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Introduction. This paper is primarily concerned with linear order-preserv-
ing mappings from one function-space to another. For example, let f be a
(suitably restricted) function of two real variables, and consider the function
f(x)=[f(x, y)dy. The mapping f—f’ is a linear, countably additive map-
ping from the space of (suitably restricted) functions of two variables to the
space of functions of one variable; and it is “order-preserving” in the sense
that positive functions are mapped into positive functions. The main result
of this paper implies that this example is (roughly speaking) typical; under
mild hypotheses, mostly of countability, every linear, countably additive,
order-preserving mapping ¢ from one function space F, to another, F{, can
be obtained by coordinatewise integration in a product space. That is,
there exist spaces X, ¥ such that Fy is “isomorphic,” in a sense to be defined
below (§1) to a certain space of functions on X X ¥, and F{ is isomorphic to
a space of functions on X, and under these isomorphisms ¢ corresponds to the
mapping f—f' where f'(x) = ff(x, ¥)dy, the integral being formed with re-
spect to an ordinary (countably additive) o-finite numerical measure on Y.
(The exact theorem is stated in 5.3 below.) The formal properties of the
mapping ¢, and the representation theorem just mentioned, entitle ¢ to be
called an “abstract integral.” The ordinary Lebesgue integral (over a fixed
set with a o-finite measure) is included as a special case, in which F¢ consists
of the functions defined on a single point.

Abstract integrals have been considered from much this point of view
before(!), and representation theorems for linear mappings between two func-
tion spaces are known in many special cases(?). But the emphasis in the
present investigation is on rather different aspects of the problem, and it is
believed that there is little overlap with previous work. Briefly, the present
treatment is aimed at saying as much as possible about the structure of a
single “abstract integral” ¢, where ¢ is to have the salient features of the
Lebesgue definite integral, but with values which (instead of being numbers)
lie in as general a function space as can be handled. The only essential restric-
tion we impose on our function spaces is that they satisfy the countable chain
condition. Such spaces have no useful norms, and no norm conditions will be
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(?) See [3], and references there given.
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imposed on ¢, their role being taken over by the requirement of “positivity”
(i.e., that ¢ preserve order)(?).

We shall allow the functions considered to be infinite, and a finite func-
tion may have a (wholly or partly) infinite function as its “integral.” This is
only partly for the sake of generality; the main reason is that, even if we re-
stricted attention to finite functions to begin with, infinite functions would in
general be introduced by the constructions. However, the extra generality
seems desirable, even in the Lebesgue case; and, though infinities cause some
complications, they also lead to some compensating simplifications of the
technique (particularly in §§6 and 7). Thus the situation we actually consider
is somewhat more general than that described in the first paragraph. The
“abstract integral” ¢ is now a mapping of a certain subclass G of one “ex-
tended” function space F (extended by infinite functions) in another, F';
the set-up adopted (§2) is a natural generalization of that for the ordinary
Lebesgue integral, G then corresponding to the class of functions which are
“integrable” in the sense of [9] (i.e., for which [f(x)dx is unambiguous, finite
or not). It suffices, however, to assume only that ¢ is defined on a much
smaller class G, of functions (see 2.2), as ¢ can then be extended to a suitable
G. For example, let Fy and F{ denote the sets of finite functions in F and F’
respectively; then any linear, countably additive, order-preserving mapping
¢ of Fy in F{ can be extended to one of a suitable G in F’, and we recover
the special case, discussed in the first paragraph, in which ¢ maps one space
of finite functions in another.

The methods used are direct and are largely based on the author’s theory
of abstract-valued measures [5]. The notations follow [5] as far as possible.
The basic definitions and preliminaries are dealt with in §§1-3, which in
particular contain the notions of (abstract) function space, and of iso-
morphism and strict isomorphism of function spaces, and establish the rela-
tions between function-spaces and Boolean g-algebras, and between gen-
eralized “integrals” and the corresponding generalized “measures.” The main
step in deriving the principal theorem (Theorem 8, 5.3) is then the result
(Theorem 6, 5.1) that the generalized measure algebras which arise in this
way can be imbedded in others (studied in §4) which satisfy the additional
postulates required of “abstract measure algebras” in [5]. Theorem 6, be-
sides extending the scope of the theory in [5], then enables that theory to be
applied to determine the structure of the abstract integral. In Theorem 9
(6.1) a more precise result is obtained, under stronger hypotheses; and it is
finally shown (Theorem 10, 7.2) that, under intermediate hypotheses, the
abstract integral can be replaced by one to which the stronger hypotheses
(and so Theorem 9) apply.

(® The results can be extended to mappings ¢ which, instead of preserving order, satisfy
the weaker condition of “regularity” [3], and one can further give simultaneous representa-
tions for certain families of regular ¢’s. It is hoped that details will appear elsewhere,
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One application of these results is worth remarking, though we shall not
enter into it in detail. Since every vector g-lattice can be imbedded in a func-
tion space(*), our results give in particular an analysis of the structure of
an arbitrary (order-preserving) homomorphism of one vector o-lattice, satis-
fying the countable chain condition, in another.

1. FUNCTION SPACES, ALGEBRAS AND ISOMORPHISMS

1.1. The basic type of function space F adopted in the sequel is an ab-
straction from the space of all measurable real functions, finite or infinite,
on a measure space .5, two functions being identified if they differ only on a
null set. We shall later require F to satisfy the countable chain condition
(see 1.8), which corresponds to requiring the measure on .S to be ¢-finite; but
this will not be needed for most of the results in the present section.

Other types of function space are conceivable, but it is not necessary to
consider them explicitly, as their theory is included in that of the type
adopted here. For any function space with which we could be concerned would
certainly be a vector ¢-lattice (satisfying the countable chain condition);
now it follows from known results [1; 7] that every such lattice V can be im-
bedded in a function space of our basic type (also satisfying the countable
chain condition) in such a way that (in view of 2.2 below) any “abstract
integral” ¢ on V could be extended to one on F(8).

Most of the contents of §1 are essentially known (see e.g. [7]), but are
formulated here to establish the notation and in a form convenient for what
follows.

1.2. Let S be an arbitrary non-empty set, B a Borel field of subsets B of
S, and N a o-ideal of subsets of S; the sets of B may be thought of as “meas-
urable,” and those of N as “null,” though there is, of course, no actual meas-
ure involved in general. We shall usually assume (without loss of generality)
that B and N are “complete”™—i.e., NCB and if NyCN:EN, then N,&N.
We shall use the term “function” as an abbreviation for a function f on S
whose values are real numbers or + © (i.e., — ® Sf(s) < «, for all sES),
and which is “measurable B”—i.e., for each (finite) real number p, the set
X,(f)= {sl f(s) <p} is in B. The set of all functions forms the “realized func-
tion space” F(S, B, N), or ¥ for short. Two functions f, g are equivalent if
there exists a set NEN such that f(s) =g(s) whenever s&€S— N. The equiva-
lence classes { f } of functions form the function space F(S, B, N), or F. To
simplify the notation, however, we shall usually omit the brackets from { f },
using f to denote both a function and its equivalence class.

(%) See [7] and §1 below.

() More precisely, V is a restricted direct sum of a sequence {V,.} of vector o-lattices,
satisfying the countable chain condition, each of which has a unit element; and each V, can
be realized by a class G, of finite functions, which contains all bounded functions, in a func-
tion space F, of our type. Thus V is imbedded in the direct sum F of the F,’s, which is also a
function space of our basic type, and the union G, of the G,’s satisfies the requirements of 2.2
below.
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1.3. It is easy to see that, with the usual definitions of sum, product
and ordering of functions, the usual rules of analysis hold in ¥ and so in F,
except for the complication caused by the fact that the values 4+, — o
cannot be added. We make, however, the convention that «-0=0: o =0,
Thus, for example: (a) if fEF(S, B, N) and A is any Borel set of real numbers,
fHA)EB, (b) if fEF, and p is any real number, or + «, then pfEF, (c) if
f, gEF and if f+g exists (i.e., if the sets {s|f(s) =0 =—g(s)} and {s| —f(s)
=0 =g(s) } are both in N), then f4+g&F. In particular, the finite functions in
F form a linear space. Again, if f,&F (n=1, 2, - - - ), then sup f. (i.e., the
equivalence class of the function whose value at each s&.S is sup f.(s)), inf fa,
and (if they exist) lim f, and ) _f.,, all belong to F(®).

We write f<g, where f, gEF, to mean that f(s) £g(s) for all s€S—N
where NEN; f<g means that f<g and {f} #{g}; and f<g means that
fls)<g(s) for all s&€S— N (NEN)("). We denote the constant function whose
value is always ¢ (where — © £¢c< + ) by ¢ also, and write sup (f, 0) =f*,
sup (—f, 0)=f~. Thus 0 £f*, 0<f-, and f+—f— exists and equals f.

For each fEF we define the “locus” [f] to be the set {s|f(s)=0} EB(®).
If fEF, [f] is defined similarly; it is determined only to within a null set.

For each BE®B, xp denotes the characteristic function of B; that is,
xg(s)=11if s€B, 0 if s&€S— B. To facilitate printing, however, we shall write
xs as x(B) whenever possible. We also use x(B) to denote the equivalence
class (modulo N) of this characteristic function in F. Clearly [x(B)]
=B (mod N), x(S) =1 (the “unit function”), and x(0) =0.

1.4, Let By, Bs, - - -, B, be disjoint(?) sets of B whose union is S, and let
p1, P2, -+ + , Pn be (finite) real numbers; then the sum D 7 pix(B;) (in ¥ or F)
is called a “step-function.” It is easy to see that the sum and product of finitely
many step-functions are step-functions.

LeEMMA 1. Given f& 7, there exist (a) a sequence B, of sets of B, and (b) a
sequence p, of rational numbers, such that Y7 p.x(B.) exists (finite or in-
Sfinite) and equals f (for all sES).

Suppose first that 0=f<1. Let B,= {slf(s) 22‘1} ; then 2-x(B)) =f
<27%(By)+2"'. An easy induction argument gives sets B, - - -, B,&B
such that D 7 2=™x(Bm) <f< D1 2-"x(Bm)+2~", and the result follows. It is
easy to derive the general case from this one.

COROLLARY. Every element of F is a limit of a sequence of step-functions.

(®) If f£& F, we say (for example) that “)_f, exists” if, for each s&<S— N (where N& N),
the sequence of numbers fi(s)+f2(s) + « « + +fa(s) tends to a limit (possibly infinite) as n—» .

(") Note that in [3], for example, the symbol “f<g” is used to mean “f<g” in the present
notation. Note also that “f<<g” does not mean that f is uniformly below g.

(®) This use of [ ] departs from the notation in [5].

(*) Throughout this paper, “disjoint” means “pairwise disjoint.”
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ReMARrk. If f=0, the constants p, in Lemma 1 can be taken to be non-
negative.

1.5. Isomorphisms. We define two function spaces F=F(S, B, N) and
F'=F(S’, B, N') to be tsomorphic under ¢ if ¢ is a 1-1 mapping of F onto F’
which preserves linear operations, limits, and order. That is, we require:
>+ Y(f.) exists if and only if D ¢ f. exists, and if both exist then > ¥(f.)
=y(2_f»); with similar statements for multiplication of f by a (possibly
infinite) constant, lim fa., sup f», inf f,, and the relations =, <, and <. It

will follow that ¢(0) =0, and that ¢/(f) is finite if and only if f is finite. It is
not required that ¥(fg) =y (Y (g).

