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Abstract

The experimental evolution of laboratory populations of microbes provides an opportunity to observe the evolutionary
dynamics of adaptation in real time. Until very recently, however, such studies have been limited by our inability to
systematically find mutations in evolved organisms. We overcome this limitation by using a variety of DNA microarray-based
techniques to characterize genetic changes—including point mutations, structural changes, and insertion variation—that
resulted from the experimental adaptation of 24 haploid and diploid cultures of Saccharomyces cerevisiae to growth in
either glucose, sulfate, or phosphate-limited chemostats for ,200 generations. We identified frequent genomic
amplifications and rearrangements as well as novel retrotransposition events associated with adaptation. Global nucleotide
variation detection in ten clonal isolates identified 32 point mutations. On the basis of mutation frequencies, we infer that
these mutations and the subsequent dynamics of adaptation are determined by the batch phase of growth prior to
initiation of the continuous phase in the chemostat. We relate these genotypic changes to phenotypic outcomes, namely
global patterns of gene expression, and to increases in fitness by 5–50%. We found that the spectrum of available mutations
in glucose- or phosphate-limited environments combined with the batch phase population dynamics early in our
experiments allowed several distinct genotypic and phenotypic evolutionary pathways in response to these nutrient
limitations. By contrast, sulfate-limited populations were much more constrained in both genotypic and phenotypic
outcomes. Thus, the reproducibility of evolution varies with specific selective pressures, reflecting the constraints inherent
in the system-level organization of metabolic processes in the cell. We were able to relate some of the observed adaptive
mutations (e.g., transporter gene amplifications) to known features of the relevant metabolic pathways, but many of the
mutations pointed to genes not previously associated with the relevant physiology. Thus, in addition to answering basic
mechanistic questions about evolutionary mechanisms, our work suggests that experimental evolution can also shed light
on the function and regulation of individual metabolic pathways.
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Introduction

The study of organismal evolution at the molecular level is a

potent means of understanding how genomes evolve in response to

selective pressures. Most kinds of evolutionary analysis are

necessarily retrospective: individuals are sampled from a popula-

tion in the present, genetic variation is assessed, and inferences

about the past action of evolutionary forces are drawn from the

patterns of observed variation. Yet by their nature, retrospective

analyses based on variation at a snapshot in time cannot directly

address the dynamics of evolution. Experimental evolution of

microbes provides an alternative to this retrospective approach:

short generation times and the ease of maintaining sizable

populations make it feasible to observe adaptation in real time.

The study of experimental evolution of microbes in controlled

laboratory environments has a long history, beginning with the

demonstration by Luria and Delbrück [1] that adaptive mutations

exist in populations prior to selection. However, until very recently

this approach has suffered from one key limitation: there was no

way to detect new mutations genome-wide and to trace their fate

through the experiment. Instead, analysis has focused primarily on

interpreting phenotypic outcomes (e.g. increases in fitness and

other acquired phenotypes), without being able to make a direct

connection to the genetic variability underlying these phenotypes.

Thus, many basic questions regarding evolutionary mechanisms

have yet to be successfully addressed experimentally.

First, we do not know how many mutations we expect cells to

accumulate in a given time in a given environment, nor what

fraction of these mutations will be neutral or contribute to large or

small increases in fitness, although a few recent studies in phage

[2,3] and bacteria [4,5] have begun to address these questions.

Fundamentally this is a question of what mutation rates are, what

the distribution of selective effects of new mutations is, how these

vary with organism and environment, and how these parameters
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interact with particular population dynamics to determine how

evolution progresses. Experimental measurements of these quan-

tities and theoretical understanding of how they interact have both

proven very challenging, though some progress has been made [6–

10]. Second, we do not know what variability in any of these

quantities to expect within or between populations. Will evolution

in the same controlled environment carried out many times result

in fitter variants with identical, similar, or highly divergent sets of

mutations? How will this genotypic diversity relate to diversity in

physiology? More specifically, for any given nutrient limitation,

how severely does the system-level organization of metabolism

limit the evolutionary possibilities? While extensive experimental

work has measured both genetic and phenotypic variability (e.g.

[11,12]), systematic analysis of the relationship between genome-

wide genetic variation and a quantifiable measure of phenotypic

variation has not been done, nor has this been connected to the

organization of metabolic pathways. Finally, we have a relatively

limited understanding of the nature of the mutational spectrum on

which evolution operates. Specifically, we do not have much

experimental information about the relative importance of point

mutations, transposon insertions, or genome rearrangements in

evolution.

Microarray-based genomic technologies provide tools to tackle

some of these basic questions, by allowing us to systematically find

most mutations genome-wide in evolved strains, and track their

fates through the experiments [5,13–16]. These methods allow

global characterization of the genomes of clonal isolates recovered

from populations evolved under experimental conditions, includ-

ing structural and insertional genomic variation as well as point

mutations [16], though they still may miss important classes of

mutations in repeats and other low complexity sequences. Recent

analyses of genomes of experimentally evolved yeast [14] and

bacterial strains [5] have demonstrated that the number of

mutations associated with long-term experimental evolutions is

small, making the task of complete characterization of mutational

spectra in adapted organisms feasible. Thus, microarray ap-

proaches to characterizing genomes have the potential to facilitate

determination of the causation of complex phenotypic outcomes of

experimental evolution experiments such as global transcriptional

[17], translational [18] and metabolic [19] states.

In this paper we begin to address the above questions by

following evolutionary adaptation of cultures of the single-celled

eukaryote, Saccharomyces cerevisiae, growing at steady state under

three different metabolic limitations, and assessing the extent and

dynamics of genotypic and phenotypic diversity. We subjected 24

yeast populations to ,200 generations of selective pressure in

glucose-, sulfate-, or phosphate-limited chemostats. Chemostats

provided a consistent environment across time and replicates, and

the nutrient-limited conditions presumably represent a selective

pressure encountered by microbes in natural environments, since

competition for nutrients is a driving evolutionary pressure that is

thought to have shaped the long-term evolution of biological

networks [20,21].

Consistent with earlier work [14], we found that only a few

mutations accumulated over the course of our experiments. Most of

these mutations appear to be adaptive and provide fitness advantage

of 5–10%, although in sulfate-limited evolutions a class of

transporter gene amplifications provided a 50% advantage. We

found that the outcomes of adaptation can be understood based on

the distributions of mutational effects in these different nutrient

limitations and the particular population dynamics of our experi-

ments, in which the large diversity of genetic variation generated

during the batch phase of growth and clonal interference in the very

early stages of our experiments drove the subsequent results.

These factors also determine the level of both genotypic and

phenotypic variation between independent populations evolving in

response to the same nutrient limitation. We found that the

phenotype of adapted individuals, as measured using global gene

expression, is much less variable in clones from cultures adapted to

sulfate limitation than either glucose or phosphate limitation. This is

also reflected in the genotypic diversity among cultures; sulfate

adapted clones almost invariably carried amplifications of SUL1,

which encodes a high affinity sulfate transporter, while the genomes

of clones adapted to glucose and phosphate limitation were much

more diverse. In some cases, our understanding of the identity and

range of these adaptive mutations has led to the realization that

expression of particular genes is important to physiology with which

the gene had not previously been associated. Thus in addition to

answering mechanistic questions about evolutionary mechanism,

and the constraints inherent in the system-level organization of

metabolic processes in the cell, our work suggests that experimental

evolution will also be useful in understanding the function and

regulation of individual metabolic pathways.

Results

We studied 24 prototrophic populations evolving in chemostats

in defined media in one of three conditions: glucose limitation,

sulfate limitation, or phosphate limitation (Table 1; see Methods).

For each limitation, eight populations were founded using

ancestors of two strain backgrounds and two ploidies. Population

sizes were of order 1010 cells. Cultures were maintained for an

average of 234658 generations. At the end of each evolution, two

randomly selected clones were isolated from each population for

further analysis.

The Phenotypic Outcomes of Nutrient-Limited Evolution
In order to characterize the nature and diversity of the adaptive

responses to nutrient limitation, we measured culture parameters

and gene expression patterns in the final evolved populations and

clones derived from these populations.

Author Summary

Adaptive evolution is a central biological process that
underlies diverse phenomena from the acquisition of
antibiotic resistance by microbes to the evolution of niche
specialization. Two unresolved questions regarding adap-
tive evolution are what types of genomic variation are
associated with adaptation and how repeatable is the
process. We evolved yeast populations for more than 200
generations in nutrient-limited chemostats. We find that
the phenotype of adapted individuals, as measured using
global gene expression, is much less variable in clones
adapted to sulfate limitation than either glucose or
phosphate limitation. We comprehensively analyzed the
genomes of adapted clones and found that those adapted
to sulfate limitation almost invariably carry amplifications
of the gene encoding a sulfur transporter, but the
mutations in individuals adapted to glucose and phos-
phate limitation are much more diverse. This parallelism
holds true at the level of single-nucleotide mutations.
Although there may be other paths to adapt to sulfate
limitation, one path confers a much greater advantage
than all others so it dominates. By contrast, there are a
number of ways to adapt to glucose and phosphate
limitation that confer similar advantages. We conclude that
the reproducibility of evolution depends on the specific
selective pressure experienced by the organism.

