimensional and has a complicated structure near general

metrics. In [25], Fischer-Moncrief describe the structure of T (N): they show for instance

that it is a smooth Inverse Limit Hilbert orbifold if the degree of symmetry of N is 0 (the

isotropy group is then finite). Moreover, if the action is proper and the isotropy group at

a metric h is trivial, then a neighbourhood of [h] in T (N) is a Fréchet manifold. By a

result of Frenkel [26], the isotropy group is trivial if h ∈ M(N) is a metric of negative Ricci
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curvature and non-positive sectional curvatures. An equivalent way to define T (N) is to

consider D0(N)\C(N), where

C(N) := C∞(N)\M(N) (14)

is the space of conformal classes of metrics on N .

Slices. Since we will use this later, let us describe the notion of slice introduced by Ebin

[22] in these settings. We will say that S ⊂ M(N) is a slice at h0 ∈ M(N) for the conformal

action of C∞(N) if it is a tame Fréchet submanifold such that there is a neighbourhood U

of 0 in C∞(N) and a neighbourhood V ⊂ M(N) of h0 such that

Ψ : U × S → V, (f, h) 7→ e2fh (15)

is a diffeomorphism of Fréchet manifolds. Since the action of C∞(N) on M(N) is free and

proper, it is easy to see that Ψ extends to C∞(N) × S → M(N) and is injective. In other

words, S defines a tame Fréchet structure on C(N) near the conformal class [h0]. Similarly,

if S ⊂ M(N) is a Fréchet submanifold containing h0, on which a neighbourhood U ⊂ D0(N)

of Id acts smoothly, then a Fréchet submanifold S0 of S is a slice at h0 for the action of

D0(N) if there exists a neighbourhood V ⊂ S of h0 such that

Φ : U × S0 → V, (φ, h) 7→ (φ−1)∗h (16)

is a diffeomorphism of Fréchet manifolds. Extending Φ to D0(N) × S0 → M(N), and

assuming that the action of D0(N) on Φ(D0(N)×S0) is free and proper, the extension of Φ

is injective in a small neighbourhood of h0 in S0. If S was a slice for the conformal action,

then S0 is a slice at h0 for the action of G on M(N), thus giving a tame Fréchet structure

on T (N) near the class of h0 in T (N).

Cotangent bundles. The tangent bundle TM(N) over M(N) is the trivial Fréchet bundle

M(N) × C∞(N,S2N). For each base point h, which by definition is a Riemannian metric

on N , we can identify symmetric 2-vectors with symmetric bilinear forms, so that elements

of the topological dual T ∗Mh(N) can be described as distributional sections of S2N ⊗ΩnN .

Such spaces of distributions are not Fréchet manifolds.

In this work, we are interested in C∞ objects and Fréchet manifolds, we thus define

the smooth cotangent space T ∗
hM(N) to be the vector space of continuous linear forms

on ThM(N) which are represented by smooth tensors through the h pairing followed by

integration on N :

k∗ ∈ T ∗
hM(N) if ∃k ∈ C∞(N,S2N ⊗ ΩnN), ∀v ∈ ThM(N), k∗(v) =

∫

N
〈k, v〉h.

This identifies the smooth cotangent bundle T ∗M(N) with TM(N) = M(N)×C∞(N,S2N⊗
ΩnN), making it a Fréchet bundle.

There exists a symplectic form Ω on T ∗M(N), derived from the Liouville canonical 1-

form:

Ω(h,k)((ḣ1, k̇1), (ḣ2, k̇2)) =

∫

N
〈k̇1, ḣ2〉h − 〈k̇2, ḣ1〉h . (17)
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The group G acts on T ∗M(N), with a symplectic action induced from the base and using

the Riemannian metric on M(N):

(f, φ) : (h, k) 7→
(

e2f (φ−1)∗h, e2f (φ−1)∗k
)

. (18)

We then define (locally) the cotangent bundle to T (N). We will always assume that

there is a slice S0 at h0 representing a neighbourhood U ⊂ T (N) of the class [h0], as we just

explained. The tangent space T[h]T (N) at a point [h] ∈ T (N) near [h0] is then identified with

ThS0 where h is the representative of [h] in S0, and TT (N) is then locally represented near

[h0] as a Fréchet subbundle of TS0M(N). We define the smooth cotangent space T ∗
[h]T (N)

to be the vector space of continuous linear forms on ThS0 ≃ T[h]T (N) which are represented

by smooth sections of S2N ⊗ ΩnN through the L2 pairing and vanish on the tangent space

of the orbit Gh of h by the group G:

k∗ ∈ T ∗
[h]T (N) if ∃k ∈ C∞(S2N ⊗ ΩnN), ∀v ∈ ThS0, k

∗(v + ThGh) =

∫

N
〈k, v〉h .

Since ThGh = {LXh+ fh;X ∈ C∞(N,TN), f ∈ C∞(N)} (where LXh is the Lie derivative),

k must satisfy
∫

N
〈k, LXh+ fh〉h = 0, ∀X ∈ C∞(N,TN), f ∈ C∞(N),

which is equivalent to asking that k = k′ ⊗ dvolh, with δh(k
′) = 0 and Trh(k

′) = 0. The

smooth cotangent bundle T ∗T (N) over a neighbourhood U ⊂ T (N) of [h0] represented by a

slice S0 is then

T ∗
UT (N) = {(h, k ⊗ dvolh) ∈ S0 × C∞(N,S2N ⊗ ΩnN); δh(k) = 0,Trh(k) = 0}. (19)

Lemma 2.1. Assume that h has no conformal Killing vector fields for all h ∈ S0. The space

T ∗
UT (N) is a Fréchet subbundle of TS0M(N), therefore a Fréchet bundle over S0.

Proof. We are going to exhibit a trivialisation of the fiber bundle defined by (19). Define

Φh : C∞(N,S2N) → C∞(N,TN ⊕ R), Φh(k) = (δhk +
1
ndTrh(k),Trh(k)).

Evidently, kerΦh = T ∗
hT (N). The formal adjoint of the differential operator Φh is

Φ∗
h(σ, f) = δ∗hσ + ( 1nd

∗σ + f)h.

Since h is a metric without conformal Killing vector fields, Φ∗
h is injective. The projector

on the kernel of Φh is Ph := 1 − Φ∗
h(ΦhΦ

∗
h)

−1Φh. We claim that Ph0 : T ∗
hT (N) → T ∗

h0
T (N)

is a tame isomorphism. Let us check that it is indeed a tame family of 0-th order pseudo-

differential operators. In matrix form, the operator ΦhΦ
∗
h is

ΦhΦ
∗
h =

[

δhδ
∗
h − 1

ndd
∗ 0

0 n

]
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where n = Trh(h) is the dimension of N . This operator acts on mixed Sobolev spaces as

follows: ΦhΦ
∗
h : Hs(N,TN) ×Hs(N) → Hs−2(N,TN) ×Hs(N) for every s ∈ R. The self-

adjoint operator Ah := δhδ
∗
h − 1

ndd
∗ is elliptic and invertible and thus has a tame family

of pseudo-differential inverses of order −2 (see [40, Section II.3.3]). Then the inverse of

ΦhΦ
∗
h is also invertible and tame. In particular, we see that Ph is smooth tame family of

pseudodifferential operators of order 0. We have that PhPh0 : T ∗
hT (N) → T ∗

hT (N) and

Ph0Ph : T ∗
h0
T (N) → T ∗

h0
T (N) are invertible for h close to h0 in some Sobolev norm, since

they are the Identity when h = h0 and by the Calderón-Vaillancourt theorem; moreover the

inverse are tame, by the results of [58, Th. 4.5]. This gives the desired trivialisation. �

To obtain a local description of T ∗T (N) which is independent of the choice of slice, it

is necesary and sufficient that for another choice of metric ĥ = (f, φ).h in the orbit Gh, the

new representative for k becomes e(2−n)f (φ−1)∗k, which is indeed a divergence-free/trace-free

tensor with respect to ĥ (note that (h, k⊗dvolh) transforms as e2f ((φ−1)∗h, (φ−1)∗(k⊗dvolh)),

but this means that k transforms as e(2−n)f (φ−1)∗k). In a small neighbourhood of [h0] ∈
T (N), we can therefore identify T ∗T (N) with the quotient

G\{(h, k) ∈ M(N)× C∞(N,S2N); Trh(k) = 0, δh(k) = 0} (20)

where the group action of G is (18). The action of G is Hamiltonian, and T ∗T (N) is the

symplectic reduction of T ∗M(N), where the moment map is given at (f, v) ∈ C∞(N) ×
C∞(N,TN) = lie(G) in terms of the L2 inner product with respect to h by

µ(f,v)(k) = 〈−2trh(k), f〉+ 〈δh(k), v〉, k ∈ T ∗
hM(N).

Therefore the zero set of the moment map is exactly the space appearing in (20) before

quotienting. Finally, the symplectic form Ω descends to T ∗T (N).

2.2. Asymptotically hyperbolic Einstein manifolds. The reader can find more details

about the theory of this section in the books [23, 43, 24].

Definition 2.2. Let M
n+1

be a compact smooth manifold with boundary, and M ⊂ M its

interior. A metric g onM is called asymptotically hyperbolic Einstein (or AHE) if Ricg = −ng
and if there exists a smooth boundary defining function x :M → [0,∞) such that, in a collar

neighbourhood of ∂M induced by x, g is of the form

g = x−2(dx2 + hx) (21)

where hx is a continuous family of smooth metrics on N := ∂M , depending smoothly on the

variable x when n is odd, and on the variables x, xn log x when n is even. The conformal class

[h0] of h0 on ∂M (which is independent of the choice of x) is called the conformal infinity of

(M, g).

By a collar neighbourhood induced by x we mean a diffeomorphism Φ : [0, ε)t× ∂M →M

onto its image, such that Φ∗(x) = t, Φ(0, ·) = Id∂M and the meaning of (21) is Φ∗g =

(dt2 + ht)/t
2 on (0, ε)t × ∂M .
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In particular, AHE metrics are smooth on M and of class Cn−1 on M . In even dimension,

the definition with the regularity statement is justified by the result of Chrusciel-Delay-Lee-

Skinner [19], which states that an Einstein metric on a conformally compact C2 manifold

with smooth conformal infinity admits an expansion at the boundary in integral powers of

x and xn log x. We notice that the sectional curvatures of a AHE metric are −1 +O(x) and

that the metric g is complete.

In this paper we will be essentially interested in the more complicated case where n is even

(so that the dimension of M is odd) but at the moment we do not fix the parity of n.

We say that a function f is polyhomogeneous conormal (with integral index set) on M if

it is smooth in M and for all J ∈ N, f has an expansion at ∂M of the form:

f =
J
∑

j=0

ℓj
∑

ℓ=0

xj log(x)ℓfj,ℓ + o(xJ)

where fj,ℓ ∈ C∞(∂M) and x is a smooth boundary defining function. The same definition

applies to tensors on M . There are natural topologies of Fréchet space for polyhomogeneous

conormal functions or tensors; we refer to [52, Chap 4] and [51] for details and properties of

these conormal polyhomogeneous spaces.

2.3. Poincaré-Einstein ends. There is a weaker notion of metric that will prove useful,

that of Poincaré-Einstein metrics, introduced by Fefferman-Graham [24]. Let (M, g) be an

(n + 1)-dimensional asymptotically hyperbolic Einstein manifold. Since by [19], the metric

g in a collar (0, ε)x × ∂M induced by x near ∂M has an expansion of the form

g =
dx2 + hx

x2
, hx ∼x→0

∞
∑

ℓ=0

hx,ℓ(x
n log x)ℓ (22)

where hx,ℓ are one-parameter families of tensors on M depending smoothly on x, we want to

define the asymptotic version of AHE manifolds:

Definition 2.3. An Poincaré-Einstein end is a half-cylinder Z = [0, ε)×N equipped with

a smooth metric g on (0, ε) × N with an expansion of the form (22) near x = 0, such that

Ricg +ng = O(x∞). If (Z, g) is Einstein, we call it an exact Poincaré-Einstein end.

In [24], Fefferman and Graham analyze the properties of Poincaré-Einstein ends. To

explain their results we need the notion of formally determined tensors.

2.4. Formally determined tensors.

Definition 2.4. Let N be a compact manifold, and m, ℓ ∈ N0. A map F : M(N) →
C∞(M, (T ∗M)ℓ) from metrics on N to covariant ℓ-tensors is said to be natural of order m

(and the tensor F (h0) is said to be formally determined by h0 of order m ∈ N) if there exists

a tensor-valued polynomial P in the variables h0, h
−1
0 ,

√

det(h0), ∂
αh0 with |α| ≤ m, so that

in any local coordinates y

F (h0) = P (h0, h
−1
0 ,
√

det(h0), ∂
α
y h0).
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Remark 2.5. A formally determined tensor F (h0) is preserved by local isometries: if φ :

U → U ′ is a diffeomorphism where U,U ′ are open sets of Riemannian manifolds N,N ′ and

h0, h
′
0 are metrics on U,U ′ then if h0 = φ∗h′0 on U , we get F (h0) = φ∗F (h′0) on U . As a

consequence, a formally determined tensor is 0 if it vanishes for all metrics on the sphere Sn.

Lemma 2.6. Let ht0 be a smooth one-parameter family of metrics on N with ht0 = h0+ tḣ0+

O(t2) at t = 0, and let P (ht0), Q(ht0) be tensors formally determined by ht0 of respective order

p, q. There exists a formally determined tensor R(h0) in h0 of order r = p+ q such that

〈∂tP (ht0)|t=0, Q(h0)〉L2(N,h0) = 〈ḣ0, R(h0)〉L2(N,h0).

Proof. By using a partition of unity we can assume that ht0 has support in a coordinate

domain. Then ∂tP (h
t
0)|t=0 is a polynomial in the variables ∂βy ḣ0, h0, h

−1
0 ,

√

det(h0), ∂
α
y h0,

linear in ḣ0. Integrating by parts with respect to the coordinates yj it is clear that there

exists a polynomial R such that

〈∂tP (ht0)|t=0, Q(h0)〉L2(N,h0) = 〈ḣ0, R(h0(y))〉L2(N,h0). (23)

The polynomial R is the same for different coordinate systems. To see that it defines a

formally determined tensor, we need to prove that the 2-tensor R(h0(y)) is independent of

the coordinate system y. This follows from the identity (23) since ḣ0 is arbitrary, and all the

terms except R(h0(y)) are known to be intrinsically defined. �

Proposition 2.7 (Fefferman-Graham [24]). Let (Z, g) be a Poincaré-Einstein end. Using

the expansion (22), define hj =
1
j!∂

j
xhx,0|x=0 and k := hx,1|x=0. Then the following hold:

(1) When n is odd, hx,ℓ = 0 when ℓ ≥ 1.

(2) The tensors h2j+1 are 0 for 2j + 1 < n.

(3) The tensors h2j for j < n/2 and k are formally determined by h0, of order 2j.

(4) The tensors h2j for j > n/2 are formally determined by h0 and hn.

(5) The trace Trh0(hn) depends only on h0 and defines a formally determined function

Tn = Tn(h0) of order n, which is zero for n odd.

(6) The divergence δh0(hn) depends only on h0 and not on hn, and defines a formally

determined tensor Dn = Dn(h0) of order n+ 1 which is zero for n odd.

(7) The tensor k, called obstruction tensor, is trace- and divergence-free with respect to

h0.

(8) All coefficients in the Taylor expansion at x = 0 of hx,ℓ for ℓ ≥ 1 are formally

determined by h0 and hn.

A consequence of this is the expansion for hx

hx = h0 + h2x
2 + · · ·+ kxn log(x) + hnx

n + o(xn). (24)

This proposition follows (not directly though) from the decomposition of the Ricci tensor

of g in terms of hx in the collar neighbourhood Z. Since we shall use it later, we recall

some standard computations of Ricci curvatures on a generalized cylinder, see e.g. [4]. On

M := R×N consider a metric g = dt2 + gt and let

II := −1
2∂tgt = gt(W ·, ·), W := g−1

t II
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be the second fundamental form, respectively the Weingarten operator. Set ν = ∂t the unit

normal vector field to the level hypersurfaces {t = constant}. Then, for U, V tangent vectors

to N , the Ricci tensor of g is described by

Ricg(ν, ν) = tr(W 2)− 1
2tr(g

−1
t ∂2t gt),

Ricg(ν, V ) = V (tr(W )) + 〈δgtW,V 〉
Ricg(U, V ) = Ricgt(U, V ) + 2〈W (U),W (V )〉 − tr(W )〈W (U), V 〉 − 1

2∂
2
t gt(U, V ).

(25)

Using these equations, the Einstein equation Ricg = −ng for g = x−2(dx2 + hx) can be

restated using the variable t = ex in terms of the 1-parameter family of endomorphisms Ax

defined by

Ax := h−1
x ∂xhx = 2x−1(1−W ) (26)

as follows:

∂xTr(Ax) +
1
2 |Ax|2 = x−1Tr(Ax), (27)

δhx
(∂xhx) = − dTr(Ax),

x∂xAx + (1− n+ 1
2xTr(Ax))Ax = 2xh−1

x Ric(hx) + Tr(Ax)Id.

The same equations are valid modulo x∞ on asymptotic Poincaré-Einstein ends.