LEMMA 2. A 1-1 mapping ¢ of F onto F' is an tsomorphism provided that, for
all f, g€ F:

(1) ¥{f) +¥(g) exists if and only if f+g exists, and if both exist then Y(f+g)
=y (f)+¥(g).

(2) ¥(f) 20 if and only if f=0.

Proof. Suppose ¥ (and thus also Y~!) satisfies these requirements. Then,
from (1) applied to the functions ¥~1(0) and 0, we have ¢(0) =0. Again, ap-
plying (1) to the functions f and —f, we obtain:

(3) If f is finite, then so is Y(f), and then y(—f) = —¢(f).

We shall deduce that ¥ (—f) = —¢/(f) even if f is infinite. First note:

4) If —oLf=g, ¥(f) S¥(2).

For we can then write g=f+h where =0, and (4) follows from (1) and
(2). Now let B be any set in B, and write Y(x(B)) =f'; from (4) we obtain
Yv(x(B)) 2¢¥(nx(B)) ==nf’, from (1), where =1, 2, - - -, and it follows that
Y(ox(B))= «of’. But a similar argument applied to y—! gives oo x(B)
Sy 1(=f’), and so (from (4) again) Y( o x(B)) £ «f’. Hence §(0x(B)) = = f'.
A similar argument givesY(— o x(B)) = — of' = —y( 0o x(B)).Nowany f EF
can be written in the form f=g+ o x(B1)+(— «)x(Bz), where g is finite and
[g], Bi, B are disjoint; hence

(39 ¥(=f) = —¥() (all f € F).

We can now improve (4) to

(4') If f=g, ¥(f) =¥(g).

For (4) gives ¢(f*) ¢ (g*) and ¢(f~) =¢(g~), and the result now follows
from (3’) and (1). Thus { preserves (arbitrary) suprema and infima. Again, if
>0, then ¢(f)>>0. For we know ¢(f) >0; suppose ¥(f) =0 on a set B'EB’,
where B’ is not in N, and define g=y~'(x(B")), h=inf (f, g). Then ¢ (k) =0,
and so 2=0; but since >0 and g>0 it follows that A=inf (f, g) >0, giving a
contradiction. The relation f<g is equivalent (even for infinite functions) to
g—f>0, and hence is also preserved.

From (1) and (3’) we easily see that ¥(pf) =py¥(f) whenever p is rational.
Thus the whole lemma will readily follow once it is shown that f,—f implies
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Y(f2)—¥(f). This is clearly the case if the sequence f, is monotonic (for the
limit is then sup f, or inf f,); and this shows that Y(lim sup f,) =lim sup ¥(f,),
and similarly for lim inf. But, generally, f,—f if and only if lim sup f.=f
=lim inf f.; and the lemma follows.

1.6. Strict isomorphisms. An isomorphism ¢ of F=F(S, B, N) onto F’
= F(S’, B’, N') will be called strict if y(1) =1’, the unit function in F’. Let E
and E’ denote the Boolean g-algebras 8 mod N, B’ mod N/, respectively.
We shall prove:

THEOREM 1. The following statements are equivalent:
(i) The function spaces F and F' are 1somorphic.

(ii) The algebras E and E' are (a-)isomorphic.

(ili) F and F’ are strictly isomorphic.

To prove that (i) implies (ii), let ¥ be an isomorphism of F onto F’; since
the relation « is preserved, we have

®) 0<<y(1) K .

Now we remark that, if f, g€ F and 0 £g< =, then a necessary and suffi-
cient condition that f=gx(B) for some BEB is that 0=f =g and inf (f, g—f)
=0. A similar statement applies, of course, to F’. Hence, for each BE®B, we
have ¥ (x(B)) =¢(1)x(B’)) for some B'&®PB’, say B’ =0(B). From (5), 8(B) is
unique, modulo N/, when B is given modulo N; thus § maps E in E’. We shall
show that, for any fEF and BE®S,

(6) ¥(x(B)) = ¥(f)x(6(B)).

In fact, if f=0 this follows from the relation fx(B)=inf (f, ©x(B)); and,
applying this to f* and f~ separately, we see that (6) holds for all fEF.

It is now easy to verify, using (6), that 0 is an isomorphism of E onto E’.

Since (iii) implies (i) trivially, we have only to show that (ii) implies (iii).
A preliminary construction is necessary. By a “spectrum” on S(!°) we shall
mean a mapping from the rational numbers p to sets X,&EB such that: (a)
p<eo implies X,CX,, (b) U{X,|p <o} =X,. Each fEF(S, B, N) determines
such a spectrum by the rule X,(f)= {slf(s) <p}. Conversely (see [10; 8])
each spectrum {X ,,} arises in this way from a unique f&¥. If two functions
f, g are equivalent modulo N, their spectra { X,(f)}, {X.(g)} are also equiva-
lent, in the sense that for each p the symmetric difference of X,(f) and X,(g)
is in N, The converse is also immediate, so there is a 1-1 correspondence be-
tween elements of F(S, B, N) and equivalence classes of spectra mod N.

Now let 8 be an isomorphism of E onto E’. Clearly # maps spectra (mod N)
on spectra (mod N’), and so induces a 1-1 mapping ¥ of F onto F’;and it is
easy to verify that y has properties (1) and (2) of Lemma (2) (1.5), and that
¥(1) =1', so that ¢ is a strict isomorphism.

(19 See [10] and [8].
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CoROLLARY 1. Every strict tsomorphism of F is induced by an isomorphism
0 of E, as above. The most general isomorphism of F is obtained from a strict
isomorphism by multiplying all functions by a fixed function fo such that
0K oK.

For if ¢, is a strict isomorphism of F, ¢, induces an isomorphism 8 of E
as above, and 6 induces a strict isomorphism ¥. of F. Then y; ', is a strict
isomorphism of F onto itself which leaves E invariant, in the sense that it
maps every x(B) onto itself, and from Lemma 1 (1.4) it must be the identity
mapping; that is, Y1 =y,.

If ¥ is an arbitrary isomorphism of F, we have seen that 0y (1)K = ;
the correspondence ¥, defined by ¥1(f) =y¢(f)/¥(1) is evidently a strict iso-
morphism, and Y(f) =¥ (1)¥1(f). (Similarly ¢(f) =¢(f/¥~1(1")), where ¢, is
another strict isomorphism.)

Incidentally the argument shows there is a 1-1 correspondence between
isomorphisms of E and strict isomorphisms of F given by the constructions
used in the proof of Theorem 1.

COROLLARY 2. An isomorphism Y of F onto F’ is strict if and only if Y(fg)
=y (W(g) (for all f, gEF).

If y(1)=1’, (6) above gives ¥ (x(B)) =x(6(B)), and from Lemma 1 (1.4)
we have Yy(iY(g) =¥ (fg) provided f, g=0; but the general case follows at
once on considering f*, f~ and gt, g, separately. The converse implication
follows trivially, in view of (5).

1.7. In what follows, we shall usually not distinguish between strictly
isomorphic function spaces; thus F(S, B, N) is determined by the iso-
morphism class of the Boolean g-algebra E=®8/N alone, and we shall accord-
ingly write F(S, B, N) henceforth as F(E). It is understood that in applying
any isomorphism to F(E), we also apply the induced isomorphism (Theorem
1) to E. Thus if x €E, we can define x(x) € F(E) to be the characteristic func-
tion of any of the equivalent sets B corresponding to x in any particular
realization involved, and have that the relation between x and x(x) is pre-
served by strict isomorphism. Similarly, if f€ F(E), we define its “locus” in E,
also denoted by [f], to be the element of E corresponding to the set
{s|f(s)%0}, modulo N, in any realization; the relation between f and [f] is
preserved by (not necessarily strict) isomorphism.

1.8. The countable chain condition. Throughout what follows, all function
spaces considered will be assumed to satisfy:

(7) Every strictly increasing transfinite sequence f; <fo< + + - <fo< + + - of
elements of F must terminate countably.

It is easy to see that F(E) satisfies (7) if and only if E satisfies the cor-
responding “countable chain condition”:

(8) Every disjoint collection of nonzero elements of E is countable.
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In fact, (7) implies (8) trivially; conversely, if (8) holds, we may suppose
(by a preliminary change of scale) that the functions in (7) all satisfy —1Zf
=1, and then the argument is similar to that in [5, p. 288].

An immediate consequence of (7) and (8) is that F is a complete lattice:
given any nonempty subset V(CF, the elements sup { f | fe V} and
inf { f ] fe V} exist, and moreover there exists a sequence f,€V (n=1,2, . - +)
such that sup {fIfE V} =sup fn, and similarly for infima.

1.9. It will sometimes be desirable to use concrete realizations for E and
F; one, which will be particularly convenient later, is the “representation
space realization,” obtained by taking S=representation space of E, N
=family of sets of the first category, and B=family of sets each differing
from an open-closed set by a set of first category at most. Since the countable
chain condition holds, we may take F=class of continuous functions on S,
modulo N, the values + « being allowed (cf. [5, §4]). It will then be con-
venient to represent each f&F by the (unique) continuous function in its
equivalence class. Thus, for example, »_; f. will be represented, not in gen-
eral by the pointwise sum of the functions f,, but by the continuous function
which differs from this sum on a first category set (at most).

2. INTEGRALS

2.1. Let F=F(E) and F'=F(E') be two function spaces (satisfying the
countable chain condition). Roughly speaking, an “integral” will be a linear
order-preserving mapping of F in F’; but some complications arise from the
fact that functions can be infinite. First let ¢ be a mapping of the non-
negative functions of F in the non-negative functions of F’ such that

(@ ¢i(2fn)=2u(fn) (n=1,2, - - ),

(B) There exist elements gy, g2, - * -, of F such that »_g.>0, g.=0, and
di(gn) Lo (n=1, 2, - - - ().

It follows that ¢,(0) =0. Let G be the set of all functions f&F for which
1(f+) —d1(f-) exists (i.e., for which inf {@:(f*), ¢1(f)} K =), and define
o(f) =i (f+) —:1(f~) whenever fEG. Clearly G contains all non-negative (and
also all nonpositive) functions in F, and ¢ agrees with ¢, on the non-negative
functions. It is easy to see that the following properties hold.

(1) If fE€G and f=0, then fEG and ¢(f) =0.

(2) fEG if and only if ¢(f+) —¢(f~) exists.

(3) If fEG and p is real (and finite), pf EG and ¢(pf) =pd(f).

(4) If f, gE€G and f+g, o(f) +¢(g) both exist, then f+g&G and ¢(f+g)
=¢(f) +¢(g).

(5) If faz0 (n=1,2, - - - ), then ¢( 2_fa) = D2 b(fu).

(1) Instead of (8), it might seem more natural to require that there exists ¢g2>0 in F
such that ¢:(g)<K «. But this requirement is definitely stronger than (8) in general, though it is
equivalent to (8) in many cases, e.g., if E’ is a measure algebra or if ¢, is “homogeneous” (see §7).
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(6) The unit element e of E can be expressed as e=Vx, (x,.EE,
n=1, 2, .+ +) in such a way that ¢(x(x,)) K = (12).