Experimental Evolution of Yeast
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Physiological phenotypes. We detected changes in culture

physiology over the course of the evolutionary experiments,

consistent with improved fitness. Clones isolated from the evolved

cultures and established in independent chemostats displayed

similar physiological properties as the populations from which they

were derived. 18 of 24 cultures showed an increase by an average

of 11% dry weight yield when compared to their respective

ancestral cultures. Phosphate- and glucose-limited cultures tended

to increase in dry weight more often than sulfate-limited ones,

consistent with the smaller proportion of cell mass contributed by

sulfate compared to phosphate or glucose [22]. Average cell

volume increased in 7 of 8 phosphate-limited cultures, but tended

to decrease in the two other nutrient limitations. In the glucose-

limited cultures, residual ethanol decreased almost 10-fold in six

cultures, as seen in a previous study [17]. However, residual

ethanol increased by 60% in two glucose-limited populations,

suggesting a different mode of adaptation. Residual glucose

decreased in every glucose-limited culture by an average of

45%, consistent with improved extraction of the limiting nutrient.

Residual phosphate and sulfate concentrations were below the

limit of detection using standard assays even in the founding

populations precluding meaningful comparisons.

Gene expression phenotypes. To investigate how

adaptation was reflected in altered transcriptional programs, we

determined global gene expression phenotypes of two evolved

clones from each population (N=48) and a subset of complete

evolved populations (N= 15). RNA from evolved and ancestral

strains grown in matched conditions in chemostats was co-

hybridized to DNA microarrays (see Methods). In order to classify

transcripts as significantly altered, we determined the experimental

variance due to both growth conditions and microarray methods

between two replicate chemostats (see Methods). The majority of

genes passed our resultant criterion of .1.5 fold change in two or

more expression sets (5443/6237 array features). Those genes that

did not change in gene expression were enriched for functions in

transcription and signaling (Table S1).

We performed two-dimensional hierarchical clustering of the

resulting data matrix (Figure 1A). Unsupervised clustering of

experiments resulted in groupings that corresponded to the

nutrient limitations, consistent with different selective regimes

leading to different gene expression outcomes. The two indepen-

dent clones from each population typically clustered with each

other and with the population sample (orange bars, Figure 1A),

indicating that individuals within populations tended to be more

similar to each other than individuals from different populations,

and that clones are representative of the population as a whole.

To quantify these observations, we calculated the distribution of

pairwise pearson correlations for all expression profiles. This

metric, which ranges from 21 to 1, provides a measure of the

difference between phenotypic states. Positive values indicate

Table 1. Summary of experimental evolution experiments.

Population Name Limitation Strain Background Ploidy Mating Type Generations of evolution*

G1 glucose S288c 1N MATa 182

G2 glucose S288c 1N MATa 311

G3 glucose S288c 2N MATa/a 238

G4 glucose S288c 2N MATa/a 237

G5 glucose CEN.PK 1N MATa 164

G6 glucose CEN.PK 1N MATa 162

G7 glucose CEN.PK 2N MATa/a 237

G8 glucose CEN.PK 2N MATa/a 328

P1 phosphate S288c 1N MATa 180

P2 phosphate S288c 1N MATa 316

P3 phosphate S288c 2N MATa/a 222

P4 phosphate S288c 2N MATa/a 205

P5 phosphate CEN.PK 1N MATa 161

P6 phosphate CEN.PK 1N MATa 217

P7 phosphate CEN.PK 2N MATa/a 225

P8 phosphate CEN.PK 2N MATa/a 201

S1 sulfur S288c 1N MATa 297

S2 sulfur S288c 1N MATa 188

S3 sulfur S288c 2N MATa/a 306

S4 sulfur S288c 2N MATa/a 256

S5 sulfur CEN.PK 1N MATa 297

S6^ sulfur CEN.PK 1N MATa 122

S7 sulfur CEN.PK 2N MATa/a 303

S8 sulfur CEN.PK 2N MATa/a 250

*Generation zero is defined as the point at which chemostat flow was initiated.
^A clone from this population, S6c1, has previously been reported in [18]. In that paper the clone was called g122.
We performed 24 independent experimental evolutions in chemostats under three different nutrient limitation regimes. Evolutions were performed using two different
strain backgrounds that are amenable to long-term cultivation in chemostats. All strains were wildtype prototrophs.
doi:10.1371/journal.pgen.1000303.t001
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similarity between pairs of expression states, while negative values

reveal divergent expression states and values near zero indicate the

absence of any relationship. Using this measure, we found

substantial phenotypic homogeneity in the individual evolved

populations. On average the two clones within a population are

well correlated in expression (average pairwise correlation greater

than 0.70; Table 2). Furthermore, the patterns of gene expression

of the clonal isolates were well correlated with the patterns

determined for the entire evolved population, supporting their

suitability as representative samples of the populations (Table 2).

The distribution of the pairwise pearson correlations can also be

used to compare the diversity of the patterns of gene expression

among the several populations that were evolved independently

under the same nutrient limitation. Analysis of these distributions

for the three different nutrient limitation regimes (Figure 1B and

Table 2) show that there is greatly reduced diversity in the gene

expression profiles of clones derived from the independent sulfate-

limited populations than is the case for either glucose-limited or

phosphate-limited populations. This same result can be seen in the

dendrogram at the top of Figure 1A, which shows that the

expression states of sulfate adapted populations cluster much more

tightly than do either glucose or phosphate adapted populations.

The dendrogram also indicates that the several independently

evolved glucose and phosphate expression patterns each fall into

one of a few apparently distinct phenotypic classes. These data

show that adaptation to sulfate limitation appears to be

constrained, resulting in a high degree of phenotypic parallelism

between evolution experiments, whereas alternative phenotypic

outcomes are obtained in response to glucose and phosphate

limitation.

Metabolic strategies for adaptation to nutrient

limitation. One motivation for undertaking experimental

evolution studies is to try to understand the adaptive metabolic

strategies available to yeast cells. Conceivably, there might be

condition-independent efficiencies possible. We could expect to

observe these as red or green stripes across all of Figure 1A,

Figure 1. Adaptation to nutrient-limitation results in massive remodeling of global gene expression. (A) Gene expression data,
presented as the log2-transformed ratio of each gene’s expression value in the evolved versus ancestral strain, were hierarchically clustered on both
axes (y-axis, 5443 genes; x-axis, 48 clone and 15 population samples). The dendrogram for the clustered experiments (x-axis) is color-coded by
nutrient limitation (sulfate-limitation in red, glucose-limitation in green, and phosphate-limitation in blue). Orange horizontal bars represent
groupings where the two clones and their corresponding population sample are more correlated with each other than with any other experiments.
Glucose expression states fall into three phenoclusters (Gluc1, Gluc2, Gluc3) while phosphate expression states fall into four (Phos1, Phos2, Phos3,
Phos4). (B) Density estimates of the distribution of pairwise pearson correlations (N = 112) of the expression states of clones selected under three
different nutrient limitations. Clonal isolates from independent sulfate-limitation evolutions (red) were more similar to each other (median pearson
distance= 0.425) than those obtained from independent glucose (green, median pearson distance= 0.152) or phosphate (blue, median pearson
distance= 0.088) evolutions. The three distributions were compared using the Wilcoxon-Mann-Whitney rank-sum test. The distributions of pairwise
correlations between sulfate and glucose clones are significantly different (U = 3097, p-value= 5.9610211) as are the distributions between sulfate
and phosphate clones (U= 2545, p-value= 1.54610214). The distributions of pairwise distances between phosphate and glucose clones are not
significantly different (U = 7103, p-value= 0.08681).
doi:10.1371/journal.pgen.1000303.g001
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representing clusters or genes up- or down-regulated, respectively,

in all the evolved cultures. However, since we studied three very

different environmental conditions, we might expect most

strategies to be condition-specific. Indeed, there are no obvious

red or green stripes across the whole of Figure 1A, indicating that

there are very few if any clusters of genes that are generally up- or

down-regulated in all the evolutions. There are, however, many

big blocks of red and green that indicate common strategies for

individual selective conditions. Indeed, as suggested above, for

both glucose and phosphate limitation these blocks subdivide the

evolved cultures into subclasses which differ in the genes whose

expression levels have changed over the evolution. It should be

noted that Figure 1A provides gene expression patterns

uncorrected for differences in gene copy number (see below);

thus some of the narrow vertical stripes of changed expression may

reflect aneuploidy more than metabolism per se.

We performed gene ontology (GO) term enrichment analysis for

clusters of genes with correlation coefficients greater than 0.7 that

contained more than 25 genes using the program GOLEM [23].

Clusters with significantly enriched GO process terms (hypergeo-

metic test, Bonferroni corrected p-value ,1025) are labeled in

Figure 1A (closely related GO terms were condensed for clarity,

and broad GO terms were omitted, see Table S1 for complete

data). It is clear from this analysis that the behavior of genes across

adaptations differs among the three different nutrient limitations;

that is, there is no evidence of condition-independent adaptive

strategies. Table 3 shows a more stringently selected subset of

genes showing the greatest increase and decrease in expression in

the evolved strains from each nutrient limitation. Some GO

categories did increase in more than one condition, such as GO

Function category ‘‘transmembrane transporter activity,’’ which is

enriched in both glucose and phosphate limitations, and Cellular

Component term ‘‘integral to membrane,’’ enriched in phosphate

and sulfate. As we document further below, many of the evolved

strains overproduce high-affinity transporters that increase the

uptake of the limiting nutrient in their environment. Among the

genes generally decreased in expression, both glucose and

phosphate limitations are enriched for genes in the closely related

GO Process categories ‘‘tricarboxylic acid cycle’’ and ‘‘generation

of precursor metabolites and energy,’’ which might indicate that

cells are functioning more efficiently. Genes annotated to ‘‘iron ion

binding’’ and ‘‘iron homeostasis’’ also shared patterns of decreased

expression in glucose and sulfate limitations.