The coefficients in the asymptotic expansion of hx in (24) near {x = 0} can be recursively

computed from h0 until the n-term, and the dependence is local: one has the following

formulas

(1) In dimension n = 2, the obstruction tensor k is 0, and the coefficient h2 can be any

symmetric tensor satisfying (see [24, Th 7.4])

Trh0(h2) = −1
2Scalh0 , δh0(h2) =

1
2d Scalh0 . (28)

(2) In dimension n > 2, the tensors h2 is minus the Schouten tensor of h0 and in dimen-

sion n > 4, h4 is expressed in terms of Schouten and Bach tensors of h0 (see [24, Eq

(3.18)]):

−h2 = Schh0 := 1
n−2

(

Rich0 − 1
2(n−1)Scalh0h0

)

h4 =
1
4

(

h22 − 1
n−4Bh0

)

(29)

where Bh0 is the Bach tensor of h0 if n > 4 and h22(·, ·) := h0(H
2
2 ·, ·) if H2 is the

endomorphism of TN defined by h2 = h0(H2·, ·).

(3) In dimension n > 4, when h0 is locally conformally flat, one has k = 0 and

−h2 = Schh0 , h4 =
1
4h

2
2, h2j = 0 for 2 < j < n

2 . (30)

See [24, Th 7.4] or [63] for a proof. When hn = 0, then the metric g = x−2(dx2+hx)

has constant sectional curvature −1 in a small neighbourhood of x = 0 if hx =

h0 + x2h2 + x4h4 with h2, h4 of (30). When n = 4, one still has h2 = −Schh0 but h4
is not necessarily h22.
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(4) When h0 is an Einstein metric with Rich0 = λ(n − 1)h0, it is easily checked that

k = 0 and

h2 = −λ
2h0, h4 :=

λ2

16h0, h2j = 0 for 2 < j < n
2 . (31)

When hn = 0, the metric g = (dx2 + hx)/x
2 with hx := (1 − λx2

4 )2h0 is an exact

Poincaré-Einstein end in x < x0 for some small x0 > 0, see Section 6.2.

2.5. The conformal class at infinity. By [32, 19], the whole conformal class [h0] of the

metric h0 induced by g on the boundary at infinity (with respect to a given boundary defining

function x) can be parametrized by a family of “geodesic” boundary defining functions:

Lemma 2.8. Let (M, g) be an odd dimensional AHE manifold, of the form (21) near ∂M for

some x. Let h0 be the induced metric at infinity. For any ĥ0 ∈ [h0], there is a neighborhood

V of ∂M and a unique boundary defining function x̂ such that x̂2g|T∂M = ĥ0 and |dx̂|x̂2g = 1

in V . The function x̂ has a polyhomogeneous expansion with respect to x and the metric g

is of the form (dx̂2 + ĥx̂)/x̂
2 in a collar near ∂M , where ĥx̂ is a one-parameter family of

tensors on ∂M which is smooth in x̂, x̂n log(x̂).

Proof. The existence and polyhomogeneity of x̂ is shown in [19, Lemma 6.1]. The form of

the metric in the collar neighborhood induced by x̂ follows for instance from Theorem A

in [19]. Since it will be used later, we recall that the proof amounts to seting x̂ = eωx for

some unknown function ω defined on M near N = ∂M which solves near the boundary the

equation |dx̂|2x̂2h = 1 with ĥ0 = e2ω0h0. This leads to the following Hamilton-Jacobi equation

in the collar neighbourhood [0, ε)×N of the boundary:

∂xω + x
2

(

(∂xω)
2 + |dNω|2hx

)

= 0, ω|N = ω0. (32)

where dN is the de Rham differential on N . �

Geometrically, the function x̂ corresponding to ĥ0 yields a particular foliation by hyper-

surfaces {x = const} diffeomorphic to N near infinity, induced by the choice of conformal

representative at infinity.

2.6. Cauchy data for Einstein equation, non-linear Dirichlet-to-Neumann map.

By Proposition 2.7, a Poincaré-Einstein end is uniquely determined modulo O(x∞). There is

in fact a stronger statement proved by Biquard [9], based on unique continuation for elliptic

equations:

Proposition 2.9 (Biquard). An exact Poincaré-Einstein end ([0, ε)x × N, g = dx2+hx

x2 ) is

uniquely determined by the data (h0, hn) where hx =
∑n/2

j=0 x
2jh2j + kxn log x+ o(xn).

On a manifold with boundary M , the unique continuation of [9] also holds true: if two

AHE metrics on M agree to infinite order at ∂M , then, near the boundary, one is the pull

back of the other by a diffeomorphism of M which is the identity on ∂M .

We will then call (h0, hn) the Cauchy data for the Einstein equation,

h0 is the Dirichlet datum, hn is the Neumann datum. (33)
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We emphasize that here the pair (h0, hn) is associated to the geodesic boundary function of

Lemma 2.8 determined by h0.

It is of interest to study those pairs (h0, hn) for which there does exist an AHE manifold

(M, g) which can be written in a collar neighbourhood [0, ε)x×∂M under the form g = dx2+hx

x2

with hx =
∑n/2

j=0 x
2jh2j + kxn log x+ o(xn).

We can define a Dirichlet-to-Neumann map under the assumption that a local existence

result for the following Dirichlet problem on M holds: let g0 be an AHE metric on M and

h0 = (x2g0)|TN be a representative of the conformal infinity of g associated to a geodesic

boundary defining function x, then there exists a smooth submanifold S ⊂ M(N) containing

h0 (with N = ∂M), transverse to the action of C∞(N) on M(N), such that for any h ∈ S,
there is an AHE metric g near g0 such that

Ricg = −ng, (x2g)|∂M = h (34)

and g depends smoothly on h. The topology here can be chosen to be some Ck,α(M) norms

for some k ∈ N and α > 0. Such an existence result has been proved by Graham-Lee [32]

when (M, g0) = (Hn+1, gHn+1) where H
n+1 is viewed as the unit ball in R

n+1, and has been

extended by Lee [46] to the case where g0 is AHE with negative sectional curvatures. We

can then define a (local) Dirichlet-to-Neumann map1 near h0

N : C∞(M,S2
+T

∗∂M) → C∞(M,S2T ∗∂M), h 7→ hn. (35)

where hn is the Neumann datum of the metric g satisfying (34). Graham [28] computes its

linearization at the hyperbolic metric in the case n odd and when (M, g0) = (Hn+1, gHn+1).

For n odd, this was also studied by Wang [68] in a general setting: she proved that this

linearized operator is a pseudo-differential operator on the boundary and she computed its

principal symbol.

3. The renormalized volume in a fixed conformal class

3.1. The renormalized volume. We follow the method introduced by Henningson-Skenderis

[41], Graham [27]. The volume form near the boundary is

dvolg = v(x)dvolh0

dx

xn+1
= det(h−1

0 hx)
1
2dvolh0

dx

xn+1
.

Since Tr(k) = 0, the function v(x) has an asymptotic expansion of the form

v(x) = 1 + v2x
2 + · · ·+ vnx

n + o(xn). (36)

Definition 3.1. The renormalized volume of (M, g) with respect to a conformal represen-

tative h0 of [h0] is the Hadamard regularized integral

VolR(M, g;h0) = FPε→0

∫

x>ε
dvolg. (37)

1In even dimension n, we will see later that it is more natural to modify hn with a certain formally

determined tensor in the definition of N .
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where, near ∂M , x is the geodesic boundary defining function such that x2g|T∂M = h0. When

g is fixed, we consider VolR(M, g;h0) as a function of h0, we shall write it VolR(M ;h0).

An equivalent definition for VolR was given by Albin [2] using Riesz regularization

VolR(M,h0) = FPz=0

∫

M
xzdvolg, z ∈ C (38)

where x is any positive function equal to the geodesic boundary-defining function associated

to h0 near ∂M . With this definition we can easily compute the variation of VolR inside the

conformal class [h0].

Proposition 3.2. Let (M, g) be an odd dimensional Einstein conformally compact manifold

with conformal infinity [h0]. The renormalized volume VolR(M, ·) of M , as a functional on

M[h0] := {h0 ∈ [h0];
∫

∂M dvolh0 = 1}, admits a critical point at h0 if and only if vn(h0) is

constant.

Proof. We set hs0 := h0e
2sω0 for s ≥ 0, then from Lemma 2.8 there exists a unique function

ωs such that the geodesic boundary defining function xs associated to hs0 is given by

xs = eω
s

x, ωs = sω0 +O(xs2). (39)

Indeed, for all s we have |d log(xs)|2g = 1, thus ωs must satisfy

2∂xω
s = −x((∂xωs)2 + |dyωs|2hx

), ωs|x=0 = sω0.

This is a non-characteristic Hamilton-Jacobi equation which has a unique solution depending

smoothly in s on the initial data with ω0 = 0. Then ωs = O(s) and thus ∂xω
s = O(xs2),

which implies that (39) holds. Taking the derivative of (38) at s = 0, we obtain using the

expansion (36)

∂sVolR(M,hs0)|s=0 = FPz=0

∫

M
zω0x

zv(x)dvolh0

dx

xn+1
=

∫

∂M
ω0vndvolh0 . (40)

We now make a variation within constant volume metrics in [h0], thus
∫

∂M ω0dvolh0 = 0. We

thus conclude that

vn = constant (41)

is the equation describing a critical point of the renormalized volume functional in the con-

formal class with constant total volume. �

Remark 3.3. From Graham-Zworski [33], the following identity holds
∫

∂M
vndvolh0 = Cn

∫

∂M
Qndvolh0 , (42)

where Cn is an explicit constant and Qn is Branson’s Q-curvature. This integral depends

only on the conformal class [h0] and not on h0. For locally conformally flat metrics, this is

a constant times the Euler characteristic, as proved by Graham-Juhl [31].
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Remark 3.4. According to Graham-Hirachi [30], the infinitesimal variation of the integral

of vn along a 1-parameter family of Poincaré-Einstein metrics gs inducing hs0 on N with

ḣ0 := ∂s(h
s
0)|s=0 is determined by the obstruction tensor k of h0:

∂s

(
∫

∂M
vn dvolh0

)

|s=0

= 1
4

∫

∂M
〈k, ḣ0〉dvolh0 . (43)

In fact, we can give a formula for the renormalized volume VolR(M, e2ω0h0) in terms of

ω0.

Lemma 3.5. Let h0 ∈ [h0] be fixed, ω0 ∈ C∞(∂M), and let

ω =

n
2
∑

j=0

ω2jx
2j +O(xn+1)

be the solution of the Hamilton-Jacobi equation |dx/x + dω|2g = 1 near ∂M with boundary

condition ω|∂M = ω0. The renormalized volume Vn(ω0) := VolR(M, e2ω0h0) as a function of

ω0 is given by

Vn(ω0) = Vn(0) +

∫

∂M

n/2
∑

i=0

v2i(h0)ωn−2i dvolh0

where v2i(h0) ∈ C∞(∂M) are the terms in the expansion of the volume element (36) at ∂M .

Proof. From the expansion ezω = 1 + zω +O(z2) near z = 0, we get

VolR(M, e2ω0h0) = FPz=0

∫

M
xz−nezωv(x)

dx

x
dvolh0

= VolR(M,h0) + FPz=0

(

z

∫

M
xz−nω(x)v(x)

dx

x
dvolh0

)

= VolR(M,h0) + Resz=0

∫

M
xz−nω(x)v(x)

dx

x
dvolh0

= VolR(M,h0) +

∫

∂M

n/2
∑

i=0

v2iωn−2i dvolh0

where in the last equality we have exhibited the residue as the coefficient of xn in ω(x)v(x) �

We mention a similar statement after Theorem 3.1 in [27].

Let us now give some properties of the ω2i in the expansion of ω(x) at x = 0:

Lemma 3.6. The function ω solving the equation |dx/x+dω|g = 1 near x = 0 and ω|x=0 = ω0

satisfies ω(x) =
∑n/2

i=0 x
2iω2i + o(xn) for some ω2i ∈ C∞(M) with

ω2 = − 1
4 |∇ω0|2h0

ω4 =
1
8

(

−1

4
|∇ω|4 + h2(∇ω0,∇ω0)− 2h0(∇ω0,∇ω2)

)

.
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where ∇ denotes the gradient with respect to h0. If we replace ω0 by sω0 for s > 0 small, for

all i > 0 one has as s→ 0

ω2i = −s
2

4i
h(2i−2)(dω0, dω0) +O(s3). (44)

where h−1
x =

∑n/2
i=0 x

2ih(2i)+O(xn log x) is the metric induced by hx on the cotangent bundle

T ∗∂M .

Proof. The computation for ω2 and ω4 is simply obtained by expanding in powers of x the

equation 2∂xω = −x((∂xω)2 + |dyω|2h(x)) and identifying the terms:

n/2
∑

i=0

4ix2i−1ω2i = −x
(

n/2
∑

i=0

2ix2i−1ω2i

)2
−

n/2
∑

i,j,k=0

x2(i+j+k)+1h(2i)(dω2j , dω2k) + o(xn−1)

where h−1
x =

∑n/2
i=0 x

2ih(2i) + O(xn log x) if h−1
x is the metric on the cotangent bundle. In

particular, we have h(2)(dω2k, dω2j) = −h2(∇ω2k,∇ω2j). Now for (44), we observe that

ω2i = O(s2) for each i 6= 0, and so by looking at the terms modulo s3 in the equation above,

only the terms with j = k = 0 appear and we get

∑

i=0

4ix2i−1ω2i = −s2
n/2
∑

i=0

x2i+1h(2i)(dω0, dω0) +O(s3)

which implies the desired identity. �

From this, we can give an expression for the Hessian of ω0 7→ VolR(M, e2ω0h0) at a critical

point h0, as a quadratic form of ω0.

Corollary 3.7. Let (M, g) be an (n+ 1)-dimensional Poincaré-Einstein manifold with con-

formal infinity (∂M, [h0]). Then for ω0 ∈ C∞(M) we have

Hessh0(Vn)(ω0) := ∂2sVolR(M, e2sω0h0)|s=0 = −
n/2
∑

j=1

∫

∂M

vn−2j(h0)

2j
h(2j−2)(dω0, dω0)dvolh0

where h−1
x =

∑n/2
i=0 x

2jh(2j)+O(xn log x) is the metric induced by hx on the cotangent bundle

T ∗∂M , and v2j(h0) ∈ C∞(∂M) are the coefficients in the expansion (36) of the volume

element at ∂M .

Remark that the Hessian of Vn depends only on the conformal infinity (∂M, [h0]) of M .

Since the positive/negative definiteness of the Hessian of Vn = VolR is entirely characterized

by the tensor −∑n/2
j=1

∫

∂M
vn−2j(h0)

2j h(2j−2) we shall call this tensor the Hessian of Vn at h0
and denote it

Hessh0(Vn) = −
n/2
∑

j=1

1
2j vn−2j(h0)h

(2j−2). (45)

Remark 3.8. We remark that the tensors h(2j−2) are symmetric tensors on T ∗∂M and

thus Hessh0(Vn) is also symmetric. While we were finishing this work, we learnt that this

computation also appears in the work of Chang-Fang-Graham [14, eq. (3.6)].
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3.2. Computations of v2, v4, v6. To express the renormalized volume functional in dimen-

sion 2, 4, 6, we need to compute the volume coefficients v2, v4, v6. This will serve also later for

the variation formula for the renormalized volume of AHE metrics. The formulas are already

known [29] (see also [43, Th 6.10.2] for a proof) but to be self-contained we give a couple of

details of how the computations go. We recall first that for a symmetric endomorphism A

on an n-dimensional vector space equipped with a scalar product, the elementary symmetric

function of order k of A is defined by

σk(A) =
∑

i1<···<ik

λi1 . . . λik (46)

where (λ1, . . . , λn) are the eigenvalues of A repeated with multiplicities.

Lemma 3.9. Let ((0, ε)x × N, g = dx2+hx

x2 ) be an asymptotic Poincaré-Einstein end, and

H2j, K the endomorphisms of TN defined by

hx(·, ·) = h0

((

n
∑

j=0

H2jx
2j +Kxn log(x)

)

·, ·
)

+ o(xn).

If v2j are the volume coefficients in (36), one has

v2 =
1
2σ1(H2) =

1
2Tr(H2),

v4 =
1
4σ2(H2) =

1
8(Tr(H2)

2 − Tr(H2
2 ))

v6 =
1
8σ3(H2) +

1
24(n−4)〈Bh0 , h2〉,

where h0(H2·, ·) = h2 = −Schh0. In addition, we have

4Tr(H4)− Tr(H2
2 ) = 0, 6Tr(H6)− 4Tr(H2H4) + Tr(H3

2 ) = 0. (47)

Proof. From (26) we obtain modulo O(x6)

Ax = 2xH2 + x3(4H4 − 2H2
2 ) + x5(6H6 − 6H2H4 + 2H3

2 ) + xn−1K(n log(x) + 1)

Taking the trace and using that the obstruction tensor is trace-free (ie. Tr(K) = 0), we get

modulo O(x6)

Tr(Ax) = 2xTr(H2) + x3(4Tr(H4)− 2Tr(H2
2 )) + 6x5(Tr(H6)− Tr(H2H4) +

1
3Tr(H

3
2 ))

1
2x|Ax|2 = 1

2xTr(A
2
x) = 2x3Tr(H2

2 ) + 4x5(2Tr(H2H4)− Tr(H3
2 )) +O(x6).

