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ABSTRACT

A formal system is described within which we may represent
the communication and concurrency features found in systems of
interacting computing age‘nts.‘ This formal system may be used both
as a fnodel in which to represent the behaviour of existing systems
of computing agents or as a language in which to program desired
systems. 'I'heb notion of acceptance semantics is introduced and it
is in terms of this that we give meaning to programs constructed in

our framework.

ACKNOWLEDGEMENTS

A number of people have contributed to the ideas which are

presented here.

This research is an offshoot of that performed at Edinburgh
University with Robin Milner; his influence has contributed much to the
ideas expressed here. Suggestions have also been made by Tony Hoare

and his group in Oxford and by my colleagues here at Caltech.

Financial support was provided by the Science Research Council
- of the United Kingdom, the National Science Foundation and the Air

Force Office of Scientific Research.

ii



ABSTRACT ii
ACKNOWLEDGEMENTS ii
t. INTRODUCTION
1.1 Description of Systems
1.2 Our Approach 2
2. THE LANGUAGE 6
2.1 Primitive Language Constructs 6
2.2 Sorts 8
2.3 Machines, Behaviours and Programs 10
2.4 Acceptance Semantics 12
3. INTERACTION BETWEEN PROGRAMS 19
3.1 Interaction Between Machines 19
3.2 A Derived Operator 23
3.3 Properties of the Language 24
3.4 Program Axioms 26
4. IDENTIFIERS, DECLARATIONS AND EXAMPLES 34
4.1 Identifiers and Declarations 34
4.2 Data Structures 36
4.3 Other Examples 38
4.4 The Dining Philosophers Problem 41
5. DEADLOCK AND TERMINATION 47
6. HIDING 52
6.1 Why We Require Hiding 52
6.2 The Hiding Semantics 60
6.3 Internal and External Guards 63
6.4 Hiding in our Dining Philosopher's Example 67
7. CONCLUDING REMARKS 71
8. APPENDIX I: The Equivalence Re'la.tion is a Congruence 73
9. APPENDIX II: Consistency of the Axioms 80
REFERENCES 103

TABLE OF CONTENTS

iii



THE REPRESENTATION OF COMMUNICATION

AND CONCURRENCY
INTROD UC TION

Description of Systems

In the study of computation, or computer science if you like,
we not only have to learn how to build systems on which to perform

computations; we also must know how to describe such systems,

Formalism is required to enable us to describe and discuss a
computation system in a precise and unambiguous manner. Computa-
tion is a precise science and there is little use in only being able to

describe systems informally.

When systems are computing, they are pérforming actions;
evaluating functions or communicating with other systems, for
instance. The sequence of actions performed by a system is its be=-
haviour. It is the behaviour o'f a system which we wish to be able

to describe formally.

We shall use mathematical and logical concepts in constructing
a framework in which to describe behaviour., This allows us to

specify and describe systems in precise terms and to reason formally

- about their behaviour using mathematical techniques. The specifica-

tions of a systexﬁ using a formalism allows one to inform others
about a system unambiguously. This, together with the ability to
perform proofs about the behaviour of a system, are two of the main

reasons we wish formal descriptions.



In systems where there is a single locus of control, exécuting
a program written in a serial language foxj instance, v?re are able to
describe the behaviour using functions. Either we take the function
to be the behaviour itself and so the program denotes the function,
as in denotational semantics, or the behaviour is given in terms of
an abstract machine which evaluates the program. Here, in this
operational semantics, we have functions with the state of thé

abstract machine being the domain and range.

We wish to produce a formalism in which to represent the
behaviour present in systems which are composed from a number
of computing agents, either hardware or software. These agents will
operate concurrently and are linked together forming a complex of
interacting components. Networks, multiprocessor machines and
concurrent programs fit into the above category. Indeed., most systems
we meet involve some degree of concurrency and so could be des-
cribed in the formalism, or specification language, which we construct

in this paper.

