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Abstract

Copy number alterations (CNAs) are a predominant source of genetic alterations in human cancer and play an important role in
cancer progression. However comprehensive understanding of the mutational processes and signatures of CNA is still lacking. Here we
developed a mechanism-agnostic method to categorize CNA based on various fragment properties, which reflect the consequences of
mutagenic processes and can be extracted from different types of data, including whole genome sequencing (WGS) and single nucleotide
polymorphism (SNP) array. The 14 signatures of CNA have been extracted from 2778 pan-cancer analysis of whole genomes WGS
samples, and further validated with 10 851 the cancer genome atlas SNP array dataset. Novel patterns of CNA have been revealed through
this study. The activities of some CNA signatures consistently predict cancer patients’ prognosis. This study provides a repertoire for
understanding the signatures of CNA in cancer, with potential implications for cancer prognosis, evolution and etiology.
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Background
Somatic mutations are the driving force of cancer development.
Genomic alterations in cancer cells consist of two major
categories: (i) small scale alterations that include single base
substitutions (SBSs) and small insertion and deletions (INDELs)
and (ii) large scale alterations known as structural variations
(SV). Copy number alteration (CNA) is a major type of SV and
is prevalent in human cancer [1, 2]. CNAs and SBSs stem from
distinct mutational processes, SBSs are usually caused by lesions
or repair mistakes in single-strand deoxyribonucleic acid (DNA),
while CNAs are the results of double-strand DNA breaks, double-
strand DNA-repair defects, DNA replication or cell division
defects [3].

CNAs have critical roles in activating oncogenes and in inacti-
vating tumor suppressors [4, 5]. Additionally, aneuploidy status
can influence cancer cell proliferation and competitiveness [6,
7]. In morphologically normal tissues, similar SBS have been
observed as in cancer cells; however, CNAs are mostly observed

in cancer cells but not in morphologically normal tissues [8].
CNAs have been reported to predict cancer relapse and prognosis
[9, 10]. These observations suggest that CNAs play a critical role
in the malignant transformation of normal cells to cancer cells.
However, the underlying mechanism is largely unknown.

Genomic DNA alteration signatures are recurring genomic pat-
terns that are the imprints of mutagenic processes accumulated
over the lifetime of cancer cell [11, 12]. Genome alteration sig-
nature analysis can not only provide the mutational process
information but also biomarkers for cancer precision medicine
[13, 14]. SBS signature analysis has been extensively studied, and
represents a prototype for other types of signature study [12].
Despite the importance of CNA in cancer progression, a compre-
hensive understanding of the mutational process and signature
of CNA is still lacking.

Signatures of SV have been studied in breast cancer [15]. How-
ever, this method relies on high coverage Whole Genome Sequenc-
ing (WGS) data and cannot be applied with SNP array or whole
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exome sequencing (WES) data. Macintyre et al. employed a mix-
ture modeling based method for copy number (CN) component
extraction [16]. For each different dataset or cancer type, a dif-
ferent set of CNA components will be generated based on the
distributions of the six CNA features (segment size, change point
CN and segment CN, breakpoint count per 10 Mb, length of seg-
ments with oscillating CN and breakpoint count per chromosome
arm). This inconsistency of the CNA components among different
datasets limits the generalization of their method in different
cancer types or different datasets. Steele et al. reported a method
for CNA signature analysis with 48 features, which considered
the absolute CN, size and heterozygosity status of CNA segment;
however, the background information of the CNA segment has
not been incorporated [17]. We recently developed a pre-defined
set of CNA components and corresponding software implementa-
tion as a module of Sigminer (https://cran.r-project.org/package=
sigminer) for CNA signature analysis [18–20]. This set of CNA com-
ponents incorporates the six reported CNA features and includes
two additional features. The application of this tool (Sigminer) in
prostate cancer reveals distinct CNA mutational processes and
clinical outcomes [18]. The Macintyre et al. method, Steele et al.
method and our recent method have a limited number of CNA
features, a unified and comprehensive CNA classification method
across different cancer types is still lacking.

Here we developed a mechanism-agnostic method for CN seg-
ment categorization and signature extraction. Our method incor-
porates the following information for each DNA segment: abso-
lute CN, CN context, segment length and loss of heterozygosity
(LOH) status. The selection of these CN features was inspired
by known patterns of CNA, such as chromothripsis and whole
genome duplication (WGD) [3, 21, 22]. With this new CN signature
analysis method, a pan-cancer landscape of CNA signature is
shown. Known CNA patterns have been reproduced, and new CNA
signatures have been identified in this pan-cancer study, such
as haploid chromosome and combination with WGD. Underlying
mutational processes for the identified CNA signatures have been
investigated. The activities of some CNA signatures consistently
predict cancer patients’ prognosis, suggesting CNA signatures
could be cancer prognosis biomarkers.

Results
The pan-cancer landscape of CNAs
We used the WGS dataset from pan-cancer analysis of whole
genomes (PCAWG) to study the profile of CNA. The CNA profiles
are then validated with independent the cancer genome atlas
(TCGA) SNP array dataset. PCAWG dataset contains the WGS (38-
60X sequencing) data of 2778 samples (32 cancer types) [23]. TCGA
dataset includes SNP array data (data platform: Affymetrix SNP
6.0) of 10 851 samples (33 cancer types) [1].