Now from (27), we obtain (47). We can expand the volume form (using the expansion of

determinant in traces) modulo O(x7) and use (47)

det(h−1
0 hx) = 1 + x2Tr(H2) + x4

(

− 1
4Tr(H

2
2 ) +

1
2(Tr(H2))

2
)

+ x6
(

1
6Tr(H

3
2 )− 1

3Tr(H2H4) +
1
6(Tr(H2))

3 + 1
4Tr(H2)Tr(H

2
2 )
)

thus taking the square root and using the expression of H4 given by (29), we obtain the

desired formula for v2, v4, v6. �



THE RENORMALIZED VOLUME AND UNIFORMISATION 23

Remark 3.10. If h0 is a locally conformally flat metric on N , the expression of v2j(h0) has

been computed by Graham-Juhl [31]: they obtain

v2j(h0) = 2−jσj(H2), h2(·, ·) = h0(H2·, ·) = −Schh0(·, ·). (48)

3.3. The renormalized volume in dimension n = 2. Combining Lemma 3.5 with Lemma

3.6 and Lemma 3.9, we obtain:

Proposition 3.11. The renormalized volume functional V2(ω0) = VolR(M, e2ω0h0) on the

conformal class [h0] in dimension 2 is given by the expression

V2(ω0) = V2(0)− 1
4

∫

∂M
(|∇ω0|2h0

+ Scalh0ω0)dvolh0 .

Its Hessian at h0 is Hessh0(V2) = −1
2h

−1
0 .

The critical points of the functional V2 restricted to the set

{ω0 ∈ C∞(∂M);

∫

∂M
e2ω0dvolh0 = 1}

are the solutions of the equation Scale2ω0h0
= 4πχ(∂M). We notice that this is the usual

functional for uniformizing surfaces, that is, of finding the constant curvature metrics in the

conformal class as critical points. When χ(∂M) < 0, there is existence and uniqueness of

critical points by strict convexity of the functional (see e.g [66]). The renormalized volume

is maximized at the hyperbolic metric in the conformal class.

It is instructive to recall here the Polyakov formula for the regularized determinant of the

Laplacian (see e.g. [56, Eq (1.13)])

3π log(det′∆e2ω0h0
)− 3π log(det′∆h0) = −1

4

∫

∂M
(|∇ω0|2h0

+ Scalh0ω0)dvolh0 .

As a consequence, we deduce

Lemma 3.12. Let (N, [h0]) be a closed compact Riemann surface, and let M be a Poincaré-

Einstein manifold with conformal infinity (N, [h0]). Then the functional

FM : [h0] → R, h 7→ det′(∆h) exp
(

−VolR(M,h)

3π

)

is constant.

The constant FM ([h0]), which depends on M and [h0], is computed by Zograf [70] for the

case where M is a Schottky 3-manifold: M is a handlebody, its interior is equipped with a

complete hyperbolic metric and the space of conformal classes [h0] on the conformal infinity

∂M is identified to the Teichmüller space T∂M of ∂M . The function FM : T∂M → R
+ can be

expressed in terms of a period matrix determinant on ∂M and the modulus of a holomorphic

function on T∂M .
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3.4. The renormalized volume in dimension n = 4. Combining Lemma 3.5, Lemma

3.6 and Lemma 3.9, we obtain an explicit formula for the functional

V4 : C
∞(∂M) → R, V4(ω0) := VolR(M,h0e

2ω0).

Proposition 3.13. The renormalized volume functional V4 on the conformal class [h0] in

dimension 4 is given by the expression

V4(ω0) = V4(0) +

∫

∂M
[14σ2(H2)ω0 +

1
8(h2 − Trh0(h2)h0)(∇ω0,∇ω0)

+ 1
16∆h0ω0.|∇ω0|2h0

− 1
32 |∇ω0|4h0

]dvolh0

where h2 = h0(H2·, ·). Its Hessian at h0 is given by

Hessh0(V4)(ω0) =
1
4

∫

∂M
(h2(∇ω0,∇ω0)− Trh0(h2)|∇ω0|2h0

)dvolh0

= − 1
8

∫

∂M
(Rich0 −1

2Scalh0h0)(∇ω0,∇ω0)dvolh0 .

The critical points of the functional V4 restricted to the set
{

ω0 ∈ C∞(∂M);

∫

∂M
e4ω0dvolh0 = 1

}

are, as we have seen, the solutions of the equation

σ2(Sche2ω0h0
) = 4

∫

∂M
v4 dvolh0 = C4

(

4π2χ(∂M)− 1
2

∫

∂M
|W |2h0

)

with C4 is an universal constant, χ(M) the Euler characteristic, W the Weyl tensor of h0,

and Schh0 the Schouten tensor.

4. Metrics with vn constant

Equations of the type vk = constant appeared first in the work of Chang-Fang [13], who

proved that for k < n/2, these equations are variational. We will exhibit some cases where

the equation vn = constant has solutions. We shall consider either n ≤ 4 or perturbations

of computable cases, typically conformal classes containing Einstein manifolds or locally

conformally flat manifolds.

First let us give an expression for the linearisation of vn in the conformal class.

Lemma 4.1. Let h0 be a smooth metric, then for any ω0 ∈ C∞(M)

∂s(e
nsω0vn(e

2sω0h0))|s=0 = d∗h0
(Hh0(dω0))

where Hh0 ∈ C∞(N,End(T ∗N)) is defined by h−1
0 (Hh0 ·, ·) = Hessh0(Vn)(·, ·), using the no-

tation (45).

Proof. Let (M, g) is a Poincaré-Einstein manifold with conformal infinity [h0], then we have

seen from (40) that ∂s(VolR(M, e2sω0h0)) =
∫

N vn(e
2sω0h0)ω0dvole2sω0h0

thus

∂2s (VolR(M, e2sω0h0))|s=0 =

∫

N
∂s(vn(e

2sω0h0))|s=0ω0dvole2ω0h0
+ n

∫

N
vn(h0)ω

2
0dvolh0 .
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We therefore have
∫

N
∂s(vn(e

2sω0h0))|s=0ω0dvolh0 =

∫

N
Hessh0(Vn)(dω0, dω0)− nvn(h0)ω

2
0dvolh0 . (49)

Using the symmetry of the tensor Hessh0(Vn) as mentionned in Remark 3.8, this quadratic

form can be polarized and this provides the desired expression for the linearisation of vn. �

This Lemma suggests that vn(e
ω0h0) depends only on derivatives of order 2 of ω0. In fact

Graham [29, Th. 1.4] proved a stronger statement, namely that vn(h0) depends only on two

derivatives of h0.

Using the Nash-Moser implicit function theorem we can deal with perturbations of model

cases for which we know that vn is constant.

Proposition 4.2. Let N be an n-dimensional compact manifold with a conformal class [h0]

admitting a representative h0 with vn(h0) =
∫

N vn(h0)dvolh0. Assume that Hess(Vn) is a

positive (resp. negative) definite tensor at h0 and that the quadratic form

f 7→
∫

N

(

Hessh0(Vn)(df, df)− nvn(h0)f
2
)

dvolh0 (50)

is non-degenerate on C∞(N). Then there is a neighbourhood Uh0 ⊂ M(N) of h0 such that

S := {h ∈ Uh0 ; vn(h) =

∫

N
vn(h)dvolh}

is a slice at h0 for the conformal action of C∞(N) as defined in (15).

Proof. We shall use the Nash-Moser implicit function theorem. We first take a slice Sh0 at h0
for the conformal action, in order to view a neighbourhood U[h0] ⊂ C(N) of [h0] as a Fréchet

submanifold of M(N) and a neighbourhood Uh0 in M(N) as a product space Sh0 ×C∞(N):

for instance, take the open subset of Fréchet space

Bh0 = {r ∈ C∞(N,S2N); Trh0(r) = 0, sup
m∈N

|r(m)|h0 < 1};

then the map

Ψ : Bh0 × C∞(N) → M(N), Ψ(r, ω0) = e2ω0(h0 + r)

is a tame Fréchet diffeomorphism onto its image and Sh0 := Ψ(Bh0 × {0}) is a slice. Let Φ

be the smooth map of Fréchet manifolds

Φ : Bh0 × C∞(N) → C∞(N), Φ(r, ω0) := vn(Ψ(r, ω0))−
∫

N
vn(Ψ(r, ω0))dvolΨ(r,ω0).

where we recall from Remark 3.3 that
∫

N vn(h)dvolh is a conformal invariant. The map Φ is a

non-linear differential operator and thus is tame in the sense of [40]. Notice that Φ(0, 0) = 0.

We compute its differential with respect to the coordinate ω0:

DΦ(r,ω0)(0, f) = ∂s(vn(e
2sfΨ(r, ω0)))|s=0.

Using Lemma 4.1 and writing h = Ψ(r, ω0), we therefore have

DΦ(r,ω0)(0, f) = d∗h(Hhdf)− nvn(h)f
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where d∗h is the adjoint of d with respect to h. If Hh (or equivalently Hessh(Vn)) is positive

definite or negative definite, then f 7→ DΦ(r,ω0)(0, f) is an elliptic self-adjoint differential

operator of order 2 acting on C∞(N). If in addition the quadratic form (50) is non-degenerate,

then by continuity of h 7→ Hh and h 7→ vn(h) in C∞(N,S2N) and the theory of elliptic

differential operators, we deduce that f 7→ DΦ(r,ω0)(0, f) is an isomorphism on C∞(N) for

(r, ω0) in a small neighbourhood of (0, 0) in Bh0 ×C∞(N). Moreover the inverse is a pseudo-

differential operator of order −2, depending continuously on (r, ω0), which is automatically

tame (see for instance [40, Chap II.3]). Therefore we can apply the Nash-Moser theorem and

we obtain that there exists a smooth tame map

r 7→ ω0(r) (51)

of Fréchet spaces such that Φ(r, ω0(r)) = 0, if r is in a small open subset of Bh0 . The slice

S is simply the image of r 7→ Ψ(r, ω0(r)) for r near 0. �

Remark 4.3. Notice that, if we were not interested in the Frechet structure of the slice, we

could instead apply the implicit function theorem in some Hölder Cj,α(N) space with j large

enough by using [29, Th. 1.4] which says that ω0 7→ vn(e
2ω0h0) maps Cj,α(N) to Cj−2,α(N),

and then use uniqueness of the solution near the model cases to show that the solution e2ω0h0
is indeed C∞(N) if h0 is smooth. The proof amounts essentially to the same argument as

Proposition 4.2 except that only the isomorphism of DΦ(0, h0) is needed.

We now apply the existence result of Proposition 4.2 to a couple of cases.

4.1. Einstein manifolds. We now consider the behavior of the renormalized volume in

Poincaré-Einstein manifolds with a conformal infinity containing an Einstein metric. A

prime example is given by the “Fuchsian” Poincaré-Einstein manifolds defined in the previous

section.

Lemma 4.4. Let N be an n-dimensional manifold with a conformal class [h0] that contains

an Einstein metric. Then the Einstein representative h0 ∈ [h0] with Rich0 = λ(n − 1)h0,

satisfies

vn(h0) =
n!

(n/2)!2
(−λ

4 )
n
2 .

The Hessian of the renormalized volume Vn at h0, viewed as a symmetric tensor on T ∗N , is

given by

Hess(Vn) = −1
4

(

−λ
4

)

n
2
−1 n!

(n/2)!2
h−1
0 . (52)

The Einstein metric h0 is a local maximum for VolR in {h0 ∈ [h0];
∫

N dvolh0 = 1} if either

λ < 0 or if λ > 0 and n
2 is odd. If λ > 0 and n

2 is even, it is a local minimum.

Proof. In all these cases, one has from the expression (31)

h2 = −λ
2h0, h4 =

λ2

16h0, h2j = 0 for j > 2, v2j = Cn
j (−1)j(λ4 )

j

h−1
x = h−1

0

∞
∑

j=0

(j + 1)(λ4 )
jx2j , h(2j) = (j + 1)(λ4 )

jh−1
0 .

(53)



THE RENORMALIZED VOLUME AND UNIFORMISATION 27

In particular the Einstein metric h0 satisfies vn(h0) = Cn
n/2(−1

2)
n
2 λ

n
2 , which is constant. Now

Corollary 3.7 gives the expression for the Hessian of VolR(M, e2ω0h0):

Hessh0(Vn)(ω0) = −1
2(

λ
4 )

n
2
−1

n
2
−1
∑

k=0

Cn
k (−1)k

∫

∂M
|∇ω0|2h0

dvolh0 .

Using the binomial formula we get 2
∑

n
2
−1

k=0 C
n
k (−1)k = −Cn

n/2(−1)
n
2 , which achieves the

computation.

Let us check this is a local maximum in the λ < 0 case, the other cases are similar. One

has

Vn(ω0)− Vn(0) =

∫ 1

0
(1− s)∂2s (VolR(M, e2sω0h0))ds =

∫ 1

0
(1− s)Hesse2sω0h0

(Vn)(ω0)ds.

Now from the formula giving the hessian in Corollary 3.7 and the negativity of (52), we

have by continuity that there exists ε > 0 small, k ≫ n large and c0 > 0 such that for all

||ω0||Ck(N) ≤ ε and all s ∈ [0, 1]

Hesse2sω0h0
(Vn)(ω0) ≤ −c0||dω0||2L2 .

This implies that Vn(ω0) ≤ Vn(0) with equality if and only if ω0 is constant, but since we

restrict to
∫

N enω0dvolh0 =
∫

N dvolh0 = 1, the equality happens only if ω0 = 0. �

The extremals of vn in conformal classes containing Einstein metrics is also considered

independently by Chang-Fang-Graham [14].

Using this computation and applying Proposition 4.2, we obtain that in a neighbourhood

of a conformal class admitting an Einstein metric, the equation vn = constant can be solved

except for the case of the canonical sphere.

Corollary 4.5. Let [h0] be a conformal class on N admitting a metric h0 with Rich0 =

λ(n−1)h0 6= 0, which is not conformal to the canonical sphere. Then, there is a neighbourhood

Uh0 ⊂ M(N) of h0 such that S := {h ∈ Uh0 ; vn(h) =
∫

N vn(h)dvolh} is a slice at h0 for the

conformal action of C∞(N).

Proof. The quadratic form (50) is a non-zero constant times 〈(∆h0 − nλ)ω0, ω0〉L2 and using

the Lichnerowicz-Obata theorem [54], then ∆h0 −nλ has trivial kernel except for the case of

the sphere. The result follows from Proposition 4.2. �

4.2. Locally conformally flat metrics. In this case, we can take the Poincaré-Einstein

metric to be of the form (30), which can be rewritten

g =
dx2 + hx

x2
, hx(·, ·) = h0((1 +

1
2x

2H2)
2·, ·)

with H2 some endomorphism of TN (representing −Schh0). The metric h−1
x dual to hx has

expansion near x = 0 given by

h−1
x = h−1

0 (

n
2
∑

j=0

H2j ·, ·) +O(xn+2), H2j = 2−j(j + 1)(−H∗
2 )

j
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where H∗
2 here denotes the endomorphism of T ∗N dual of H2. Recall by (48) that

vn(h0) = 2−
n
2 σn

2
(H2).

Lemma 4.6. The Hessian of Vn at a locally conformally flat metric h0 is given by

Hessh0(Vn) = 2−
n
2 h−1

0

(

n
2
−1
∑

j=0

σj(H
∗
2 )(−H∗

2 )
n
2
−j−1·, ·

)

.

where H∗
2 is the dual endomorphism to H2 defined by h2(·, ·) = h0(H2·, ·) and σj(H

∗
2 ) is

the elementary symmetric function of order j of H∗
2 , as defined in (46). If e1, . . . , en is an

orthogonal basis of eigenvectors of H∗
2 , then

Hessh0(Vn)|Rej = 2−
n
2 σn

2
−1(H

∗
2 |(Rej)⊥)h

−1
0 . (54)

Proof. The first formula for the Hessian is a direct application of (45) and (48), it remains

to prove (54). Let λℓ be the eigenvalue of H∗
2 corresponding to eℓ. Then, denoting by F (t)[j]

the coefficient of tj in a power series F (t), we compute

n
2
−1
∑

j=0

(−λℓ)
n
2
−j−1σj(H

∗
2 ) =

n
2
−1
∑

j=0

(−λℓ)
n
2
−j−1 det(1 + tH∗

2 )[j]

=

n
2
−1
∑

j=0

[(−tλℓ)
n
2
−j−1 det(1 + tH∗

2 )][n2−1]

= [(1 + tλℓ)
−1 det(1 + tH∗

2 )[n2−1]]

=
∑

i1<···<in
2 −1

i• 6=ℓ

λi1 . . . λin
2 −1

which is the claimed formula. �

We remark that
∑

n
2
−1

j=0 σj(H
∗
2 )(−H∗

2 )
n
2
−j−1 is the so called (n2 − 1)-Newton transform

Tn
2
−1(H

∗
2 ) associated with H∗

2 . The fact that ∂tσn
2
(A(t)) = Tn

2
−1(A(t)).∂tA(t) for a family of

symmetric matrices is well-known, see [59]. When the eigenvalues of H∗
2 are in the connected

component containing (R+)
n inside the positive cone

Γ+
n
2
:= {λ = (λ1, . . . , λn) ∈ R

n;σj(λ) > 0, ∀j = 1, . . . , n2 }

then Tn
2
−1(H

∗
2 ) is positive definite, while when they are in −Γ+

n
2
, it is negative definite, see

e.g. [12]. In the first case, it is proved in [36] that if σn
2
(H2) > 0 in the locally conformally

flat case, then the manifold has to be of constant positive sectional curvature. On the other

hand, when the eigenvalues of H2 are in −Γ+
n
2
, there seem to be no existence result for the

equation σn
2
(H2) = const (although there are interesting partial results in Gursky-Viaclovsky

[38]).
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4.3. Dimension 4. By Lemma 3.9,the equation v4(e
2ω0h0) = const is the σ2-Yamabe equa-

tion, as introduced in the work of Viaclovsky [67]. It has solutions in dimension n = 4

under certain ellipticity condition: when the eigenvalues of the Schouten tensor (viewed as

an endomorphism via h0) are in the connected component containing (R+)
4 inside

Γ+
2 := {λ = (λ1, . . . , λ4) ∈ R

4;σ2(λ) > 0, σ1(λ) > 0},

then Chang-Gursky-Yang [15, 16] proved that there is a solution ω0 of v4(e
2ω0h0) = const.