Qur Approach

The formalism presented aims to allow us to describe comple#es
of computing agents in which communication and concurr‘ency is
inherent. The formalism aims to be both a framework in which to
represent the behaviour of existing systems and a 1anguage in which
to program the desired behaviour of projected systems. It is believed
that most exisi:ing systems can be represented in the formalism in ad '
intuitive fashion and that we should find it more natural to program

certain phenomena in our language rather than in existing frameworks,
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We shall use the words framework, formalism and language inter-

changeably.

There are ceﬂ:a.in featﬁres which we require our ‘language to
.clearly represent; ‘These occur frequently in systems and include
the communication between agents, the inherent nondeterminism
within some a.genﬁs, and the possibility of deadlock among the complex

of agents.

That the language achieves’ these goals will be illustrated by
giving a collection of examples which examine the representation of
such features in detail. These examples shouid also indicate to the
readef the underlying philosophy adopted in this work. It is hoped to
be able to fully justify the choices taken in arriving at the formalism

by use of a set of primitive examples.

The language itself consists of a set of operations allowing us
to construct programs from smaller programs. A number of
priﬁitive operators gives us the lowest level programs. Each
operator should not be considered just by itself but should be thought
of in its relation to others, though some have more significance and

are indeed more powerful than others.

Together with these operators we have a set of axioms which
the programs will satisfy, These axioms permit us to manipulate
the syntax of programs while preserving their semantics or meaning.

Various properties of programs may be proved by the use of the axioms.

To give the semantics of the language we introduce the notion of

acceptance. The behaviour of a program is given by its ability to



accept, or reject, stimuli which are imposed on them. In terrﬁs éf -
this semantics, we introduce the notions of equivalence a.ndbcongruence
between programs and show that our axioms are consistent. This
experﬁnental semantics is operational in nature; we experiment on
programs by giving them all possible stimuli belonging to a set
known as a sort and see how the programs react. They can react
by evolving into a new program or by rejecting the stimulus 5nd, in
effect, destructing. Due to programs being able to react to one of a
number of different stimuli at a time, we wish to observe how they
react to all possible stimuli. Due to programs having the ability to
represent nondeterminism, a number of different programs ﬁay

result from some given stimulus.

In the language, we have features which allow us to distinguish
between a program which can at some instance react to a number of
different stimuli and produce (usually) different programs and a
program which may produce different programs on receipt of a single
stimulus. The former utilizes a choice construct in the language

whilst the latter a nondeterminism language construct.

When programs communicate with others, then they themselves
resolve the choice which can be made with only one interaction taking
place at a time, but nondeterminism is é.n internal feature of a
program and no other program can influence the out;ome of a
communication; the outcome is nondeterministic. Nqndete,rministié
programs can arrive in two ways; they repfesent the behaviour of
possibly physicai computing agents which for some reason or othver‘
are intrinsically nondeterministic in behaviour; or they represent

complexes of agents where we have abstracted away from the programrs
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(or parts of programs) which cooperate to resoive a choice, so
introducing nondeterminism. This situation arises where a choice
‘could p.réviously have been made but can now no longer be effected
‘since the part of the program which participates in the choice has
been hidden 56 pre\_rentihg a choice being made externally to the

program.

Communication, and so é.lso our stimuli, take place via
ports. If we imagine our program in reality as a machine running
that, and only that program, the ports are the physical places on
such machines where the wires between machines plug into. Ports
have distinct identities and it is this which allows us to program

distinct communications,

Meaning is given to our language using acceptors and this
semantics should accurately describe the intended behaviour though
sometimes in a rather complex manner. It is believed that a similar
semantics which may, in a clearer way, give different meanings to
the choice and nondeterminism operators, could be formulated by the
introduction of the D and <> modal operators, capturing the notion of
"always" and "sometimes" respectively. This then gives us the ability
inb our sefnantics to talk about experiments which "always can” happen
and about ones which "possibly may" happen. It would be hoped that
these two semantics would be equivalent. A formulation of the modal
semantics and an equivalence proof between the semantics remains to

be performed.



