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All circulating immunoglobulin G (IgG) antibodies in human 
newborns are of maternal origin1 and transferred across the 
placenta to provide passive immunity until newborn IgG pro-
duction takes over 15 weeks after birth2. However, mater-
nal IgG can also negatively interfere with newborn vaccine 
responses3. The concentration of IgG increases sharply dur-
ing the third trimester of gestation and children delivered 
extremely preterm are believed to largely lack this passive 
immunity1,2,4. Antibodies to individual viruses have been 
reported5–12, but the global repertoire of maternal IgG, its 
variation in children, and the epitopes targeted are poorly 
understood. Here, we assess antibodies against 93,904 epi-
topes from 206 viruses in 32 preterm and 46 term mother–
child dyads. We find that extremely preterm children receive 
comparable repertoires of IgG as term children, albeit at lower 
absolute concentrations and consequent shorter half-life. 
Neutralization of the clinically important respiratory syncy-
tial virus (RS-virus) was also comparable until three months 
of age. These findings have implications for understanding 
infectious disease susceptibility, vaccine development, and 
vaccine scheduling in newborn children.

Antibodies provide important protection against infectious dis-
eases; individuals with inborn errors of immunity involving IgG 
production typically present with severe infections early in life13. 
Such individuals also often suffer from inflammatory conditions 
and autoimmunity, illustrating the immunomodulatory roles played 
by IgG antibodies14. Newborn children cannot produce IgG anti-
bodies immediately after birth; instead, they rely on passive immu-
nity from maternal IgG15. To gain a deeper insight into the repertoire 
of maternal antibodies actively transferred to newborn children 
during pregnancy, we took advantage of a recently developed viral 
epitope scanning method (VirScan)16, where bacteriophages pres-
ent 56-amino-acid-long linear peptides that overlap by 28 amino 
acids to collectively encompass the entire genomes of 1,276 viral 
strains from 206 viral species known to infect human cells (Fig. 1a).  
This method works by incubating plasma samples normalized 
to total IgG concentration with the phage library to form IgG-
phage immunocomplexes, which are captured by magnetic beads. 
Immunoprecipitated bacteriophages then undergo lysis and are 
sequenced to identify the IgG-targeted epitopes (Fig. 1a). VirScore 
is the output given by VirScan and corresponds to the number of 
peptide hits that do not share epitopes. VirScore is incremented by 
1 when a hit is enriched in the ‘output’ compared with the ‘input’ 
(Methods). Besides removing hits occurring as a consequence of 

unspecific binding to beads only, it is also important to identify 
cross-reactive antibodies. This is done by ignoring hits that share a 
subsequence of at least seven amino acids with any other enriched 
hit found in the same sample. We applied this method to 78 mother–
child dyads from a recently reported birth cohort at the Karolinska 
University Hospital in Stockholm17, with samples collected at birth 
(cord blood) and weeks 1, 4, and 12 after birth (Fig. 1b). According 
to Xu et al.16, adult individuals were seropositive for 5–10 differ-
ent viruses16; a similar result was found for the parents in our birth 
cohort (Fig. 1c). The most frequently targeted viruses in parents are 
cytomegalovirus (CMV), Epstein–Barr virus (EBV), herpes simplex 
virus type 1 (HSV-1), and rhinovirus A (Extended Data Fig. 1a,b). 
Our cohort consisted of 32 extremely preterm children born before 
30 weeks of gestation, and 46 term children ( >37 weeks of gesta-
tion); we applied VirScan to analyze the global repertoires of mater-
nal antibodies to viruses present at birth, in all of these children. We 
found that preterm and term children have very similar repertoires 
of maternal IgG, irrespective of gestational age at birth (Fig. 1d). To 
further investigate this, we performed a principal component analy-
sis based on the global IgG repertoires for each child at birth or 
during week 1, but found no segregation between preterm and term 
children (Extended Data Fig. 2). This was unexpected given pre-
vious reports suggesting that IgG transfer occurs primarily during 
the final trimester, leaving preterm children largely unprotected2. 
Even the most extremely preterm children in our cohort, born at 
24 weeks of gestation, had an antiviral IgG repertoire comparable 
to that found in term-delivered children (Fig.1d). Similar to their 
parents, the most frequently targeted viruses in newborn children 
were adenovirus C, CMV, EBV, HSV-1, and rhinovirus A (Fig. 1d).