Another proof appears in the work of Gursky-Viaclovsky [39, Cor. 1.2] and in Sheng-

Trudinger-Wang [62].

We now give a uniqueness result using maximum principle.

Lemma 4.7. Let (N, h0) be a compact manifold. Assume that
∫

N v4(h0)dvolh0 > 0 and that

Schh0−Trh0(Schh0) is positive definite. Then the equation v4(e
2ω0h0) =

∫

N v4(e
2ω0h0)dvole2ω0h0

has at most one solution ω0 ∈ C∞(N). These conditions are satisfied in a neighbourhood of

an Einstein metric h0 with negative Ricci curvature.

Proof. Assume there are two solutions. Changing h0 by a conformal factor we can assume

that 0 is a solution and let ω0 be the other solution, we then have v4(h0) = v4(e
2ω0h0) as

∫

N v4 is a conformal invariant. At the minimum p ∈ N of ω0, one has ∇ω0(p) = 0. Since

Sche2ω0h0
= Schh0 − 2∇2ω0 + 2dω0 ⊗ dω0 − |dω0|2h0

h0

where ∇2ω0 is the Hessian with respect to h0, we deduce by using the expresion of v4 in

Lemma 3.9 that

v4(h0) = v4(e
2ω0h0) = e−4ω0

(

v4(h0) + σ2(Bω0) +
1
2〈Schh0 − Trh0(Schh0),∇2ω0〉h0

)

.

where σ2(Bω0) is the symmetric function of order 2 in the eigenvalues of the symmetric

endomorphism Bω0 defined by ∇2ω0 = h0(B·, ·). At p, the eigenvalues of Bω0 are non

negative, thus σ2(Bω0) ≥ 0 there. Moreover, if v4(h0) 6= 0,
∫

N (e4ω0 − 1)dvolh0 = 0 and thus

ω0(p) < 0 if ω0 6= 0, which gives 1− e−4ω0(p) < 0. We then obtain, if v4(h0) > 0,

〈Schh0 − Trh0(Schh0),∇2ω0〉h0(p) < 0

thus if Schh0 −Trh0(Schh0) is positive definite, we obtain a contradiction with the maximum

principle. �

5. General variations of the renormalized volume

We shall now compute the variation of VolR for a family of Einstein metrics.

5.1. The Schläfli formula. We recall the Schläfli formula proved by in [60] for Einstein

manifolds with boundary and non zero Einstein constant. For completeness, we give a short

proof of this formula arising from the variation formula for scalar curvature, this is similar

to [3, Lemma 2.1].
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Lemma 5.1 (see [60]). Let M be an n + 1-dimensional manifold with boundary and gt a

family of Einstein metrics on M with Ht the mean curvature at ∂M , and IIt the second

fundamental form at ∂M , computed with respect to the inward-pointing unit normal vector

field to ∂M . Let Ricgt = nλtg
t and assume that λ0 6= 0. Then

∂tVol(M, gt)|t=0 = −(n+ 1)λ̇

2λ0
Vol(M, g)− 1

nλ0

∫

∂M
(Ḣ + 1

2〈ġ, II〉g)dvol ∂M (55)

where dot denotes the time derivative at t = 0 and dvol∂M is the volume form induced by the

restriction of g0 on ∂M , and g = g0.

Proof. We use the variation formula of the scalar curvature of a 1-parameter family of Rie-

mannian metrics [6, Theorem 1.174]:

∂tScalgt |t=0 = ∆g Trg(ġ) + d∗δg ġ − 〈Ricg, ġ〉. (56)

Since gt is Einstein, we have Ricgt =
Scalgt

n+1 g
t and hence

〈Ricg, ġ〉dvolg =
Scalg
n+ 1

Trg(ġ)dvolg =
2Scalg
n+ 1

∂tdvolgt |t=0.

Let ν be the inward-pointing unit vector field on ∂M . Integrating (56) times dvolg over M

and using Stokes we get

2nλ0∂tVol(M, gt)|t=0 =

∫

M
(∆g Trg(ġ) + d∗δg ġ − n(n+ 1)λ̇)dvolg

= − n(n+ 1)λ̇Vol(M, g) +

∫

∂M
(ν(Trg(ġ)) + δg(ġ)(ν))dvol∂M .

To compute the right-hand side we reduce to the case where the metric is of the form

gt = dx2 + htx near the boundary where x, the distance function to the boundary for gt, is

independent of t, and htx are metrics on ∂M depending smoothly on x, t. One way to do

that is to pull-back gt by a diffeomorphism ψt which is the identity on ∂M and constructed

as follows: let

φt : ∂M × [0, ε) →M, φt(p, s) := expg
t

p (sνt)

be the normal geodesic flow where νt is the inward-pointing unit normal to ∂M with respect

to gt, and then set ψt to be any diffeomorphism of M extending φ0 ◦ (φt)−1 defined near

∂M . We replace gt by (ψt)∗gt and remark that all the terms in (55) are invariant by this

operation.

We have IIt = −1
2∂xh

t
x|x=0 andH

t = Trht
0
(IIt) = −1

2Tr((h
t
0)

−1∂xh
t
x)|x=0. Since ∂xTr(A

−1∂tA) =

∂tTr(A
−1∂xA) if A = A(x, t) is a family of invertible matrices, we deduce

ν(Trg(ġ)) = ∂xTrhx
(ḣx)|x=0 = ∂xTr(h

−1
x ∂th

t
x)|t=0,x=0

= ∂tTr((h
t
0)

−1∂xh
t
x)|t=0,x=0 = −2Ḣ.

Using that ġ = ḣx, it is easy to see that

δg(ġ)(ν) = −〈ġ, II〉,
which concludes the proof. �
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5.2. Variation of the renormalized volume in arbitrary dimensions. Let gt be a

family of asymptotically hyperbolic Einstein metrics on M , and choose a family of boundary

defining functions xt. We can pull back gt by a diffeomorphism ψt so that xt = (ψt)∗x

is a fixed function on M and consider (ψt)∗gt instead of gt. Clearly VolR(M, gt;xt) =

VolR(M, (ψt)∗gt;x) therefore we can assume that xt is independent of t and to simplify

notation we will write VoltR(M) for VolR(M, gt;x).

We write gt = (dx2 + htx)/x
2 and use the dot notation for ∂t|t=0 and hx := h0x.

Regularity Assumption: we assume in this section that gt is a C1 function of t, near

t = 0, with values in the space of smooth metrics on M , and that htx is a C1 function of

t with values in the space of conormal polyhomogeneous tensors equipped with the natural

topology (i.e., the asymptotic expansions of htx at x = 0 are C1 in t).

In dimension n+ 1 even, Albin [2, Th. 1.3] and Anderson [3, Th. 0.2] proved

Theorem 5.2 (Albin, Anderson). Let gt be a family of AHE metrics on M with n odd and

let ht0 = h0 + tḣ0 + o(t) be a C1 family of representatives of the conformal infinity (∂M, [ht0])

of (M, gt). Let hn be the Neumann datum of g0 in the sense of (33). Then

∂tVol
t
R(M)|t=0 = −1

4

∫

∂M
〈hn, ḣ0〉dvolh0

Here, we study the more complicated case when n even and obtain:

Theorem 5.3. Let gt be a family of AHE metrics on M with n even, satisfying the regularity

assumption described above when written under the form gt = (dx2 + htx)/x
2 for some fixed

x near ∂M . We write ht0 = h0 + tḣ0 + o(t) and let hn be the Neumann datum of g0. There

exists a symmetric covariant 2-tensor Fn formally determined by h0, of order n, such that

∂tVol
t
R(M)|t=0 =

∫

∂M
〈Gn, ḣ0〉dvolh0 (57)

where Gn := −1
4(hn + Fn) satisfies δh0(Gn) = 0 and Trh0(Gn) =

1
2vn.

Proof. We will use the Schläfli formula for the compact manifold with boundary {x ≤ ε}. The
second fundamental form, mean curvature and their variation on the hypersurface {x = ε}
are given by the value at x = ε of

II = − 1
2x∂x(hx/x

2) = −x−2(12x∂xhx − hx),

H = Trhx
(II) = −1

2Trhx
(x∂xhx)− n,

Ḣ = 1
2〈ḣx, x∂xhx〉hx

− 1
2Trhx

(x∂xḣx).

Let us denote V̇olR = ∂tVol
t
R(M)|t=0 . We are interested in computing

−nV̇olR = 1
2FPε→0

∫

x=ε
(Trhx

((x∂x − 1)ḣx)− 1
2〈ḣx, x∂xhx〉hx

)
vx
xn

dvolh0 (58)
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where vxdvolh0 = dvolhx
. Viewing symmetric tensors as matrices in local coordinates, we

write modulo o(xn)

vx =
∑

2q≤n

x2qv2q, v0 = 1

hx = h0

(

∑

2j≤n

x2jH2j + xn log(x)K
)

, H0 = 1

h−1
x =

(

∑

2j≤n

x2jH2j − xn log(x)K
)

h−1
0 , H0 = 1

ḣx = ḣ0

(

∑

2j≤n

x2jH2j + xn log(x)K
)

+ h0

(

∑

2j≤n

x2jḢ2j + xn log(x)K̇
)

x∂xhx = h0

(

∑

2j≤n

2jx2jH2j + nxn log(x)K + xnK
)

(x∂x − 1)ḣx = ḣ0

(

∑

2j≤n

(2j − 1)x2jH2j + (n− 1)xn log(x)K + xnK
)

+ h0

(

∑

2j≤n

(2j − 1)x2jḢ2j + (n− 1)xn log(x)K̇ + xnK̇
)

.

Taking the term of degree xn and using Tr(K) = Tr(K̇) = 0, we get

[vxTrhx
((x∂x − 1)ḣx)]n = 〈ḣ0, k〉+

∑

i+j+q=n
2

(2j − 1)[Tr(H2iḢ2j)

+ Tr(h−1
0 ḣ0H2jH

2i)]v2q

(59)

[vx〈ḣx, x∂xhx〉]n = 〈ḣ0, k〉+
∑

i+j+m+ℓ+q=n
2

2ℓ(Tr(H2iḢ2jH
2mH2ℓ)

+ Tr(h−1
0 ḣ0H2jH

2mH2ℓH
2i))v2q

= 〈ḣ0, k〉+
∑

i+j+m+ℓ+q=n
2

2ℓ(Tr(H2iḢ2jH
2mH2ℓ)v2q

+
∑

i+ℓ+q=n
2

2ℓTr(h−1
0 ḣ0H2ℓH

2i))v2q

(60)

where in the last line we used
∑

j+m=uH2jH
2m = 0 for all u > 0 . Let us single out the

terms in −nV̇olR which do not depend formally on h0. Since the H2j , H
2j , v2j are formally

determined by h0 of order 2j when j < n/2, by Lemma 2.6 we know that there exist Rn

formally determined by h0 of order n such that

−nV̇olR = 1
2

(

(n− 1)(Tr(Ḣn) + 〈ḣ0, hn〉)− Tr(h−1
0 ḣ0H

n)
)

− n
4 〈ḣ0, hn〉+ 〈ḣ0, Rn〉.

But since Hn + Hn depends formally on h0, this reduces to considering terms containing

Hn, Ḣn and we get that there exists R′
n formally determined by h0 of order n such that

−nV̇olR = n−1
2 ∂tTrht

0
(htn)|t=0 +

n
4 〈ḣ0, hn〉+ 〈ḣ0, R′

n〉.
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Now we know that Trht
0
(htn) is formally determined with respect to ht0 of order n for each t,

therefore we have established (57) with Gn = −1
4(hn +Fn) for some Fn formally determined

by h0 of order n.

Let us now show that Trh0(Gn) = 1
2vn and δh0(Gn) = 0. Let ht0 = e2tω0h0 for some

function ω0 ∈ C∞(∂M). We have ḣ0 = 2ω0h0, and combining (57) with Lemma (3.5) and

(3.6) we get

V̇olR =

∫

∂M
vnω0dvolh0 = 2

∫

Trh0(Gn)ω0dvolh0

for all ω0, and so 2Trh0(Gn) = vn. It remains to compute the divergence of Gn. Let

φt = exp(tV ) be a one-parameter family of diffeomorphisms of M generated by a vector

field V such that dx(V ) = 0 near ∂M . Then VolR(M, (φt)∗g;x) is independent of t because

φt preserves the regions {x > ε} for any small ε > 0. Therefore from (57) applied to

ḣ0 = LV h0 = 2δ∗h0
V we get

0 = ˙VolR = 〈ḣ0, Gn〉 = 2〈V, δh0(Gn)〉.

Since V |∂M can be chosen arbitrarily, we conclude that δh0(Gn) = 0. �

Although Fn has been defined as a function of h0 when h0 is the conformal infinity of an

Einstein metric, the fact that it is formally determined implies that we can consider Fn(h0)

for any metric h0.

Corollary 5.4. Let (N, h0) be a Riemannian manifold. There exists a tensor Fn = Fn(h0)

formally determined by h0, of order n, such that

Trh0(Fn) = −Tn − 2vn, δh0(Fn) = −Dn (61)

where Dn, Tn are the formally determined tensors of Proposition 2.7 and vn is the formally

determined function defined by the volume expansion in (36). If (h0, hn) is a Poincaré-

Einstein end, then δh0(hn + Fn) = 0 and Trh0(hn + Fn) = −2vn.

Proof. Since Fn(h0) is formally determined by h0, we see by Remark 2.5 that it suffices to

prove the result on metrics on the sphere Sn. For the round metric hSn on Sn, or any

other metrics which is the conformal infinity of an AHE metric on the unit ball Bn+1, the

conclusion (61) follows directly from Theorem 5.3, more precisely from the last part of its

proof. If now h0 is any metric on Sn, we define the metrics ht0 := th0+(1−t)hSn for t ∈ [0, 1].

By Graham-Lee [32], for small t ∈ [0, ε], the metric ht0 is the conformal infinity of some AHE

metric gt on Bn+1 and we have seen that this implies (61) for ht0 with t ∈ [0, ε]. But Fn(h
t
0),

Tn(h
t
0) and vn(h

t
0) are real analytic in t, therefore by unique continuation we deduce that

(61) holds for h0 = h10. �

5.3. Case n = 2. We do not give full details of the computation, since this case has been

analyzed in [45, 35]. With the notation of the proof of Theorem 5.3) we have

k = 0, v2 =
1
2Trh0(h2) =

1
2Tr(H2), H2 = −H2, (62)
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and from (58), (59), (60), we obtain

˙VolR = −1
4

(
∫

∂M
2∂t(Trh0(h2))|t=0dvolh0 +

〈

ḣ0, h2 − v2h0

〉

)

.

By [24, Prop 7.2], Trh0(h2) = −1
2Scalh0 , and thus, using the Gauss-Bonnet formula, we easily

get
∫

∂M
˙Scalh0dvolh0 = −1

2〈ḣ0, Scalh0h0〉. We conclude

˙VolR = −1
4

〈

ḣ0, h2 +
1
2Scalh0h0

〉

, −4G2 = h2 +
1
2Scalh0h0, F2 =

1
2Scalh0h0. (63)

5.4. Case n = 4. First, we have the relations (with the notation of the proof of Theorem

5.3)

H2 = −H2, H4 = −H4 −H2H
2 = −H4 + (H2)

2.

From (58), (59) and (60) we obtain

−8 ˙VolR =
〈

ḣ0,
1
2k + 2h4 − h22 + v2h2 − v4h0

〉

+

∫

∂M
(v2Tr(Ḣ2)− 2Tr(H2Ḣ2) + 3Tr(Ḣ4))dvolh0 .

(64)

where h22 := h−1
0 (H2)

2 is the tensor obtained by composing the endomorphism H2 with itself.

Now, recall Lemma 3.9 obtained from the constraint equation on the trace of the shape

operator, which gives

v2Tr(Ḣ2)− 2Tr(H2Ḣ2) + 3Tr(Ḣ4) = ∂t

(

1
4Tr(H2)

2 − Tr(H2
2 ) + 3Tr(H4)

)

|t=0

= 2v̇4.
(65)

But we also have from (43)
∫

∂M
v̇4 dvolh0 +

1
2〈ḣ0, v4h0〉 = 1

4〈ḣ0, k〉

and by combining with (64) and (65), we obtain

˙VolR = 〈ḣ0, G4〉, −4G4 := h4 − 1
2h

2
2 +

1
2v2h2 − v4h0 +

1
2k

and by Lemma 3.9 this can be rewritten as

−4G4 = h4 − 1
2h

2
2 +

1
4Trh0(h2)h2 − 1

4σ2(h2)h0 +
1
2k,

where h2 = −Schh0 = −1
2(Rich0 − 1

6Scalh0h0).