Most differentially expressed genes showed increases and

decreases in expression in only a single selective regime. Notable

in this regard are the strongly reduced expression of genes

explicitly involved in fermentation (‘‘alcohol biosynthetic process’’

in Table 3) in strains evolved in glucose limitation. This

recapitulates a similar result obtained by Ferea et al. [17] for

yeast strains evolved under glucose limitation. This result, and the

concomitant increases in peroxisomal functions (GO Component)

and lipid metabolism (GO Process) are consistent with the

conclusion of Ferea et al. [17] that adaptation involves major

alterations in metabolic strategy. For the strains evolved in

phosphate limitation, the notable increases are genes annotated to

sulfate metabolism, nitrogen metabolism, oxidation and reduction,

and response to toxin. The genes in these subsets are overlapping,

and focused on redox-related reactions, for example cytochrome

oxidase. The decreases in the Function category include ATP-

dependent helicases and pyrophosphatases. For sulfate limitation,

the notable increases include overlapping sets of genes involved in

carbohydrate and cell wall metabolism, and a highly significant

increase in the ‘‘cell wall’’ component category.

In order to assess the coordination in gene expression changes

more directly at the level of metabolic pathways, we analyzed gene

expression data using the Saccharomyces Genome Database (SGD)

Pathways Tools Omic Viewer (http://pathway.yeastgenome.org/

expression.html). We found that the three different clusters of

glucose evolved clones and populations (Gluc1–3, Figure 1A)

corresponded to differing strategies in carbon use. Cluster Gluc1

showed evidence of concerted down regulation of genes involved in

both gluconeogenesis and glycolysis. These same genes were

unchanged in Cluster Gluc2, which showed increased expression

of CIT2 and CIT3, both of which catalyze the synthesis of citrate in

the citric acid cycle. Moreover, genes catalyzing fatty acid oxidation

(POX1, FOX1, POT1, DCI1) were coordinately up-regulated in this

cluster. In both clusters Gluc1 and Gluc2, ADH2, which catalyzes

the conversion of ethanol to acetylaldehyde, was up-regulated. By

contrast, in cluster Gluc3 ADH2 was down-regulated and there was

otherwise little change in the gene expression of metabolic enzymes.

These gene expression patterns agree with the ethanol measure-

ments described above. That is, the six populations in clusters Gluc1

and Gluc2 showed decreases in ethanol concentration while the two

populations in cluster Gluc3 increased ethanol. The divergent

responses of central carbon metabolism genes in clones adapted to

glucose limitations are indicative of metabolically different evolu-

tionary strategies underlying the adaptive response.

The Genotypic Responses to Nutrient-Limited Evolution
To identify the range of genotypic responses to adaptation to

nutrient-limited environments, we comprehensively characterized

the genomes of evolved clones using several microarray-based

methods that in combination identify the suite of structural,

insertional and nucleotide variants in each clone [20]. This

analysis enabled a direct comparison of the diversity of phenotypic

outcomes of experimental evolution with alterations in the

genome.

Specific genomic amplifications including transporter

genes. We analyzed structural variation in the genomes of

evolved clones using microarray comparative genomic

hybridization (CGH). We identified extensive structural variation

in the genomes of clones recovered from the three nutrient

Table 2. Diversity of gene expression phenotypes within and between evolved populations.

Selection Phosphate Sulfur Glucose

Intrapopulation pairwise pearson distance between clones within populations 0.8460.17 (n = 8) 0.7060.17 (n = 8) 0.7060.19 (n = 8)

Intrapopulation pairwise pearson distance between clones and population sample 0.6660.13 (n = 16) 0.76 (n = 2) 0.6860.20 (n = 12)

Interpopulation pairwise pearson distance between clones within limitations 0.0960.31 (n = 112) 0.4060.20 (n = 112) 0.1660.32 (n = 112)

We computed pairwise pearson distances. The value presented is the mean of all pairwise pearson distance6one standard deviation. n indicates the number of pairwise
distances calculated.
doi:10.1371/journal.pgen.1000303.t002
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limitation regimes (Figure 2, Figure 3, Table S2, and Figure S1).

One prominent class of structural variation included discrete

genome amplification and deletion events. In glucose and sulfate

limited selections, amplification of a specific nutrient transporter

was a common adaptive outcome. Under glucose limitation,

amplifications of either of the adjacent HXT6 and HXT7 genes,

encoding high affinity glucose transporters, were observed in 9

clones from 5 populations. Under sulfate limitation we observed

amplification of SUL1, which encodes the high affinity sulfate

transporter, in 15 of 16 clones (Figure 2). The single clone without

the amplification, S1c1, was later found to contain several point

mutations (see below). In phosphate limitations the secreted acid

phosphatase gene PHO5 changed in copy number in both clones

isolated from 2 of the 8 populations. Interestingly, in one

population this event was an amplification and in the other it

was a complete deletion.

Amplification of HXT6 and HXT7 has previously been shown to

result from unequal mitotic recombination between these neighbor-

ing genes, which are 99% identical at the nucleotide sequence level

[24]. Our CGH data show amplified signal only at the HXT6 and

HXT7 probes (which are of identical sequence), consistent with the

occurrence of this specific amplification by the same mechanism. By

contrast, the amplification of SUL1 in long-term sulfate selections

appears to result from a diversity of events, as CGH data showed a

variety of amplified alleles at this locus (Figure 2A). We observed a

variety of breakpoints bounding this amplification, but detected no

obvious repetitive sequence or genomic features at the amplification

boundaries. The number of SUL1 copies varied from 2 to 16 between

individuals, and the amplified fragment ranged in size from just the

2.5 kilobase SUL1 gene to over 40kb (Figure 2A). To more precisely

define the boundaries of the SUL1 amplifications, we hybridized

DNA from two individuals to an overlapping tiling microarray that

covers the entire yeast genome with an average of 4 basepair (bp)

resolution, allowing us to identify breakpoints to within 100 bp

(Figure 2B and 2C).

We searched for identical sequence at these boundaries and

found that the longest identical sequence match between the left and

right breakpoints was only 7 bp for S2c1 and 6 bp for S4c1.

Previously, we had identified minimal sequence homology (3bp)

bounding a deletion of the gene ACE2 that underlies suppression of

an AMN1 knockout [14]. Thus, small stretches of sequence identity

at the boundaries of both amplifications and deletions appear to be

sufficient to facilitate these events, as recently demonstrated [25].

In all but one case, clones isolated from the same population

shared breakpoints. Since this is unlikely to occur by chance, this

indicates that mutations found in both clones reflect a single initial

event, which then spread to high frequency in the population.

SUL1 amplifications are likely to be present as tandem repeats at

the SUL1 locus, as most strains carrying the amplification showed

chromosome II size increases (as detected by pulsed field gel

electrophoresis and confirmed by microarray analysis of the shifted

bands). The amplification also segregated as a single mendelian

locus in two tetrads from evolved diploids and one tetrad from a

backcrossed evolved haploid, as determined by CGH (Table S3).

Clones sometimes differed in copy number, suggesting that once

formed, the tandem repeat can expand further to higher copy

numbers within a lineage.

Large duplications, deletions, and rearrangements. We

detected a second class of prevalent structural variation in evolved

clones, consisting of gross chromosomal events. Segmental changes

in copy number were detected by CGH (Figure 3) with transposon

and tRNA sequences at the breakpoints (Table S2), as previously

reported for a different glucose-limited dataset [26]. Entire

chromosomes were also found amplified in some strains, including
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one diploid population (P7, Figure 3), with substantial aneuploidy.

Diploids were more likely than haploids to have large amplifications

and deletions, in contrast to the transporter gene amplifications,

which were observed equally in haploids and diploids. Only two

haploid clones, both from the same population, contained amplified

chromosome segments, while seven diploid clones from five

populations showed such changes. In order to characterize the

physical structure of these changes, and to potentially identify

reciprocal translocations that would not be detectable by CGH, we

ran pulsed field gel electrophoresis (PFGE) on all clones. Novel

bands and bands corresponding to predicted translocation sizes

were excised from the gel and hybridized to microarrays (Figure S1).

In all cases, translocations hypothesized from the CGH data were

consistent with the PFGE results (Table S2). Three clones had

chromosome XII size polymorphisms consistent with changes in

ribosomal DNA copy number (Table S2).