The length distribution of CNA in the PCAWG dataset and
TCGA dataset are shown (Figure 1A). Similar to the previous
observation [2], the focal CNAs occur at a frequency inversely
related to their lengths, arm-level CNAs occur more frequently
than would be expected by the inverse-length distribution
associated with focal CNAs. This indicates that compared with
focal CNAs, chromosome arm-level CNAs are generated through
different mutational processes. CNA burden measures the
percent of CN altered genome [9]. Pan-cancer distributions of
CNA burden and CNA segment number are shown (Figure 1B and
C, Supplementary Figure 1A and B).

Pan-cancer density distribution of the values of CNA burden
and CNA count show multi-modal distribution (Figure 1D). In

PCAWG dataset, CNA burden and total CNA show a strong pos-
itive correlation, SBS and INDEL show a strong positive corre-
lation, CNA and SBS, INDEL show a weak positive correlation
(Supplementary Figure 1C). In TCGA dataset, similar correlations
exist as in PCAWG dataset, except, CNA and INDEL show weak
negative correlation (Supplementary Figure 1C). INDELs of TCGA
dataset are derived from WES, while INDELs of PCAWG dataset
are detected using WGS data, the difference in noncoding regions
could contribute to this discordance in CNA and INDEL corre-
lation. Pan-cancer distributions of these genome alteration fea-
tures (CNA burden, Total CNA, Total INDEL, Total SBS) in PCAWG
(Figure 1E) and TCGA (Supplementary Figure 1D) are shown. Some
types of cancer show over-representation of CNA but not SBS,
INDEL, such as breast, ovarian cancer, while cancer types includ-
ing lung cancer show over-representation of all these types of
genome alterations (Figure 1E).

Design of CNA features and components
An essential step for CNA signature analysis is to design proper
CNA features and components to classify CNAs. A clearly and sta-
bly defined set of CNA components is important for the general-
ization of CNA signature analysis in various types of cancer. Here
we developed a new CNA classification method for CNA signature
analysis. Our new classification method considers the following
CNA features: morphology or context of CNA, absolute CN, LOH
status. Furthermore, our method is applicable to different types
of raw data, including WGS, WES, SNP array or panel sequencing
data. Each CNA segment was classified by considering the fol-
lowing detailed features, (i) segment context, including segment
shape composed of both the left and right segments of the target
segment (low–low, high–high and ladder) and CN change number.
In total, six segment context shapes have been defined (Figure 2).
(ii) Absolute CN. Including the following components: 0, 1, 2, 3,
4, 5–8 and ≥9. (iii) LOH status. (iv) Segment size, including the
following components [24]: S (length < 50 kb); M (50 kb ≤ length
< 500 kb); L (500 kb ≤ length < 5 Mb); E (5 Mb ≤ length). In total, 176
components have been defined to characterize the CNA segments
of human cancer patients (Supplementary Table 1).

CN signature extraction in pan-cancer datasets
Based on the features and components of CNA segment defined
above, for each cancer sample, the values for each CNA compo-
nent will be calculated from the absolute CN profiles derived from
WGS or SNP array data.

A CN component value matrix was generated by combining
component values in all tumors. This matrix was subjected
to non-negative matrix factorization (NMF), a method previ-
ously used for deriving SBS signatures [11]. For de novo CN
signature extraction, we applied the widely used tool Sigprofiler
(Supplementary Figure 2) [12]. Sigprofiler has also been used for
the extraction of the standard SBS, doublet base substitutions
(DBS) and small insertions and deletions (ID) mutational
signatures stored in the catalog of somatic mutations in cancer
(COSMIC) compendium [12].

As reported previously, the choice of the number of mutational
signatures is rarely amenable to complete automation [12].
Here, the number of signatures extracted was determined
using two parameters. First is the reconstruction error and the
average Frobenius reconstruction error is reported. Second is
the stability of signature extraction and the cosine similarity
between the extracted signatures, average silhouette width, is
reported (Supplementary Figure 3). In the 2778 PCAWG WGS
dataset, 14 CNA signatures have been extracted, these signatures
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Figure 1. Pan-cancer distribution patterns of CNA. (A) Length distribution of CNA in PCAWG (red line) and TCGA (blue line) pan-cancer datasets. (B, C)
Pan-cancer distribution pattern of CNA count (B), CNA burden (C) in individual cancer types of PCAWG dataset. (D) Pan-cancer distribution of the values
of CNA burden, CNA count, INDEL count and SBS count in individual tumors of PCAWG (red) and TCGA (blue) datasets. (E) Pan-cancer distribution of
the enrichment scores for CNA burden, CNA count, INDEL count and SBS count in PCAWG dataset. The enrichment scores are calculated as the ratio
of mean value of a specific cancer type compared with the mean value of the whole PCAWG dataset. The colors indicate the false discovery rate (FDR)
corrected P-values of Mann–Whiney U-test.

have been named as CNS1, CNS2 . . . CNS14 throughout this study
(Supplementary Figure 4). With the building of pan-cancer CN sig-
nature repertoire, for any cancer patient with absolute CN profile
available, we can re-construct the composition of CN signature
through single sample signature fitting (Supplementary Figures 5
and 6). Compared with our previous method [18], the new
method reported here could reveal potentially unknown patterns,
additionally it has the following advantages: (i) the uniqueness
of signature profile reflected in the similarity comparison of
CNA signature profiles is improved (Figure 3A). (ii) The recon-
struction error in signature extraction is decreased (Figure 3B).
Macintyre et al. applied a mixture modeling based method for
CN component extraction, and the CNA component values
are not consistent in different datasets, and this prohibits the
signature comparison using cosine similarity analysis across
different datasets [16, 18]. These differences between the CNA
signatures extracted with Macintyre method, Wang method and
this study have been illustrated using PCAWG ovarian cancer
dataset (Supplementary Figure 7).