5.5. Einstein metric in the conformal infinity. If Rich0 = λ(n − 1)h0 for some λ ∈ R,

one can prove that the tensor Fn is a constant times h0:

Lemma 5.5. Let h0 be Einstein, Rich0 = λ(n − 1)h0. Then Fn = −2 (n−1)!
(n/2)!2

(−λ
4 )

n
2 h0 and

Gn = −1
4(hn − 2 (n−1)!

(n/2)!2
(−λ

4 )
n
2 h0). In particular, ∂sVolR(M, gs;hs0)|s=0 = 0 if gs is a family

of AHE metrics with (gs, hs0)|s=0 = (g, h0) and Vol(N, hs0) = 1, and if the trace-free part of

the tensor hn in the expansion of g is 0.
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Proof. First, notice that Tn = 0 in that case since Tn = Trh0(hn) depends only on h2j for

j < n/2 and the metric g := x−2(dx2+(1−λx2/4)2h0) is an exact Einstein metric near x = 0

which has hn = 0 (see Section 6.2 below). Therefore it suffices to prove that Fn is proportional

to h0 and the multiplicative constant is deduced directly from (61) and the formula vn =

Cn
n/2(−λ

4 )
n
2 of Lemma 4.4. Let Ax = h−1

x ∂xhx = −λx
(1−λx2/4)

Id if hx = (1 − λx2/4)2h0. If

gt = (dx2 + htx)/x
2 is a family of Poincaré-Einstein metrics near x = 0, with g0 = g, then

differentiating the first constraint equation in (27) at t = 0 gives

∂xF (x)−
λx

1− λx2/4
F (x) = 0, F (x) = x−1Tr(Ȧx) ∈ C∞([0, ε))

and Ȧx = ∂tAx|t=0. In particular

Tr(Ȧx) = a0x exp

(
∫ x

0

λt
1−λt2/4

dt

)

(66)

is determined by a constant a0 ∈ R.

Using the notations in the proof of Theorem 5.3, we claim that there exists cj , dj ∈ R such

that for all j ≤ n/2,

a0 = 2Tr(Ḣ2), Tr(Ḣ2j) = cjTr(Ḣ2), Tr(Ḣ2j) = djTr(Ḣ2). (67)

Since
∑n/2

j,k=0 x
2(j+k)H2jH

2k = Id + O(xn+1) and H2j |t=0, H
2k|t=0 are multiples of Id, then

Tr(Ḣ2j) = −Tr(Ḣ2j) +
∑j−1

k=0 bkTr(Ḣ2k) for some constants bk ∈ R. But modulo o(xn), we

have

x−1Tr(Ȧx) =

n/2
∑

k=1

n/2
∑

j=0

2k(αkTr(Ḣ
2j) + βjTr(Ḣ2k))x

2(j+k−1)

for some αk, βj ∈ R such that β0 = 1, thus an easy induction and (66) prove (67).

Inserting (67) in (59) and (60), and using that v2q are constant if h0 is Einstein for q ≤ n/2

by (53), we deduce directly that there exists C ∈ R such that

V̇olR = −1
4〈hn, ḣ0〉+ C

∫

∂M
Tr(Ḣ2)dvolh0 .

Since Tr(Ḣ2) = ∂t(Trht
0
(ht2))|t=0 and Trht

0
(ht2) = C ′Scalht

0
, we can use the variation formula

(56) for the scalar curvature, integration by parts and the fact that Richt
0
= λ(n−1)ht0 when

t = 0 to conclude that
∫

∂M Tr(Ḣ2)dvolh0 = C ′′〈h0, ḣ0〉 for some C ′′ ∈ R. If (M, g) is an AHE

manifold with conformal infinity containing an Einstein representative h0, then the traceless

part of Gn is the traceless part of the formally undetermined term hn (for the choice of x

associated to the metric h0). This achieves the proof. �

6. Cotangent space of conformal structures and quasifuchsian reciprocity

in higher dimension

We can now explain how the results of the previous section for hyperbolic manifolds in

three dimensions can be used to identify Poincaré-Einstein ends modulo gauge with cotangent

bundles to the space of conformal structures. This allows to extend McMullen’s quasifuchsian
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reciprocity, or more generally Kleinian reciprocity [53], in dimension n+ 1. We will work in

both even and odd dimensions, but for n even we shall need more hypotheses.

6.1. Assumptions and the slice vn = constant. To get a satisfactory picture where the

analogs of the 3-dimensional phenomena can be stated and proved, two technical hypothesis

will be necessary. We show below that those hypothesis are satisfied in non-trivial situations.

Like in Section 2.1, we denote by M(N) the space of smooth metrics on N and by M(M)

the space of polyhomogeneous metrics on M in the sense of Section 2.2 together with its

natural Fréchet structure.

We will consider in this section the situation where (some of) the following hypotheses

hold. Let h0 ∈ M(N) be a fixed metric.

Hypothesis 6.1. Frechet structure: The metric h0 has no conformal Killing fields and

the quotient space T (N) = G\M(N) has a Fréchet manifold structure near [h0] ∈ T (N).

Hypothesis 6.2. Slice vn = const: There is a slice S0 at h0 for the action of G = D0(N)⋉

C∞(N) on M(N) as defined in (16), and S0 is included in the subset of metrics {h ∈
M(N); vn(h) =

∫

N vn(h)dvolh}.

Hypothesis 6.3. Einstein filling: If S0 is a slice at h0 for the action of G = D0(N)⋉C∞(N)

on M(N), then there is a C1 map of Fréchet manifolds Ξ : S0 → M(M) such that Ξ(h) is

asymptotically hyperbolic Einstein with conformal boundary (N, [h]).

Using the existence results for Einstein equation obtained by Biquard or Lee [7, 46] and

the result of Corollary 4.5, we obtain

Proposition 6.4. Let h0 ∈ M(N) be an Einstein metric with negative sectional curvatures

and let g0 ∈ M(M) be an AHE metric with non-positive sectional curvatures on a manifold

M with conformal boundary (N, [h0]). Then Hypothesis 6.1 and 6.3 are satisfied. If n is

even, Hypothesis 6.2 is also satisfied. Moreover S0 can be chosen so that Th0S0 = {r0 ∈
C∞(N,S2N); Trh0(r0) = 0, δh0(r0) = 0}.

Proof. Hypothesis 6.1 comes from the fact that G acts properly since N is not the sphere and

there is no conformal Killing field for h0 since the Ricci curvature is negative (by Yano [69]),

ie. the isotropy group at h0 is finite and in fact it is trivial, by a result of Frenkel [26], since

we assumed the sectional curvatures to be non-positive. If S0 is any given slice at h0 for the

action of G and if g0 ∈ M(M) is an AHE metric with non-positive sectional curvatures on

M and with conformal boundary [h0], then Hypothesis 6.3 holds, after intersecting S0 with

a small enough neighbourhood of h0; this is proved by Biquard [7] and Lee [46, Theorem A].

In fact, technically speaking, [46] does not prove it with the topology we need, (i.e. that for

which the whole expansion of the metric at the boundary depends in a C1 fashion on h0),

but the arguments used by Biquard in the Kähler-Einstein setting [8] give the right property,

in fact it is even simpler in our case. If n is even, we know by Corollary 4.5 that there is a

slice S ⊂ M(N) at h0 for the conformal action with S = {h ∈ Uh0 ; vn(h) =
∫

N vn(h)dvolh}
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for some neighbourhood Uh0 ⊂ M(N) of h0. There is an action by pull-back

Θ : D0(N)× S → {h ∈ M(N); vn(h) =

∫

N
vn(h)dvolh}, Θ(φ, h) = φ∗h.

The set on the right is a Fréchet submanifold when intersected with a small neighbourhood

of h0 in M(N). Let us first define a slice S0 ⊂ S at h0 for the action Θ in the sense of (16).

To that aim, we return to the proof of Proposition 4.2 and use the notations there. We define

the smooth tame map

Π : Bh0 → S, r 7→ e2ω0(r)(h0 + r) (68)

where ω0(r) is obtained from (51) by solving Φ(r, ω0(r)) = 0. This is a Fréchet chart for S.
The derivative is the tame family of isomorphisms defined on {ṙ ∈ C∞(N,S2N); Trh0(ṙ) = 0}

DΠr(ṙ) = e2ω0(r)ṙ + 2(Dω0)r(ṙ)Π(r) (69)

where, from the proof of Proposition 4.2 using the Nash-Moser implicit function theorem,

we have that r 7→ (Dω0)r is a tame map into pseudo-differential operator on N of order

0. We take the open neighbourhood B′
h0

:= {r ∈ Bh0 ; δh0(r) = 0} of the Fréchet space of

trace-free/divergence-free tensors with respect to h0. We will call S0 the image by Π of a

neighbourhood of h0 contained in B′
h0
; this is a Fréchet submanifold of S and we are now

going to show that it is a slice for the action of D0(N). In that aim, we apply the Nash-

Moser inverse function theorem to the restriction Θ0 : D0(N) × S0 → Θ(D0(N) × S0) of Θ

to D0(N)× S0. The derivative at (φ, h) is

(DΘ0)(φ,h)(X, ḣ) = φ∗(LXh+ ḣ) ∈ Tφ∗hS

where X ∈ lie(D0(N)) is a smooth vector field and ḣ ∈ ThS0. Here (φ, h) are in a small

neighbourhood of (Id, h0) so that φ∗h ∈ S. Now Tφ∗hS = Im(DΠΠ−1(φ∗h)). Then we want

to find a smooth tame map ((φ, h), ṙ) 7→ (X, ḣ) ∈ lie(D0(N))× ThS0 so that

φ∗(LXh+ ḣ) = DΠr(ṙ)

where Trh0(ṙ) = 0 and r = Π−1(φ∗h) ∈ Bh0 . Using the chart Π, we translate this into the

problem of solving for (X, ṙ0) in

DΠ−1
r (LXh) + ṙ0 = DΠ−1

r

(

(φ−1)∗DΠr(ṙ)
)

(70)

with h = Π(r) and Trh0(ṙ0) = 0, δh0(ṙ0) = 0. Applying δh0 , this leads to

δh0DΠ−1
r (LXh) = δh0DΠ−1

r

(

(φ−1)∗DΠr(ṙ)
)

(71)

First, observe that the map Fh : X 7→ δh0DΠ−1
r (LXh) is a pseudo-differential operator on N

of order 2 acting on vector fields, depending smoothly in a tame way on h. We now state

the following Lemma, the proof of which is defered below the proof of this Proposition.

Lemma 6.5. Let hs0 ⊂ S be a one-parameter smooth family of metrics on N , i.e. with

vn(h
s
0) =

∫

N vn(h
s
0)dvolhs

0
, such that h00 = h0. Let ḣ0 := ∂sh

s
0|s=0 and assume that δh0(ḣ0) =

0, then Trh0(ḣ0) = 0. Moreover we have DΠ0 = Id.
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We denote by Ψm(N) the class of classical pseudo-differential operator of order m on N

(acting on vector fields). The operator Fh0 being equal to the elliptic differential operator

Fh0(X) = δh0LXh0 of order 2, we deduce by smoothness of Fh with respect to h that

Fh ∈ Ψ2(N) is elliptic when ||h− h0||HL is small enough (for some L). The operator Fh0 is

elliptic self-adjoint and invertible from H2 to L2 since there is no Killing field on (N, h0) by

[10], therefore Fh is also invertible from H2 to L2 with inverse an operator F−1
h ∈ Ψ−2(N)

and (h,X) → F−1
h (X) is a tame map (by [58, Th 4.5]). This allows to solve for X in

(71). Note that X is uniquely determined, according to the argument we used. Then ṙ0 is

obtained by (70), it has Trh0(ṙ0) = 0 by the property of DΠ−1 and it satisfies δh0(ṙ0) = 0

by construction of X solving (71). We can therefore apply the Nash-Moser inverse function

theorem to deduce that S0 is a slice for the D0(N) action on S. �

Proof of Lemma 6.5. Here we take a family of Poincaré Einstein metrics gs = (dx2 + hsx)/x
2

near the conformal infinity x = 0. We use the notation in the proof of Theorem 5.3 and

remove the superscript s when s is set to be 0. We are going to show that v̇n = cnv̇2 for

some cn 6= 0. To prove that, for the moment we do not assume that vn(h
s
0) is constant

and we simply assume that gs is Poincaré-Einstein for s 6= 0 with g0 = g. Using ∂xv
s
x =

1
2v

s
xTrhs

x
(∂xh

s
x), differentiating this identity with respect to s at s = 0, one has modulo o(xn)

∑

j,k≤n
2

v̇2kjγjx
2k+2j−1 +

∑

i,j,k≤n/2

x2i+2j+2k−1v2kj(αjTr(Ḣ
2i) + βiTr(Ḣ2j)) =

∑

j≤n
2

2jv̇2jx
2j−1;

notice that we have used that H2j = α2jId, H2j = β2jId for some α2j , β2j ∈ R, and γi
are some constants. Then by a straightforward induction and using (67), we deduce that

v̇2j = c2j v̇2 for some c2j ∈ R if 1 ≤ j ≤ n
2 . To compute cn, we notice that the obstruction

tensor k vanishes for an Einstein metric, so

∂s

(

∫

N
vsndvolhs

0

)

|s=0 =
1
4〈k, ḣ0〉 = 0 =

∫

N
v̇ndvolh0 +

∫

N

vn
2
Trh0(ḣ0)dvolh0

and thus cn
∫

N v̇2 = −1
2vn

∫

N Trh0(ḣ0); but since vs2 = − 1
4(n−1)Scalhs

0
, we can use (56) to

deduce that
∫

N v̇2 = −1
4

∫

N Trh0(ḣ0), and since Trh0(ḣ0) can be chosen so that its integral

is not 0, we obtain that cn = 2vn. Now we come back to our setting where gs is AHE with

δh0(ḣ0) = 0. Since v̇n = 2vnv̇2 and vn 6= 0 (by Lemma 4.4), we deduce from (56)

v̇n = 0 ⇐⇒ (∆− λ(n− 1))Trh0(ḣ0) = 0 ⇐⇒ Trh0(ḣ0) = 0

if Rich0 = λ(n − 1)h0. This concludes the first part of the proof since v̇n = 1
4〈k, ḣ0〉 = 0 if

vn(h
s
0) =

∫

N vn(h
s
0)dvolhs

0
.

Let us finally show that DΠ0 = Id where Π is defined in (68). Let ṙ0 be divergence-free

and trace free with respect to h0, then by the discussion above, we have (Dvn)h0(DΠ0(ṙ0)) =

0 = (Dv2)h0(DΠ0(ṙ0)) and by (69), we have also have DΠ0(ṙ0) = ṙ0 + 2(Dω0)0(ṙ0)h0. By

(56) we deduce that (∆h0 −λn)(Dω0)0(ṙ0) = 0 and thus DΠ0(ṙ0) = ṙ0. If now X is a vector

field so that Trh0(LXh0) = 0, we set φt = etX and write φ∗th0 = Π(rt) for some rt with

Trh0(rt) = 0. Then, differentiation gives LXh0 = DΠ0(ṙ) and since Π(rt) = e2ω0(rt)(h0 + rt),

we also deduce LXh0 = DΠ0(ṙ) = 2(Dω0)0(ṙ)h0 + ṙ. Taking the trace with respect to h0,
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we obtain 2(Dω0)0(ṙ) = 0 and ṙ = LXh0 = DΠ0(LXh0). Since any trace free tensor ṙ can

be decomposed as a sum LXh0 + ṙ0, this achieves the proof that DΠ0 = Id. �

6.2. Examples. We give two examples where these hypotheses are satisfied.

The case n = 2. This is our archetypal motivation. We consider here a 3-manifold M

which admits a convex co-compact hyperbolic metric — this is the same, in dimension 3, as

an AHE metric. Then N = ∂M is the disjoint union of a finite set of closed surfaces of genus

at least 2. The classical Ahlfors-Bers theorem [1, 5], extended by Marden [47, 48], gives

the map Φ of Hypothesis 6.3, for any choice of slice S0 (in fact the map Φ is well defined

on Teichmüller space in this case). Moreover, we have seen that v2 = −1
4Scalh0 , so given a

metric h0 on N = ∂M , it has v2 = −πχ(N) if and only it has constant curvature. Since

there is a unique constant curvature metric with volume 1 on each connected component of

∂M , Hypothesis 6.2 is also satisfied.

Fuchsian-Einstein manifolds. We now recall a particularly simple type of AHE man-

ifolds. Let (N, h0) be a closed Einstein manifold with Rich0 = −(n − 1)h0. Its conformal

class will be denoted [h0] as before.

We consider the product M = R×N , with the warped product metric:

g := dt2 + cosh2(t)h0. (72)

We will call Fuchsian a Riemannian manifold of this type, the reason being that, for n = 2,

we find precisely the Fuchsian hyperbolic 3-manifolds, that is, quotients of H3 by co-compact

Fuchsian groups Γ ⊂ PSL2(R) →֒ PSL2(C), or equivalently hyperbolic 3-manifolds which are

topologically the product of a surface of genus at least 2 by an interval, and which contain

a closed totally geodesic surface.