THE LANGUAGE

Primitive Language Constructs

To help illustrate the concepts which we capture using the
1é.nguage operators, we introduce synchronisation trees as a des-
cribtive tool. The meaning of our syntax can then be 'represented
by trees and the syntax taken to denote this tree semantics. We do
not intend to formalise this denotational semantics; only use it to
explain meaning in terms of the well-understood notion of trees.

An operational semantics which gives meaning to programs by

experimenting upon them, is given later.

We have three primitive language operators, the first being
guarding. This takes a program and appends in to something called
a synchronisation label to produce a new program. For label o and

program p then ap is this constructed program. Labels for the

moment can be thought of as events, with programs being constructed out

of them using our operators. Interaction between programs takes
piace using these labels. Semantically, programs denote trees while
labels denote named arcs on the tree, If tree A is denoted by
program p then program ap denotes the tree g; .  Guarding gives

us sequentiality. In the above program p follows the a event.

We wish programs to be able to cooperate with others, and
depending on the other programs, to be able to perférm differept
actions. A choice operation + allows this; it takes two programs
and produées‘another program. For prog.rams Py and P, 1:hen‘p1 + pé

is another such program.



. In terms of synchronisation trees, the * node represents this

externally resolvable choice. The program p, + P, denotes the tree

! P2

As an example the two programs or and Bs are composed to give

program ar, + Brz which denotes tree

Now a program may, for some reason or other (to be made
clear later), nondeterministically wish to perform certain events, or
to perform some other events, but not their union. A program
interacting with, or communicating with, this one has no control as
to which of the sets it will be able to interact with; the nondeterministic
choice "Nill somehow be made internally. For programs Py and P,

the program Py @pz is their nondeterministic composition. The O

node is used to indicate a nondeterministic branch in a tree,

Py ® Py denotes the tree

P P2

As an example, the program (ap + fg) ® ¥r denotes the tree




QOur trees are thus bipartite. Some arcs are not labelled;
these join ® roots to e nodes. Arcs joining @ roots to O nodes

will always be labelled. O nodes will a’lwaysvhave their O off=-

spring separated from them by at least one level of e nodes. This

is due to us not labelling arcs appearing from O nodes and the
associativity of the ® operation. We have tree

rather than the trees

or

The e nodes, corresponding to +, may have e as their direct
descendants since the arcs joining these @ nodes will always carry

a label.

The final primitive operator is a nullary one A, That is, A
takes no arguments, and is itself a program; the nuli program. A
represents termination and deadlock. Termination and deadlock are
very similar with termination being specified directly as a property
of a single prdgram and deadlock being a property of a number of
interacting programs. An agent which wishes to perform event x or
event f§ (to be decided on by the environment, i.e., other programs)
and in either case to then terminate, is represented by program
aA+BA. The appearance of A representing deadlock wiil be described

in Chapter 5.

Sorts

Imagine a program as representing a special purpose machine

executing that, and only that code. As programs will communicate



with others so machines will communicate with other machines. To
carry the analogy further, we join machines using wires over which
. communications pass. Each machine has a number of ports which
\ca.n be considered as the sockets into which the wires are fixed.
Ports are used to both send and receive signals and to enable us to
specify how send and receive ports are interlinked, we introduce

naming on ports via labels.

To illustrate the labelling and linkages between machines, we
may picture machines as boxes. These boxes have ports on the
periphery, some of which are labelled. The convention between

machines is that similarly labelled ports are linked.

Hence we may get

B p
We shall permit two or more ports with the same label to be
joined together and to facilitate this we move the label to a connector
between the joined ports, and join on further ports via this connector.
A connector has no further significance. Three machines, which can

be thought of as being concurrently active, can be linked together as

follows:




2.

3

A set of labels is known as a sort. Each of the machines,
or boxes above,has a sort and the program which describes the

behaviour of each machine will also have a sort.

The labels which form sorts lie in the name-set A. Every
program we have will have a sort though not all sorts will be made
explicit. The labels used by a program must lie in its sort but the

sort may well contain others.