Benchmark analysis of CNA signatures
To evaluate the robustness of the proposed CN signature anal-
ysis procedure, we compared the CNA signatures extracted in
2778 PCAWG WGS dataset with the CNA signatures derived from

10 851 TCGA SNP array dataset (Supplementary Figures 4 and 8).
In 10 851 TCGA SNP array data, 20 CNA signatures have been
extracted, these TCGA CNA signatures have been named as Sig1,
Sig2 . . . Sig20 throughout this study (Supplementary Figure 8). The
similarities between signatures extracted from TCGA SNP array
dataset and PCAWG WGS dataset are calculated using cosine
similarity analysis method (Figure 4A). Most (9/14) PCAWG sig-
natures can have highly similar (cosine similarity R ≥ 0.8) coun-
terparts in TCGA dataset. Four PCAWG signatures (CNS4, CNS5,
CNS6, CNS14) have intermediate similarity (R ≥ 0.51) counterparts
in TCGA dataset. Majority of TCGA CNA signature (16/20) have
median to high similar counterpart signature in PCAWG CNA
signature set. Four TCGA CNA signatures (Sig15, Sig18, Sig9, Sig20)
do not have matched PCAWG signature. All these four unmatched
TCGA CNA signatures are likely tissue specific signatures. Using
10% relative activity as a cut off, TCGA Sig20 is only observed in
TCGA testicular germ cell tumors (TGCT), and this type of cancer
is not included in PCAWG dataset. TCGA Sig18 is only observed
in TCGA thymoma cancer type, which is also not included in
PCAWG dataset. TCGA Sig15 is majorly observed in adrenocortical
carcinoma (ACC), and to a less extent in kidney chromophobe
carcinoma, and ACC is not included in PCAWG dataset. TCGA Sig 9
is observed in ACC and TGCT, both ACC and TGCT are not included
in PCAWG dataset.
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Figure 2. CNA classification strategy for signature analysis. For each CNA segment, the following features have been considered: (i) segment context,
including segment shape and CN change number; (ii) Absolute CN; (iii) LOH status; (iv) segment size. In total, 176 types of CNA segments have been
defined accordingly.
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Figure 3. Comparisons between Wang method and the method reported here. (A) Inter-signature similarity comparison between Wang method and them
method reported here. In five independent PCAWG cancer sub-datasets, consistently lower inter-signature similarities are observed with the method
described here. (B) Comparison of signature reconstruction error between Wang method and the method reported here. The method reported here shows
lower signature reconstruction error. Wilcoxon rank-sum test was performed to test for the differences between the two groups. ns: P > 0.05, ∗P ≤ 0.05,
∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001, ∗∗∗∗P ≤ 0.0001.

The fact that CNA signatures extracted de novo from PCAWG
(WGS based) and TCGA (SNP array based) show a pairwise similar
signature profile suggests the robustness of our method in identi-
fying true cancer patterns. To further evaluate the performance
of our method, we carried out benchmark analysis with CNA

profiles derived from different platforms and different CNA call-
ing algorithms. For benchmark analysis with CNA data from
different platforms, CNA signatures have been extracted inde-
pendently from 286 WGS and 468 SNP array derived prostate
cancer CNA profiles. The CNA signatures extracted from WGS
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Figure 4. CNA signature benchmark analysis with CNA profiles derived from different platforms and different CNA calling algorithms. (A) Inter-
correlations between the CNA signatures extracted in PCAWG dataset and TCGA dataset. Cosine similarity values are reported for each comparison.
(B) Cosine similarities are reported in comparing CNA signatures extracted from WGS platform and SNP array platform. (C, D) CNA profiles have been
extracted from 286 WGS samples using ACEseq or ABSOLUTE algorithm, distribution of CN profile cosine similarities between the two methods is
reported (C), pairwise comparisons of the CNA signatures extracted with the CNA profiles called with the two algorithms are shown (D). (E, F) CNA
profiles have been extracted from 468 SNP array samples using ASCAT or ABSOLUTE algorithm, distribution of CN profile cosine similarities between
the two methods is reported (E), pairwise comparisons of the CNA signatures extracted with the CNA profiles called with the two algorithms are
shown (F).
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data are highly similar to the CNA signatures extracted from
SNP array data (median cosine similarity R = 0.96) (Figure 4B). The
effects of different CNA calling algorithms on the stability of CNA
signatures have been evaluated (Figure 4C and F). With WGS, the
signatures derived from CNA profiles called with ABSOLUTE [25]
algorithm are highly similar to the signatures derived from the
CNA profile called with ACEseq algorithm (median cosine simi-
larity R = 0.98) (Figure 4C and D). Similarly, for SNP array platform,
the CNA signatures derived from ABSOLUTE algorithm are highly
similar to the CNA profile derived from ASCAT [26] algorithm
(median cosine similarity R = 0.93) (Figure 4E and F). In conclusion,
the CNA signature extraction method proposed in this study
can be applied to CNA profiles derived from different platforms
and different CNA calling algorithms, and the CNA signatures
extracted with our algorithm are stable and could reflect the true
DNA alteration patterns of cancer.