(Since (6) follows from (B), in view of Lemma 1, 1.4, the only property
requiring proof here is (4). Now (4) holds trivially if f, g=0, and can then
be deduced when f<0=g; the general case then follows on considering the
functions f*+g*+and f~4-¢-.)

Conversely, any mapping ¢ of a subset G of F in F’ which satisfies
(1)—(6) will clearly arise in this way from ¢;=¢ restricted to non-negative
functions, and ¢, satisfies (@) and (B). If ¢ (or, equivalently, ¢;) satisfies the
two further requirements:

(1) If />0, then ¢(f)>0;

(8) #(1)>0,
we say that ¢ is an F'-integral on F, with G as its set of integrable functions.
Conditions (7) and (8) involve no real loss of generality. If (7) does not hold,
we have only to enlarge the class N of null sets (in any realization of F as
F(S, B, N)) to include all sets B for which ¢(x(B)) =0; in effect this amounts
to replacing S by a subspace, or equivalently to replacing E by a suitable
principal ideal. Similarly if (8) fails we enlarge the class N’ of null sets (where
F'=F(S’, B', N')) to include all sets B’ on which ¢(1) vanishes—i.e., in effect,
we replace S’ by the subspace [¢(1)].

2.2. The extension lemma. The well known process whereby the ordinary
Lebesgue integral can be extended from (say) step-functions to all integrable
functions can be applied here; but the details become more tricky, as infinite
values give some trouble. Hence we state a general form of this process, and
sketch the proof.

Let Gy be a subset of F such that

(a) OEGO

(b) If fEF and f>0, there exist positive real numbers p, and elements
fnZ0 of Go(n=1, 2, - - - ), such that f= D pafa.

(c) If fEG,, then f+ and —f~ are in G,(13).

(d) If fEG, and f<0, then —fEG,.

Let ¢o be a mapping of Gy in F'(= F(E’)) such that, whenever f, f1, fo, - + +,
are in Gy,

(1) ¢o(f)>0if />0.

(if) — o Kpo(f) K+ .

(i) If f=pifi+pafz where py, p2 are real (and finite), then ¢o(f) =p1do(f1)
+p:Bo(f2).

(iv) If p, is real and positive and f,>0 (n=1, 2, - - - ), and if D p.fa
=f(EGy), then ¢o(f) = D pupo(fn)-

(12) That is, each function ¢(x(x,)) is everywhere finite. It does not follow, in general,
that the elements x, can be chosen so that ¢(x(xa)) is bounded.

(13) Note that —f~=<0. In many applications, G, will consist of non-negative functions
only, and conditions (c) and (d) are then fulfilled trivially.
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(v) sup {o(f)|fEGs}>0.

LemMMmA 3. Under the above conditions, ¢o can be extended in one and only
one way to an F'-integral ¢ on F (i.e., such that GDG, and ¢(f) =¢o(f) for all
fEGy).

Proof. First we note that clearly ¢(0) =0, and that if fFEG, then — o <f
K = ; this follows since otherwise (c) and (d) give the existence of g€G,
such that g>0 and g is somewhere infinite, and then (from (b)) there exists
h&EG, such that >0 and g=g+4, contradicting (ii) and (iii).

If fEF and f >0, we apply (b) and define ¢:(f) = Zp,,d)o(f,,); from (iv)
this agrees with ¢, if fEG,. It must, however, be shown that the definition of
¢ is always single-valued. Suppose, then, that Zp,,fn= Zang,., where p,, 0,
are real and positive and f,, g, are non-negative elements of G,; we must
show that D p.00(fa) = D.0aPo(gs). One can prove that elements h,,EF
exist such that km =0, pufm= 2. Hmn, and G.go= D m Ama. From (b) we can
Write Bom= 2 p Tnmpknmp Where Bump & Go, Tamp is real, Bamp =0, and 7y, =0;and
it follows without difficulty that D om¢e(fm) = 2 TameBo(Bamp) = 2.0 xPo(gn).

Clearly ¢, has properties (a), (8), (7), and (8) of 2.1. Thus ¢; can be ex-
tended, as in 2.1, to an F’-integral ¢ on F; and it is easy to see that ¢ still
agrees with ¢, on G,. Finally, any other extension of ¢, to an F’-integral on
F must agree with the ¢ just constructed on the successive stages of the con-
struction, and so the extension is unique.

2.3. REMARK. Every F'-integral on F can be obtained by the above
process with G, consisting of a suitable class of characteristic functions. For,
using 2.1(6), we take G, to consist of the functions x(y) where y&E and
y=x, for some n; ¢, of course, is ¢ restricted to Go. Hence an F'-integral is
uniquely determined by its values on the characteristic functions (as is also
obvious directly).

2.4. Subspaces; induced F'-integrals. Let F= F(S, B, N), let S; be any non-
empty set in B, and let B, be any Borel field of subsets of S; such that B;CB.
Write Ny =N"\B,; we shall say that the function space Fy= F(S1, B1, Ni) is a
subspace of F. This amounts to defining F(E;) to be a “subspace” of F(E)
if E, is a subalgebra of a principal ideal in E. We can regard the subspace
F, as imbedded in F in a natural way, each function f& F; corresponding to
the function in F which agrees with f on §; and is 0 on S—.S,.

Suppose now that ¢ is an F'-integral on F, with G as its set of integrable
functions, and that F; is a subspace of F (imbedded in F as above). Define
Gi1=F/NG, and let ¢ denote the mapping ¢ restricted to Gi. It is easy to
verify that ¢ and G, satisfy all but (6) (or 8) and (8) of the requirements (2.1)
for an F'-integral on Fy. If & also satisfies 2.1(6) and (8), we say that & is the
F’-integral on F, induced by ¢.

2.5. Isomorphism and refinement of integrals. Let ¢ be an F'-integral on
F, and let ¢, ' be isomorphisms of F, F', respectively, onto function spaces
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Fy, F{. Then, defining =y'¢y !, we clearly have that & is an F{ -integral on
Fy; we say that ¢ is isomorphic to ¢. If the isomorphism y is strict and ¢’
is the identity, we say that & is strictly isomorphic to ¢; thus in this case we
have =gy}, where ¥ is induced by an isomorphism of E.

Another notion which will arise below is that of a refinement of an F'-inte-
gral. Suppose that ¢ is an F'-integral on F, and that ¢’ is an F-integral on
the same function space F, where F” is another function space. Let ¢ and ¢’
have G and G’ as their respective sets of integrable functions. If GCG’, and
if, for f, gEG, we have ¢'(f) =¢'(g) if and only if ¢(f) =¢(g), we call. ¢’ a
refinement of ¢. It will in general happen (see 7.9) that more functions are
“integrable ¢’” than are “integrable ¢.”

3. FUNCTION-VALUED MEASURES AND INTEGRALS
3.1. Given an F'-integral ¢ on F=F(E), we define, for each x&E,

¢y Ma) = o(x(x)).

Then \ can be thought of as a generalized “measure” on E. It is easy to verify
that N has the properties:

(2) N(0) =0, and if x&E and x>0 then A(x)>0.

(3) If x,€E and xpxn=0 (m, n=1, 2, - - -, m#=n), N(Vx,) = D_A(x.).

(4) e=Vx, where AN(x,)K» (=1, 2, - - - )(4).

(5) Me)>0.

Quite generally, any mapping N of E in F'=F(E’), where E and E’ are
Boolean ¢-algebras satisfying the countable chain condition(®), having
properties (2)—(5), will be called an F’-measure on E, and the pair (E, \) will
be called an F'-measure algebra. Thus every F'-integral ¢ on F(E) “induces”
(by (1)) an F'-measure X on E. Conversely, as follows easily from Lemma 3
(2.2) and the remark in 2.3, every F’-measure M on E determines a unique
F'-integral ¢ on F(E) which induces N\. The construction of ¢ from A is
analogous to the process of integration; in fact, if fEF and if (for sim-
plicity) f=0 and [f] £x, for some 7 (cf. 2.1(6)), then (using any realization of
F as F(S, B, N)) we define x;,=element of E corresponding to {s| k/n<f(s)
<(k+1)/n} and x,, =element of E corresponding to {slf(s) = » }, and readily
show that as n—o the sum D ;o (B/7)\(%kn) + ©N(%s) converges to ¢(f).
Accordingly we shall often write ¢(f) as [fa\ (fEGCF).

3.2. Three examples of this process will be of particular importance in
the sequel. One is the case in which E’ reduces to a single atom. Here the
function space F’ reduces to the set of real numbers, extended by + «; the
F’-measure algebras in this case coincide with the ordinary o-finite numerical
measure algebras, and the corresponding F’-integrals are the usual Lebesgue

(1) It does not follow that we can take A(x.) to be bounded; cf. footnote 12.
(%) It suffices to assume only that E’ satisfies the countable chain condition; that E must
also satisfy this condition then follows from the conditions on A.
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integrals with respect to the numerical measures. Throughout this paper,
the term “numerical measure algebra” will be used for this case, i.e., for a
o-finite numerical measure algebra.

The opposite extreme is provided by the case in which ¢ is an isomorphism
of Fonto F’. We then have, from 1.6, A(x) =fox(0(x)) for all x EE, where 8 is
an isomorphism of E onto E’ and f, is a fixed function in F’, everywhere posi-
tive and finite(S).

A more typical example (as will be shown later) is the “direct product”
of these two types, of the form (J, m) XE’ where (J, m) is an arbitrary
(o-finite) measure algebra('?). For its definition and properties we refer to
[5, §4], where it is shown that this product can be realized in the product
RX.S’ of the representation spaces of J and E’ respectively, and has a par-
ticular F'-measure M (where F'= F(FE')), realized by continuous functions on
S’ modulo sets of first category, as in (1.9)(18). The fundamental property of
M is that, for every “measurable” subset H of RX.S’, the value of M(H) at
sES’ is (except for a first category set of s's) the m-measure of the section
of H over s. We shall refer to this M as the “standard” F’-measure on (J, m)
XE', and to the corresponding F'-integral ¢, where ¢(f) =[fdM, as the
“standard” F'-integral on F((J, m) X E’). We have:

TuEOREM 2. The standard integral [fdM on F((J, m) X E') is the function
on S’ whose value at each sE.S’, except for a set of first category, is [rf(x, s)dm(x).

(The last integral here is, of course, an ordinary numerical one.)

It is sufficient to prove this when f=0 and [f]<x,; but then the con-
struction indicated in 3.1 gives for each s&.5’, if we exclude at most count-
ably many exceptional sets of first category, a corresponding (numerical)
Lebesgue sum for the function f(x, s) and the measure m.

3.3. For any F'-measure algebra (E, A\) we write (in accordance with the
notation in [5]) x~y (where x, yEE) to mean A(x) =\(y). The system (E, \)
then satisfies two of the postulates of [5], viz.

(0) E is a Boolean ¢-algebra satisfying the countable chain condition,
and ~ is an equivalence relation on E.

(1) If x=Vx,, y=Vy., where x,x,=0=ynya m#=n, m, n=1, 2, -+ ),
and if x,~y, for all », then x~~y.

Any system (E, ~) satisfying these postulates and the following two
further ones:

(1%) This is essentially the “trivial” case of [5, p. 283].

(17) Throughout what follows, all numerical measure algebras referred to will be assumed to
be o-finite. In [§], (J, m) was assumed in addition to satisfy postulates 1T and III of 3.3 below;
but these are not needed for the construction of (J, m)XE’.