Figure 2. SUL1 is amplified in multiple independent evolutions. (A) Amplified fragments that include the gene SUL1 were identified in clones
recovered from all sulfate evolutions. Amplicons, in red, span the length of the CGH signal deviation from wildtype ploidy (in gray). The height of the
amplicon reflects the copy number relative to wildtype (gray bars, height scaled to haploid or diploid copy number as appropriate). The number of
copies of amplified fragments was determined by averaging CGH data from two clones from each population, with the exception of populations S1
and S2, in which only one clone was used due to disagreement between the clones. We analyzed two of these amplicons in further detail using a
high density overlapping tiling microarray. The breakpoints for SUL1 amplifications were precisely mapped in the haploid clone S2c1 (B) and the
diploid clone S4c1 (C). Complete data are shown for the ratio between independent hybridizations of evolved and ancestral DNA for the 7356 probes
that span chromosomal coordinates 780003-813512 of chromosome II. A running median was computed using the R function runmed with a median
window width of 201 (red line).
doi:10.1371/journal.pgen.1000303.g002
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Certain regions of the genome appeared to be particularly

susceptible to large-scale genomic events. For example, one copy

of the right arm of chromosome XIV was deleted in three diploid

sulfate- or glucose-limited cultures (Figure 3) and is associated with

a tRNA and LTR-dense breakpoint located between CIT1 and

ATO2, as previously reported [26]. In addition, we found two

independent uses of a breakpoint between YNL018C and PUB1,

which contains a tRNA. Overlapping segments of chromosome V

were amplified in four populations from all three nutrient

limitations. Two of these independent amplifications shared

identical breakpoints at a Ty1 element. Thus in contrast to

transporter gene amplifications, which are invariably specific to

one nutrient limitation, repeated gross chromosomal rearrange-

ments were found in multiple nutrient limitation regimes. This

suggests that structural variation in these regions may underlie a

general adaptive advantage to nutrient limitation or growth in the

chemostat. These repeatedly used sites represent structurally

flexible loci in the genome that may mediate potentially temporary

and reversible genomic alterations [27]. The exact targets of

selection in these regions remain unknown, though bulk

competition experiments in chemostats have suggested that

hemizygosity of a cluster of genes on chromosome XIV, coinciding

with our recurrent deletion site, confers a fitness advantage in

glucose- and nitrogen-limited chemostats [28].

Transposon activity during evolution experiments. In

addition to their association with chromosomal rearrangements,

transposons are themselves a rich source of genomic variation

with important roles in evolution [29,30]. We used array-based

transposon specific extraction (TSE) to identify novel Ty insertion

sites using probes targeting Ty1 and Ty2 consensus sequences

[15] (see Methods). We analyzed one clonal isolate from each of

the 24 evolutions, and identified six new full length

retrotransposition events (Table S4). In four cases the exact site

of the insertion was confirmed by PCR analysis and/or tiling

DNA microarray. Four insertions corresponded to

retrotranspositions into genomic sites known to be targets for Ty

elements, since they contain tRNAs or LTR sequences [31]. In

one case, the new insertion was also the breakpoint of a

translocation carried by the clone (G7c1, Table S2). CEN.PK

differs in its transposon content from the sequenced S288c strain

[15]. However, in two clones evolved from a CEN.PK

background new retrotransposition events were identified at a

site on chromosome I that contains a Ty in S288c but not in

wildtype CEN.PK. This provides compelling evidence of

recurrent Ty insertions at particular sites in the genome that

can occur over short time scales. We found an additional Ty

retrotranposition in a phosphate-limited strain, inserted between a

Ty1 delta element and the gene YPR003C.

Two retrotransposition events occurred within genes. We

identified a novel insertion site on chromosome IX in MTH1, a

negative regulator of glucose sensing, in the glucose-limited clone

G2c2. PCR and sequence analysis of this insertion revealed that it

was derived from YMLWTy1-2, which is encoded on chromosome

XIII. MTH1p is known to regulate the function of the

transcription factor RGT1p, which induces expression of the

hexose transport genes in the presence of glucose and represses

their expression in the absence of glucose [32]. Thus, it is plausible

that a downstream effect of the insertion of a Ty in MTH1 is

constitutive activation of RGT1 leading to increased expression of

sugar transporters. Although this model remains to be fully tested,

the expression levels of known RGT1p targets, HXT1, HXT2,

HXT3 and HXT4, increase dramatically in this strain (HXT1: 5.9

fold, HXT2: 3.5 fold, HXT3: 1.5 fold, HXT4: 6 fold). A second

glucose-adapted clone, G6c1, carried a novel Ty insertion in

NUT1, a component of the RNA polymerase II mediator complex.

Single-nucleotide mutations acquired during

evolutions. To identify single-nucleotide changes (SNPs)

Figure 3. Structural genomic variation is detected in clones
selected from all long-term nutrient limitations. We computed a
running average of log2 ratios between evolved and ancestral genomes
determined using CGH across 7 consecutive genes. Contiguous regions
deviating from wildtype ploidy levels are colored red for amplifications
and green for deletions. Regions that did not deviate from wildtype
copy number are in gray. Centromeres of each of the 16 chromosomes
are indicated by black dots.
doi:10.1371/journal.pgen.1000303.g003
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accumulated over the course of the evolutions, we hybridized

DNA from 10 evolved clones to overlapping tiling microarrays and

used the SNPScanner algorithm to detect candidate mutations

[14]. These samples included haploid and diploid clones from nine

populations of the S288c strain background adapted to all three

nutrient limitations. To identify adaptive pathways that did not

require amplification of transporters or other gross chromosomal

rearrangements, we preferentially selected clones for analysis that

yielded negative CGH results. Thus, of the 10 clones analyzed for

SNP variation only two clones had known structural variation,

both of which were recovered from sulfate evolutions (S2c1 and

S4c1).

We sequenced predicted SNPs using targeted Sanger sequenc-

ing reactions. In total we confirmed 34 mutation events in ten

clonal isolates (Table 4). Based on previous assessment of the

SNPScanner algorithm we expect to detect ,85% of SNPs

genome-wide [14]. Thus, it is likely that an additional six

mutations remain undetected among these 10 genomes (i.e. a false

negative rate of less than one SNP per genome on average). One

SNP prediction corresponded to the aforementioned Ty insertion

in MTH1 in clone G2c2. An additional prediction was found to

result from a 338bp LTR insertion within SNF6 in clone G1c2.

On the basis of sequence we surmised that this event is likely the

result of retrotransposition of a full length Ty1 and subsequent

recombination event resulting in a solo LTR (Figure S2). Of the

32 single base pair mutations, 27 (84%) occurred in known or

predicted genes and 5 (16%) were in intergenic regions. Although

the total number of mutations in each clone is small, most clones

had a similar number of point mutations. A notable exception was

clone G1c1, which had three times as many point mutations as the

mean of all clones. A possible explanation for an increased

mutation frequency in this clone is provided by the identification

of the F77S mutation in MMS2, a component of the error-free

post-replication repair pathway. A null mutation in MMS2 has

been estimated to result in a tenfold higher spontaneous mutation

frequency over wildtype [33]. However, we were unable to detect

an increase in mutation rate in clone G1c1 using fluctuation

analysis (data not shown).

Of the 27 mutations that occur within genes, 22 (81%) result

in nonsynonymous codon changes or truncating mutations.

Notably, no mutations were found in genes encoding transporters

or with obvious connection to nutrient import in the cell. No

significant gene ontology (GO) term enrichment was found for

the 23 different genes in which nonsynonymous SNPs or

insertion events occurred. A number of mutated loci in glucose

evolved clones have known roles in carbon metabolism: CCR4,

MTH1 and SNF6 are involved in transcriptional regulation in

response to carbon sources [34,35], and RIM15 is a protein

kinase that mediates entry into the G0 stage of the cell cycle in

response to nutrient availability [36]. However, in the majority of

cases a connection to enhanced growth under nutrient limitation

was not apparent on the basis of prior knowledge, thereby

requiring additional avenues of investigation (see below). One

gene, SGF73, which encodes a component of the SAGA complex

and has been shown to regulate histone ubiquitination status

[37], was mutated in two independent sulfate evolutions in which

we recovered two different nonsense alleles. This provides

compelling evidence that loss of function or truncation of

SGF73p is advantageous under sulfate limitation. Moreover, the

detection of independent mutations in the same gene from

different sulfate limitation evolutions is consistent with the

reduced flexibility in phenotypic and structural genomic

outcomes of sulfate selection as compared with glucose and

phosphate selection.

Measurements of Mutant Frequency, Dynamics and
Fitness
We investigated the extent to which selection drove the

observed genotypic changes and the dynamics by which

adaptation occurred.

Analysis of allele frequencies through time. In order to

measure the frequency of genomic rearrangements and to possibly

detect structural variants not identified in the selected clones, we

subjected DNA extracted from eleven population cultures to

CGH. We detected measurable changes in segmental copy

number in five population samples (Figure S3). In two cases (P6

and P7) the changes found in the population sample matched the

CGH profile of the corresponding clone samples. Three

population samples (G6, P3 and P5) contained high frequency

rearrangements not identified in the clones, suggesting that these

populations contain additional genetic diversity not identified in

our analysis of clonal isolates. We inferred the frequencies of these

rearrangements by computing the ratios of the heights (or depths)

of the peaks in the population and clone CGH results. In this way

we found frequencies of rearrangements within these populations

ranged from 17–77%. Interestingly, the copy number change that

reached the highest frequency in any population was the massive

aneuploidy found in population P7. Because of the difficulty in

defining the allele frequency of the variable copy number

transporter amplifications, they were excluded from this analysis.

In order to assess the frequencies of point mutations, we

developed a quantitative sequencing protocol (Figure S4 and

Methods). We validated the accuracy of this approach by

independently analyzing clonal isolates from population samples

using targeted Taqman allelic discrimination assays for a subset of

SNPs (Figure S5 and Methods) and found that the methods

produced comparable data (Figure S6). We detected 13 of the 32

SNPs at measurable frequencies (i.e. an allele frequency greater

than 5% in the final population, hereafter referred to as significant

mutations; Table 4) and focused our investigation on these

mutations, as they are more likely to be adaptive. In addition, we

tested the frequency of the SNF6 and MTH1 insertions by PCR

analysis of 96 clones from each population and found that they

were present at low frequencies in the population (1% and ,1%

respectively). We detected two point mutations fixed in popula-

tions (a mutation in GSH1 in clone G4c1 and a mutation in SLH1
in clone P3c2). Otherwise, significant mutations were found at

frequencies well below fixation (15–60%). Notably, when multiple

significant mutations were found within a clone (e.g. G1c1 and

P1c2), they were found at similar frequencies.