Pan-cancer distribution of CNA signature
The proportion of tumors with the signature and median activity
of the signature in different types of cancers are shown for PCAWG
dataset (Figure 5A). CNS3 was observed in tumors with few CNA
counts, such as acute myeloid leukemia (AML) (Figure 5A and
Supplementary Figure 9). The enrichment scores (defined as the
ratio comparing the mean value of specific cancer type versus
mean value of pan-cancer dataset) of the activities of CNA signa-
tures in different types of cancer are shown for PCAWG dataset
(Figure 5B). Some CNA signatures show enrichment in specific
cancer type, for example, the enrichment score of CNS4 in PCAWG
liposarcoma is 52.91 (Figure 5B and Supplementary Figure 10).
The profile of CNS4 suggests the presence of extrachromosomal
DNA (ecDNA) or neochromosome. Actually, double minutes,
small, self-replicating extrachromosomal structures in a ring
form, were originally observed in sarcomas [27]. The presence
and evolution of neochromosome has also been investigated in
liposarcomas [28]. Pan-cancer distributions of the relative and
absolute activities of CNA signatures are shown for PCAWG
dataset (Figure 5C and D). Compared to other signatures, CNS3
has the highest relative activities. Pan-cancer profiles of TCGA
CNA signatures are shown (Supplementary Figure 11).

Compared with SBS, DBS, ID signature profiles, the profile of
CNA signature show much reduced inter-signature correlation,
suggesting an increased signature distinctness compared with
other types of signature profiles (Figure 6A and B). In PCAWG
dataset, the average number of CNA signatures in a single patient
is approximately two (Figure 6C). Some cancer types have few
CNA signatures, such as AML. Some have many CNA signatures,
such as breast cancer and ovary cancer (Figure 6D). This is in line
with the fact that AML has a low number of CNA segment counts,
while breast cancer and ovarian cancer have many CNA segment
counts (Figure 1B). Several known CN patterns can be reproduced
in our study using PCAWG dataset. For example: stable genome
(CN-Sig 5 in Wang et al. 2021 study) [18]; ecDNA; chromothripsis;
WGD, homologous recombination deficiency (HRD). Several new
patterns have been identified in this study, including the follow-
ing (Supplementary Figures 4 and 12): Pattern 1: Focal homozy-
gous deletion (CNS10). This pattern is featured with regions of
homozygous deletion. Generally homozygous deletion is focal and
surrounding tumor suppressor genes. Pattern 2: Haploid chro-
mosomes (CNS11). This pattern is characterized by a mixture of
chromosomes with CN 1 and 2. This haploid status of several chro-
mosomes could be caused by cell cycle defects. In the published
literature, we can find that some cancer cells are haploid, and this
could be derived through similar mechanism [29, 30]. Pattern 3:

Haploid chromosome and WGD (CNS6). This pattern is featured
with chromosome LOH with CN 2 or 3. This pattern could be
formed through haploid chromosome then WGD.

Potential mutational processes for CNA
signatures
An important purpose of CNA signature analysis is to identify the
underlying mutational processes for CNA. Potential mutational
processes for CNA include intrinsic inducers and extrinsic induc-
ers. Intrinsic CNA inducers include: double-strand break repair
defects (HRD, etc.); cell cycle defects; DNA replication defects;
telomere loss, etc. Extrinsic CNA inducers include chemical or
physical agents that induce double-strand breaks, or interfere
with the cell cycle, such as chemotherapy drugs or ionizing radi-
ation. Smoking and ultraviolet (UV) are known to induce SBS sig-
natures, however, no specific CNA signatures are associated with
smoking and UV (Supplementary Figures 13 and 14), probably
because smoking and UV induce single-strand lesions, and are not
associated with double-strand break, and the consequent CNA.

We group annotations of pathogenic germline variants and
somatic driver mutations in DNA-repair genes across the PCAWG
dataset, then correlate their presence with activities of the
CN signatures (Figure 7A). BRCA1 functional mutations are
significantly enriched in CNS14, suggesting the presence of HRD.
CNS3 is significantly associated with patients without TP53
mutation, suggesting a state of stable genome. COSMIC SBS3
and ID6 are known HRD associated signatures, they also show
strong correlations with CNS14 (Figure 7B). Associations between
the presence of cancer driver mutations with the activities
of CN signatures are shown for PCAWG and TCGA dataset
(Supplementary Figures 15 and 16). Some driver mutations are
significantly enriched in specific CNA signature. For example,
SPOP mutation is specifically associated with CNS8 in prostate
cancer (Supplementary Figures 15 and 17).

Correlations between some cancer genome features, such as
CNA burden and the presence of ecDNA, with the activities of
CNA signatures are displayed for PCAWG dataset (Figure 7C).
In association analysis, activity of CNS9 is the most accurate
predictor for WGD, suggesting CNS9 could be a reflection of
the status of WGD. CNS14 activity is the most accurate pre-
dictor for HRD, suggesting CNS14 could be the major signature
of HRD (Supplementary Figure 18). The activities of most CNA
signatures show significant tumor stage difference, for exam-
ple, CNS4 is present in higher level in stage III than in stage I
tumors (Supplementary Figure 19). Representative sample profile,
notable features and potential mechanisms or mutational pro-
cesses for PCAWG and TCGA CNA signatures are summarized,
respectively (Supplementary Figures 12 and 20). The mechanisms
for several CNA signatures are still unknown.