After describing the viral species targeted by passive immunity 
in preterm and term infants, we were curious to investigate the 
individual epitopes targeted in each virus, since this is an impor-
tant determinant of protective immunity. The number of epitopes 
targeted by maternal antibodies in newborn children correlate with 
viral genome size and, consequently, the total number of peptides 
required to cover the genome of a particular virus (Fig. 2a). Certain 
epitopes are more often targeted during an immune response than 
others, so we wanted to know whether antibodies to such immuno-
dominant epitopes were present in the IgG repertoire of newborns. 
As an example, we show antibodies targeting the major surface glyco-
protein G, an important RS-virus protein that contains an immuno-
dominant epitope in its 141–224 amino acid region. We noted that 
antibodies specific to this epitope were frequently targeted in moth-
ers; these antibodies were also transferred from mothers to their 
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children (Fig. 2b). This suggests that the repertoire of antibodies to 
immunodominant epitopes in newborns mirrors the repertoire of 
their mothers18. The knowledge of such immunodominant epitopes 
and their variance between children is important for understand-
ing susceptibility to infections; it also has implications for vaccine 
design. We mapped 10,362 epitopes targeted in any of the samples 
analyzed and annotated them to their respective viral protein and 
viral species (Supplementary Table 1). For the 44 most commonly 
targeted viruses (VirScores ≥ 2), we defined immunodominant epi-
topes as epitopes targeted by at least 50% of seropositive children 
(Fig. 2c). We found differences in the presence of immunodominant 
peptides among different viruses. For instance, rhinoviruses A and 
B have multiple epitopes targeted in >75% of seropositive children, 

while influenza A and B have no such immunodominant epitopes 
(Fig. 2c). One possible interpretation of this is that this is a conse-
quence of strong antigenic shifts among influenza viruses between 
seasons. CMV, EBV, and enterovirus B and C were similar to rhi-
noviruses in that multiple immunodominant epitopes targeted in 
the majority of seropositive children could be found (Fig. 2c). The 
frequencies of immunodominant epitopes were largely comparable 
between preterm and term children, further suggesting that IgG 
transfer occurs early during gestation (Extended Data Fig. 3).

RS-virus is an important cause of morbidity and mortality in 
newborns and young children19. We found multiple RS-virus epit-
opes targeted by > 50% of seropositive children; all of these involved 
major surface glycoprotein G (UniProt identification nos. P27021, 
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Q38163, Q8JRB5, and C1K8X6). This protein is important for virus 
attachment and infectivity20 (Fig. 2c). For other viruses, only one 
immunodominant epitope was found. For example, amino acids 
505–551 of the parainfluenza virus type 4 nucleoprotein was tar-
geted by ~80% of seropositive children; no other immunodominant 
epitopes were found for this virus (Fig. 2c).

We particularly wanted to compare antibody levels among pre-
term and term children given previous reports of lower levels in 
preterm children1,2,4. Although concentrations of antibodies corre-
lated with the VirScores in VirScan, we wanted to quantify antibody 
levels further and performed multiplex enzyme-linked immuno-
sorbent assay (ELISA) assays to quantify IgG specific to known 
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immunodominant epitopes from five common viruses. Overall, the 
main determinant of IgG concentration in newborns was mater-
nal IgG concentration, as shown for CMV and EBV (Fig. 3a,b).  

RS-virus antibody concentrations were poorly explained by mater-
nal IgG levels, while gestational age was a more influential fac-
tor (Fig. 3c) suggesting that different antibodies in the repertoire 
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follow different rules of active transfer across the placenta. For both 
influenza A and RS-virus most of the variance remains unexplained 
by gestational age, maternal IgG concentration, and birth weight 
(Fig. 3d). This warrants more research into the possible factors, 
such as isotype differences, glycosylation patterns, binding capacity 
to the neonatal Fc receptor (FcRn), and other possible determinants 
of IgG transfer21.

The life span of maternal antibodies is another important factor 
for understanding the duration of elevated susceptibility to infec-
tion and know when vaccines should be administered to avoid 
negative interference of maternal antibodies3,22. We found that IgG 
concentrations were generally higher in term versus preterm chil-
dren, but the rates of decay were comparable leading to longer half-
lives and overall maternal IgG duration in term children (Fig. 3e).  
This pattern was similar for all viruses analyzed—CMV, EBV, influ-
enza A, HSV-1, and RS-virus—suggesting a general process of anti-
body decay.