Thus, program ap + q may have the following sorts: {oz, (3},
{a,ﬁ, 6}, {a,ﬂ,s} and many others. The rules for defining programs
and for constructing programs from programs will tell us what the
sort of a program is. The sort is therefore implicit and is given

by context,

As A is a program then this null program will also have a
sort, We therefore may have A # A where the two occurrences of A
may have different sorts. Subscripting of A with its sort will some-
times be used to avoid such problems, but again the context usually

helps us.

Machines, Behaviours and Programs

What is the difference between machines, programs and

behaviours? As we wish to be able to represent both hardware and

software computing agents without distinction, then to make it easier

to talk about the topology of these concurrént systems, we use the
physical analogy; machines, ports and wires. A machine, of course,
has a behaviour given in our formalism, and the machine may be

realised physically or by using software; it does not concern us which.
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We represent the behaviour not the implementafion which produces

that behaviour.

Conceptually we are,pfoducing é. formalism in ‘wh‘ich, to both
.represent: concurrent systems and to program concurrent systems. What
a representation and a program have in common is behaviour, or to
use another wor&, meaning. : The representation or model aims at
capturing the underlying behaviour of the system; the program is a
representation or a denotation of an intended behaviour. In fact, we
will model a concurrent system using a program and the behaviour
of the system is then given in terms of a formal semantics for the
language in which the program is written. Formally, a model is
designed with respect to the properties we wish to represent. In our
case ‘it is qualitative concepts such as termination, deadlock and
equivalence but other properties may be modelled, For instance,
we havevperformance models of operating systems using queuing
techniques and simulation. We can also have such quantitative models
as in the realm of complexity theory. We do not concern ourselves

with these two latter types of properties,

We use the word model in the sense of quantitative representa-
tion. To model a complex of interlinked computing agents requires
us to represent the complex by some syntax; namely, a program.
To specify the behaviour of this program requires that we have a
semantics for the language in which the program is constructed. This
semantics gives meaning to the program. Thus the representation of
some particular cornputing agent, or complex of computing agents,
,¢onsists of a bprogrva.m and the semantics of the language. We can

then reason about properties of the real system by reasoning about

their representations in our formalism; our model.
‘ 11



The model we describe in this paper consists of a langlia,gex
and a semantics for the language. We model the behaviour of a
complex of agents via a program in our lﬁnguage. - Its behaviour,
and so that of the complex, is given by the formal semantics of the

language.

Our language for complexes of a single computing agent has
been described so far. This sequential language is extended to deal
with a world of concurrently active computing agents; complexes with
more than one agent. This is dealt with later but first we will give

an operational semantics for the language defined so far.

Acceptance Semantics

We have informally described the properties of single computing
agents which our formalism may represent. We will now formally
give the semantics of our syntactic constructs using the notion of -
acceptors. Our operational semantics is then what we shall call an

acceptance semantics,

Definition. For every subset L. of a name-set A then L is
known as a sort. The acceptance semantics is given by an acceptance

relation of type

(PROG x A) X (PROGU {*})

where PROG is the set of programs to be the words algebra WZ‘

formed from the signature Z where

zZ=AU{a, +,®, e, —}

12



A is a nullary operator and A is a set of unary operators known as
labels. +, ® and e are all binary operators while for \ ranging

over A then — A is a unary 6perator. The set PROG may be

partitioned according to sort such that PROG = U PROG

L
PROG is then the union of all phyla PROC’:L for all sorts L;

that is, for all sﬁbsets L of the name=-set A.

QOur acceptance relation between (PROG X A) and (PROGU {*})
will be restricted to taking ( program, label) pairs where the labels
lie in the sort of the program. The relation is undefined for
(program label) pairs where the label lies outside the sort of the

program.

Technically, we could have effected this by having a family of
relations, one relation for each sort. Then for each sort L. we have

a relatiori of type
(PROG; xL) X (PROG; u {*}).
It will generally be understood what the sort of a given program is

and thus we need not usually explicitly specify it.