(*®) The representation space realizations R, S’ of J, E’ are convenient, but any other real-
izations would do; the values of M would in general be equivalence classes of “measurable”
functions on .S/, modulo “null” sets.
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(II) Given x'~x =y, there exists ' £x’ such that y'~y;
(III) If x~y, there exist bounded(!?) elements x,, ¥, (=1, 2, » -+ + ) such
that x=Vx,, y= Vyn, XnXn=0=vny. (m=n), and x,~vy,;

is an “abstract measure algebra” in the sense of [5]. It was proved in [5, §19]
that every abstract measure algebra arises from a suitable F’-measure alge-
bra. The converse is false; even a numerical measure algebra need not
satisfy II or III, if it is allowed to be atomic. We shall, however, prove below
(Theorem 6, 5.1) that every F’'-measure algebra can be imbedded in one
which does satisfy II and III (and some further conditions as well), and which
therefore is an abstract measure algebra.

3.4. Two F'-measure algebras (Ei, A1), (Es, A2) are said to be isomorphic
if there is an algebraic o-isomorphism 0 of E,; onto E, which preserves the
relation ~ introduced above—i.e., for which A2(6(x)) =N2(6(y)) if and only if
M(x) =\i(y). (This agrees with the use of the term “isomorphism” in [5].)
If further @ can be chosen so that there is an isomorphism y of F’ onto itself
such that A\ (0(x)) =¢(\i(x)) (for all x € E), then (Ei, M) and (E, N\y) will be
called “F’-isomorphic”; and they will be called “strictly F'-isomorphic” if ¢
here can be taken to be the identity, i.e., if A(8(x)) =N (x).

4. FuLL-VALUED F/-MEASURES

4.1. In this section we shall discuss a class of F'-measure algebras which
will be a useful tool in §5, incidentally showing (Theorems 3 and 4 below)
that this class is substantially equivalent to the “abstract measure algebras”
mentioned in 3.3.

DEFINITION. An F'-measure algebra (E, N\) will be called “full-valued” if it
satisfies:

(1) Given x&€E and f'EF’ such that 0 <f’ <\(x), there exists yEE such
that y<x and A(y) =f".

Clearly full-valuedness is invariant under F’-isomorphism. A numerical
measure algebra is full-valued if and only if it is nonatomic. It is easily seen
from (1) that:

(2) If (E, X\) is full-valued, a necessary and sufficient condition that
x & E be bounded is that A(x) be finite (i.e., AMx) <K x).

TueoREM 3. Every full-valued F'-measure algebra (E, N) saiisfies the
postulates (cf. 3.3) for an abstract measure algebra; further, (E, \) has no non-
zero indecomposable elements(2), and its invariant elements(*') form a subalge-
bra U of E which is isomorphic to E’, where F'=F(E').

(1% An element *& E is “bounded” if the relations x~y and y £x together imply y=x.

(2% An element x& E is “indecomposable” (with respect to A) if the relations y <x, z <x,
yz=0 and A(y) =\(z) together imply y=z=0.

(#) An element € E is “invariant” in (E, \) if the relations y Su and A(y) =\(3) together
imply z<u.
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Postulate 11 (3.3) follows trivially from (1), and III then follows, in view
of (2), by the same argument as in [5, p. 289]. That the only indecomposable
element is o is also trivial from (1). The invariant elements are known [5,
p. 290] to form a (¢-) subalgebra U of E. We map U in E’ by assigning to
u& U the element [A(u)]EE'. It is easy to verify that (for any elements
%ny XEE) M Vxa) = VNxa) ], [Mx)]=0" if and only if x=0, and [\(e)]=¢’,
where 0/, ¢’ denote the zero and unit elements of E’. If further u;, vo& U and
wys =0, then [N(u1) | [M(uz) ] =0'; for if not, the function f’ =inf {A(u:), Mus) }
is positive, and there exist y; Su; and y, <u, such that A(y1) =f' =\(yz), con-
tradicting the invariance of u;. It readily follows that the mapping u— [\(%) |
is a (0-) isomorphism of U onto some subalgebra of E’. Finally, given x’ €E’,
there exists ¥y e such that M(y) =X(e)x(x’); the greatest such v is easily seen
to be invariant, and (because A(¢)>>0) [\(y)]=«". Thus the mapping is onto
E.

REMARK. The converse of Theorem 3 is also true; every abstract measure
algebra (E, ~) without indecomposable elements (other than o) is iso-
morphic to a full-valued F’-measure algebra, where F'= F(U), U being the
algebra of invariant elements of (E, ~). For, from [5, §19], (E, ~) is iso-
morphic to a principal ideal in a direct product (J, m) X U, where J is non-
atomic; now this direct product is full-valued [5, pp. 288, 289], and there-
fore so is the principal ideal.

4.2. THEOREM 4. Every isomorphism between two full-valued F'-measure
algebras is an F'-isomorphism (cf. 3.4).

Let (Ey, A1) and (E,, N\2) be isomorphic full-valued F’-measure algebras,
where F'= F(E’). There is no loss of generality in supposing that the iso-
morphism 8 between E; and E, is the identity; thus we take E;=E;=E, and
have that A; and A, induce the same relation ~ on E, and so give rise to the
same subalgebra U of invariant elements of E. As the proof of Theorem 3
shows, we may (after carrying out an isomorphism on E’ and so on F')
take E' = U and [\ (#)]=u whenever u & U. Similarly, after a (different) iso-
morphism of F’ we can take [\(u)]=u (&€ U). It will suffice to show (see
1.6, Corollary 1) that, assuming both these relations simultaneously, there
exists fo& F’ such that 0<fyK % and A\(x)=foh:(x) for all xEE. For con-
venience of description, we realize F’ as F(S’, B/, N), and do not distinguish
between elements of E'(=U) and the corresponding subsets of .5".

We first note

3) M(axu) = M(x)x(w) (forall x € E and » & U),

with a similar relation for Ay, For A(xu) <inf {)\l(x), )\1(u)}; now we are
assuming [M(x)]=u, so M(x) S ox(w), giving M(ew) Sinf {N\(x), ©x(«)}
=M(x)x(%). Similarly N\i(x—xu) SN\ (x)x(—#); and addition shows that the
last two inequalities must both be equalities.
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In view of Theorem 3, we can apply [5, §10] to (E, ~) to obtain (with
a slight change of notation) e=e!\/e'/, where ¢! and ¢’ are disjoint and in-
variant (and so in E’), and e! is the greatest bounded invariant element of
(E, ~). From (2) and (3), e! is the subset of .S’ on which A\;(e) is finite; and
the same will apply to Ns. Thus, from (3) again, \i(e!) and Ay(e!) are positive
and finite at each s’€e! (except for “null” sets), so that there exists g’ F’
such that 0Kg’'«K» on e! (ie., 0<g'(s’) < o for each s’€e!'— N’ where
N'E€N), g’ =0 outside ¢!, and

(4) M(et) = g'\q(e).
We shall deduce:
(5) M(x) = g'\a(=) whenever x € E(el)(2?).

For suppose this false; then there is no loss of generality in assuming
that M(x) > g"\2(x) for a set of s''s not in N’, and hence that there exist # € E’
and integers k, m such that wus£0’, 1=k=<#n, and the relations A\ (x)
= (k/n)N\2(e), ((B—1)/n)hs(e') ZX2(x) hold for all s"&Eux. That is, from (3),
M(xw) = (B/n)\(un) and ((B—1)/n)Ns(u) ZA2(xn). But since \; is full-valued
we readily construct z disjoint elements x;, %, : - -, x,&E such that
Vis=u, M(x) = (1/n)\M(w), and %1V - - - Vap=xu. Since xy~xa~ « + + ~ix,,
we have No(x;) = (1/n)he(n), and therefore Ao(xu) = (k/n)N\2(n), giving a con-
tradiction.

Next we consider E(e’’). From [5, §10] we have ¢’ =Vfi (i=1, 2, - - -,
to ), where the elements f* are bounded and disjoint and fl~f?~ . . . ~fi
~ + .+ Thus we have M(fY) =M (f?) and A(f2) =A2(f%), O\ (f)) <KL 0 on &/,
and 0N\ (f)<K e on ¢”. Defining g’ € F’ so that M(f!) =g""N(f1) and g’ =0
outside e”’, we have 0Kg"’ <K » on ¢", and the same argument as before (but
with x1VxV -+« Vx.=fu instead of #) shows that A\i(x) =g""N\2(x) when-
ever x <f% and hence also whenever x <¢’.

Finally, let fo=g"+g’’; thus fo&€F, and the preceding results combine to
give 0<KLfy<K 0 and A\ (x) =fohz(x) for all xEE.

4.3. THEOREM 5. Every full-valued F'-measure algebra is strictly F’-iso-
morphic to a principal ideal in a dirvect product (J, m) X E’' (with standard
F'-measure), where (J, m) is a nonatomic numerical measure algebra and
F' =F(E’).

(It will follow that if two full-valued F’-measure algebras are isomorphic,
they are strictly F'-isomorphic, but in general under a different isomorphism.)
For, in view of Theorem 3, [5, §19] shows that an F’-measure algebra
(E, N) is isomorphic to such a principal ideal; and, from Theorem 4, this iso-
morphism must be an F'-isomorphism. It can be replaced by a strict F'-iso-

(®) The notation E(x) denotes the principal ideal of x in E; that is, the set of all Y& E
such that y=<x.
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morphism (see 3.4) as follows. We have each xEE represented by an equiva-
lence class of “measurable” subsets, say H, where each H is a subset of a
fixed set K in R XS’ (cf. 3.2); here S is (say) the representation space of E’,
and R can be any realization of (J, m). This representation is an isomorphism
and we have A(x) =f,M(H), M denoting the “standard” measure function on
the product and f, being a fixed (continuous) function on S’ such that
0K feK . Now it follows from [4] (or from the construction in [5]) that,
after enlarging (J, m) if necessary, (J, m) can be realized by the (ordinary)
direct product of a measure space (W, u) with the real line R, in its usual
measure, and so we may suppose that R is the usual direct product of R; and
W. Let 0 be the mapping of RXS" =R, X WX in itself which sends the point
(r1, w, s') into (r1fo(s"), w, s'). It is not hard to verify that @ maps “measurable”
sets (in RXS’) onto “measurable” sets, and “null” sets onto “null” sets, pro-
vided we “complete” the class of “measurable” (i.e., restricted Borel) sets,
in the description given in [5, §4], by adjoining all subsets of “null” sets.
Clearly Mx) = M(8(H)), and we have only to take the new representative of
x to be the equivalence class of the set 8(H).

ReMARK. Conversely, every such principal ideal in (J, m) X E/, where J
is nonatomic, is full-valued (cf. the remark at the end of 4.1); thus Theorem
5 characterizes full-valued F’'-measure algebras.

Note that, in the isomorphism of Theorem 5, the invariant algebra U of
E is mapped isomorphically onto the algebra of “cylinder sets,” of the form
KN(RXu*) where u* is a “measurable” subset of S’. For these sets (modulo
“null” sets) give precisely the invariant elements of the principal ideal cor-
responding to K in (J, m) X E'.

5. IMBEDDING OF F/-MEASURES AND INTEGRALS

5.1. We have just seen that the theory of full-valued F’-measure alge-
bras is essentially the same as that of abstract measure algebras. The next
theorem shows that this theory suffices to cover the general F'-measure alge-
bras.