To ascertain the history of each mutation through the

experiment, we determined allele frequencies in archived

population samples throughout the course of the evolution for

the six populations in which we identified significant mutations

(Figure 4). We found that these mutations typically did not reach

detectable frequency (i.e. between 1–5%) until more than 100

generations had passed. Their frequency increased thereafter. On

the basis of the rate of increase in allele frequencies over time, we

computed the fitness coefficient of each mutation relative to

wildtype fitness, which is equal to 1. We found significant relative

fitness coefficients for the combinations of alleles ranging from

1.0477–1.0918 (Table 5).

While most allele frequencies increased monotonically, we

observed three anomalous alleles. A mutation in GSH1 was found

homozygous at 100% frequency in the final population of a diploid

evolution. This mutation rapidly swept to fixation in the

population (Figure 4B). Its presence at fixation in this diploid

population indicates that it underwent a homozygosing event (e.g.

gene conversion). We also identified two cases in which a mutation

Experimental Evolution of Yeast
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is present at high frequency in the final population due to a jackpot

event in the initial batch phase of growth: a mutation in PTH2 in

clone G1c1 (Figure 4A), and a mutation in SLH1 in P3c2, which

was present at allele frequency of 100% in samples taken

throughout the population’s history (data not shown). These

mutations were either strongly selected during batch phase growth

or were neutral but occurred early in the batch phase and

subsequently varied in frequency due to genetic drift and/or noise

in the quantitative sequencing method. These cases highlight the

necessity of retrospective determination of allele frequency

dynamics to interpret the final adaptive outcome.

Assessment of increased fitness by direct

competition. We sought to directly verify the selective

advantage conferred by mutations in evolved clones. To do so,

Table 4. Genome-wide nucleotide variation in evolved clonal isolates.

Population Clone ID SNPs Intergenic Genic Synonymous Missense Nonsense

Alleles (% in final

population695% CI)

G1 G1c1 9 1 8 2 6 0 CCR4 E724V (2963)

PTH2 I138M (26.560.3)

GIN4 L1079M (2266)

BRR2 G524S (2861)

MMS2 F77S (2364)

SAP185 synonymous
(3965)

CST9 synonymous

YNR071C S177L

Intergenic between SPP2

and SMP3

G1 G1c2 1 1 0 0 0 0 SNF6 LTR insertion (1.7)

Intergenic between AGC1

and YPR022C

G2 G2c2 4 0 4 0 3 1 TFC3 G877K

SIM1 A317V

WHI2 Q228X

YMR185W A926V

MTH1 retrotransposon
insertion

G4 G4c1 3 0 3 0 2 1 GSH1 D188F (100)

BNI5 R367I

RIM15 S1580X

P1 P1c2 2 0 2 0 2 0 SIR1 C135Y (5668)

CKA2 D186N (60611)

P2 P2c2 1 0 1 1 0 0 KGD1 synonymous

P3 P3c2 3 1 2 0 2 0 SLH1 E193K (10068)

URB2 E1018D

Intergenic between
YGL258W-A and YGL258W

S1 S1c1 3 0 3 2 0 1 SGF73 E277X (2261)

ERG1 synonymous (2062)

SFP1 synonymous

S2S2 S2c1S2c1 3 0 3 0 1 2 SGF73 E294X (1562)

UPF3 G6W

PBP2 Y127X

S4S4 S4c1 3 2 1 0 1 0 YEL007W Y81D

Intergenic between AGP1

and YCL023C

Intergenic between
YCR006C and tP(AGG)C

Total 32 5 27 5 17 5

We predicted the presence of SNPs using the SNPScanner algorithm on tiling microarray data. In order to confirm the prediction and identify the sequence change we
sequenced the locus using PCR and Sanger sequencing.
doi:10.1371/journal.pgen.1000303.t004
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we performed fitness assays for two informative cases by

competing mutant strains against the ancestral strain (see

Methods). We computed fitness coefficients from the rate at

which the mutant strains increased in frequency in these

competition experiments (Figure S7). We determined that a

clonal isolate containing only single nucleotide mutations, G1c1,

had a relative selection coefficient of 1.10660.012 when competed

against the ancestral strain. This is consistent with the relative

selective advantage for the mutations present in this clone

estimated from their rate of increase over the course of the

evolution experiment (i.e 1.09260.016, see Table 5). To confirm

the selective advantage of copy number amplification of SUL1

under sulfate limiting conditions, we engineered a wildtype strain

carrying multiple copies of SUL1 and competed it against the

ancestral strain in a sulfate-limited chemostat. Based on these data

we computed a relative selection advantage of 1.4960.09

conferred by multiple copies of SUL1.

For strains containing multiple significant point mutations, we

sought to determine which mutations are adaptive, which are

neutral hitchhikers, and which may interact epistatically. Compe-

tition among segregants derived from a backcross breaks the whole

genome linkage imposed by asexual propagation and allows for

comparison of all combinations of alleles. This results in a mixed

population: if there are only two unlinked mutations of interest,

the probability of having just one mutation in a segregant is 0.5

and the probability of having both or neither is 0.25. We

backcrossed P1c2, in which we had identified mutations in SIR1

and CKA2. Segregants were pooled according to mating type (to

avoid the possibility of mating during growth), inoculated into two

different phosphate-limited chemostats, and sampled every 2.5

generations. We determined allele frequencies using quantitative

sequencing. In both competition experiments, strains carrying the

CKA2 mutation quickly fixed, while those with SIR1 mutations did

not change in frequency, indicating the evolved allele of SIR1 is

Figure 4. Dynamics of allele frequencies in evolving populations. We determined allele frequencies for SNPs identified at detectable
frequencies in the final population sample using quantitative sequencing. (A) clone G1c1 (red, MMS2; purple, SAP185; green, GIN4; brown, BRR2; blue,
CCR4; gray, PTH2), (B) clone G4c1 (blue, GSH1), (C) clone S1c1 (blue, ERG1; orange, SGF73), (D) clone S2c1 (blue, SGF73) and (E) clone P1c2 (blue, CKA2;
red, SIR1). We computed fitness coefficients for clones using allele frequency estimates as estimates of clone frequencies. Fitness coefficients were
calculated for each allele (Table 5) and for each clone as described in methods. Relative selection coefficients of clones are (mean695%CI): clone
G1c1= 1.091860.0159, clone S1c1 = 1.036160.0139, clone S2c1 = 1.024760.0975, clone P1c2= 1.060260.0081. A selection coefficient for the diploid
clone G4c1 could not be computed due to the atypical allelic profile of the GSH1 mutation.
doi:10.1371/journal.pgen.1000303.g004
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neutral and the evolved CKA2 allele is adaptive (Figure S8). This

result would also seem to exclude the possibility that an epistatic

interaction between CKA2 and SIR1 confers a greater fitness

advantage than CKA2 alone. CKA2p is a catalytic subunit of

casein kinase II implicated in a diverse range of biological

processes including cell growth, transcription, and flocculation

(reviewed in [38]), but with unknown significance to improved

growth under phosphate limitation.

Evolutionary Dynamics of Adaptation
Estimating when adaptive mutations appeared in

populations. Given the inferred selection coefficients and the

observed frequencies of mutations over the course of the

evolutions, we can estimate the time at which adaptive

mutations must have occurred. Specifically, the frequency of a

mutation at time t, p(t), increases as
p(t)

1{p(t)
~

1

N
:es

:(t{t0) where s

is the increase in fitness conferred by the mutation and t0 is the

time at which it arose [39]. Population sizes in our experiment are

about 1010 individuals, and we found that mutations with selective

advantage on the order of 10% are initially detected after 100

generations of chemostat evolution, when they reach a frequency

of 1% or greater. This implies that at time 0, defined as the point

at which chemostat flow is initiated, these alleles were already

present at appreciable frequencies. Thus, over the timescales of

our experiments, selection primarily acts on standing genetic

variation that already existed when selection under continuous

culture conditions was initiated. This result is consistent with the

yeast evolution experiments of Paquin and Adams [40], who found

selection advantages on the order of 10% for mutant clones

appearing at detectable frequencies as early as 50 generations;

reanalysis of these experiments by Dykhuisen [41] and Otto [42]

emphasized that these numbers were not consistent with a simple

selection model on mutations that occurred after the start of

chemostat flow.

Based on our measurements of the selective advantages of

mutant clones, which except in sulfate limitation ranged from 5–

12%, and the times at which they reached detectable frequencies,

we estimate that the mutations must have been present in 102 to

106 cells (depending on the specific mutation) at the initiation of

chemostat flow (Table 5). This means that the mutations occurred

13 to 26 generations after the foundation of the lines in the batch

phase of growth, with the earlier-occurring mutations correspond-

ing to those of smaller fitness effect. This implies total mutation

rates ranging from 1025 for the early-occurring smaller-effect

mutations to 1028 for the later-occurring large-effect mutations.

In these calculations we have assumed that the fitness advantage

of a mutant allele is constant over the course of the evolution. Yet

we have calculated this fitness advantage on the basis of allele

frequency data from when the mutant is relatively common. We

cannot rule out the possibility that the mutations have frequency-

dependent effects, such that the fitness advantage of a mutant is

greater when it is rare than when it is common. It is also possible

that the effective fitness advantage of a mutant declines as that

mutant becomes more common because other beneficial mutants

in competing backgrounds are also becoming more common. If

this were the case, then mutations may have occurred later in the

experiments than we have estimated. More sensitive allele

frequency measurements will help resolve these questions.