The symbol * is not in the syntax of the language but is a

- meta~-symbol used in the semantics,

Meaning is given operationally to programs in our language
using the family of acceptance relations. A program and a label
from its sort will produce either a2 new program or the symbol *

under the relation. An experiment is performed here in that a label

13



is given to a program and the resulting program (or *) indicates how

the original program reacts to the stimulus of the label.

For programs p,p' EPROGL and label € € L then the

relation {((p,€), p') for sort L is written as
L
(P» £g) — P'

and indicates that after an £ stimulus the program p evolves into
program p'. Our relation can be thought of as defining an acceptor;

here program p accepts € and evolves to program p'.

L
If (p,€) — * then under our € stimulus p produces *; it does
not accept the £€ and so does not produce a new program. The label
€ has not been rejected though; program p has evolved into a

degenerate state on receipt of the £ stimulus,

The sort of a program will generally be understood and it will
usually not be necessary to put a sort superfix on the symbol -, as

mentioned previously.

For any program/label pair a number of outcomes may result;
the inherent nondeterminism of the language may cause different
progfams to result when the same original program is provided with
the same stimulus label. But whether a program is nondeterministic
or not, to fully specify its meaning we need to see how it reacts to

all possible stimuli contained in its sort.

The semantics of programs constructed from the signature
set L. U {A, +, 9} for some, L & A is given by the smallest relation
satisfying

14



for @ and B ranging over L

1, (ap,a) = p ' ‘ 2. (ap, B) — =
3 (p, @) = p!' 4 (@, a) = q'
© (p+gsa) —p ' (p+q,a) —q'
5 (p, @) — * A(q,a)4"* 6.1 (p, @) = p'
’ (p+q, a) — * ’ (p @q,a) = p'
6.2 (p’g)—-* ‘ 7.1 (g, ¢) —¢g'

(p £q,a) = * (p 2q,a) —~q!

(g, ) — *
7.2 P ®q,a) —= = 3.

(A’a) -

All relation symbols — could have had L as superfix. We therefore

see that the following programs all have the same sort L. where a€L;

P, 9, ap>, P+4, P®qg, L .

It should be pointed out that p is a member of L since (ap,f) — *

Ifp ¢ L then the relation for (ap,p) would be undefined.

A here is of sort L but we will have a A for each possible
sort. To be more precise, we should have a collection of them each
subscripted By its sort, but once again, we trust the context to keep

us right’and so avoid the need for these subscripts.
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We have defined the semantics for a primitive language not’
having the ability to represent concurrency and communication. This
comes later., First we shall explain the intuition behind our definition

of the relations used in our acceptance semantics.

1. (@¢spra) == p Program ap accepts an a label and
evolves to program p. That is, an «
stimulus is given to ap and program

p results,

2. (ap,B) — * Program aop when given a f stimulus

does not accept it.

3. (p(fégi)ip;' If program p can accept an « label
and evolve to p' then so can program
p+q. Clause 4 is similar.

—_— % — 3
5. (p’é)+q ) ﬁ_((}k’ 2) If both programs p and q can fail

when given an « stimulus, then p+q

can also fail to accept an a.

6.1 (p, @) = p!

(pPq,a) —p' If program p receives an o stimulus

and evolves either to program p' or

6.2 (D,g_l) -

P Dg,a) —* to * (whe:e p' # *) then so also does

p®q. Clauses 7.1 and 7.2 are similar,

8. (A,q) == , The A program cannot accept any label.

ale
S

It will produce * on all stimuli,

16



}'In” our language we shall wish to sé.y which programs are
equivalent, that is, which prégrams behave similarly. For two
'progrvams P and q, we say they are equivalent if they produce
equivalent programs given thg same stimulus, for all stimuli in their
so>rts.‘ Alsb, for a.b giveh stirnulus, if ¥ results, then * must result

when an equivalent program gets given the same stimulus.
Definition. Programs p and q of sort L are equivalent

written p=q, iff ¥« eL. We have

a.) (p’a) - => (q)a) —

b) (Q:a)—’*w(Paa)“‘*

¢) (pra) — p = 4 @' such that (q,2) —q' and (p' = q')

d) (gq,a) == q' —_ 3 p' such that (p,a) — p' and (p' = q')
This definition of equivalence is recursive but is adequate for finite
programs. Finite programs terminate using A.