It follows directly from (25) that Ricg = −ng. To prove that (M, g) is actually AHE, set

x = 2e−|t| away from t = 0. In this new variable,

g =
dx2

x2
+

(

1 + 1
4x

2

x

)2

h0 ,

so g is Poincaré-Einstein. The subset corresponding to t = 0 is a closed totally geodesic

hypersurface since the warping function is even.

Write g = dt2+f2(t)h0 with f(t) = cosh(t). Let v, w be some (t-independent) vector fields

on N and let V := f−1v, W := f−1w and T = ∂/∂t, then one has by a direct computation

∇TT = 0, ∇V T = f−1f ′V, ∇TV = 0, ∇VW = f−2∇N
v w − f−1f ′〈v, w〉h0T. (73)

This implies for X,Y tangent to N

RX,TT = −X , RX,Y T = 0. (74)

Moreover, for X,Y, Z,W tangent to N ,

〈R(X,Y )Z,W 〉g = 〈Rh0(X,Y )Z,W 〉g −
(f ′)2

f2
(〈Y, Z〉g〈X,W 〉g − 〈X,Z〉g〈Y,W, 〉g) (75)
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where Rh0 is the Riemann tensor on (N, h0), showing in particular that if h0 has non-positive

sectional curvature, then g also has non-positive sectional curvature.

The conformal boundary of M is the disjoint union of two copies of (N, [h0]), one corre-

sponding to t = −∞ and the other to t = ∞. We call these two components of the conformal

boundary (N±, [h0]).

We summarize the discussion in the

Lemma 6.6. Let (N, h0) be a closed Einstein manifold with non-positive sectional curvatures

and negative Ricci curvature, and let M = N ×R be endowed with the warped product metric

g = dt2 + cosh2(t)h0. Then g satisfies the assumptions of Proposition 6.4.

6.3. Poincaré-Einstein ends as cotangent vectors to conformal structures. We then

use the description in Section 2.1: T (N) correspond to the quotient of the space of metrics

M(N) by the group C∞(N) ⋊ D0(N) which is the semi-direct product of the group of

conformal transformations by the group of diffeomorphisms of N isotopic to the Identity, or

equivalently it is the space of conformal classes up to diffeomorphisms isotopic to the Identity.

We will work near a metric h0 ∈ M(N) where T (N) can be locally represented by a slice.

By the discussion of Section 2.1, T ∗
[h]T (N) can be identified with the space of trace-free and

divergence-free (for h) symmetric 2-tensors on ∂M .

Let E be the space of Poincaré-Einstein ends (with conformal boundary N), i.e. the set

of products N × (0, ε)x equipped with a Poincaré-Einstein metric g = (dx2 + hx)/x
2; here

ε > 0 is not relevant since a Poincaré-Einstein metric is defined only up to O(x∞). The

group D0(N) acts naturally on E by φ.g = (dx2 + (φ−1)∗hx)/x
2 where (φ−1)∗hx is just the

pull-back of hx by φ−1, viewed as a metric on N . The group C∞(N) also acts on E as

follows: ω0.g := (dx̂2+ ĥx̂)/x̂
2 where x̂ is the geodesic boundary defining function associated

to the conformal representative e2ω0h0, in the sense of Lemma 2.8. This induces an action

of C∞(N)⋊D0(N) by (ω0, φ).g := ω0.(φ.g). This group action corresponds to the action of

the group of those diffeomorphisms which map a Poincaré-Einstein end to another one: this

is the natural gauge group of E .
Case n odd. We observe that the action of an element (f, φ) ∈ C∞(N) ⋊ D0(N) on

a Poincaré-Einstein end g transforms the pair (h0, hn) in the expansion of g into the pair

(e2ω0(φ−1)∗h0, e
(2−n)ω0(φ−1)∗hn) in the expansion of (ω0, φ).g. This is easy to show: the

D0(N) action is clear, as for the conformal action, it comes from the fact that hn is the

coefficient of the first odd power of x in the expansion of g and that the geodesic boundary

defining function x̂ associated to e2ω0h is of the form x̂ = xeωx with ωx an even function of x

up to O(xn+2) (see for e.g. Lemma 2.1 in [34] and its proof). Notice that the action (f, φ).g

corresponds exactly to the action (18) of (ω0, φ) on T
∗M(N) if we view (h0, hn ⊗ dvolh0) as

an element in T ∗T (N) (here hn is a divergence-free trace-free tensor). We therefore deduce

Proposition 6.7. If n is odd, over the points where T (N) has a Fréchet manifold structure,

the space G\E of Poincaré-Einstein ends, up to the gauge group G = C∞(N) ⋊ D0(N),

identifies naturally to the cotangent space T ∗T (N) of the set of conformal structures.
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Case n even. In even dimension, the pairs (h0, hn) representing a Poincaré-Einstein

ends are not identified directly to an element in T ∗
[h0]

T (N) as for n odd. Indeed, it is easy

to verify that for a change of conformal representative ĥ0 = e2ω0h0 ∈ [h0], the formally

undetermined term ĥn in the end is of the form ĥn = e(2−n)ω0hn + P (ω0, h0) where P is

some non-linear differential operator. Moreover hn is neither trace-free nor divergence-free

with respect to h0. However, Theorem 5.3 and Corollary 5.4 tell us that if h0 satisfies

vn(h0) =
∫

N vn(h0)dvolh0 then there is a formally determined tensor Fn = Fn(h0) such

that the trace-free part G◦
n = Gn − vn

2nh0 of Gn = −1
4(hn + Fn) is divergence-free. By the

description (19) of T ∗T (N) in Section 2.1, we can thus see G◦
n = G◦

n ⊗ dvolh0 as a cotangent

vector at h0. We then obtain

Proposition 6.8. Let n be even and assume Hypothesis 6.3. Near the base point [h0] ∈
T (N), we can identify the cotangent space T ∗T (N) of the set of conformal structures to

the space G\E of Poincaré-Einstein ends as follows: if h ∈ S0 and r ∈ C∞(N,S2N) with

Trh(r) = 0, δh(r) = 0, we assign to the cotangent data (h, r⊗dvolh) ∈ T ∗
[h]T (N) the Poincaré-

Einstein end (h,−4r − Fn(h)− 2vn(h)
n h).

Example: n = 2. In this case, N is a closed surface of genus at least 2, and E is the space

of hyperbolic ends on N × (0,∞). Hyperbolic ends on N × (0,∞) are in one-to-one corre-

spondence to complex projective structures on N . Let CP the space of complex projective

structures on N . Given σ ∈ CP, one can consider the underlying complex structure c, and

the Fuchsian complex projective structure σ0 obtained by applying Riemann uniformization

to c. Let φ be the holomorphic map isotopic to the identity between (N, σ0) to (N, σ), and

let q = S(φ) be the Schwarzian derivative of φ.

Lemma 6.9. Let h be the hyperbolic metric in the conformal class c, then, for all g ∈ E,
(h, 12 Re(q)) is the associated cotangent data to c.

Proof. It is proved in [45, Lemma 8.3] that II∗0 = −Re(q), where II∗ is the “second funda-

mental form at infinity” considered in [45] and II∗0 is its traceless part. However comparing

the expressions of the hyperbolic metric at infinity in terms of h2 used here, and in terms of

II∗ as in [45], shows that h2 = 2II∗. Finally we have seen in Section 5.3 that h◦2 = −4G◦
2. The

result follows. �

6.4. Lagrangian submanifold in T ∗T (N). We now come back to the situation where

Hypothesis 6.1, 6.2 and 6.3 apply (we use the same notations as there). Using again that

T ∗T (N) near [h0] is represented by (19), we define the modified Dirichlet-to-Neumann map

NΞ : h ∈ S0 7→ G◦
n(h) ∈ T ∗

[h]T (N) (76)

where G◦
n(h) = G◦

n(h)⊗dvolh with G◦
n(h) the divergence-free/trace-free tensor G

◦
n associated

to the Poincaré-Einstein end of the AHE metric Ξ(h).

Proposition 6.10. The section NΞ is an exact 1-form on the slice S0.
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Proof. By linearizing the identity vn(h) =
∫

N vn(h)dvolh valid for every h ∈ S0, we get
∫

N vn(h) Trh(ḣ)dvolh = 0 if ḣ ∈ ThS0, and therefore 〈Gn, ḣ〉 = 〈G◦
n, ḣ〉. By Theorem 5.3 we

deduce that NΞ is the differential of the map h 7→ VolR(M,Ξ(h);h). �

Corollary 6.11. The image of NΞ is a Lagrangian Fréchet submanifold in T ∗T (N).

Proof. The image is a submanifold since it is the image of a smooth section. It is isotropic

for the symplectic form Ω of (17) since the section is an exact form and Ω is the exterior

derivative of the Liouville 1-form. Moreover, it is maximal isotropic since it is diffeomorphic

to the base by the projection. �

The following corollary is the analog in our higher-dimensional setting of McMullen’s

Kleinian reciprocity, see [53, Theorem 9.1].

Corollary 6.12. Let h ∈ S0, and let u, v ∈ ThS0. Let u∗, v∗ be the corresponding first-order

variations of G◦
n, so that u∗, v∗ ∈ T ∗

[h]T (N). Then

〈v, u∗〉 = 〈u, v∗〉

where 〈 , 〉 is the bilinear pairing with respect to h followed by integration on N . Equivalently,

the linearization dNΞ of NΞ is such that (dNΞ)h is self-adjoint.

Proof. This is a direct translation of Corollary 6.11 using the definition of the cotangent

symplectic structure induced by (17) on T ∗T (N). �

Quasifuchsian reciprocity for Poincaré-Einstein manifolds. We now consider a

more specific setting, analogous to the situation occuring for the quasifuchsian reciprocity

for 3-dimensional hyperbolic manifolds, see [53]. We consider a manifold M such that ∂M

has two connected components, N+ and N−. We denote by M(N±) and T (N±) the space

of Riemannian metrics and the space of conformal structures on N±, and we assume that

Hypothesis 6.1, 6.3 apply and Hypothesis 6.2 applies on N+, N− separately with vn 6= 0, i.e.

S0 = S−
0 × S+

0 .

Given h = (h−, h+) ∈ S0, let N+
Ξ (h) ∈ T ∗

h+
T (N+) and N−

Ξ ∈ T ∗
h−

T (N−) be N± component

of NΞ(h). For fixed h− we have a section N+
Ξ (h−, ·) of T ∗T (N+), while for fixed h+ we have

a section NΞ(·, h+) of T ∗T (N−).

For fixed h = (h−, h+), we now consider the linear maps

φh+ : Th−
S−
0 → T ∗

h+
T (N+), v− 7→ (dN+

Ξ )h(v−, 0)

φh−
: Th+S+

0 → T ∗
h−

T (N−), v+ 7→ (dN−
Ξ )h(0, v+)

Proposition 6.13. φh−
and φh+ are adjoint.

Proof. This is simply a particular case of Corollary 6.12. �
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7. The Dirichlet-to-Neumann map for the Fuchsian-Einstein case and Hessian

of the renormalized volume

In this last section we compute the Hessian of the renormalized volume at a Fuchsian-

Einstein metric (M = R×N, g), when n is odd, and when n = 2, 4. In the latter case we will

consider the renormalized volume as a function on the slice S ⊂ M(N) of metrics satisfying

vn =
∫

N vn near h0 Einstein with negative Ricci curvature.

7.1. Hessian of VolR at the Fuchsian locus when n = 2. It is instructive to do first the

computation for n = 2. Let g = dt2 + cosh(t)2h0 be a Fuchsian metric on M = N × Rt for

a hyperbolic surface (N, h0). The conformal boundary consists of (M, g) is ∂M = N+ ⊔N−

(corresponding to t → ±∞) where each N± is N equipped with the conformal class of h0.

The geodesic boundary defining function associated to h0 is x := 2e−|t| near t = ±∞; the

metric g takes the form near ∂M

g = x−2(dx2 + h0 +
1
2x

2h0 +
1
16x

4h0) as x→ 0.

We have the following result

Proposition 7.1. Let h0 be a hyperbolic metric on a Riemann surface N with genus ≥ 2.

We identify Teichmüller space T (N) of N with a slice of hyperbolic metrics, with tangent

spaces at each point the space of divergence-free/trace-free tensors. Let Φ : h− 7→ Φ(h−) be

the Bers map sending a hyperbolic metric h− ∈ T (N) on N to the quasifuchsian hyperbolic

metric on N ×Rt with conformal boundary h0 at N+, h− at N−. Then the map Vh0 : h− 7→
VolR(M,Φ(h−); (h0, h−)) has a unique critical point at h− = h0 on T (N) and the Hessian

there is

Hessh0(Vh0)(k) =
1

8

∫

N
|k|2h0

dvolh0 , k ∈ Th0T (N).

Proof. The fact that the Fuchsian metric g is a critical point is a consequence of the fact

that the trace-free part G◦
2 of G2 is 0 by (63). To see that it is the unique critical point,

we claim that for a critical point quasifuchsian metric g = Φ(h−), the trace-free part G◦
2

of G2 at both conformal boundaries is 0, which means that the 2 hyperbolic ends are of

the form x−2(dx2 + (1 + x2

4 )
2h±) for h+ = h0 and h− some hyperbolic metric; thus the

quasifuchsian metric g would have two embedded totally geodesic surfaces corresponding to

x = 2 if h+ 6= h0, and this is not possible by topological reasons since by doubling the region

bounded by theses surfaces, we would get a closed 3 dimensional hyperbolic manifold which

is S1 ×N with 2 embedded totally geodesic surfaces, thus toroidal, contradicting Thurston

hyperbolisation theorem.

Next we compute the Hessian. We deform g by a 1-parameter family of quasifuchsian

metrics gs by means of a divergence-free/trace-free tensor k as follows:

gs := dt2 + h0 + e−2ths2 +
1
4e

−4t(hs2)
2, hs2 =

1
2h0 + sk.

This amounts to changing the conformal class on N− only. We denote conformal represen-

tatives in the conformal boundary by pairs (hs+, h
s
−) corresponding to the components N±.
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For small s, the expression for gs makes sense for all t ∈ R; at N+, x induces the conformal

representative hs+ = h0 and at N− one has hs− = 4(hs2)
2 since the metric near t = −∞ is

gs = x−2(dx2 + hs− + x2hs2 + x4hs4).

Notice that h0− = h0 is hyperbolic, but for other values of s it is not. The variation formula

from Section 5.3 gives for s near 0 (with ḣs− = ∂sh
s
−)

−4∂sVolR(M, gs; (h0, h
s
−)) =

∫

N
〈ḣs−, hs2 − trhs

−
(hs2)h

s
−)〉hs

−
dvolhs

−
.

We have

h− := h0− = h0, ḣ− := ḣ0− = 4k, ∂2sh
s
−|s=0 = 8k2, trhs

−
(hs2) = 1 +O(s2),

and we compute (with the dot notation for ∂s|s=0)

−4∂2sVolR(M, gs; (h0, h
s
−))|s=0 = 〈ḣ−, ḣ2〉 − 1

2〈∂2shs−|s=0, h0〉 = 0.

We are interested in the renormalized volume where the boundary families are uniformized

to have scalar curvature −2. This means, we must consider VolR(M, gs; (h0, ĥ
s
−)) where

ĥs− := e2ω
s
0hs− is the unique hyperbolic metric in the conformal class of hs−. Then ∂sĥ

s
−

is the sum of a Lie derivative of ĥs and a divergence free/trace free tensor, in particular
∫

N trĥs
−

(∂sĥ
s
−)dvolĥs

−

= 0. From this we can derive the identity

∫

N
ω̇s
0dvolhs

−
= 4s

∫

N
|k|2h0

dvolh0 +O(s2).

Since Scalhs
−
= −2trhs

−
(hs2) = −2 +O(s2), it follows that ωs

0 = 1
2s

2α+ o(s2) for some α with
∫

N α = 4
∫

N |k|2h0
dvolh0 . Proposition 3.11 shows that

VolR(M, gs; (h0, ĥ
s
−)) = −1

4

∫

M
(|∇ωs

0|+ Scalhs
−
ωs
0)dvolhs

−
.

The only term of order 2 which survives is

VolR(M, gs; (h0, ĥ
s
−)) = s2

∫

N
|k|2h0

dvolh0 + o(s3).

This computes the Hessian of the renormalized volume at (h0, h0) in the direction (0, 4k). �

7.2. Higher dimensions. Second variation of the volume in terms of Gn and hn
Let us consider a family of AHE metrics gs (for s near 0) on M = Rt ×N with N compact

and g0 = g with

g = dt2 + cosh2(t)h0

where Rich0 = −(n − 1)h0. The conformal infinity of (M, g) is ∂M = N+ ⊔N− where each

N± is N equipped with the conformal class of h0. Notice that x := 2e−|t|, defined outside

t = 0, is the geodesic boundary defining function associated to the conformal representative

h0 on ∂M . When n is even, we choose (for s near 0) the smooth family hs0 of metrics on

∂M so that vn(h
s
0) =

∫

N vn(h
s
0)dvolhs

0
6= 0 and [hs0] is the conformal infinity of (M, gs); this

is possible by Corollary 4.5 and implies Vol(N, hs0) = 1 and
∫

N Trhs
0
(∂sh

s
0)dvolhs

0
= 0.
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Case n odd. By a result of Albin [2] (see Theorem 5.3), we have ∂sVolR(M, gs;hs0) =

−1
4〈hsn, ∂shs0〉L2 and since hn = 0 at s = 0,

∂2sVolR(M, gs)|s=0 = −1

4
〈ḣn, ḣ0〉L2 .