Discussion

Despite the importance of evolutionary ideas in every aspect of

biology, there has been relatively little direct experimental data

describing the processes and mechanism that underlie evolution.

Only recently, through rapidly advancing genome technology, has

it become practical to study directly the genetic basis of

evolutionary change in an experimental setting. In this study, we

analyzed experimental evolution in chemostats with DNA

microarray technology, to assess genome-wide variation in gene

expression and DNA copy number, and with a practical and

Table 5. Selective advantage of alleles during evolutions.

Clone Mutation

Selection Coefficients

(coefficient695% CI)

Generations to

maximum frequency

Average final allele

frequency

Estimated

proportion at t =0

Subpopulation

size at t = 0

G1c1 CCR4 E724V 1.12660.058

GIN4 L1079M 1.07660.029

BRR2 G524S 1.07460.021

MMS2 F77S 1.10160.023

SAP185 synon 1.06760.020

Aggregate 1.091860.0159 181.5 26.2 2.0661028 2000

S1c1 SGF73 E277X 1.04560.013

ERG1 synon 1.06360.360*

Aggregate 1.047760.0244 276.7 20.9 4.9061027 50000

S2c1 SGF73 E294X 1.02560.098 188.5 15.55 1.7561023 1.756108

P1c2 SIR1 C135Y 1.06960.0107

CKA2 D186N 1.06860.0130

Aggregate 1.068360.0081 191.5 57.9 2.8761026 2.876105

*not statistically significant.
We determined allele frequencies during the populations’ histories. In order to determine the maximum fitness advantage attributable to the identified mutations we
identified the generation at which the allele frequency was the greatest and determined fitness coefficients based on the rate of allele frequency increase to that point.
Assuming the fitness benefit has been constant over the evolution experiment we inferred the size of the subpopulation at the commencement of the evolution
experiment.
doi:10.1371/journal.pgen.1000303.t005
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affordable method for detecting single-nucleotide changes relative

to the sequences of our starting yeast strains. We used these tools

to begin to understand the phenotypic and genetic changes

characteristic of the evolution of yeast in response to consistent

glucose, sulfate, and phosphate limitation in the chemostat.

The main finding of our study is the nature, identity and

dynamics of the mutations that occur over the course of these

evolution experiments. These mutations confer a selective

advantage ranging from ,5% to as much as 50% per generation.

One prevalent class of mutations consists of massive structural

genomic alterations, consistent with our earlier observations [26].

The adaptive advantage of a subset of these is readily explained by

the fact that amplified genomic segments contain genes encoding

transporters that are specific to the applied nutrient limitation.

The prevalence of these mutations in adapted populations, the

repeatability of their occurrence in independent populations, and

the experimental demonstration of their fitness advantage argue

for a central role of gene amplification in adaptation to nutrient

limitation.

The majority of structural variation, however, is found in other

regions of the genome. The reasons for the selective advantage of

these variants are less clear, but their repeated observation points

to their adaptive value. Interestingly, a recently reported mutation

accumulation experiment in yeast also revealed significant

aneuploidy in mutation accumulation experiments [43] despite

the fact that anueploidies typically cause growth defects [44]. In

our experiments a large fraction of these events are clearly

associated with the repetitive sequence found in retrotransposons,

which are themselves active during these evolutions. However,

retrotransposon sequences are not necessary for the generation of

structural variation, as illustrated by the repeated but diverse

amplifications of the SUL1 locus. These results point to a structural

plasticity of the yeast genome, operating at the supragenic and

genic [45] level, that facilitates adaptation.

Whole genome resequencing using tiling microarrays and

sanger sequencing revealed that only a small number of point

mutations accumulate during these experiments. We estimate that

we have found .85% of these mutations, and as new technologies

develop, we hope to eventually detect all mutations, including

those in difficult repetitive sequences. Our number of acquired

mutations is consistent with other microbial experimental

evolution studies that have attempted to comprehensively identify

mutations. Using a combination of microarray- and mass

spectrometry-based sequencing, Herring et al. [5] found a total

of 13 mutations in five E. coli populations propagated for ,660

generations using serial transfer. Pyrosequencing a ‘‘cooperator’’

strain of Myxococcus xanthus which appeared after 1000 generations

of selection identified 15 point mutations [4]. Thus, it would

appear that adaptation of microbes proceeds without the

requirement for mutator phenotypes in these experiments.

The relative merits of haploid and diploid states with respect to

adaptation have been hotly contested [6,40,46,47]. We find an

enrichment for gross chromosomal rearrangements in diploid cells

as compared with haploid cells, possibly reflecting more deleterious

effects of chromosomal rearrangements in haploids [48]. Although

we did not explicitly test the rate of adaptation in haploid and

diploid cells, our results highlight an underappreciated mechanism

by which recessive alleles can be important for adaptation of diploid

organisms: namely, through homozygosing via gene conversion or

chromosomal aneuploidy. We did not observe any striking

differences in adaptation related to mating type or strain

background, although it is noteworthy that in all clones from the

CEN.PK strain background we identified a HXT6/7 amplification

whereas this was found in only one of eight glucose-limitation

adapted clones in the S288c background. Recent analyses have

indicated that CEN.PK is a mosaic of S288c genome background

and divergent sequence [49]. The genomic region containing

HXT6/7 is identical in S288C and CEN.PK indicating that this

observed difference in rates is not due to sequence.

We inferred that the batch phase of growth has a large effect on

the parallelism of evolutionary paths in our experiments. During

the initial batch phase of growth, the population size doubles every

generation, which tightly constrains the time at which mutations

occur and means that beneficial mutations are very unlikely to be

lost by genetic drift. For example, if there is a class of mutations

with a total mutation rate such that on average one such mutation

will typically occur after 13 generations, such a mutation will

almost always occur sometime between generation 10 and 16.

However, when a mutation occurs later than average, it will be

present at much lower frequency at the end of batch phase, and

hence take substantially longer to spread through the population.

The length of this delay depends dramatically on the fitness effect

of the mutation: a mutation providing a 50% fitness advantage

which occurs 3 generations later than average in batch phase will

take 3 extra generations to reach a population frequency of 5%; a

mutation of 10% advantage will take 20 extra generations, and a

mutation of 1% advantage will take an extra 200 generations.

It follows that if a beneficial mutation that provides a large fitness

advantage (of order 50%) occurs at a high enough rate to happen

during the batch phase, it will almost always reach a substantial

frequency within the population by the end of our experiment. On

the other hand, a beneficial mutation of small fitness effect (of order

1%) will typically not do so unless it happens to occur very early in

the batch phase (and even in this case if a larger-effect mutation

occurs much later, the larger-effect mutation can reach high

frequency more quickly). A mutation with effect of order 10% is an

intermediate case; it will only reach substantial frequency within the

population by the end of our experiment if it occurs early enough in

batch phase. However, if mutations of roughly this effect occur at a

rate of 1027 or more, at least one such mutation will almost always

occur early enough in batch phase to be observed at substantial

frequency by the end of our experiment. In this case, the mutation

that happens to occur first will typically be the one we observe. In

other words, if beneficial mutations of large effect (of order 50%) are

sufficiently common that they occur during batch phase, they will

almost always occur and take over regardless of what smaller-effect

mutations are already present. On the other hand, if large-effect

mutations are rare, then the first beneficial mutation of intermediate

effect (of order 10%) will typically dominate, because later

mutations (even of slightly larger fitness effect) will be at large initial

numerical disadvantage.

These dynamics appear to explain the extent of parallelism we

observe between populations. In the sulfate-limited evolution,

there is a class of SUL1 amplifications that provide a very large

selective advantage (of order 50%). Given this large selective

advantage, it is unsurprising that these mutations are observed in

almost all of our cultures. This does not necessarily imply that

there is only one adaptive pathway in sulfate-limited conditions; it

could be the case that there are multiple other mutations which

provide alternative ways to adapt to sulfate limitation, but that

each of these only provides a selective advantage of order 10% and

hence are always eliminated by clonal interference, or are present

at much lower frequencies (as is the case for clone S1c1, the only

sulfate-limitation adapted clone without a SUL1 amplification in

our study). On the other hand, the phosphate and glucose-limited

populations exhibited a broader range of evolutionary responses.

In these conditions, we infer that there is no large-effect mutation

that is readily accessible, so the result is more dependent on which
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of the various mutations that confer fitness advantages of order

10% happens to occur first. The fact that we commonly observe

certain genomic amplifications (e.g. HXT6/7) in these populations

suggests that they occur with a total rate comparable to that to the

adaptive single point mutations, and confer a similar selective

advantage. This argument is consistent with an earlier report that

the relative selective advantage of a HXT6/7 amplification in

glucose-limited chemostats is 1.094 (Brown et al., 1998).

Our observations point to an important principle for adaptive

phenomena in natural populations and disease: the diversity of

adaptive outcomes will vary as a function of the distribution of fitness

effects of beneficial mutations, which differs dramatically depending

on the selective pressure. If there is a single ‘‘solution’’ that confers a

vastly greater selective advantage, that path will be repeatedly

observed. Conversely, a diversity of equally beneficial ‘‘solutions’’

will result in a reduction in the reproducibility of adaptation. An

illustrative example of this principle is the recent report of selection

for resistance of lung cancer cells to gefitinib or erlotinib using

longterm culturing of cells in the presence of the drugs [50].