The clinical relevance of CNA signatures
The CNA signatures extracted from cancer patients could be can-
cer prognosis biomarkers. To test this hypothesis, Cox regression
analyses were conducted to evaluate the associations between
the activity of each CNA signature and cancer patients’ overall
survival time for each cancer type. For each Cox model, we
report a Z-score that encodes the directionality and significance
of the survival relationship. A Z-score of >1.96 indicates that
the upregulation of the target feature (activity of CNA signature)
is related to the reduction of the survival time at the P < 0.05
threshold, while the Z-score of <−1.96 indicates that the increase
in the target feature at the P < 0.05 threshold will indicate a longer
survival time.
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Figure 5. The activity distribution of CNA signatures in PCAWG pan-cancer dataset. (A) Proportion of tumors with the signature and the median activity
of the signature are shown for 32 PCAWG cancer types. For each individual tumor, only signatures that contribute to ≥5% of the total are shown.
(B) Enrichment score analysis of CNA signature in PCAWG dataset. The enrichment score is calculated as the ratio of mean signature activity of a
specific cancer type compared with the mean signature activity of the whole PCAWG dataset. The colors indicate the FDR corrected P-values of Mann–
Whiney U-test. (C, D) Relative activity (percentage of the total) (C) and absolute activity (contributed CNA segment number) (D) distribution pattern of
CNA signatures in PCAWG dataset are shown.
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Figure 6. Distinctness and the number of CNA signatures extracted in PCAWG dataset. (A) Inter-correlation analysis of the profiles of 14 PCAWG CNA
signatures. The numbers are cosine similarity values comparing each pair of CNA signatures. (B) Inter-signature similarities comparing the signatures
of CNA, COSMIC reference SBS, DBS and ID (INDEL) signatures. (C) Median number of signatures for CNA, SBS, DBS, INDEL in PCAWG dataset. (D)
Distribution of the number of CNA signature in each cancer type of PCAWG dataset.

To compare the prognostic effects of CNA signature activity in
TCGA and PCAWG dataset, we select the cancer types that have
sufficient number of patients (n > 50) with both CNA signature
activity and overall survival (OS) data available in both TCGA
and PCAWG datasets. We calculate the CNA signature activity of
both TCGA and PCAWG datasets using single sample fitting with
TCGA signature set (Sig1, Sig2 . . . Sig20). In total kidney cancer,
stomach cancer, liver cancer, ovarian cancer and melanoma sub-
datasets are available for this prognosis comparison analysis.
Z-scores of CNA signatures are compared in pair in matching
TCGA and PCAWG cancer types (Figure 8A). The Z-scores of CNA
signature activity in matching TCGA and PCAWG cancer types are
significantly correlated (Spearman correlation R = 0.44, P = 0.015),
suggesting the robustness of CNA signature in predicting
cancer patients’ overall survival (Figure 8B). For example,
in kidney cancer, high CNA Sig1 activity is associated with

significantly poor overall survival in both TCGA and PCAWG
datasets (Figure 8C).

Discussion
Here we developed a unified and comprehensive method for CN
signature analysis. Our method can be applied to cancer patients
with CN profiles generated with WGS or SNP array data. Our CN
signature analysis method is based on a novel and comprehensive
method to catalog CN segments. New CNA patterns have been
identified, and the activities of some CNA signatures have been
demonstrated to be associated with cancer patients’ prognosis.
It will be of interest to investigate the potential application of
CNA signatures in predicting the clinical response of certain can-
cer treatments, for example, PARP inhibitor treatment or cancer
immunotherapy.
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Figure 7. Correlations between CNA signatures and different types of genome alterations. (A) Associations between gene mutation status in key DNA-
repair genes with the relative activities of CNA signatures. Association of pathogenic mutations (germline and somatic combined) in key DNA-repair
genes with the relative activities of CNA signatures. For each gene, PCAWG patients are divided into two groups based on the mutation status of the gene.
The difference values in mean relative activities between two groups (activities of mutated group—activities of un-mutated group) are reported, and FDR
corrected P-values (Wilcoxon rank-sum test) are shown. The color and size of the points represent the differences and adjusted P-values, respectively.
MSH refers to MSH2, MSH3, MSH4 and MSH6, genes in the mismatch repair pathway; FANC refers to genes associated with Fanconi anemia, namely
FANCA, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL and FANCM. The number after gene or gene cluster name refers to the number of
pathogenic mutations (germline and somatic combined). (B) Inter-correlations between the activities of CNA signature and APOBEC, HRD, age signatures
in PCAWG dataset. (C) Associations between the relative activities of each signature and the indicated cancer genome features are calculated from
individual cancer patient. Spearman correlation coefficient values are reported.
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Figure 8. CNA signature activity and cancer patients’ prognosis. (A) The prognosis Z-scores of the activity of CNA signatures are calculated in each
matching TCGA or PCAWG cancer type with sufficient number of patients (n > 50) having overall survival and CNA profiles available for this analysis.
NA indicates the CNA signature does not exist in the specific cancer type; colors reflect the values of Z-scores. (B) Correlations between the Z-scores of
TCGA and PCAWG matching cancer types. Pearson test P-value is reported. (C) The activity of Sig1 shows consistent prognosis in the kidney cancer of
TCGA (left) and PCAWG (right) datasets. Kaplan–Meier overall survival curves show the comparison between different groups stratified by CNA signature
Sig1 activity. Samples with Sig1 activity higher than the cutoff (determined by surv_cutpoint function of ‘survminer’ package) were classified as ‘Sig1
high’ group, and samples with Sig1 activity less than the cutoff were classified as ‘Sig1 low’ group. The log-rank test P-values are reported. KIRP: Kidney
renal papillary cell carcinoma; STAD: Stomach adenocarcinoma; LIHC: Liver hepatocellular carcinoma; OV: Ovarian serous cystadenocarcinoma; SKCM:
Skin Cutaneous Melanoma.