Given that the repertoires of maternal antiviral IgG were com-
parable between extremely preterm and term children, albeit with 
lower IgG concentrations in preterm children, we were interested 
in evaluating the functional capacity of these antibodies in such 
different groups of children. We focused on the RS-virus, which is 
responsible for much morbidity and mortality, particularly in pre-
term children. By testing the neutralizing capacity of serial dilu-
tions of newborn plasma from RS-virus seropositive children, we 
assessed this neutralizing capacity at birth, week 1, and week 12 of 
life using a cytopathogenic effect-based microneutralization assay. 
We found that cord blood samples overall differed significantly in 
their ability to neutralize RS-virus in in vitro culture, whereas neu-
tralizing capacity was more homogenous at subsequent time points 
(Fig. 4a–c). Although there was a trend toward higher neutralizing 
capacity in the plasma samples from the cord blood of term chil-
dren compared to preterm children, this difference was not seen for 
plasma samples from weeks 1 and 12. The neutralizing capacity of 
maternal IgG targeting the RS-virus was the same for preterm and 
term children overall (Fig. 4b,c). One possible explanation for this 
discrepancy between time points is that the strong inflammatory 
response in the cord blood of extremely preterm children17 could 
possibly impact the neutralizing capacity of the RS-virus. Overall, 
these findings suggest that extremely preterm children are equally 
well protected by maternal RS-virus-specific antibodies compared 
to term children, at least until three months of age. This finding 
was not exclusive to the RS-virus since plasma samples from pre-
term and term children also neutralized influenza A, (H3N2/Hong 
Kong/1968) to a similar extent (Extended Data Fig. 4). This despite 
having lower concentrations of IgG antibodies specific for these 
viruses. We hypothesize that the higher mortality of the RS-virus 
and influenza-virus infection in preterm and term children23 is not 
explained by a lack of passive immunity, albeit possibly a shorter 
duration of passive immunity due to lower IgG concentration at 
birth. Other possible explanations could instead be a lower residual 
lung capacity and a generally lower resilience toward severe illness 
as a consequence of low birth weight and intensive care.

In summary, we have characterized the global repertoire of 
maternal IgG antibodies to 93,904 different viral epitopes from 206 
different viruses in 78 newborn children during their first three 
months of life. Our findings show that extremely preterm and term 
children are equipped with comparable passive immunity to viruses 
at birth, with repertoires that mirror that of their mothers, and 
centered on a defined set of immunodominant epitopes we have 
described. We have also shown that the determinants of antibody 
concentration differ among viruses, implying that other features of 
IgG molecules, such as isotypes, posttranslational modifications, 
and binding to the neonatal FcRn responsible for the transfer of 
humoral immunity to the fetus, might be of importance and should 
be investigated further in future studies. These findings also suggest 

that the elevated risk of infection in preterm over term newborns is 
not determined by a lack of maternal antibodies; instead, it might 
be explained by weaker physical barriers in the skin, intestine, and 
lung or differences in exposure due to intensive care, intravenous 
catheters, and breathing tubes.
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Methods
Study design. Plasma samples were longitudinally collected from 32 preterm and 
46 term children at the Karolinska University Hospital at delivery (from umbilical 
cord) and during weeks 1, 4, and 12 (from peripheral blood). Plasma was also 
collected from the peripheral blood of mothers around one week a�er the time of 
delivery.

Ethics statement. The parents of all children participating in the study received 
oral and written information about the study. Informed consent was obtained 
before any analyses. The study protocol was approved by the Stockholm regional 
ethical review board, with case numbers 2014/921–32 and 2016/512–31/1. The 
study protocol follows the Declaration of Helsinki (DoH/Oct2008) and the data 
collection procedures are in accordance with the European Union General Data 
Protection Regulation.

VirScan. A global analysis of the maternal antiviral immunoglobulin G repertoire 
in the individual serum samples was performed as in Xu et al.16. Briefly, the 
assay consisted of an immunoprecipitation of antibody-targeted bacteriophages 
from a library displaying proteome-wide peptides from all viruses known to 
infect human cells, except the Zika Virus (206 species and 1,276 strains). After 
immunoprecipitation, antibody-targeted bacteriophages underwent massive 
parallel DNA sequencing to identify the targeted peptide. The bacteriophage 
library was kindly shared by the S. Elledge’s group and expanded in our laboratory 
at Science for Life Laboratory (SciLifeLab), Karolinska Institutet, Stockholm, 
Sweden. Five rounds of expansion (approximately 25 petri dishes each) were 
carried out to collect the supernatants. This minimized the possibility of 
bacteriophage overexpansion and preserved the frequency of each bacteriophage 
in the original library. The final bacteriophage library (pooled) was used to 
determine plaque-forming units and underwent lysis and Illumina sequencing to 
also assess phage composition (input). Moreover, the phage library was directly 
incubated with beads alone (no IgG) to identify unspecific binding during the 
capture of immunocomplexes (beads). Epitopes not detected during input (phages 
not successfully grown during expansion) or found in beads were not considered 
during the data analysis. Illumina sequencing was performed by the National 
Genomics Infrastructure, SciLifeLab (HiSeq Rapid Mode single read 1 × 50 base 
pairs (bp)).