Resistance in one-quarter of the specimens could be attributed to

amplification of the oncogeneMET, implying that alternative routes

to resistance must exist that confer comparable fitness advantages to

these tumor cells. It is interesting to consider an approach in both

our microbial system and cancer studies of blocking known routes to

adaptation in order to enrich for unknown alternative adaptive paths

that may confer smaller fitness advantages.

Our experiments have identified the outcomes of adaptation to

defined environments and revealed the diversity of genomic variation

in clonal representatives of adapted populations. Our findings suggest

a number of questions that should be addressed. First, it is critical to

determine a neutral mutation rate for genome amplifications,

deletions and rearrangements as well as the neutral mutation rate

for retrotransposition. A recent report has provided new insights into

these rates, indicating that large genome events occur at much greater

frequencies than nucleotide changes [43]. Cells grown in a chemostat

grow at a much slower rate than cells grown at maximal rates in batch

cultures, the condition under which mutation rates are typically

determined. Evidence in bacteria suggests that single base pair

mutation rates are increased under slow growth conditions [51] and

in stationary phase [52]. Therefore, examining the rates at which all

classes of genomic variants are generated in chemostat cultures will be

informative for interpreting future experiments. Second, extending

the duration of selection experiments will shed light on the role of

subsequent diversity generated during the continuous phase of

growth. It will be of great interest to test whether population diversity

increases or becomes increasingly constrained as selection continues.

Third, varying population size can be expected to have profound

effects on the dynamics of adaptation, and can influence the degree of

parallelism between independent cultures [9,10,53]. This parameter

and others such as growth rate and the complexity of the selective

pressures will be fertile areas of investigation. Finally, the mechanisms

by which these mutations increase fitness and change gene expression

will give insight into the functions of these genes and the cellular

systems in which they act.

Materials and Methods

Detailed protocols can be found at http://dunham.gs.washington.

edu/protocols.shtml.

Chemostat Culture
Continuous cultures were established using published methods

[54] with the exception of the phosphate-limited media, which

contained the following (per liter): 100 mg calcium chloride,

100 mg sodium chloride, 500 mg magnesium sulfate, 5 g

ammonium sulfate, 1 g potassium chloride, 500 mg boric acid,

40 mg copper sulfate, 100 mg potassium iodide, 200 mg ferric

chloride, 400 mg manganese sulfate, 200 mg sodium molybdate,

400 mg zinc sulfate, 1 mg biotin, 200 mg calcium pantothenate,

1 mg folic acid, 1 mg inositol, 200 mg niacin, 100 mg p-

aminobenzoic acid, 200 mg pyridoxine, 100 mg riboflavin,

200 mg thiamine, 10 mg potassium phosphate, and 5 g glucose.

Experiments were started by initially growing cultures in 300mL

of the appropriate defined media in batch phase. Once the

cultures reached saturation, chemostat flow was initiated. Cultures

were grown at a dilution rate of 0.17 volumes/hour. Daily samples

were taken from the overflow in order to determine optical density

at 600 nm, cell count and viability; perform microscopy; and make

archival glycerol stocks. We confirmed that all evolved haploid

clones maintained the same mating type as the founder by

backcrossing the evolved strain to the isogenic ancestral strain of

the opposite mating type. Clones from three of the twelve evolved

diploid populations exhibited reduced sporulation efficiency, but

did not mate inappropriately.

Microarray Data
Gene expression analysis. Chemostat samples were

harvested by fast filtration and frozen immediately in liquid

nitrogen. Gene expression differences can be caused by differences

in strain background, mating type, ploidy, and nutrient limitation

in cultures [55–57]. Thus, in order to identify only changes that

accumulated over the course of the evolution, we performed all

microarray hybridizations of evolved strains using the appropriate

ancestral strain grown under matched conditions. RNA was

prepared by acid phenol extraction, labeled using a modification

of the Agilent low RNA amplification kit, and hybridized to

Agilent 60-mer yeast ORF expression microarrays as described

previously [44]. Data were acquired using an Agilent scanner and

feature-extracted with the Agilent software using default settings.

Resulting ratios (transformed to log2 values) were filtered for

significant signal in at least one channel and renormalized using

only genes present at euploid copy number. All raw microarray

data are available from the Princeton Microarray Database

(http://puma.princeton.edu) and GEO (http://www.ncbi.nlm.

nih.gov/geo/query/acc.cgi?acc=GSE13435). Processed data for

expression and CGH microarrays are available as supplementary

material (Table S5 and Table S6 respectively).

To obtain a measure of experimental variation in cultivation

and microarray procedures we established two independent

cultures under identical conditions. We co-hybridized labeled

mRNA from both cultures to an expression microarray and

analyzed the distribution of the ratios at each microarray feature.

The mean of the normally distributed data was equal to zero with

a standard deviation of 0.19 log2 units. We defined a threshold of

three standard deviations, corresponding to a 1.5-fold expression

change (i.e. 60.585 log2 units), for significant gene expression

changes, consistent with previous reports for chemostat experi-

ments [44].

Microarray analysis: CGH. CGH in Figures 3, S1 and S3

was performed as described [44] using Agilent microarrays

containing one 60-mer per ORF. CGH in Table S3 used

Agilent 44k microarrays containing 60-mers spaced at ,280

base spacing across the yeast genome.

Microarray analysis: PFGE CGH. PFGE and gel band

DNA extraction was run as described [26] using double-lane

plugs. Resulting DNA was labeled directly using the Invitrogen

Bioprime kit and hybridized vs labeled wt genomic DNA as

described for CGH.
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Microarray analysis: TSE. Transposon Specific Extraction

(TSE) was performed as described [15] using Agilent 44k

microarrays. Extracted samples were hybridized vs matched

extracted ancestor DNA, or against total ancestral genomic

DNA as indicated in the experiment annotations.

Microarray analysis: tiling arrays and SNP

identification. Affymetrix Yeast Tiling Array 1.0R arrays

were hybridized with total genomic DNA and analyzed as

previously described [14]. In order to detect SNPs in diploid

samples we analyzed the four spores from a single tetrad. We

identified mutations in all four resulting haploids and pursued only

those that showed 4:0 or 2:2 segregation in the tetrad.

Heterozygous mutations were confirmed in the diploid clones.

Because mutations can accumulate during passaging of the cells

after the evolution experiment has ended we required that

mutations identified in purified DNA were sequence-confirmed

in a PCR product obtained by directly amplifying DNA from the

glycerol stock using standard colony PCR protocols.

The raw data files (.CEL) are available at http://genomics-pubs.

princeton.edu/ExperimentalEvolution/Download.shtml. The

SNPScanner result files can be downloaded at this same site and

are formatted as .sgr files for viewing in the Integrated Genome

Browser (http://www.affymetrix.com/support/developer/tools/

download_igb.affx).

Fitness Competitions
Clonal competition assays were performed using two different

drug resistant markers. For testing the fitness of the haploid clone

G1c1 a spontaneous canavanine drug-resistant mutant (CanR) was

selected. Two 300 mL chemostats were inoculated with either the

evolved strain marked with CanR or the ancestral strain, which is

sensitive to canavanine (CanS). Cultures were brought to steady-

state conditions over a period of,10 generations. 15 mL from the

chemostat containing the ancestral strain was removed and

replaced with 15 mL from the chemostat containing the CanR

marked clone, corresponding to an initial population mix of 5%

evolved clone and 95% ancestral clone. We sampled the

chemostat an average of every 3 generations for approximately

50 generations. Cells were sonicated, diluted and plated on rich

nonselective media and grown for 2 days at 30uC. We counted

.200 colony forming units using sterile methods. Cells were then

replica-plated to synthetic complete minus arginine media

containing 60mg/L canavanine and allowed to grow at 30uC for

3 days. CanR cells were identified as fully formed colonies.

To test the fitness increase due to amplified copies of SUL1 we

performed the same assay. However, in this case we transformed a

ura3 strain isogenic to the ancestral strain with a multicopy URA3

plasmid containing the SUL1 gene [58]. We constructed a G418-

resistant (kanMX) version of the ancestral strain by knocking out

the dubious ORF YDR032W with the kanMX cassette amplified

from the systematic deletion collection. For this competition cells

were first plated on YPD and then replica-plated onto

YPD+200mg/L of G418.

As a control, we marked the ancestral wildtype strain with CanR

and competed it against the isogenic CanS ancestor. This analysis

revealed a slight relative fitness advantage of CanR in glucose

limiting chemostats of 1.015. Given that this selective advantage is

an order of magnitude less than that determined for the evolved

clone we considered this contribution to fitness to be negligible.

We calculated the proportion of evolved cells (p) in the population

and determined the proportion of ancestral cells q = 12p. Fitness

coefficients were computed by regressing ln(p/q) against the

number of generations as described [39] using the function lm() in

R. We tested the significance of the selection coefficient, which is

equal to the slope of the regression ß, by using a t-test to test the null

hypothesis that ß= 0. 95% confidence intervals were computed in R

using the standard error of the linear fit and the appropriate t-

distribution depending on the degrees of freedom.

Genotyping
We used quantitative sequencing to determine allele frequencies

for all single nucleotide polymorphisms. Following confirmation of

mutations identified using SNPScanner, we PCR amplified these

genomic segments directly from the frozen glycerol stocks of

heterogeneous populations. PCR products were cleaned up using

Qiagen PCR cleanup kits and then sequenced in two different

reactions using the forward and reverse primer. Control reactions

using pure ancestral and evolved clones were also performed.