THEOREM 6. Given an F'-measure algebra (E, N), where F'=F(E'), there
exists a full-valued F'-measure algebra (E*, N*) such that (E, \) s strictly
F'-isomorphic to a subalgebra of (E*, \*); more precisely, E is a subalgebra of E*
and N* agrees with \ on E.

Proof. The first step is to imbed (E, \) in an F'-measure algebra (P, L)
with the further property:

(1) Given x&P and a real number ¢ such that 0=<¢ =1, there exists
y& P such that y<x and L(y) =cL(x).

To do this, let (I, x) denote the measure algebra of the (Lebesgue) measur-
able sets modulo null sets on the unit interval, and form the direct product
(P, My)=(I, p) XE (cf. 3.2), the factor E being taken “trivial” here. Then
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(P, M) is a full-valued F-measure algebra. For each x&EP, define L(x)
= [Mi(x)d\ (cf. 3.1); it is easy to see that (P, L) is an F'-measure algebra,
and (1) follows from the full-valuedness of M;. Further, the elements of P
corresponding to “cylinder sets” IXx, xE, form a sub-algebra of P iso-
morphic to E, and clearly (from 3.1(1)) L(I Xx)=A(x) if x&E. Thus, after
subjecting P to an isomorphism, we may identify E with this subalgebra of
P, and have that L agrees with A on E.

Next we form a “direct product” (P, L) X E’, as follows(2?). Consider the
direct product RX.S’ of the representation spaces of P and E’ respectively;
the choice of representation space realizations is not here purely for con-
venience, and we shall make essential use of the compactness of R later.
As in 1.9 we realize F’ as the family of continuous functions on .S’, modulo
sets of first category in S’. Any subset of RX .S’ of the form ¢* Xx'*, where ¢*
is a (possibly empty) open-closed subset of R corresponding to ¢&& P, and simi-
larly x'* is open-closed in S’ and corresponds to x’'&E’, will be called a
“rectangle.” For each rectangle r=g*Xx’*, write L(¢)x(x'*) =N\ (r); our ob-
ject will be to extend \; to the required “measure.”

Let R, be a fixed open-closed subset of R corresponding to an element
go& P for which L(q¢)< . For any set HC Ry X S’, we call a sequence {r,.}
of rectangles “admissible” for H if Ur,\J(RXN")DH, where N’ is some set
of first category in .S’. Define

) M(H) = inf 3 M(ra),

n=0
the infimum being taken over all sequences {7,} which are admissible for H;
since F’ satisfies the countable chain condition, this infimum exists in F’.
We shall show:

(3) Given HC Ry XS’ and €>0, there exists an admissible sequence {7}
such that Y _\i(r,) NG (H) +e.

For, from the countable chain condition, there exists a sequence of ad-
missible sequences, say {rm-}, such that inf; 2 . Ai(7ae) =AH(H) and H
CUr A\ J(ReX N!), where N! is of first category in .S’. Since A is non-nega-
tive and finitely additive for rectangles, we can further suppose that the
rectangles 7,; are, for fixed 4, disjoint, that r,,CR,XS’, and that each
7n.i1 is contained in some 7. Let f/ = D> . M(7.:); then 0Sf! Koo, ff 24
> ..., and lim f/ =\&(H). By an “Egoroff argument” (cf. [5, p. 286])
there exist disjoint open-closed sets x;* in S’ (k=1, 2, - - - ) such that (i)
Uxi{*=.S"— N’ where N’ is of first category, (ii) to each k corresponds an (k)
such that fi —N¢*(H) <e at each point of x;*. Consider the rectangles R.;

(2%) One can define, using similar ideas, a “direct product” of any two F’-measure algebras
(under slight restrictions); but at this generality few useful properties of the direct product
survive. Even in the present case it will be seen that if E’ is isomorphic to P, the “direct product”
(P, L)X E’ is concentrated on the diagonal, and is strictly F’-isomorphic to (#, L).
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= (R Xx{*)V,.i09; we evidently have U, iRu\J{RX(N'UUN!)} DH and
> ak M(Rnk) —A*(H) <€ everywhere. On renumbering {R,,k} into a single
sequence, we obtain an admissible sequence establishing (3).

We shall deduce:

(4) If HoCRoXS' (m=1,2, - - - ), then \(UH,) £ D N*(Han).

For, from (3), there is an admissible sequence {7m.} for H, such that
> 2 M(Pmn) EN*(H,) +€/2m; and the double sequence {r,,m} is admissible
for UH,. ‘

Thus A¢* is an “outer F'-measure” on RyX.S’, in the sense that A*(0) =0,
F(H) SNF(K) if HCK, and (4) holds. The Carathéodory theory of outer
measure (see e.g. [9, Chap. II]) applies here almost literally unchanged to
show that Ag* is countably additive on a Borel field of “measurable” subsets
of RyX.S'. It is easy to see that every rectangle r is “measurable”—i.e., that
if HCr and KC(RoXS’)—r then AF(H\JK) =N*(H)+N¢*(K). Further,

(5) N*(r) =M\i(r) if 7 is a rectangle.

For suppose r =¢* Xx'*, and let {r,.} be an admissible sequence, covering
r—(RXN’) where N’ is of first category. Let r,=g.*Xx.*, and consider any
s¢ €S’ —N'. Since the “section” ¢* Xs¢ is compact and the rectangles 7, are
open, a finite number of them cover ¢*Xs{ ; say ¢*Cgy\J - - - Ugx,, where
5§ ExpfM\ - - - Nay¥. Then L(g) SL(gn)+ - - - +L(ga,), a relation which
holds for all s’ €S’ (and not merely at each s’ in a residual set, as would be the
case if we were dealing with infinite sums) if we suppose, as we may, that these
functions are everywhere continuous; hence, since x(x'*), x(xn/), « + + , X(xn¥)
all have the value 1 at s¢, we have \i(7) EN\i(gn,) + « « - +Mi(ga,) at s¢. Again,
for all s'E&S’ the value of the continuous function denoted by > .o M(ga)
(cf. 1.9) is at least as great as that of A(gn)+ -+ +M(gn,). Thus A\ (7)
< Yoo Mga) at s, for all s{ €S’ — N’. This proves M\i(7) SAg*(r), and the
reverse inequality is trivial.

Now, from 3.1(4), there exists a sequence of disjoint open-closed subsets
R.of R (n=1, 2, - - - ) such that R—UR, is of first category in R, and each
R, corresponds to an element g, of P such that L(g,)<< . Let \* be the
F’-measure on R, XS’ defined by the above process, R, being replaced by
R,. For every HCRX.S' we define

NH) N L M N (Ra X S,

and we define the field B of “measurable” subsets of RX.S’ in the obvious
way. It is easy to see that A* is countably additive on B, and that A\* still
agrees with \; on rectangles. In what follows, all subsets of RX.S’ which are
referred to will be understood to be in B.

Let N be the family of sets H for which A*(H) =0, and let E* denote the
g-algebra B modulo N. Clearly (E*, A*) is an F/-measure algebra(?). To each

(24) The countable chain condition follows as in footnote 15
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gE P there corresponds the class of the “cylinder set” ¢* XS’ in E*, and we
have N*{g*X 5"} =\1{¢*X S’} =L(g). Thus (to within an isomorphism) P
is a subalgebra of E*, and A* agrees with L on P; it follows that E is a sub-
algebra of E¥*, and A* agrees with X on E. We have only to prove that (E*, A¥)
is full-valued.

First we note that, if A€ E* corresponds to HCRX.S’, and if ¥’ € E’ cor-
responds to x'*C.S’, then

(6) M{HN (R X 2*)} = M (h)x(2),

a result which follows at once from the definition of A*. We next prove:

(7) Given HCR,XS', and f'€F’ such that 0 <f' <A*(H), there exists
K CH such that 0 <A¥(K) <f".

For we have f'Zex(x’) for some ¢>0 and some nonzero x'&E’. Since
L(R,)< =, there exists "¢’ in E’ such that y' <x’ and L(R,)<some posi-
tive constant ¢ (say) on y'*. Thus, from (6), 0 <AN*{ HN(RXy'*) } <ex(v").
Choose m>c/e. From (1), we can find m disjoint elements ¢, gz, * * -, ¢m
in P such that Ugt =R, and L(q1) = - - - =L(gm) = (1/m)L(R,). At least one
of the rectangles r;=¢*Xy'* is such that AN*(H/Mr;) 20, and we have only to
take K=HMNr;.

Now if REE¥*, corresponding to HC R, XS, is given, and if 0 £f' S\*(h),
there clearly exists a maximal 2<k such that A*(k) =f’; and, from (7) (ap-
plied to 2—k and f'—X*(k)), we must have A*(k) =f". Finally it is easy to
drop the restriction HCR,X.S’ here, and this proves that (E*, \*) is full-
valued.

5.2. The theory of [5] now enables us to derive the structure of general
F’-measure algebras and F’'-integrals. For F’-measures we have:

THEOREM 7. Every F'-measure algebra is strictly F'-isomorphic to a sub-
algebra of o principal ideal in a direct product (J, m)XE' (with standard
F'-measure), where (J, m) is a nonatomic (o-finite) measure algebra, and
F'=F(E'). ‘

For, from Theorem 6, the F’'-measure algebra (E, N) is strictly F'-iso-
morphic to a subalgebra of a full-valued F’-measure algebra (E*, A¥*), and,
from Theorem 5 (4.3), (E*, A¥) is strictly F’-isomorphic to a principal ideal
in a direct product of the kind described.

Since, conversely, every subalgebra of a principal ideal in (J, m)XE’
is an F'-measure algebra, this theorem characterizes F'-measure algebras.

5.3. For F'-integrals we obtain the following theorem, which is the prin-
cipal theorem of this paper.

THEOREM 8. Let ¢ be an F'-integral on F= F(E), where F'=F(E’). Then
E is isomorphic to a subalgebra of a principal ideal in a direct product (J, m)
X E', where (J, m) is a nonatomic (c-finite) numerical measure algebra, and ¢
s sirictly isomorphic (in the sense of 2.5) to the integral induced on F (as in
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2.4) by the standard F'-integral f— [fdM on this product (cf. 3.2).

That is, given an F’-integral ¢ on F=F(S, B, N) with values in
F(S’, B/, N), there exist (i) a (numerical) measure space (X, B, Nn) with
a (o-finite, nonatomic) measure m, (ii) a “measurable” subset Sy of the
product space X XS’ (with suitable definitions of “measurable” and “null”
sets in this product), (iii) a sub-field B, of the “measurable” subsets of Sy,
(iv) an isomorphism 8 of B mod N onto By mod N, where N, consists of the
“null” sets in Bo. And § induces (cf. 1.6) a strict isomorphism ¥ of F onto the
subspace F(S,, By, No) of those functions on X X.S’ which vanish outside .S,
and are “measurable B,,” in such a way that, for each integrable f&F (in
particular, for each f20), ¢(f) is (mod N’) the function on .S’ whose value
at s’ is (from 3.2) [x(¥f)(x, s")dm(x). In a sense, this gives a complete descrip-
tion of the general F’-integral.

To prove the theorem, we have only to write A(x) =¢(x{(x)) (xEE), and
apply Theorem 7 to (E, N). After an isomorphism of E we obtain E as a sub-
algebra of a principal ideal in (J, m) X E’, and have A\(x) = M(x) (x&E). It
follows from 2.3 that ¢(f) =_[fd M for all “integrable” f&F.