After sequencing, we used Bowtie to map the sequencing reads to the original 
library sequences and SAMtools to count the number of reads for each peptide 
during input as well as in each sample output. Given that a large number of 
peptides are not enriched, the observed distribution of output read counts was 
used as a null distribution. A zero-inflated generalized Poisson distribution was 
found to fit well the frequency of each peptide in the sample output. Subsequently, 
we fitted a zero-inflated generalized Poisson model to the distribution of output 
counts and regressed the parameters at a particular input read count. We used this 
model to calculate a −log10(P) for the probability of enrichment for each peptide. 
A reproducibility threshold of 2.3 in both technical sample replicates was used 
to determine significantly enriched peptides. Then, peptides from a virus were 
grouped and epitopes that were explained as cross-reactions from another virus, as 
well as from unspecific binding, were removed. The remaining number of unique 
peptides found defined a VirScore for antibodies to each virus in each sample.

Definition of VirScores from epitope hits. To filter out spurious hits caused by 
cross-reactive antibodies, we calculated the total number of epitope hits per virus 
and sorted these in descending order. For each virus in this order, we iterated 
through all epitope hits and removed hits that shared >7 amino acid sequences 
with any previously observed hit in any of the viruses from the same sample. The 
remaining hits were considered specific and summed into a VirScore for the virus.

Assessing specificities of antiviral antibodies found in mother–child dyads. To 
assess the specificities of maternal antiviral antibodies, we retained overlapping 
viral species in mother–child dyads. We detected antibodies to 134 viral species 
in the whole cohort (Fig. 1d). Based on very low antibody titers, we determined a 

threshold of strong protection. Finally, we called an antibody frequently found if 
the viral species to that antibody was detected with a VirScore > 1.

Determination of antibody levels in children and adults. Total IgG was measured 
with an ELISA assay in all longitudinal serum samples from our birth cohort 
(Human IgG ELISA Kit; catalog no. RAB0001, Sigma-Aldrich). Besides total 
IgG, semiquantitative ELISA assays for well-known immunodominant epitopes 
from the following viruses were also measured (all sourced from Abcam): CMV 
(Human Anti-Cytomegalovirus IgG ELISA Kit (CMV); catalog no. ab108724); 
RS-virus (Human Anti-Respiratory syncytial virus IgG ELISA Kit (RSV); catalog 
no. ab108765); HSV-1 (Human Anti-Herpes simplex virus Type 1 IgG ELISA 
Kit; catalog no. ab108737); influenza type A (Human Anti-Influenza virus A IgG 
ELISA Kit; catalog no. ab108745); and EBV (Human Anti-Epstein–Barr virus IgG 
ELISA Kit (EBV-EBNA); catalog no. ab108731). Results are shown as standard 
units (SU).

Serological analysis: statistical model of antibody kinetics. To capture the 
kinetics of passively acquired maternal antibodies against CMV, EBV, HSV-
1, influenza A, and RS-virus, a stochastic model was adopted from ref. 24. For 
each individual, log-transformed levels of antibodies x, at a particular age a, are 
described by a normal distribution with age-dependent mean m(a) and s.d. s:

≈x N m a s( ( ), )
2

The log-transformed levels of maternal antibodies decay approximately linearly 
with age and with a decay rate, d, from ln(mo + b) for low ages (first days of life), and 
approaches a detectable level of antibody, termed the baseline level, b, for higher ages. 
The mean log-transformed level of maternal antiviral antibodies varies with age.

= +
−

m a m b( ) ln( e )
da

o

We used the maximum likelihood estimation to regress the parameters m, b, d, 
and s to fit the age-specific levels of antibodies for preterm and term children. A 
Markov chain Monte Carlo simulation was used to quantify the uncertainty of 
these parameter estimates. We also calculated the half-time (ln(2)/d) and mean-life 
(1/d) of antibodies using the same estimated parameters.