To handle recursively defined programs, we introduce a new
equivalence ~ where ~ is taken to be the intersection of ascending
indexed relations ~ . Thus ~ is defined to be Q (~,) where p~yq

always holds and for programs p and q of sortL
P~ne1d iff Yae L.
- a) (pya) = * = (q,a) — *
b) (qsa')—'*=>(Paa) - ¥

c) (pra) —=p = aq such that (q,2) =~ q' and p' ~ Q'

d) (@a) = q' = J p such that (p,a) = p' and p' ~ a4

17



We will perform induction on the "depth" of the equivalence ~

when proving two programs p and q equivalent.

~ Later we shall prove that ~ is actually a congruence. That is,

for all contexts C which can be constructed in our language, then
p~a=Clp]~Clq].

A context is a program with a "hole" in it. C[p] has this hole

replaced by program p.

18



3.1

INTERACTION BETWEEN PROGRAMS

Interaction Between Machines

Until now we have only concerned ourselves with the behaviour
of ‘a. singl'e maéhine. We now introduce language features which
allow us to represent systems of machines, These machines will
compute concurrently and will interact with each other by synchronised

communication from time to time.

The behaviour which we capture in this framework is that of
programs‘, or other computing agents, being given an external
stimulus and evolving into some new program. The formal semantics
of the "single component" language presented so far relies on this
notion of stimulus. A stimulus is accepted and either produces a
new program, or causes failure and so prevents any other stimuli
from beiﬁg accepted. Note that a program can always accept a
stimuli but that it may well cause failure. Suppose the machine has
behaviour denoted by program ap + fq. Then it can receive a stimulus
at port « and evolve into a new behaviour denoted by program p or it
can receive stimulus at port B and evolve to program q. The
environment only sends one stimulus at a time but regardless of
whether it is an @ or B the program can respond and evolve to sub=-

programs p and q respectively.

We have assumed that these stimuli are produced by the
environment and our semantics says what happens to a program
when they are a.ccepted.‘ Thg environment may well be another
program, and bso‘pr‘ogra}ms not only have the ability to receive stimuli

but have the ability to generate stimuli.

19



Now the environment can also be thought of as a machine E‘( H
generating stimuli on the various '"lines" connecting it with machihe
M. When a synchronisation takes place ‘the tv&o machines M and E
which are concurrently running programs, may’exc‘hange stimuli on
éne, and only one, of the lines and their behaviours, represented by

programs m and e evolve into new programs m' and e',

In our language, we shall not distinguish between generated
and received stimuli. The reason for this is that we are interested
in how the stimuli synchronise at instances in the life of our system.
The generation and receipt of a stimulus is cogsidered as an instan-
taneous act between programs. This act requires synchrohisation
between the participating programs. Synchronisation can therefore
be thought of as an instantaneous exchange of stimuli with only one

such synchronisation taking place at a time.

Earlier we showed how programs may be pictured as machines
having ports. The ports are used to link machines together to form
complexes, or systems, of machines. The convention adopted is

that similarly labelled ports get joined through a connector node.

For machines M, N and O as follows:
5] o a

they link together to 'give the following complex:




We see that M, N and O have made a three-way linkage using
a ports and a two-wajr linkage via the y ports. The B and § ports
still have not been connected but they, as well as the a and y

connectors, can be used to a.t;ta.ch further machines,

- We now have a convention for representing the communication
structure of a system. DBut this is purely static as we have not
specified the behaviour of the cbmplex of machines; we have not
said how they use the communication lines to exchange stimuli among

themselves,

If m, n and o are the programs in our language which specify
M, N and O=the programs running on M, N and O if you like==then
the composite systemn is m®ne®o., How does this composition

operation work? That is, what are its semantics?
For programs p and q of sorts Lp and Lq respectively:

(Pra) = p'A (@ L)

9 (pwd,a) — pleq
(@Qa) = q'A{afL)
10. ~B
(peq, @) — peq
(pra) = p'A(q,@) - q'
11, —
(req,a) — p'eg
: (p, ) — *
1 »
2 (I”q: az) - %
13. (qyd) - K

(P.Ch a) = *

21



The relation below the line in each of these clauses should |
have Lp U Lq superscripted on the ® operator, but we know implicitly

that the sort of peq is the union of the sorts of its components.