Mutational signature analysis is initially developed with SBS,
and CNA is different from SBS in several aspects. SBS and CNA
are derived from different mutational processes, some common
SBS inducers such as smoking and UV do not induce specific
CNA signature. Smoking and UV can generate single-strand DNA
lesions, while CNA is the consequence of DNA double-strand
breaks (DSBs) or cell division defects [3]. The scale of the influ-
enced genome is different between CNA and SBS. CNA could affect
a much larger portion of the genome than SBS. Each SBS is usually
a consequence of a unique mutational process, while each CNA
segment could be the consequence of multiple CNA mutational
processes. Some CNA inducers have an impact on global CNA
pattern, such as inducers of cell division defects leading to WGD
or aneuploidy, which have a global impact on CNA profile. The
resulting signatures of global CNA mutational processes need
to be combined with other CNA mutational processes, leading
to new signatures. For example, WGD and HRD combination

generate new signature, which cannot be reconstructed as a
linear combination of single WGD and single HRD signature. This
suggested that the mutational processes for the CNA signatures
reported in this study can be combinations of different processes.
For example, CNS6 could be a combination of haploid chromo-
some (CNS11) and WGD (CNS9). The evolution timeline for muta-
tional process of CNA is largely unknown. With the availability of
cancer cell fraction (CCF) information for CNA segments [25, 31],
we can calculate the activities of CNA signatures for clonal CNA
and subclonal CNA, and this analysis can provide distinct insight
into the evolution of CNA mutational processes and CNA patterns
(Supplementary Figure 21).

Global patterns and mutational processes for CNA in human
cancer are largely unknown. Currently known methods for CNA
signature analysis include Macintyre method and Wang method,
and both methods classify CNA segments using known patterns,
such as the lengths of oscillating CN segment chains (named
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‘OsCN’) [16, 18]. Some unknown CNA patterns that do not fit into
these known patterns cannot be detected with these approaches.
Here we provide a mechanism-agnostic method for CNA signature
analysis, this method can reveal potentially new CNA patterns,
and is suitable for pan-cancer study. For CN signature analy-
sis, detailed sequencing information is not required. Compared
with previously reported SV signature [15], the advantage of this
method is the wider application area, for example, panel sequenc-
ing data or SNP array data could be used to derive CNA signa-
ture. The disadvantage is the increased uncertainty. Sometimes
two nonequivalent genomes can produce exactly the same CN
patterns. The underlying mutational process for CN pattern/sig-
nature could be complicated by these uncertainties.

During the submission process of this manuscript, Steele et al.
reported pan-cancer CNA signature using a different mechanism-
agnostic approach [17]. Compared to Steele et al. method, this
study incorporates the context or shape information of each
CNA segment, and this can reveal additional insight into the
mutational processes and patterns of CNA. These CNA shape
information include ‘Low-Low’, ‘High-High’, ‘Ladder’ and also the
extent of CN change (>2 or ≤2) (Figure 2). Some patterns of CNA
can only be detected with our method but not Steele et al. method.
For example, the oscillation status of CNA segment, the extent
of CN change flanking specific CNA segment. The incorporation
of this additional CNA segment shape or context information
enables us to directly interpret the mechanism of CNA signature.
Furthermore, our CNA signature profiles have been constructed
and compared in two different pan-cancer datasets: TCGA SNP
array dataset and PCAWG WGS dataset. The prognostic effects
of CNA signatures have also been compared and validated in the
above two different datasets, while Steele et al. did not perform sig-
nature profile and prognosis comparison analysis between TCGA
and PCAWG datasets of different sample origin. Compared to
recent publication, our study provides an innovative and compre-
hensive approach for CNA segment categorization and signature
analysis, and reveals distinct insight into the patterns, evolution
and mutational processes of CNA.

CNA signatures have just started to be investigated. Many
issues still remain to be studied. One of the major purposes of CNA
signature analysis is to reveal the underlying mutational process
for CNA. The mutational processes for several CNA signatures
reported in this study are unclear. This needs further association
studies, and also experimental studies with pre-defined CNA
inducers. Due to the heterogeneity of tumor, the final CNA profile
can be a combined result of many heterozygous CNA difference.
Single cell CNA signature analysis could reveal the heterogeneity
and evolution process of cancer.

Conclusions
Global patterns and mutational processes for CNA in human
cancer are largely unknown. Here we developed a method to
reveal pan-cancer patterns of DNA CNA signatures through a
mechanism-agnostic approach. Our results correlate some CNA
signatures to known biological characteristics through diverse
approaches ranging from signature profile observation to molec-
ular profiling. New CNA patterns have been identified, and the
activities of some CNA signatures have been demonstrated to
be associated with cancer patients’ prognosis. Collectively, this
method paves the way for further study on revealing new CNA
etiology and designing robust biomarkers for cancer precision
diagnosis and therapy.