Case n even. By Theorem 5.3, we have ∂sVolR(M, gs;hs0) = 〈Gs
n, ∂sh

s
0〉L2 and Trhs

0
(Gs

n) =
1
2vn(h

s
0) is constant, it follows that ∂sVolR(M, gs;hs0) = 〈(Gs

n)
◦, ∂sh

s
0〉 where (Gs

n)
◦ is the

trace-free part of Gs
n, which vanishes at s = 0 by Lemma 5.5. Hence

∂2sVolR(M, gs;hs0)|s=0 = 〈Ġ◦
n, ḣ0〉L2

where Ġ◦
n := ∂s[(G

s
n)

◦]|s=0. Moreover since Trhs
0
(Gs

n) =
1
2vn(h

s
0),

∂2sVolR(M, gs;hs0)|s=0 = 〈Ġn, ḣ0〉L2 − vn
2n

|ḣ0|2L2 −
1

2n

∫

N
v̇nTrh0(ḣ0)dvolh0 . (77)

Variation of the local term Fn when n = 4. Since −4Gn = hn +Fn where Fn is local

in terms of h0, we have to compute the variation Ḟn. In general even dimension n, we do not

have a formula for Fn, thus we will restrict to n = 4.

Will will now assume that ḣ0 is divergence free, so that by Lemma 6.5,

Trh0(ḣ0) = 0, δh0(ḣ0) = 0. (78)

Using this, we compute 〈Ḟn, ḣ0〉 for n = 4.

Lemma 7.2. In dimension n = 4, assuming (78), we have

〈Ḟ4, ḣ0〉L2 = (18 − v4)|ḣ0|2L2 + 1
2〈k̇, ḣ0〉L2 , Trh0(Ḟ4) = 0.

Proof. We recall that F s
4 = −1

2(h
s
2)

2 + 1
4Trhs

0
(hs2)h

s
2 − vs4h

s
0 +

1
2k

s. Using that h2 = 1
2h0 and

Scalh0 = −12, we obtain

〈Ḟ4, ḣ0〉 = −〈
˙Scal

48
, ḣ0〉+ (18 − v4)|ḣ0|2 + 1

2〈k̇, ḣ0〉.

Moreover by (56) and the fact that Trh0(ḣ0) = 0 and δh0(ḣ0) = 0, we have ˙Scal = 0. Similarly,

using v̇4 = 0, Trh0(k̇) = 0, and that Trh0(ḣ2) = 2v̇2 is a multiple of ˙Scal = 0, we easily see

that the trace of Ḟ4 is 0. �

Bianchi gauge. Let us define ġ := ∂sg
s|s=0, which solves the linearized Einstein equation.

Since this equation is not elliptic due to gauge invariance (by diffeomorphism actions) we

have to fix a gauge, as is well known in the study of Einstein equation. We shall use Bianchi

gauge: using for instance Proposition 4.5 in [68], there exists a smooth vector field X on M

so that

q := ġ + LXg solves δg(q) +
1
2dTrg(q) = 0 (79)

and q has an asymptotic expansion q = x−2(q0+
∑

j≤n qjx
j +xn log(x)qn,1)+o(x

n) as x→ 0

for some x independent tensors qj , qn,1 on [0, ε)x ×N and

q0 = ḣ0, qn = ḣn + Tnḣ0
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with Tn a differential operator. We notice (see [68]) that X is the vector field dual to the

form ω solving

(∆g + n)ω = −2δg(ġ)− dTrg(ġ). (80)

where ∆g = ∇∗∇. In dimension n = 4, we compute q4:

Lemma 7.3. Let n = 4, then assuming (78), we have for q defined by (79)

q = ġ + o(x4),

where the o(x4) is with respect to the norm induced by g.

Proof. In this proof, all error terms are measured with respect to the metric g. First, since

Trh0(ḣ0) = 0, Trh0(ḣ2) =
˙Scal = 0 and Trh0(k̇) = 0 (since k = 0 for Einstein manifold and

Trhs
0
(ks) = 0 for all s), we have modulo o(x4)

Trg(ġ) = x4Trh0(ḣ4), dTrg(ġ) = 4x4Trh0(ḣ4)
dx

x
.

For the divergence, we use formula (84) and δh0(ḣ0) = 0, we get modulo o(x4) (we use

x = 2e−|t|)

δg(ġ) = x4Trh0(ḣ4)
dx

x
+ x2δh0(ḣ2).

But since ˙Scal = 0, δhs
0
(hs0) = 0 and δhs

0
(Richs

0
− 1

2Scalhs
0
) = 0 we have

δh0(ḣ2) =
1
2 δ̇(Rich0 − 1

2Scalh0) =
3

2
δ̇(h0) = −3

2
δ(ḣ0) = 0.

where δ̇ = ∂sδhs
0
|s=0. Therefore modulo o(x4)

−2δg(ġ)− dTrg(ġ) = −6x4Trh0(ḣ4)
dx

x
.

Now by Theorem 5.3, Trh0(ḣ4) + Trh0(Ḟ4) = −2v̇4 = −1
2〈k, ḣ0〉 = 0 thus Trh0(ḣ4) = 0 by

Lemma 7.2. We now use Section 4 in [68] and refer the reader to that for details: the con-

struction of [68] (based on an approximate solution using indicial equations and the correction

using the Green’s function of ∆g+n on 1-forms onM) yields that there is a polyhomogeneous

form ω = o(x4), satisfying (∆g + n)ω = −2δg(ġ) − dTrg(ġ). A straightforward computation

gives that if X is the dual vector field defined by g(X, ·) = ω, then LXg = o(x4). �

Linearized Einstein operator In this section, n can be either even or odd. Now that q

is in the kernel of the Bianchi operator δg +
1
2dTrg, then we see by linearizing the Einstein

equation that q solves

Lgq := (∇∗∇− 2R̊)q = 0 (81)

where R̊ is the operator acting on symmetric 2 tensors defined by

(R̊q)(Y, Z) = −
∑

i,j

〈RY,Ei
Z,Ej〉q(Ei, Ej)

if (Ej)j is an orthonormal basis for g and R the Riemann tensor of g. Notice that if u

is a function, then Lg(ug) = ((∆g + 2n)u)g. Since moreover Lg maps trace-free tensors

to trace-free tensors, we deduce that (∆g + 2n)Trg(q) = 0. From the work of Mazzeo [50],
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the solutions of this equation are polyhomogeneous, they are combinations of functions in

x
n
2
±sC∞(M), where s = 1

2

√

n(n+ 8), and thus since Trg(q) ∈ C∞(M) + xn log(x)C∞(M),

then Trg(q) = 0, and thus

δg(q) = 0, Trg(q) = 0. (82)

We want to express the operator L in the decomposition Rt ×N acting on divergence-free,

trace-free tensors. We will decompose such a tensor q into

q = udt2 + ξ
s
⊗ dt+ r

where u is a function, ξ ∈ Λ1(N) is a one form on N and r ∈ S2(N) a symmetric tensor on

N . Here
s
⊗ denote the symmetric tensor product. The following Lemma is proved by Delay

[21]2, we give a couple of details of the computations for the reader’s convenience.

Lemma 7.4. Let g := dt2 + f2h0 on M = Rt ×N for some compact manifold (N, h0) and

f ∈ C2(R) some positive function. Then, if q = udt2 + ξ
s
⊗ dt + r with Trg(q) = 0 and

δg(q) = 0, we have

Lgq =
(

− u′′ + f−2∆h0u− (n+ 4)
f ′

f
u′ − 2[(n+ 1)

(f ′)2

f2
+
f ′′

f
)]u
)

dt2

+

(

−ξ′′ − (n+ 2)
f ′

f
ξ′ − [(n− 1)

(f ′)2

f2
+ 2

f ′′

f
)]ξ + f−2∆h0ξ − 2

f ′

f
dNu

)

s
⊗ dt

+ 2(ff ′′ − (f ′)2)uh0 − 4
f ′

f
δ∗h0

ξ − r′′ − n
f ′

f
r′ + 2

(f ′)2

f2
Trh0(r)h0 + f−2Lh0r

where ξ′ := ∇∂tξ, ξ
′′ = ∇∂t∇∂tξ with the same notation for r′′, r′. Here Lh0 is the linearized

Einstein operator defined like (81) but on N with the metric h0.

Proof. First, since Trg(q) = 0, we have

u = −f−2Trh0(r). (83)

Let T := ∂t, let v be some (t-independent) vector field on N , and set V := f−1v. From (73)

we deduce that if A = fa with a ∈ Λ1(N) independent of t,

∇dt = f ′fh0, ∇TA = 0, ∇VA = ∇N
V A− f−1f ′A(V )dt.

We also have that for any q ∈ S2(M)

∇∗(dt⊗ q) = −nf
′

f
q −∇T q.

By direct computation we also obtain the formula for the divergence

δg(q) =

(

−u′ − n
f ′

f
u+ f−2δh0(ξ) +

f ′

f3
Trh0(r)

)

dt

− (∇T ξ + (n+ 1)
f ′

f
ξ) + f−2δh0(r).

(84)

2The t-derivative denoted by prime in our setting is with respect to the connection of g and is not exactly

the same as Delay, which is why the coefficients are slightly different.
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From (83) and (84), since q is divergence-free we obtain

u′ = −(n+ 1)
f ′

f
u+ f−2δh0(ξ), ∇T ξ + (n+ 1)

f ′

f
ξ = f−2δh0(r). (85)

Let yj be Riemannian normal coordinates at p ∈ N . Then ej := ∂yj are parallel and

orthonormal at p: ∇N
eiej = 0 and h0(ei, ej) = δij . Set Ei = f−1ei. At the point (t, p) for all

t ∈ R we have

∇∗∇q = −∇T∇T q − n
f ′

f
∇T q −

n
∑

j=1

∇Ei
∇Ei

q.

Using this we compute for q1 = u dt2

∇∗∇(udt2) =
(

− u′′ + f−2∆Nu− n
f ′

f
u′ + 2n

(f ′)2

f2
u
)

dt2 − 2
f ′

f
(dNu

s
⊗ dt)− 2(f ′)2uh0.

For q2 = ξ
s
⊗ dt, we get

∇∗∇(ξ
s
⊗ dt) =

(

−ξ′′ − n
f ′

f
ξ′ + (n+ 3)

(f ′)2

f2
ξ + f−2∆h0ξ

)

s
⊗ dt

− 4
f ′

f3
δh0(ξ)dt

2 − 4
f ′

f
δ∗h0

ξ.

Finally for the tangential part r, we get

∇∗∇r = − 2f−2trh0(r)
(f ′)2

f2
dt2 − 2

f ′

f3
δh0r

s
⊗ dt− r′′ − n

f ′

f
r′ + 2

(f ′)2

f2
r + f−2∆h0r.

In conclusion, using (83) and (85) to substitute for trh0(r), δh0ξ and δh0r we get

∇∗∇q =
(

− u′′ + f−2∆Nu− (n+ 4)
f ′

f
u′ − 2(n+ 1)

(f ′)2

f2
u
)

dt2

+

(

−ξ′′ − (n+ 2)
f ′

f
ξ′ − (n− 1)

(f ′)2

f2
ξ + f−2∆h0ξ − 2

f ′

f
dNu

)

s
⊗ dt

− 2(f ′)2uh0 − 4
f ′

f
δ∗h0

ξ − r′′ − n
f ′

f
r′ + 2

(f ′)2

f2
r + f−2∆h0r

On the other hand, from (75) and (83) we get

(R̊q) =
f ′′

f
(u dt2 + ξ

s
⊗ dt) + f−2(R̊h0r)− ff ′′uh0 +

(f ′)2

f2
(r − Trh0(r)h0).

Combining this with the formula for ∇∗∇, the Lemma is proved. �

7.3. Computation of q for n odd or n = 4. We start by showing that the dt2 and ξ
s
⊗ dt

components of q vanish identically. In the following Lemma, n can be either odd or even.

Lemma 7.5. Assume that f(t) = cosh(t). Let q = ġ + LXg = udt2 + ξ
s
⊗ dt + r be the

trace-free and divergence-free tensor in kerLg defined in (79). Then u = 0 and ξ = 0.
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Proof. Let (ϕj)j∈N be an orthonormal basis of eigenvectors for the Laplacian ∆h0 acting on

functions on N , with eigenvalues λj . From Lemma 7.4, we see after writing u =
∑

j∈N uj =
∑

j∈N ϕj〈u, ϕj〉ϕj that uj satisfies the ODE

−u′′j − (n+ 4) tanh(t)u′j −
(

2(n+ 1) tanh(t)2 + 2− λj
cosh(t)2

)

uj = 0.

Setting uj = f−
n
2
−2vj , this equation can be rewritten

−v′′j +
(n(n− 2)

4
tanh(t)2 +

λj
cosh(t)2

+
n

2

)

vj = 0

and since λj ≥ 0, this equation has no solution in L2(R, dt) because the corresponding oper-

ator is strictly positive. By standard ODE theory (e.g this equation is also a hypergeometric

equation after setting sinh(t)2 = z), the solutions are linear combinations of two independent

functions F1, F2 such that F1(t) ∼t→+∞ eα+t and F2(t) ∼t→+∞ eα−t with α± = ±n
2 the roots

of the polynomial −α2 + n2

4 . Since δh0(ḣ0) = 0, we have |δh0(r)|g = O(1) and thus by the

second equation of (85), we deduce that |ξ|g = O(x2), which implies that δh0(ξ) = O(x) and

by the first equation of (85) we get u = O(x3) = O(e−3|t|) (here recall that x = 2e−|t| for

large |t|). Therefore vj is a constant times F2 and thus of order O(e−
n
2
t) when |t| → +∞.

This shows that vj = O(e−
n
2
|t|) ∈ L2(R, dt), thus vj = 0 and hence u = 0.

Writing the mixed component of Lg(q) to be 0, using u = 0 and decomposing ξ =
∑

j ξjfψj

where (ψj)j is an L2(N, dvolh0) orthonormal basis of eigenvectors of ∆h0 on 1-forms with

eigenvalues αj , we get from Lemma 7.4 and ∇∂t(fψj) = 0

−∂2t ξj − (n+ 2) tanh(t)∂tξj −
(

(n− 1) tanh(t)2 + 2− αj

cosh(t)2

)

ξj = 0.

Setting ξj = ζjf
−n

2
−1, one has

−∂2t ζj +
(

(
n2

4
− n

2
+ 1) tanh(t)2 +

αj

cosh(t)2
+
n

2
− 1
)

ζj = 0.

One one hand, again by positivity, this equation has no solutions in L2(R, dt). On the other

hand, we have seen above that |ξ|g = O(x2) = O(e−2|t|) hence ζj = O(e|t|). Since the indicial

roots in the above equation are ±2, ζj must be of order O(e−2|t|) which is clearly in L2(R, dt),

so actually we deduce ξj = 0. �

We are going now to compute the coefficient of xn−2 in the expansion of r. Recall that we

chose x = 2e−|t| for t 6= 0.

Proposition 7.6. Let r = q be the TT tensor in kerLg defined in (79) under the assumption

(78). Let r±0 , r
±
n , r

±
n,1 be the tensors on N so that as t→ ±∞

r = x−2(r±0 +
n
∑

j=1

r±j x
j + r±n,1x

n log(x) + o(xn)).

Let Lh0 = ∆h0 − 2R̊h0 be the linearized Einstein operator on (N, h0). For every j denote

by r0j , r
1
j the even, respectively the odd component of the pair rj = (r+j , r

−
j ) with respect to

t 7→ −t.
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(1) When n is even, r±n,1 is given by a differential (hence, local) operator of order n in

terms of r0:

rn,1 =
(−1)

n
2
+121−n

n
2 !(

n
2 − 1)!

n
2
−1
∏

j=0

(Lh0 − j(n− 1− j))r0. (86)

(2) If n is odd, then r±n,1 = 0, and for ε ∈ {0, 1}, rεn are given by

rεn = Nε(r
ε
0) (87)

where Nǫ is the pseudodifferential operator of order n

Nε = 2−nΓ(−n
2 )

Γ(n2 )
Fε(
√

Lh0 − (n− 1)2/4)

for
√· : R → R

+ ∪ iR− being the square root function, and Fε defined by

Fε(u) := u(tanh(π2u))
(−1)

n−1
2 −ε

n−1
2
∏

ℓ=1

(u2 + ℓ2).

(3) For n = 4 and ε ∈ {0, 1}, rε4 are given by rε4 = Gε(
√

Lh0 − 9
4)r

ε
0 with

Gε(u) := − 1

32

[(

c0 − (−1)επ
1− Im(sinh(πu))

cosh(πu)
+ 2ReΨ(52 − iu)

)

(u2 + 1
4)(u

2 + 9
4)

− 2Im(u)(2u2 + 5
2) + (u2 + 1

4)
2
]

where Ψ(z) = Γ′(z)/Γ(z) is the digamma function, and c0 := −5
2 + 2γ − 2 ln(2).

Proof. Setting r = sf−
n
2
+2 and s =

∑

j∈N sjφj where φj is an L2(N, dvolh0) orthonormal

basis of eigenvectors for Lh0 with eigenvalues γj , then since ∇∂t(f
2φj) = 0

r′ = f−
n
2
+2
∑

j

(∂tsj −
n

2

f ′

f
sj)φj , r′′ = f−

n
2
+2
∑

j

((∂t −
n

2

f ′

f
)2sj)φj .