The relative allele frequency was determined from the resulting

sequence traces using the program PeakPicker [59]. Peaks were

normalized using the nearest six nucleotides of the same identity.

Allele frequencies within population samples were determined by

comparing the normalized value with the normalized value

obtained from a homogeneous sample of the allele. 95% CI

intervals were computed on the basis of independent sequencing

reactions using a forward and reverse primer.

We developed TaqMan allelic discrimination assays for a subset

of single nucleotide polymorphism alleles. Custom TaqMan SNP

Genotyping Assays probe/primer sets consisting of an allele

specific FAM and VIC probe and common primers were obtained

from Applied Biosystems. Sequences for primer and probes are

available upon request. In order to facilitate high-throughput

analysis we developed a protocol for directly genotyping whole

cells from frozen glycerol stocks. We diluted glycerol stocks 1:5 in

water and then added 2.75 mL to 2.50 mL of 2X TaqMan

Universal PCR Mix (Applied Biosystems) and 0.25 mL of 20x

Primer/Probe mix to a final volume of 5 mL. Otherwise, we

followed standard procedures for allelic discrimination plate reads

as suggested by the manufacturer (Applied Biosystems).

Estimation of Fitness Coefficients during Evolution
Experiments
We used allele frequency estimates from the evolution

experiments to estimate the fitness coefficients for each mutation

and each clone. For each mutation we used data from the first

non-zero allele frequency until the allele frequency reached a

maximum. This is not necessarily the last measured point as some

alleles appeared to be stabilizing or even decreasing after initially

increasing. By excluding those points our computed values are a

maximal estimate of the fitness coefficient. Fitness coefficients were

calculated by regressing ln(p/q) against the number of generations

as described for the fitness assays above. We also computed a

fitness coefficient for each clone by treating all allele frequency

measurements at each time-point as independent measurements of

a given clone’s frequency.

Fluctuation Test
Mutation rates were determined by fluctuation test [1]. 1000

cells were inoculated into 96-well culture plates and grown to

saturation densities of ,107 cells/ml. 20 samples of each strain

were plated to canavanine media. Mutation rates were calculated

by the Poisson distribution from the proportion of plates with no

canavanine resistant colonies.

Statistical Methods
Pairwise pearson correlations were computed between the 16

clonal isolates within each selection. We excluded comparisons
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between the two clones derived from the same population and

analyzed the resulting 112 comparisons. Probability density

estimates were computed in R. In order to compare the three

distributions we performed a Mann-Whitney rank-sum test.

Supporting Information

Figure S1 Microarray analysis of predicted tranlocation PFGE

bands.(A) Sample gel showing new bands in both clones from

population G8. Chromosome ladder from wt strain shown at right.

(B) Microarray analysis of all gel bands for predicted translocations

(see Table S2). Enriched segments on the chromosomes of interest

are shown in red. Segments not present in the translocation are

colored gray. Complete data are available at GEO (Accession

GSE13435).

Found at: doi:10.1371/journal.pgen.1000303.s001 (0.54 MB PDF)

Figure S2 Identification of a long terminal repeat (LTR)

insertion in SNF6. (A) Analysis of tiling microarray data from

clone G1c2 using the SNPScanner algorithm identified a predicted

sequence variant in SNF6. PCR analysis identified a size

polymorphism at this locus. Upon sequence confirmation we

identified a 338bp insertion in SNF6. BLAST analysis identified

the inserted sequence to be a single LTR derived from a Ty1

retrotransposon. (B) An LTR insertion is likely to be the result of a

two-step process in which a full length retrotransposon insertion is

followed by intrachromosomal recombination between tandem

LTRs bounding the retrotransposon resulting in an orphan LTR.

Curiously, the SNF6 LTR insertion is bounded by an identical

sequence motif of 5 bases (italicized and underlined sequence in

figure). This motif is present once in the wildtype SNF6 sequence

suggesting that the second copy is either derived from the

retrotransposon or has been duplicated during the insertion event.

Found at: doi:10.1371/journal.pgen.1000303.s002 (0.12 MB PDF)

Figure S3 CGH analysis of population samples to determine

allele frequencies. We performed CGH on DNA samples derived

from population samples harvested from the endpoint or near the

endpoint of the evolutions. Copy number variants present at

detectable frequencies in the population are indicated in red or

green. Only population samples with detectable copy number

changes are shown. Calculated frequencies: G6, 2 copies of

chromosome 12 (24%); P3, 1 copy of chrIII segment (20%), 3

copies of chrV segment (47%); P5, 2 copies of chrVI segment

(17%), 2 copies of chrXIII (17%); P6, 2 copies chrV segment

(23%), 2 copies chrVI segment (23%); P7, 3 copies of chrIV (69%),

3 copies of chrVI (77%), 3 copies of chrX (75%), 3 copies of

chrXVI (73%), 4 copies of chrXIII (66%).

Found at: doi:10.1371/journal.pgen.1000303.s003 (0.41 MB PDF)

Figure S4 Representative results of quantitative sequencing. We

estimated allele frequencies by analyzing the electropherogram

data using the program PeakPicker [59]. (A) Homogeneous DNA

samples are used to identify the SNP of interest. At the

polymorphic site, two peaks are reported in the electropherogram

data. The relative height of these peaks, corresponding to the

strength of the fluorescent signal is used to estimate the allele

frequencies. (B) Application of quantitative sequencing to

population trajectories enables estimation of allele frequencies

across each evolution’s history.

Found at: doi:10.1371/journal.pgen.1000303.s004 (3.36 MB PDF)

Figure S5 Representative results of Taqman allelic discrimina-

tion. We analyzed a subset of allele frequencies using Taqman

allelic discrimination assays. Custom probes and primer sets were

manufactured for each allele. 96 samples were analyzed in

quadruplicate using an ABI 9700T plate reader. In each plate

we included a no template control (green asterisk), allele control

(pink triangle) and evolved allele control (gray plus signs). We used

a custom k-medians clustering algorithm to assign genotypes to

ancestral (blue circles) or evolved (red circles) state.

Found at: doi:10.1371/journal.pgen.1000303.s005 (0.10 MB PDF)

Figure S6 Comparison of SNP allele frequency estimations

using quantitative sequencing and Taqman allelic discrimination.

We compared allele frequency estimates using quantitative

sequencing (red) with those obtained by genotyping clonal isolates

using TaqMan allelic discrimination analysis (green) for two

alleles: (A) CCR4 E724V and (chrI:111188T-.A) (B) SAP185

synonymous (chrX: 243203G-.A). 95% confidence intervals are

shown. We found high concordance between the allele frequency

profiles generated using both methods thereby validating the use of

quantitative sequencing, which is more amenable to high

throughput analysis as it can be performed on population samples

rather than requiring analysis of individuals.

Found at: doi:10.1371/journal.pgen.1000303.s006 (0.28 MB PDF)

Figure S7 Clonal competition assays reveal fitness benefit per

culture generation. We competed clonal isolates against the

ancestral strain as described (see Methods). In order to determine

the growth advantage per generation we fit the data by modeling

ln(p/q) = s * (generations) using ordinary least squares. (A) The

clonal isolate G1c1 contains 9 confirmed nucleotide variants but

no transporter amplifications. In a competition experiment in a

glucose limited chemostat it out-competes the ancestral strain with

a relative selective advantage, s = 1.10660.012. (B) Multiple copies

of SUL1 confer a strong selective advantage in sulfate limiting

conditions. We obtained the SUL1 gene on a high copy plasmid

and competed the resulting strain against the wildtype ancestor.

Multiple copies of SUL1 confer a 50% growth advantage per

generation (s = 1.4960.093). (C) The drug resistance marker,

CanR, confers a negligible fitness contribution under these

conditions. By competing a drug resistant version of the ancestral

strain with a wild type version we detected a slight fitness

advantage in the drug resistant strain of approximately 1% per

generation (s = 1.01560.001).

Found at: doi:10.1371/journal.pgen.1000303.s007 (0.25 MB PDF)

Figure S8 Meiotic separation of alleles identifies advantageous

allele. Following a backcross of evolved clone P1c2 to the ancestral

strain meiotic segregants were isolated and competed against one

another in a chemostat. We performed two experiments: (A) one in

which only the MATa segregants were included and (B) one in which

onlyMATa segregants were included. In both experiments the CKA2

allele quickly swept to fixation (blue diamonds) while the SIR1 allele

(green circles) remained around the neutral frequency of 50%.

Found at: doi:10.1371/journal.pgen.1000303.s008 (0.22 MB PDF)

Table S1 Complete GO term enrichment results for clusters 1-

13 summarized in Figure 1A. In addition we performed GO term

enrichment on the set of 689 genes that did not change in

expression during evolutions.

Found at: doi:10.1371/journal.pgen.1000303.s009 (0.21 MB

XLS)

Table S2 Summary of structural variation in genomes of evolved

clones.

Found at: doi:10.1371/journal.pgen.1000303.s010 (0.09 MB

DOC)

Table S3 Segregation analysis of SUL1 amplification using

CGH.

Found at: doi:10.1371/journal.pgen.1000303.s011 (0.04 MB

DOC)
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Table S4 Transposon specific extraction results.

Found at: doi:10.1371/journal.pgen.1000303.s012 (0.04 MB

DOC)

Table S5 Processed gene expression microarray data for all

clones and populations.

Found at: doi:10.1371/journal.pgen.1000303.s013 (7.69 MB

XLS)

Table S6 Processed CGH data for all clones and populations.

Found at: doi:10.1371/journal.pgen.1000303.s014 (4.12 MB

XLS)
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