Materials and methods
CN calling and processing
PCAWG allele-specific CN generated by PCAWG-11 working group
is the result of a bespoke procedure that combines output from
six different CN callers: ABSOLUTE, ACEseq, Battenberg, CloneHD,
JaBbA and Sclust. First ran all methods across all samples with the
consensus SVs included and applied an algorithm across the seg-
mentations to obtain consensus breakpoints. With these manda-
tory breakpoints the methods were rerun without calling any
additional breakpoints. TCGA allele-specific CN data were gener-
ated from Affymetrix Genome-Wide Human SNP 6.0 (SNP6) array
with ASCAT2 workflow. The PCAWG and TCGA allele-specific CN
data values are integers. CNAs were generally classified as such:

• Amplification: segment total CN > 2.
• Homozygous deletion: segment total CN = 0.
• LOH: segment with minor CN = 0 and total CN > 0 and size

>10 Kb.
• Deletion: segment total CN < 2.

CN segment classification
CN segments were classified as normal, amplification or deletion.
They were further classified by size of the segment [small (S),
<50 Kb; middle (M), 50–500 Kb; large (L), 500 Kb–5 Mb; extreme
large (E), >5 Mb]. They were then further classified by the context
of a segment (the shape), i.e. how total CN of segment on its
left/right side compared to it (HH, left CN Higher & right CN
Higher; LL, left CN Lower & right CN Lower; HL, left CN Higher
& right CN Lower; LH, left CN Lower & right CN Higher). LH and
HL have the same shape, so they are combined into LD (Ladder
like shape). The segments were further classified by checking if
they harbor LOH or not, and their absolute CN. For LOH segments,
the total CNs were classified into 1, 2LOH, 3 + LOH; for non-
LOH segments, the total CNs were classified into 0, 2, 3, 4, 5,
6, 7, 8, 9+. Finally, a total of 176 mutually exclusive categories
(described as components in this study) were cataloged. CN profile
of each sample can be inputted into the classification algorithm
above and each component will be counted to generate an integer
vector. For multiple samples, a component-by-sample matrix will
be generated and used for CN signature discovery. The data
import and classification procedure were implemented as func-
tions ‘read_copynumber’ and ‘sig_tally’ in R package Sigminer
(https://cran.r-project.org/package=sigminer).

CN signature extraction
CN signatures were extracted from component-by-sample matrix
with golden standard tool SigProfiler v1.0.17 (https://github.com/
AlexandrovLab/SigProfilerExtractor) with default parameters.
Briefly, this de novo signature extraction includes the following six
steps: dimension reduction, resampling, NMF, iteration, clustering
and evaluation [11]. For each NMF, the initialization was with
random numbers, and iterations were performed for 10 000–
1 000 000 times until stable results are obtained. This NMF process
was repeated for 100 times with resampling data. Clustering the
decomposition matrixes to identify the number of signatures
from 2 to 30. The SigProfiler has been successfully applied
to TCGA and PCAWG pan-cancer data for multiple mutation
types including SBS, DBS and INDEL. Two key parameters for
determining signature number, stability measured by average
silhouette and the average Frobenius reconstruction error were
obtained from the result of SigProfiler. We selected the signature
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extraction solution as the maximum signature number that
meets the following criteria:

1. No over fit.
2. Stability should be at least local maximal.
3. Mean cosine distance should be as small as possible.

Based on the rules, we selected 14 signatures for PCAWG CN
data and 20 signatures for TCGA CN data. The profile and activity
for each signature were obtained, accordingly.

CNA signature benchmark analysis
We select data from prostate cancer to evaluate the reproducibil-
ity of our method with benchmark analysis. A 468 SNP-array data
are derived from TCGA, we used the ASCAT [26] and the ABSO-
LUTE [25] algorithm to generate allele-specific CN. A 286 WGS
data are derived from PCAWG and ACEseq [32], and the ABSOLUTE
[25] algorithms were used to obtain absolute CN profiles. CN
segments were categorized into 176 classes as described above
in each sample. The cosine similarities between CNA profiles
are calculated according to this 176-element vector. First, we
benchmarked the impact of platforms on CNA signature analysis.
Four CNA signatures are independently extracted from WGS, WES
or SNP array derived CNA datasets with our method described
above. Pairwise comparisons between the four CNA signatures
are reported. Next, we benchmarked the impact of different CNA
calling algorithms in CNA signature analysis. ACEseq and the
ABSOLUTE algorithm were applied to obtain absolute CN pro-
file from 286 WGS data independently, and four CNA signa-
tures have been independently extracted, compared and cosine
similarity values of pairwise comparisons are reported. Simi-
larly, ASCAT and the ABSOLUTE algorithm were applied to obtain
absolute CN profile from 468 SNP-array dataset independently,
and four CNA signatures have been independently extracted and
compared.

CN signature labeling and matching
We sorted all CN signatures based on their total activities to all
samples. PCAWG data analysis is the major focus of this study.
For PCAWG, we named 14 CN signatures from CNS1 to CNS14. For
TCGA, we firstly named 20 CN signatures from Sig1 to Sig20. We
further added extra labels to their names for better comparing the
CN signatures between PCAWG and TCGA by following the rules:

1. We classified signature similarity based on cosine similarity
values into four levels: ≥0.8 (High, H), ≥0.51 & <0.8 (Interme-
diate, M) and < 0.51 (unmatched).