We then have from Lemma 7.4 and Lemma 7.5 that sj satisfies the equation

−∂2t sj +
(

z2 − νj(νj + 1)

cosh2(t)

)

sj = 0, (88)

with νj ∈ (−1
2 + iR+) ∪ [−1

2 ,∞), νj(νj + 1) = n(n−2)
4 − γj , and z =

n
2 . Let us consider more

generally this equation for z ∈ R near n/2. From [37, Appendix], it has two independent

solutions on R, one odd and one even in t:

E1(t) = sinh(t) cosh(t)1+νjF1(
νj+z+2

2 ,
νj−z+2

2 , 32 ;− sinh(t)2)

E0(t) = cosh(t)1+νjF1(
νj+z+1

2 ,
νj−z+1

2 , 12 ;− sinh(t)2)
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where F1(a, b, c; τ) is the hypergeometric function. The solution E1 corresponds to taking

r−0 = −r+0 while E0 corresponds to r+0 = r−0 . Using the identity

F1(a, b, c; τ) =
Γ(c)Γ(b− a)

Γ(c− a)Γ(b)
(−τ)−aF1(a, a+ 1− c, a+ 1− b; 1τ )

+
Γ(c)Γ(a− b)

Γ(c− b)Γ(a)
(−τ)−bF1(b, b+ 1− c, b+ 1− a; 1τ )

and F1(a, b, c; 0) = 1, we see that, for x = 2e−|t|, there exist meromorphic coefficients a2k(z)

such that

E1(t)
Γ(

νj+z+2
2 )Γ(

−νj+z+1
2 )

Γ(32)Γ(z)

= sign(t)x−z
(

1 +

n
2
∑

k=1

x2ka2k(z, νj) + x2z
Γ(−z)Γ(−νj+z+1

2 )Γ(
νj+z+2

2 )

Γ(z)Γ(
−νj−z+1

2 )Γ(
νj−z+2

2 )
+ o(x2z)

)

.

(89)

We shall use the same type of arguments as in the work of Graham-Zworski [33]; the coef-

ficients ak(z, νj) are regular near z = n/2 except for an(z, νj) when n is even, which has a

first order pole at z = n/2. The coefficient

S1
j (z) =

Γ(−z)Γ(−νj+z+1
2 )Γ(

νj+z+2
2 )

Γ(z)Γ(
−νj−z+1

2 )Γ(
νj−z+2

2 )
. (90)

of xz in (89) also has a pole in that case, and its residue is −Resn
2
an(z, νj). Notice that S1

j

is the action of the scattering operator of Lh0 at z ∈ C on the odd pair of tensors (φj ,−φj).
Using the formula Γ(s)Γ(1− s) = π/ sin(πs) and Γ(s)Γ(s+ 1

2) = 21−2s√πΓ(2s) we rewrite

S1
j (z) = 2−2zΓ(−z)

Γ(z)

sin(π2 (νj − z))

sin(π2 (νj + z))

Γ(z − νj)

Γ(−z − νj)
. (91)

When n is even, the right-hand side of (89) at z = n/2 has the asymptotic expansion as

t→ ±∞

±x−n
2

(

1 +

n
2
−1
∑

k=1

x2ka2k(
n
2 , νj) + 2(Resn

2
S1
j (z))x

n log(x)

+ FPn
2
(an(z, νj) + S1

j (z))x
n + o(xn)

)

(92)

where FP denotes finite part. From (91), we deduce the formula (86) by taking the residue

at z = n/2 and the fact that Lh0φj = (n(n−2)
4 − νj(νj + 1))φj .

If now n is odd, we can take the limit z → n
2 in (89) and each coefficient is smooth at

z = n/2 (an does not exist in this parity) writing νj = −1
2 + iαj with αj =

√

γj − (n−1)2

4

(the convention is iαj ∈ R
+ if γj <

(n−1)2

4 ), we obtain directly that the coefficient of x
n
2 in

(89) is

2−nΓ(−n
2 )

Γ(n2 )
αj

(cosh(π2αj)

sinh(π2αj)

)(−1)
n−1
2

n−1
2
∏

ℓ=1

(α2
j + ℓ2) (93)
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which implies formula (87) for the odd component r1n. Now we can do the same analysis with

the even solution E0(t); we do not give details of the calculations which are very similar to

the above, notice however that by locality, the formula (93) for the logarithmic term cannot

change at all. We eventually obtain in this case

S0
j (z) =

Γ(−z)Γ(−νj+z
2 )Γ(

νj+z+1
2 )

Γ(z)Γ(
−νj−z

2 )Γ(
νj−z+1

2 )
= 2−2zΓ(−z)

Γ(z)

Γ(−νj + z)

Γ(−νj − z)

cos(π2 (νj − z))

cos(π2 (νj + z))
(94)

which implies

r0n = 2−nΓ(−n
2 )

Γ(n2 )

∑

j

(

αj

( sinh(π2αj)

cosh(π2αj)

)(−1)
n−1
2

n−1
2
∏

ℓ=1

(α2
j + ℓ2)

)

〈r00, φj〉φj . (95)

Let us now consider the case n = 4. Let us first compute a4(z, νj) in (89). We rewrite

equation (88) in terms of x = 2e−|t| for |t| > 1:

−(x∂x)
2sj + (z2 − x2νj(νj + 1) +

νj(νj+1)
2 x4 +O(x6))sj = 0.

Solving this equation as a series in x, the coefficients a2k(z, νj) are uniquely determined and

we obtain for t→ ∞ the asymptotic expansion for the even, respectively odd solution

sεj(z) = x−z
(

1 +
νj(νj+1)
4(z−1) x

2 + 1
8(z−2)(

ν2j (νj+1)2

4(z−1) − νj(νj+1)
2 )x4

)

+ xzSε
j (z) + o(x4)

and thus a4(z, νj) =
1

8(z−2)(
ν2j (νj+1)2

4(z−1) − νj(νj+1)
2 ). By (92),

rεn =
∑

j

(

FP2S
ε
j (z)−

ν2j (νj+1)2

32

)

〈rε0, φj〉φj . (96)

We now compute FP2S
1
j (z). We assume that Lh0 ≥ 2 so that we can write νj = −1

2 + iαj

with αj =
√

γj − 9
4 ≥ 0 if γj ≥ 9

4 and iαj ∈ [0, 12 ] if γj ≤ 9/4. We use formula (91) for S1
j (z),

then for νj ∈ R we see that S1
j (z) ∈ R, but we also notice that (90) implies that

S1
j (z) =

Γ(−z)|Γ( z+
3
2
+iαj

2 )|2

Γ(z)|Γ(−z+ 3
2
+iαj

2 )|2
∈ R if z ∈ R, αj ∈ R

+.

Let γ = −Γ′(1) be the Euler constant, then for z close to 2

2−2zΓ(−z)
Γ(z)

= − 1
32 [(z − 2)−1 + 2γ − 5

2 − 2 ln(2)] +O((z − 2)). (97)

We write

Γ(z − νj)

Γ(−z − νj)
=

Γ(z − νj)

Γ(−z + 4− νj)
(z + νj)(z + νj − 1)(z + νj − 2)(z + νj − 3)

and consider its Taylor expansion at z = 2:

Γ(z − νj)

Γ(−z − νj)
= (α2

j +
1
4)(α

2
j +

9
4) + (z − 2)

[

2Ψ(2− νj)(α
2
j +

1
4)(α

2
j +

9
4)

− 2iαj(2α
2
j +

5
2))
]

+O((z − 2)2).

(98)
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where Ψ(z) = ∂zΓ(z)/Γ(z) is the digamma function. Finally we expand

sin(π2 (νj − z))

sin(π2 (νj + z))
= 1− (z − 2)π

cos(π2 νj)

sin(π2 νj)
+O((z − 2)2). (99)

Using (96) and combining (97), (98), (99) we get when νj = −1
2 + λj with λj := iαj ∈ R

+

〈r±4 , φj〉 = − 1

32

[(

c0 − π
cos(π2 (λj − 1

2))

sin(π2 (λj − 1
2))

+ 2Ψ(52 − λj)
)

(−λ2j + 1
4)(−λ2j + 9

4)

+ 2λj(2λ
2
j − 5

2) + (−λ2j + 1
4)

2
]

where c0 := 2γ − 5
2 − 2 ln(2). When νj = −1

2 + iαj with αj ∈ R we get (using that S1
j (z) is

real)

〈r±4 , φj〉 = − 1

32

[(

c0 +
π

cosh(παj)
+ 2Re(Ψ(52 − iαj)

)

(α2
j +

1
4)(α

2
j +

9
4) + (α2

j +
1
4)

2
]

This gives the desired result when r+0 = −r−0 by using (96). When r+0 = r−0 , we consider the

expansion of the even solution E0(t), this is a similar computation to what we did for E1,

but using formula (94) instead of (90)), and

cos(π2 (νj − z))

cos(π2 (νj + z))
= 1 + (z − 2)π

sin(π2 νj)

cos(π2 νj)
+O((z − 2)2).

instead of (99). We find for αj ≥ 0

〈r04, φj〉 = − 1

32

[(

c0 −
π

cosh(παj)
+ 2ReΨ(52 − iαj)

)

(α2
j +

1
4)(α

2
j +

9
4) + (α2

j +
1
4)

2
]

and for λj = iαj ∈ R
+

〈r04, φj〉 = − 1

32

[(

c0 − π tan(π2 (
1
2 − λj)) + 2Ψ(52 − λj)

)

(−λ2j + 1
4)(−λ2j + 9

4)

+ 2λj(2λ
2
j − 5

2) + (−λ2j + 1
4)

2
]

.

This finishes the proof. �

As a first corollary, we recover a formula proved recently by Matsumoto [49] for the Hessian

of the functional h0 7→
∫

N vn(h0)dvolh0 defined on the space C(N) of conformal structures.

Corollary 7.7. Let n be even, let h0 satisfies Rich0 = −(n − 1)h0 on N , and let Lh0 =

∇∗∇−2R̊h0 be the linearized Einstein operator at h0. Then the obstruction tensor k linearized

at h0 and acting on divergence-free/trace free tensors ḣ0 is given by

Dkh0 .ḣ0 =
(−1)

n
2
+121−n

n
2 !(

n
2 − 1)!

n
2
−1
∏

j=0

(Lh0 − j(n− 1− j))ḣ0.

Proof. If gs is a deformation of Einstein metrics as before and ġ = ∂sg
s|s=0, then the first log

term in the expansion of ġ is k̇xn−1 log(x) where k̇ is the variation of the obstruction tensor
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ks of gs. We modify ġ by LXg as in (79), and we apply [68, Prop. 4.5]3 to deduce that LXg

has no log term before xn log(x), thus q = LXg + ġ has first log term given by k̇xn−1 log(x)

in its expansion. Now it remains to use formula (86) and this gives k̇ in terms of ḣ0. �

Our second corollary is

Corollary 7.8. Let gs be a family of AHE metrics such that g0 = g is the Fuchsian-Einstein

metric, and Lh0 = ∆h0 − 2R̊h0 be the linearized Einstein operator.

(1) If n is odd, there exists C > 0 such that for all ḣ0 satisfying δh0(ḣ0) = 0, Trh0(ḣ0) = 0

and 1l
[0,

(n−1)2

4
]
(Lh0)ḣ0 = 0

(−1)
n+1
2 ∂2sVolR(M, gs)|s=0 ≥ C|ḣ0|2

H
n
2 (N)

.

(2) Assume n = 4 and let hs0 be a smooth family of conformal representatives of the

conformal infinity satisfying vn(h
s
0) =

∫

N vn(h
s
0)dvolhs

0
. Assuming that Lh0 − 2 > 0

on the subspace of trace-free/divergence free tensors, there exists C > 0 such that for

all ḣ0 satisfying δh0(ḣ0) = 0 and Trh0(ḣ0) = 0

∂2sVolR(M, gs;hs0)|s=0 ≥ C|ḣ0|2H2(N).

Remark. By using a Weitzenböck type formula, one obtains that the assumption Lh0−2 ≥ 0

is satisfied for hyperbolic metrics h0, see for example the proof of [6, Th 12.67]; and the strict

inequality Lh0 − 2 > 0 holds if ker dD = ker d∗D = 0 where dD is the exterior derivative on

T ∗N -valued 1-forms and d∗D its adjoint.

Proof. The case n odd is a direct consequence of Proposition 7.6. For the case n = 4, we use

(77), Lemma 6.5, Lemma 7.2 and Lemma 7.5 to deduce that

4∂2sVolR(M, gs;hs0)|s=0 = −〈r4, ḣ0〉L2 + (12v4 − 1
8)|ḣ0|2L2 − 1

2〈r4,1, ḣ0〉L2

where r4 and r4,1 are given in Proposition 7.6. By Lemma 4.4, v4 = 3/8 and so

27∂2sVolR(M, gs;hs0)|s=0 = 〈H1(
√

Lh0 − 9
4)ḣ

1
0, ḣ

1
0〉L2 + 〈H0(

√

Lh0 − 9
4)ḣ

0
0, ḣ

0
0〉L2

where Hε, ε ∈ {0, 1} are the functions defined by

Hε(u) :=
(

c0 +− (−1)επ

cosh(πu)
+ 2Re(Ψ(52 − iu)

)

(u2 + 1
4)(u

2 + 9
4) + (u2 + 1

4)
2 + 2 (100)

for u ≥ 0, and to

Hε(−iu) :=
(

c0 + 1− (−1)επ(tan(π2 (
1
2 − u)))(−1)ε + 2Ψ(52 − u)

)

(−u2 + 1
4)(−u2 + 9

4)

+ 2u(2u2 − 5
2) + (−u2 + 1

4)
2 + 2

(101)

for u ≥ 0. Let us show that the functions in (100) are positive for u ≥ 0 (numerically this

follows from Figure 1 but we give a formal proof). Since H1(u) ≥ H0(u) for u ≥ 0, it suffices

3The proof in [68] is technically for n odd, but the same arguments apply, once we have noticed that

δg(ġ) +
1
2
dTr(ġ) has no log coefficient before xn+1 log(x) when measured with respect to g, this is easy to

check.
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Figure 1. Left: the graph of the function H̃(u) boundingH0(u) from below,

where H̃(u) :=
(

c0 + 1− π
cosh(πu) + 2Ψ(52)

)

(u2 + 1
4)(u

2 + 9
4) + (u2 + 1

4)
2 + 2.

Right: the graph of the function H0(−iu) for u ∈ [0, 1/2].

to show that H0(u) > 0. We write

H0(u) = a(u)x(x+ 2) + x2 + 2, x := u2 + 1
4 , a(u) := c0 + 1− π

cosh(πu)
+ 2Re(Ψ(52 − iu)).

The real part of the digamma function ℜ(Ψ(52 + it)) is increasing as a function of |t|:

ℜ(Ψ(σ + it)) = −γ +

∞
∑

n=0

(

1

n+ 1
− n+ σ

(n+ σ)2 + t2

)

, (102)

thus

Re(Ψ(52 − iu2 )) ≥ Ψ(52) = −γ − 2 ln 2 + 8
3 , (103)

and so a(u) is increasing and satisfies

a(u) ≥ a(0) = 23
6 − 6 ln 2− π. (104)

For a ∈ R let Pa(x) := ax(x+2)+x2+2. Since a(u) is increasing, we haveH0(u) = Pa(u)(x) ≥
Pa(u0)(x) for all u ≥ u0. We use a bootstrap argument: by (104), a(0) > −3.468 =: a0 and

so Pa0(x) > 0 for x < x1 with some explicitly computable x1. This means that H0(u) > 0

for u < (x1 − 0.25)1/2 =: u1. Using (103), we have a lower bound a(u1) > a1. The binomial

Pa1(x) is positive for x < x2, etc. This tedious algorithm stops after a finite number of steps.

Hence H0(u) > 0 for all u > 0.

We now show that the function H0(−iu) from (101) is positive for 0 ≤ u < 1/2. We

introduce the notation

u := 1
2 − v, a(v) := c0 + 1− π(tan(π2 v)) + 2Ψ(v + 2)

and we compute H0(−iu) = v(2− v)[a(v)(v2 − 1) + v2 − 4v − 1]. Therefore for 0 < v ≤ 1/2,

H0(−iu) > 0 if and only if −(a(v) + 1) < 4v
1−v2

. At v = 0 this is verified since c0 > −4. It is

thus enough to show that for 0 < v ≤ 1/2 we have

−a′(v) < 2

(

1

(1− v)2
+

1

(1 + v)2

)

.
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Using (102), we have

−a′(v) = π2

2 cos2(πv/2)
− 2Ψ′(2 + v) = 2

∑

k∈Z

1

(v + 2k + 1)2
− 2

∑

k≥0

1

(v + k + 2)2

= 2

(

1

(1− v)2
+

1

(1 + v)2

)

+ 2

∞
∑

k=1

(2v − 1)(4k + 1)

(v − 2k − 1)2(v + 2k)2

and this finishes the proof since 2v − 1 < 0. �

Remark 7.9. For n odd, we notice that from Proposition 7.6, the Fuchsian-Einstein metric

is a saddle point for regularized volume if Lh0 − (n−1)2

4 has negative eigenvalues.
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