Evaluation of the neutralizing activity against the RS-virus. Neutralizing activity 
against the RS-virus was tested using plasma from RS-virus seropositive children 
(ELISA-verified). Cytopathogenic effect-based microneutralization in human 
epithelial type 2 cells was performed by Integrated BioTherapeutics.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
The pipeline for processing the VirScan data has been published previously; the 
script for all other analyses described in the paper is available from https://github.
com/Brodinlab/maternal_abs.

Data availability
All VirScan sequencing data (Figs. 1 and 2) is deposited at the NCBI Sequence Read 
Archive database (PRJNA516865). The ELISA (Fig. 3) and virus neutralization raw 
data (Fig. 4) are readily available upon request.
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Extended Data Fig. 1 | Parental repertoires of antiviral antibodies. a, Viruses targeted by antibodies in fathers. b, Viruses targeted by antibodies in 

mothers.
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Extended Data Fig. 2 | Preterm/term repertoires of antiviral antibodies. Principal component analysis based of global antiviral repertoires (species level). 

Each dot represents a unique individual child (n = 102); the first sample available at birth or first days of life is used as in Fig. 1d and the dots are colored by 

gestational age at birth for each child.
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Extended Data Fig. 3 | Antibodies to immunodominant epitopes in preterm and term children. The frequencies of maternal IgG to 70 immunodominant 

epitopes (mean frequency > 50% of seropositive children) in term (x axis) and preterm (y axis) children. The point size represents the mean frequencies in 

all children.
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Extended Data Fig. 4 | Neutralizing capacity of anti-influenza A antibodies in preterm and term children. Dilution curve and percentage neutralizing 

capacity of maternal antibodies in cord blood (preterm n = 13, term n = 10). The points indicate the mean values and the error bars define the minimum 

and maximum values of viral neutralization.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 

text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 

variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 

State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection For processing sequencing data, scripts written in Python version 3.5.4, Bowtie version 1.0.2 and package samtools version 1.1 was used 

for reads alignment. For downstream analysis and plotting numpy version 1.11.3, pandas version 0.21.0, and matplotlib version 2.1.2 was 

used.

Data analysis we used VirScan pipeline as per (Xu et al. (2015)) and our own python scripts. All code is available: https://github.com/Brodinlab/

maternal_abs

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 

upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

VirScan sequencing data is deposited at the NCBI SRA database with BioProject ID: PRJNA516865 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA516865). ELISA 

and Virus neutralization data is available upon request. 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size In total, 514 plasma samples were included. Plasma samples were longitudinally collected from 32 preterm and 46 fullterm children (78 from 

umbilical cord and 114, 55 and 80 from weeks 1, 4 and 12, respectively). Besides babies, 72, and 115 plasma samples from fathers and 

mothers respectively, were also collected after delivery. The number of children included was not based on any power analysis. All children 

fulfilling inclusion criteria and consenting to participate was included in these analyses.

Data exclusions No data exclusions carried out.

Replication All attempts at replication were successful. All antibody measurements with ELISA were performed in duplicate. Duplicates were also analyzed 

in VirScan.

Randomization n Samples were randomized before VirScan and ELISA analysis.

Blinding Investigators were blinded to sample origin. Serum samples were already sent to the laboratory with a Sample_id, making no possible to 

associate between Sample_group or Subject_id during the experimental process. All samples involving the same family were processed 

together. Only during analysis were samples linked to individuals.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials

Policy information about availability of materials

Obtaining unique materials The VirScan phage display library is available upon request to professor Stephen Elledge, Harvard. 
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) ATCC #CCL-23

Authentication  ATCC product documentation: https://www.atcc.org/products/all/CCL-23.aspx#documentation 

Mycoplasma contamination The cell line was tested negative for mycoplasma by PCR. This is performed by the CRO Integrated Biotherapeutics Inc. 

Commonly misidentified lines
(See ICLAC register)

None

Human research participants

Policy information about studies involving human research participants

Population characteristics Newborn children enrolled in the study and their parents. The cohort includes very preterm children, born prior to week 30 

gestation, as well as a term group of children born >37 weeks of gestation. All children are born in Stockholm, Sweden and 

followed at Karolinska University Hospital. 

Recruitment All children born at the Karolinska University Hospital were eligible for enrollment except children born with major organ 

malformation or known chromosomal defects or other significant congenital conditions. Also children unable to take part in 

return follow-up visits are not eligible for enrollment. The study was approved by local Stockholm ethics board (ID 2014-921/32).
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