REMARK. If the F’-measure M induced by ¢ is full-valued, we can use
Theorem 5 (4.5) directly, instead of Theorem 7, in deriving Theorem 8. This
means that the words “sub-algebra of” can now be omitted in Theorem 8—
i.e., in the realization described above, B, may now be taken to consist of all
“measurable” subsets of S,.

5.4. Some examples. To illustrate Theorem 8, we consider two simple
examples. First let F be the space of measurable functions (modulo null sets)
f(x, ») of two real variables, with the usual plane measure, and let F’ simi-
larly be the space of measurable functions on the line. Let k(x, ¥) be measur-
able, positive, and finite for almost all (x, ¥), and define ¢(f) =f’ where f'(x)
= [2 . k(x, ¥)f(x, ¥)dy, whenever this integral exists unambiguously. (It may
be infinite.) Then ¢ is an F’-integral on F; this is most easily verified by noting
that ¢, restricted to non-negative elements of F, satisfies the requirements
(a), (B), (7), and (8) of 2.1. In the present case it is not hard to see that
A is full-valued, so the construction leading to Theorem 8 can here be simpli-
fied. If we assume further that [*,k(x, y)dy is finite for all n (=1, 2, - - +)
and almost all x (this involves no essential loss of generality, as it can al-
ways be achieved by a preliminary measure-preserving transformation of
the plane onto itself, leaving invariant every line x =constant), a suitable
representation can be described very simply. Define z=2(x, y) by: [¢k(x, t)dt
=y; then ¢(f) =f" where f'(x) = [2.f(x, 2)dy (for almost all x), so that the
mapping (x, ¥)—(x, ) gives the desired isomorphic imbedding of the plane
in (J, m) X E'—i.e., in itself.

For a second example, take F=F'=space of measurable functions
(modulo null sets) on the line, and, with the same assumptions on k(x, ¥)
as before, let ¢(f) =f" where f'(x) = [2  k(x, y)f(y)dy. Again ¢ is an F'-integral
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on F, but A is in general no longer full-valued. However, in the present case
it suffices to multiply (E, N\) by E’ to obtain (E, N) imbedded in a full-valued
F'-measure algebra. This comes to regarding F as imbedded in the space
of functions of two variables, f corresponding to f where f(x, ) =f(y) (inde-
pendent of x), and we obtain ¢(f) =f’ where f'(x) = [= . k(x, ¥)f(x, ¥)dy. Thus
this second example is imbedded in the first.

6. FULL-VALUED F/-INTEGRALS

6.1. We have seen that, if the F/-measure A induced by an F’-integral ¢
on F=F(E) happens to be full-valued, the description of ¢ provided by
Theorem 8 can be made more precise; E can be realized as a principal ideal
of (J, m) X E’, and not merely as a subalgebra of such a principal ideal. In
this section we investigate a simple condition on ¢ which (roughly speaking)
ensures that A is “nearly” full-valued and so enables a more precise descrip-
tion to be given.

We define an F’-integral ¢ on F to be “full-valued” if it has the property:

(1) Given fEF such that f=0, and g’ €F’ such that 0 =g’ £¢(f), there
exists gE F such that 0<g=<f and ¢(g) =¢’.

Clearly if ¢ is numerical—i.e., if E’ is a single atom—then ¢ is full-valued.
It is also easy to see that if the induced F’-measure \ is full-valued (4.1(1))
then so is ¢. The converse is false, since if ¢ is a strict isomorphism of F it is
automatically full-valued, but the values of A are then restricted to char-
acteristic functions. The following theorem shows, however, that this is
essentially the only case in which this converse fails.

THEOREM 9. Let ¢ be an F'-integral on F, where F=F(E) and F'=F'(E’).
Then the following statements are equivalent.

() ¢ is full-valued.

(B) E'is isomorphic to a subalgebra A of E in such a way that, if gE F(4)
(considered as a subspace of F) corresponds to g’ ©F' under this isomorphism,
we have ¢(fg) =d(f)g’ whenever fEF and f, fg are both integrable.

(v) E can be expressed as the direct sum of (at most) countably many prin-
cipal ideals Ex, Dy, Dy, - - - (), tn such a way that: (i) for each n, ¢ is an iso-
morphism of F(D.,) onto a subspace of F' corresponding to a principal ideal in
E', and (ii) on Ex, the F'-measure N induced by ¢ is full-valued.

ReMARKS. To avoid circumlocution, F(4) and F(D,) are here identified
with the subspaces of F(E) which are naturally isomorphic to them (i.e.,
they are imbedded in F as in 2.4), and we speak of N\ on Ex as an F'-measure
even though it may happen that A(ex) fails to be >3>0; strictly speaking, X on
Ey will be an F”-measure, where F” is the subspace of F’ determined by the
principal ideal Ej of [A(ex)] in E'.

(%) That is, the unit element ¢ of E can be written as ex\/Vd, where the elements e«, dn
are disjoint, Ex is the principal ideal E(es), and similarly D, =E(d,).
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Note that, in (8), we have ¢(g) =¢(1)g’ (gEF(A4)); but ¢ need not itself
be an isomorphism between F(A4) and F(E'), as ¢(1) may be infinite. It is
easy to see that, in (8), fg is integrable whenever f is integrable and g& F(4)
is finite.

Finally we remark that, in (y), Theorem 5 (4.3) can be applied to Ex,
giving:

COROLLARY. Ex 1s tsomorphic to a principal ideal in a direct product
(J, m) X Ey, where (J, m) is a nonatomic measure algebra and Ef is a prin-
cipal ideal tn E'; and ¢ on F(Ex) 7s then induced by the standard integral
JfaM on (J, m) X Ej.

The effect of ¢ on all F is thus determined in (¥), since every fEF
is uniquely expressible as fx + D g, where fx ©F(Ey) and g, EF(D,).

6.2. Proof that (a) tmplies (8). In this paragraph we make the convention
that « — o =0. With this understanding, it is easy to verify that, for any
F’-measure A, we have

(2) Mz) — My) E Mz — v), provided ¥ £ x(€E).

For each x EE write [\(x) ] =0(x) (EE’); to simplify the notation, we shall
write 8([f]), where fEF, as 8[f]. Then

) ol7] = [e(N]if f 2 0,

for if [f]=y we have o -f= 0 -x(y), and so ©¢(f) = ©\(y), giving (3). Now,
given x € E and ¥’ €E’, we define

(4) w(x, &) = V{y| yEE, y £ x,and 8(y) < «'}.
We shall prove

LemMA 4. If ¢ s full-valued, the correspondence x'—mw(e, x') 1s a o-iso-
morphism of E' onto a subalgebra A of E; the inverse isomor phism is 0. Further,
for all x€E and ¥’ EE’, Mxw(e, x')) =N(x)x(x').

The first step is to show
(5) Mw(x, 27)) = Mx)x(x') (provided ¢ is full-valued).

Write =(x, x')=m; the countable chain condition gives 7=Vy,
(n=1, 2, ---) where y,=x and 6(y,) =x/, whence A(y.) = o x(x’). Thus
7 =x and N(w) £ ox(x’), and so A(7) Sinf {)\(x), oox(x’)} =A(x)x(x"). Write
B =A(x)x(x") —N(x) (with the convention introduced above); then 4’20,
and we must prove ' =0. Now ' SA(x—m), by (2); hence from (1) there
exists h < x(x—) such that #=0 and ¢(k) =%’ Let [h]=7v; then y=<x, and
(from (3)) 6(y) = [#'] £«’, and so y <7. But y Sx—m; thus y =0, and therefore
h and &’ vanish.

It follows from (5) that
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(6) 6(r(x, 2)) = 2'60(x).

In particular, 0(w(e, x')) =x'; hence the mapping x'—w(e, x’) of E’ in E is
1-1, with inverse 8, and clearly this mapping maps o’ on 0 and ¢’ on e. To show
that it is an isomorphism of E’ onto a subalgebra (say) 4 of E, we have only
to show that it preserves (countable) suprema and disjointness. Suppose, then,
that n(e, x,/)=m., Vx./ =%', and w(e, x') =7; clearly r =7, and so v = Vr,.
Let t=m— Vm,, and suppose {=0. Using (5), we have A(f) S\ (m) =A(e)x(x’)
< > A(e)x(x.); and since A(¢) #0 there exists # such that inf {)\(t), AMe)x(xd) }
=g’ (say) #0. From (1), there exists g& F such that 0 Sg<x(¢) and ¢(g) =¢g'.
Let y=[g]; then, from (3), 8(y) = [g’] Sx., and therefore y <m,; but y<¢,
whence y=o0 and g and g’ must vanish, giving a contradiction. Thus
w(e, Vx.!)=Vw(e, x!). Again, if 'y =o', let t=7(e, x')n(e, ¥'); from (6),
0() =x'y’, so t=o.

Again, for any x€E and x' €F’, we have n(x, ') Sw(e, ') and w(x, x')
=x, so that =(x, x") Sxw(e, ). On the other hand, (6) gives O(xw(e, x'))
=«’, and so (from (4)) xw(e, ') Sw(x, x'). Hence 7(x, x’) =xn(e, x'), and so
Aow(e, 7)) =A(x)x(x"), from (5).

On applying the isomorphism given by Lemma 4, we may suppose that
E’ is identical with 4, and that A(xx’) =X(x)x(x’) for all x€EE and «'E€4. It
follows from Lemma 1 (1.4) that if fE€F, g&F(4), and f, g are both non-
negative, then ¢(fg) =¢(f)g; and (8) follows easily.

6.3. Now suppose ¢ has property (8) of Theorem 9; we prove it has (y).
We may again take E’=4, and so have

O Maa') = Max)x(2) (x€ E, s €4 CE).

For each x & E we write & (or Cl (x)) for the smallest element of 4 which
contains x. (It is easy to see that £=0(x), in the notation of 6.2.) The ob-
vious property

(8) If a&A and ax=o0, then az=o,
will often be useful.

From [6, §3](%), the unit-element e of E can be expressed as a supremum
of disjoint elements, e =ex \/ Vd,, where Vd, is the supremum of all elements of
E which are of order 0 over 4(%), each d, is of order 0 over A4, and
dizd.= - - -. Asin [6], the ideals E(d,) and A (d,) are isomorphic under the
correspondence x(=d,)—%. If x<d,, then d,£=x since d, is of order 0 (cf.
[6, 3.2(3)]), and so (7) gives

9 M) = Mda)x(@) if % = da.

(%) In [6] it was assumed that E was a measure algebra, but this assumption plays no
part in the results quoted here.

(2") An element *€ E is of order 0 over 4 if the ideal E(x) coincides with the set x4 of ele-
ments of the form xa, ¢ A. For the general definition see [5, p. 301].
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It follows that if [f] <d.—i.e., in effect, if fEF(D,) where D,=E(d,)—we
have

(10) o(f) = Mda)f',

where f’ is the function in F(A4(d,)) which corresponds to f under the nat-
ural isomorphism x—zi between D, and A(d,). Thus to show that ¢ maps
F(D,) isomorphically onto the subspace F(A(d,)) of F’, we have only to
show that 0<\(d,)<® on d,. Now 2.1(6) gives d,= VnCwm, say, where
N(cam) <K ®, and the elements ¢, can be taken to be disjoint. But since d, is of
order 0 over 4, it follows from [6, 3.2(3)] that the elements Cl (c,m), for
fixed #, are also disjoint. Thus, from (9), the finite functions A(¢..») have (for
fixed n) disjoint loci, and therefore their sum A(d,) is everywhere finite. On
the other hand, if ¥’ = — [\(d.)], (7) gives d.x" =0, and therefore d, < [\(d.)],
which shows that A(d.)>>0 on d,. This has established part (i) of (y).