2. The results were combined for a TCGA signature matched to
two or more PCAWG signatures, i.e. TCGA Sig3 were matched
to PCWG CNS1 and CNS5 both in middle level similarity, so
the signature was labeled as ‘Sig3-CNS1(M)/CNS5(M)’.

3. A postfix with the matched similarity rank was used if a
PCWAG signature was matched to two or more TCGA signa-
tures, i.e. TCGA Sig8 was labeled as ‘Sig8-CNS5(M)_3’, here
three means this signature was the 3rd signature matched
to CNS5.

Group enrichment analysis
To comprehensively show the enrichment of a variable across
cancer types, inspired by enrichment analysis in Maftools, we
designed and implemented the group enrichment analysis as
functions ‘group_enrichment’ and ‘show_group_enrichment’ of R

package Sigminer. To illustrate how this analysis works, here we
use CNA burden analysis for PCAWG breast cancer as an exam-
ple. Firstly, we divided all PCAWG samples into two categories:
Breast and non-Breast. Then we compared the means of CNA
burden with Wilcoxon rank-sum test and calculated the ratio
of the means, i.e. 1.56 means the average CNA burden in Breast
cancers is 56% higher in non-Breast cancers. The result of the
statistical test indicates if this result was randomly obtained. We
used heatmap to visualize the final results and distinguished the
different results based on both the mean ratio and statistical test
result:

• If the comparison result is statistically non-significant, white
color was used to fill the heatmap cell.

• If the ratio is >1 and the comparison result is statistically
significant, red color was used to fill the heatmap cell.

• If the ratio is <1 and the comparison result is statistically
significant, green color was used to fill the heatmap cell.

Association analysis
Associations between the activities of signatures, associations
between signature activity and gene mutation status were per-
formed using one of two procedures: (i) for a continuous asso-
ciation variable, Spearman correlation was performed; (ii) for
a binary variable, patients were divided into two groups and a
Wilcoxon rank-sum test was performed to test for differences in
average activities of signatures between the two groups. Associa-
tions between each CNA signature and WGD or HRD status were
performed using a two-sided Fisher’s exact test. All reported P-
values were FDR corrected. Only associations with both P ≤ 0.05
and odds ratio >1 were reported. Full correlation network for con-
tinuous variables was constructed using R package ‘correlation’
(https://cran.r-project.org/package=correlation).

Survival analysis
Associations between CN signature activities with overall survival
were identified using univariate Cox-proportional hazard models
in each cancer type. For each Cox model, a Z-score that encodes
the directionality and significance of the survival relationship
is reported. Z-scores reflect the normalized deviations from the
mean of a normal distribution, and these Z-scores are calculated
following similar procedures as previously described [33]. Briefly,
the Cox model is given by:

h (t, X) = h0(t)eβX

Where t is the overall survival time, h(t,X) is the hazard func-
tion, h0(t) is the baseline hazard. X is a potential prognostic vari-
able. Z-score is calculated by dividing the regression coefficient β

by its standard error.
The prognosis effects of the activity of CNA signatures are com-

pared in matching TCGA and PCAWG cancer types with sufficient
number (n > 50) of patients having both CNA profile and overall
survival data available for analysis. Here, the absolute activity
of CNA signature was used. For mutation data, the absolute
activity is explained as the estimated mutation count contributed
by a signature; similarly, for CN data, the absolute activity is
explained as the estimated segment count contributed by a
signature. Kaplan–Meier survival analysis was performed using
the R package ‘survival’ with log-rank test, and Cox-proportional
hazard analysis was performed using the R package ‘ezcox’.
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The cutoff value in Kaplan–Meier overall survival analysis was
determined by surv_cutpoint function of ‘survminer’ package.

CNA signature evolution analysis
The estimated CCF value of each segment is derived from ABSO-
LUTE [25] algorithm. Firstly, we sort CNA segments by their esti-
mated CCF in a given sample. Next, we infer an evolutional tra-
jectory of the CNA signature activities over the estimated ordering
of the CNA segments. We convert the CNA segments ordering into
a set of CCF cut points with overlapping subsets of segments by
decreasing CCF. The absolute CNA signature activities (counts of
CNA segments) of the CNA segment subset are calculated based
on single sample CNA signature fitting with TCGA CNA signature
set using quadratic programing.

Statistical analysis
Data between two groups were compared using a two-tailed
unpaired Student’s t-test or Wilcoxon rank-sum test (also known
as ‘Mann–Whitney’ test) depending on normality of data dis-
tribution (Typically, preprocessed expression data are normally
distributed and mutation data show non-normal distribution).
Correlation analysis was performed using the Spearman method.
All reported P-values are two-tailed, and for all analyses, P ≤ 0.05
is considered statistically significant, unless otherwise specified.
Multiple testing P-values were corrected by Benjamini–Hochberg
FDR method. ‘ns’ for non-significant (P > 0.05); ‘∗’ for P ≤ 0.05; ‘∗∗’
for P ≤ 0.01; ‘∗∗∗’ for P ≤ 0.001; ‘∗∗∗∗’ for P ≤ 0.0001. All statistical
analysis was performed using R v4.3.

Key Points

• A mechanism-agnostic method for CNA classifica-
tion and signature analysis has been constructed, this
method can reveal unknown patterns of CNA compared
with existing methods.

• This method achieves robust and consistent results in
pan-cancer CN signature analysis compared with known
methods.

• Pan-cancer patterns and mutational processes for CNA
signatures have been revealed through our method.

• CN signature activity consistently predicts the prognosis
of cancer patients.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.
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