6.4. For the rest of the proof that (8) implies (), we shall be concerned
only with the ideal Ex and with F(E4), on which the values of ¢ are always in
F(A(2x)). Now the ideal A(é«) is isomorphic (under the correspondence
a—exa) to the subalgebra exd (éx) of E«. Hence we may simplify the notation
by omitting the asterisks, regarding ex as e and ex4 (&%) as 4, and have (after
another isomorphism of E’) that (7) above still holds and that E now con-
tains no nonzero element of order 0 over the subalgebra A(=E’) of E.
We must deduce that (E, A) is full-valued. First we show:

(11) If xE€E, and x50, there exists y <x such that

0 < \y) = (/2N x).

We may assume A(x) << «, since otherwise we can replace x (using 3.1(4))
by a smaller nonzero element of finite \. Since x is not of order 0 over 4,
there exists z2<x not of the form xa, a EA4. Hence 0 <A(z) <A (x2) =\(x)x(2),
by (7). Let b= [A(x)x(2) —\(2)]; then b&EA, b=<3, and b%0. Further, since
b< [Mx—32)] SCl(x—3), from (7), we have b(x—3z)=o.

Using any realization of A4, let ¢&A4 correspond to the “subset” of b
where A(2) £(1/2)\(x). Define y=cz\/ (b—c){x—3z). We have A(cz) =A\(2)x(c)
S1/2Mx)x(), and A{(b—c)(x—2)} =Nx—2)x(—c) S (1/2)N(x)x(b—c);
hence A(y) =(1/2)Mx)x(b) =(1/2)A(x). Finally, yo, since if ¢£0 then (as
¢£Z) cs#o, while if ¢=0 then (b—c)(x—2) =b(x—z)#o0.

Iteration of (11) gives:

(12) If x50, there exists ¥y <x such that 0 <\(y) £ (1/2"A(x).

We next deduce:

(13) If x€E, f'€F’, and 0 <f' <\(x), there exists ¥y <x such that 0 <A(y)
=f.

Again it suffices to prove this assuming A(x) << «. Since f'>0, there exist
a nonzero element ¢ €E, and a positive constant ¢, such that f’ Zex(a). There
exist a nonzero element b€ 4, and a positive constant &, such that #=<a
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and Mx)x(d) S kx(d); thus, from (7), N(xb) £kx(b). From (12) we obtain an
element y <xb such that 0 <A\ (y) <ex(b) =f".

By a standard argument, choosing y to be maximal in (13) (cf. end of 5.1),
we obtain A(y) =f’ in (13), which proves that A is full-valued.

6.5. Finally, (y) implies that ¢ is full-valued. For ¢ is necessarily full-
valued on each F(D,) and on F(Ex), and it readily follows that ¢ is full-
valued on F(E). This completes the proof of Theorem 9.

We remark further that, for any F'-integral ¢ on any F(E), where F'
= F(E'), the corresponding F’-integral on the space of functions on the “di-
rect product” (E, N) XE’ (cf. 5.1) is always full-valued. This can be proved
by “decomposing” this direct product with respect to its subalgebra E’ (cf.
[6, 3.2(5)]) and showing that this leads to a decomposition of ¢ of the type
in Theorem 9 (7). Hence, for the purpose of getting a representation for the
general F'-integral, the construction in 5.1 can be simplified by omitting the
multiplication by (I, u). This imbeds E in an algebra on which the cor-
responding F’'-integral (but not in general the F’-measure) is full-valued; and
Theorem 9 then leads to a description of ¢ which is more economical, though
more complicated, than that of Theorem 8 (5.3).

7. HOMOGENEOUS F/-INTEGRALS

7.1. The condition of full-valuedness considered in §6 is quite strong.
We shall now show that a somewhat weaker, and quite natural, condition
would suffice, provided that we are prepared to change the function-space F’
of values of the integral.

DEFINITION. An F'-integral ¢ on F will be called “homogeneous” if it satisfies:

(1) If f, g are non-negative elements of F such that ¢(f) =¢(g), then,
given fi€F such that 0 <f,<f, there exists g&u& F such that 0=<g;<g and
o(g1) =o(f1).

This condition is very similar to that imposed on “abstract measures” in
[5]; see 3.3(II). There is in fact a connection between the two conditions, but
not a direct one. If ¢ satisfies (1), the corresponding F’-measure X (where
Ax) =¢(x(x)) need not satisfy 3.3(II), and if A satisfies 3.3(1I), ¢ need not
satisfy (1). This is shown by the following simple examples. In both examples
we take E to be realized by the unit square 0 =x, ¥y =1 in the plane, together
with the segment 0 <x <1, y=2, with plane measure in the square and linear
measure on the segment. In both cases, E’ will be realized by the unit segment
0=<x=1, with linear measure. For the first example, define ¢(f) =f" where
(%) =[if(x, y)dy+f(x, 2). It can be verified that ¢ is a homogeneous F’-
integral on F= F(E), where F'=F(E’); but XA does not satisfy 3.3(1I). For
the second example, define ¢(f) =f" where f'(x) = [of(x, y)dy+(1/x) [of ¢, 2)dt.
The corresponding N is an F’-measure on E and satisfies 3.3(1I) (in fact,
(E, N\) is an “abstract measure algebra”), but it is easy to see that ¢ is not
homogeneous.
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However, it can be shown that if ¢ is homogeneous, E is expressible as a
direct sum of a sequence of principal ideals on each of which \ satisfies 3.3(11).
This will follow from Theorem 10 below; we can replace ¢ by a full-valued
integral without changing the “~” relation (3.3), and Theorem 9 (6.1) then
gives the desired decomposition. Similarly, if N satisfies 3.3(II), E is expressible
as a direct sum of principal ideals E, such that ¢ is homogeneous on each
F(E,) (with values in a suitable subspace of F’); this can be shown by apply-
ing [5] to decompose E into principal ideals on each of which X\ is either
“trivial” or full-valued.

7.2. We shall prove:

TuEOREM 10. If ¢ is a homogeneous F'-integral on F= F(E), there exists a
Sfull-valued F''-integral @' on F which refines ¢ (in the sense of 2.5); and ¢ is
unique, to within isomorphism. Conversely, every F'-integral which has a full-
valued refinement must be homogeneous.

Thus the statements (8) and (v) of Theorem 9 (6.1) will apply to ¢’, and
hence to the “~” relation induced by ¢ (3.3), since this is unchanged
by “refinement” of ¢. In particular we can take F'' = F(E'") where E” is a sub-
algebra of E; I do not know whether E” will always be isomorphic to a sub-
algebra of E’, where F' = F(E’).

The proof of Theorem 10 is quite long, and we shall omit many details.
The procedure will be to construct first a suitable algebra A(=E"') of E, and
to show that, given g&F, with g=0, there exists a unique A€ F which is
“measurable 4” and such that £=0 and ¢(g) =¢(fok), fo being a suitable
(fixed) element of F. We then define (roughly speaking) ¢’(g) =k, and show
that ¢’ has the desired properties. Its uniqueness will follow from Theorem 9.
The converse part of Theorem 10 is trivial, so we assume ¢ homogeneous
throughout what follows.

7.3. For each xEE, write 7(x) =w(e, 6(x)) in the notation of 6.2; that is,
m(x)=V{y| M) ]=[Mx)]}, where M(x) =¢(x(x)). Clearly 7(x)=x, and if
x <y then 7(x) £7(y). Also, from the countable chain condition, 8(r(x)) =8(x),
and so 7(r(x)) =7(x).

LEMMA 5. Let A= {7(x)|*EE}. Then A is a (¢-) subalgebra of E, and v(x)
1s the smallest element of A comntaining x(?%).

Suppose g, €A (n=1,2, - - - Yand Va,=b; we prove(b) =b (and so bC A).
It will suffice to show that, whenever x <7(b) and A(x) << », then x £b. Since
0(x) 0(7(0)) =0(b), we have ¢(x(x)+ ~x(b)) =¢(»x(b)); hence, by (1),
there exists B&F such that 0k ox(b) and ¢(h)=A(x). Writing %,
=hx(a.—ViZ! a;), we have b= ) h,. From (1) applied to ¢(k) =¢(x(x)),

(28) If ¢ is full-valued, 4 coincides with the algebra constructed in 6.2,
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there exists k&€ F such that 0k <x(x) and ¢(k) =¢(h)). Similarly there
exists k2& F such that 0 =<k, Zx(x) —k1 and ¢(ks) =¢(hs); and so on. Thus
2k Sx(®), and @(2 k) = 2 ¢(ha) =d(h) = (x(*)) K®, 50 D k.=x(x),
and therefore x=V[k,]. But [k.]<a., so 0(a.)=0[k.]=0[k,] (this last
equality holding from 6.2(3)), and hence [k.] £7(a.) =a.. Thus x < Va,=b.

By similar arguments one proves 7(—a)= —7(a), and that if 7(y) =«
then 7(y) 27(x); and the lemma follows.

CoNvVENTION. Throughout the rest of the proof, till 7.7, we make the
convention that all elements f, g, etc., of F referred to are to be non-negative.
With this understanding, the following results follow easily from Lemma 5
and methods similar to those used in its proof.

(2) 1(xVy) =1(x) V7).

(3) facc4, 7(xa)=ar(x).

(4) If r(x) £7(y), and [f] S, there exists g such that [g] <y and ¢(f)
=¢(g)-

) If [p(N]=lo@], r[f]=7lg](®).

(6) If ¢(f) =o(g), and a €4, then ¢(fx(a)) =¢(gx(a)).

7.4. Boundedness. The next group of results is concerned with a notion of
“boundedness” similar to, but distinct from, the property of being bounded
qua function on S in a realization of F as F(S, B, N); no confusion should
arise, as we shall never have to consider boundedness in the latter sense.
We define fEF to be bounded if the relations f=g+% and ¢(f) =¢(g) (and, of
course, f, g, k=0, in accordance with the above convention) together imply
h=0. It is easy to see that f is bounded if and only if (i) f&< =, and (ii) f=¢g
and o(f) =¢(g) imply f=g. If ¢(f)<K =, f is bounded, but the converse is
false, in general (as can be seen from the example in 7.9 below). Hence (as
is also clear directly) if ¢(f)<< =, then also f<< «. The proofs of the following
results are easy.

(7) If ¢(f) =¢(g), and f is bounded, then so is g.

(8) If f<g, and g is bounded, then so is f.

(9) If f is bounded, and p is a positive (finite) real number, then pf is
bounded. ‘

(10) If f, is bounded (n=1, 2, - - -), and the elements 7[f,] are (pair-
wise) disjoint, then Y_f, is bounded.

For let > f.=f=g+h, where ¢(f) =¢(g); we must prove k=0. Write
T[fﬂ] =a.(€E4), g.=gx(a.), and h.=hkx(a.); then g,+h,=fx(a.,)=f., and
(from (6) above) ¢(g.) =¢(fn), and so h,=0 for all » because f, is bounded.
But h= > _h,=0.

(11) There exists a bounded fo such that t[f,] =e.

Let {g.} be a maximal collection (necessarily countable) of bounded
elements of F such that the elements 7[g,] of E are disjoint and nonzero. Let
fo=Vga; by (10), fo is bounded. If 7{fo]>e, there exists a nonzero a4

(2% We write 7[f] as an abbreviation for #([f]) (fE F).

License or copyright restrictions may apply to redistribution; see https:/www.ams.org/journal-terms-of-use



1953] THE REPRESENTATION OF ABSTRACT INTEGRALS 181

disjoint from every 7[g.]. Now (2.1(6)) e= Vx, where ¢(x(x.))<< «, and for
some n we have x,a 0. Hence, defining go=x(x.a), we have that g, is bounded
and o+ [go] <a, and so 0547 [go] <a, contradicting the maximality of {gn}.

ReMARK. It follows that ¢(fo)>>0.

(12) Given f, &, such that 7[k] <7[f] and f is bounded; if, for every posi-
tive real number p, there exists k, =pf such that ¢(h) =¢(k,), then h=0.

Taking p=1/n and h,=nk, we obtain h,=<f such that ¢(k,)=ne¢(h)
(n=1,2, - --). Let A*=sup k,; then ¢(h*) = ©¢(k), and so ¢(A*) =p(h*+1).
If 270, this implies that A*+% is unbounded, and so, from (7) and (8), f
would be unbounded.

71.5. Minorants. Given f, g€F (and =0), we call fi, g1 “minorants” of
frgif A=, g1Zg, and o{f1) =& (g1). We shall require the following properties
of minorants; the deductions are again straightforward. In this paragraph and -
the next we again use the convention ® —w =0 (cf. 6.2). As before, all
elements of F considered are to be non-negative.

(13) If o<7[f] =7[gl, f and g have nonzero minorants.

For, from (4) above (7.3), there exists & such that [#]<][g] and ¢(k)
=¢(f); hence 20, so g1=inf (k, g)>0. We apply (1) to obtain the corre-
sponding fi.

(14) A necessary and sufficient condition for f and g to have nonzero
minorants is that 7[f]r[g] 0.

(From (5), (3) and (13).)

(15) Given f and g, there exist fo and g, such that fo=f, ge<g, o(fo)
=o(g0), 7[fol =7lge] =7Iflr[g], and 7[f—folr[e—go] =0.

From (14) by “exhaustion” we obtain minorants fo, go such that
7lf—folr[g—go] =0; and the remaining properties then follow from (5) and
(2).

(16) Given f and g, there exists an element b of A such that:

(1) of a€A(d), d(fx(a)) =¢(k) for some k=gx(a);

(i) if a€A(-0), d(gx(a)) =¢()) for some I=fx(a);

(iii) »= —7[f].

Let fo, go be the minorants of f, g provided by (15), and define

= —7[f—fo], c= —7[g—go]; it is easy to see that 5\/c=e. From (6) we derive
that if a€A4(d), ¢(fx(a)) =¢(fox(a)) =¢(gox(a)), in the desired form; and
if a€A(—5), then a =c and the argument is similar.

7.6. LEMMA 6. Given f, g such that f is bounded and 7 [g] S7[f], there exists
a unique kb such that h is measurable (A)(®), 7[k] S7[f], and ¢(g) =¢(fk).
Further, [k]=r1[g], and h<K » if and only if g is bounded.

In proving that & exists, we may assume g#0. For each positive number
p, we apply (16) to the functions pf and g, obtaining an element b,&EA4 such

(3%) That is, the spectrum of % (1.6) consists only of elements of 4. Equivalently, & belongs
to the subspace F(4) of F (2.4).
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that b,= —7[f]. We first show that, for some p>0, 5,> —7[f]. If not, then

r[f]2 —b, for every p, and so (from (16)ii) ¢(g) =¢(l,) where L, <pf; and
(12) (7.4) then shows that g=0, giving a contradiction. Hence there exists
p1>0 such that (with a slight change in notation) ¢ { pifx(b1) } =#(k:) where
ki <g and b)&E4; and since b;7[f] 0 here, we have & >0. If g—k,7#0, we re-
apply the argument to f and g— k&;; and so on, transfinitely. The process must
terminate countably, and then g= D k., where ¢(ka) =¢{pafx(b,,)}. Write
ko= Y pax(ba), and define k="hox(r[f]); clearly hEF, k=0, k is measurable
(4), [r]=7[f], and ¢(hf) =d(hef) =¢(g). It is easy to see, using (5) and (3),
that 7[g] = [#]. If b also satisfies the condition imposed on % in the lemma,
and k;5£k, there must exist a nonzero element a €A, and positive constants
p, o such that hix(a) Sp <o =Zhx(a) (or the same with %; and % interchanged).
From (6), ¢(hfx(a)) =¢(hfx(a)) where hfx(a) Zpf, and therefore (from (7),
(8), (9)) hfx(a) is bounded; but kfx(a)="hifx(a)+he where k2 (0 —p)fx(a)
>0, so that kfx(a) is unbounded. This contradiction proves that % is unique.

If A< », we can write e=Va, (r=1, 2, - - - ) where the a,’s are disjoint
elements of A and (n—1)x(e.) Skx(a,) <nx(a.). From (8) and (9), each
function fhx(a.) is bounded; hence (10) so is their sum f#, and therefore (7) so
is g. Finally, if & is not finite, there exists a nonzero ¢ €4 such that hx(a)
= wx(a); and it readily follows that gx(a), and so also g, is unbounded.

7.7. Construction of ¢'. We return to the consideration of possibly negative
elements of F. Take fo&F such that 7[fo] =e, fo=0, and f, is bounded; from
(11), such an f, exists, and we keep fo fixed throughout what follows. For
each g& F such that g=0, apply Lemma 6 (7.6) to f, and g, obtaining the
unique AEF such that =0, % is measurable (4), and ¢(foh) =¢(g). Write
h=d¢¢ (g); to within an isomorphism, then, ¢ (g) EF(4A) =F", say. Let G,
be the family of non-negative functions in F which are bounded (in the sense
of 7.4). It is easy to verify (using Lemma 1 (1.4) and 2.1(6)) that G and ¢4
have the properties required in 2.2, so by Lemma 3 (2.2), ¢{ can be extended
to a unique F”-integral ¢’ on F, defined on a set G’ C F of “integrable” func-
tions. The construction in 2.2 shows that ¢'(g) =¢¢ (g) whenever g=0; thus
G’ will be precisely the set of g€ F for which ¢4 (g+) —¢¢ (g7) exists, and for
each g&G’ we have ¢'(g) =¢¢ (g+) — ¢4 (g7).

From the uniqueness of » in Lemma 6, we have:

(17) 1f f, g20, then ¢(f) =¢(g) if and only if ¢'(f) =¢'(g).

Now, it is an easy consequence of (6) (7.3) that, 1ff>0 and a &4, then
¢’ (fx(a)) =¢'(f)x(a). Using (17), we deduce:

(18) If /=0, a& A, and ¢'(f) = o x(a), then ¢(f) = o\ (a).

Hence, if fEG, so that ¢(f*) —¢(f~) is defined, we must have ¢’(ft+)
—@'(f~) defined, and therefore f&G’; that is, GCG’. Further, if f, g&€G,
the statement ¢(f) =¢(g) is equivalent to the statement ¢(f+-+g~) = (gt +f),
and thus (from (17)) to the statement ¢'(f) =¢’(g). This proves that ¢ is a
“refinement” of ¢ (2.5).
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Finally, let f=0 and g’ & F(A4) be given such that 0=<g' <¢'(f) =h, say;
then, since ¢(foh) =¢(f) and 0=fog’' <foh, the homogeneity of ¢ gives the
existence of g€ F such that 0=<g=<f and ¢(g) =¢(fog’). But the uniqueness
condition in Lemma 6 (7.6)- now shows that g’=¢'(g), so that ¢’ is full-
valued.

7.8. Uniqueness. Suppose ¢’, ¢'" are two full-valued integrals on F, with
values in F’ and F” respectively, such that ¢'(f) =¢’(g) if and only if ¢”'(f)
=¢''(g), where f, g€ F and f, g =2 0; we show that ¢’ and ¢"’ must be isomorphic
(in the sense of 2.5). We apply Theorem 98 (6.1) to ¢’ and ¢'’, noting that the
corresponding subalgebras 4’, A’ of E constructed by 6.2 will be the same
for both ¢’ and ¢'’; this is because an element x€E is in A’ (i.e., x=m(e, x’)
for some x' € E’) if and only if the relations ¢'(f) =¢’(g) (where f, g=0) and
[¢] =x imply [f] <x. Thus, after isomorphisms on ¢’ and ¢”’, we can suppose
that both have values in F(4), where A=A4'=A". From 7.4 (11), there
exists fo= 0 such that 7[fs] =e and fo is “bounded” for ¢’, and thus also for ¢"’.
Since ¢’ and ¢’ are full-valued, it follows that 0<¢’(fo) K> and 0" (fo)
<« w0 ; thus, after a further isomorphism of ¢”, we can make ¢'(fo) =¢"(fo).
Suppose g€ F, g20, and ¢’(g) #¢”'(g); then we can assume the existence of
positive numbers p <o, and a nonzero ¢ €4, such that ¢’'(g)x(a) <pd’(fo)x(a)
<o¢” (fo)x(a) S¢"(g)x(a). From Theorem 9, this gives ¢'(g) =¢'(of1)
<¢''(af1) £¢”(g1), where gi=gx(a) and fi=fox(a). Since ¢’ is full-valued,
there exists & F such that 0=k =pfi and ¢'(k) =¢'(g1); but then ¢"'(k)
=¢"'(g1), which leads at once to a contradiction, Thus ¢’'(g) =¢''(g) whenever
g0, and so ¢’ =¢"".

7.9. An example. Let G, G’ denote respectively the sets of “integrable”
functions for ¢ and ¢’, where ¢ is a homogeneous F'-integral on F and ¢’
is its (essentially unique) full-valued refinement. By definition, GCG’. The
following example, besides illustrating the general theory, shows that it can
happen that G#=G'.

Let S be a countably infinite set of points g1, ps, - - -, and let S’ consist
of S together with one more point po. Take B to be the family of all subsets
of S, and N to consist only of the empty set; and similarly for B and N'.
Let F=F(S, B, N), F/=F(S', B’, N'); we define an F'-integral ¢ on F as
follows. Take G to be the set of all functions f on S for which the (possibly
infinite) sum D ;° f(p:) exists, and define (for fEG) ¢(f) to be the function
f/on S given by: f(p:) =f(ps) (G=1, 2, - - -), and f'(po) = 2.7 f(p:). This
clearly satisfies the postulates of 2.1, and ¢ is homogeneous since here ¢(f)
=¢(g) implies f=g. The “bounded” functions f (7.4) are precisely those (non-
negative) functions which are everywhere finite. It is easy to see that 7(x)
=x here (cf. 7.3), so that 4 =E(=8/N); and we may take fo=1 in 7.4(11).
Thus (as is also obvious directly) the full-valued refinement ¢’ of ¢ is simply
the identity mapping of F onto itself. Accordingly G’ = F, but G # F since (for
example) the function f given by f(p.)=(—1)* is not in G.
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