To explain how peq behaves in terms of acceptor semantics,
first note that we are considering p and q as two concurrently active
programs which either communicate with each other by the exchange
of stimuli or attempt to interact with the environment, i.e., receive

a stimulus from the environment.

The first clause, clause 9, states that if p accepts an «
stimulus which does not result in *, say program p, and if a is not
a member of the sort of q, then p®q accepts an a stimulus and evolves
into peq. Here, program p evolves to p' after accepﬁing an a
stimulus but q does not progress due to the ¢ stimulus. Hence peg
evolves to p'eq on receipt of an o stimulus., Those labels in the sort
of p but not in the sort of g are said to be external, thus « is an
external label. The external stimulus, an « in this case, appears
from the environment and not from the other program q; it is there=

fore external to the composite program pegq.

Clause 10 gives meaning to external stimuli via labels lying in

the sort of q but not in the sort of p.

Clause 11 states that if p accepts an o stimulus and evolves to
p' and q accepts an a stimulus and evolves to q' with p' and q' not
being * then peq will accept an o stimulus ‘a.nd evolves to program
p'eq'. Here the o is an internai label; it lies in the intersection of
the sorts of p and q. The two programs p and q synchlfonise on

label o and exchange their o stimuli allowing both to evolve into the

22



new  programs p' and q'. These two programs.are similarly composed

— %
‘using e to give what peq evolves to. The clause (D, ) states

(peq, CY) - %

that ifbp on receipt of an « stimulus evolves to * then p-q> on receipt

of @ stimulus also evolves to *,

If @« is external to peq then « will not be in the sort of q.
Thus if p on receipt of @ cannot produce a new program then peq
cannot produce a new program given the same stimulus. We therefore
get * as a result. Of course, program p may involve the nondeter-
ministic operator so p may give a new program as well on receipt of

an ao. Clause 9 deals with this case.

If @ is internal to peq then « lies in the sort of both p and q.
If p produces * on receipt of an « then so also will peq since regard-
less of whether q gives a new program or * on receipt of an a, p
will give *, Of course, p may also produce a new program p' on
receipt of @, which would be due to the presence of our nondeterminism
construét., In this case either clause 11 would give a new program if
q produces a prograrﬁ when given an « stimulus, or the dual of this

clause would give an * as the result if q gives * on receipt of an «.

A Derived Operator

Using our set of primitive operators over sorts, we may define
other operators. to simplify programs which are constructed in some
common fashion. 'i"hese derived operators may also be used to help
illustrate how certain phenomena Which are met in a concurrent world

are represented in our language.
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As an example of this, we define a polyadic composition
operation T[- using our binary concurrent composition operator e .

T]' will be a sorted operator of sort L1 x L2 X+ X Ln —- L

LZ tes Ln’ for n arguments. T" is defined by:

1

TT(eyspyrcetspy) = Py@p, @ "0 b,

Why do we wish such an operator?

We introduce it because it helps to indicate the multiway
synchronisation performed when we compose two or more programs
using @ . An n-way synchronisation is represented by repeatedly
applying the binary operator e to n or more programs, but we can
imagine that with the TT operator this n-way synchronisation is per-
formed as a single act. In fact, we can directly define a polyadic
operator which does just this (rather than T]- which is a derived
operator) and which has e as its 2-argument instance but for technical

reasons our binary e is preferred as a primitive in our language.

Properties of the Language

Using the language features introduced so far, we can construct
programs and give their meaning using our acceptance semantics.

Our understanding of how these language features were derived, i.e.,

in terms of stimuli, leads us to require that these language constructs

possess certain features; that they satisfy certain laws, First let us

introduce the notion of normal form programs.
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Definition:: A program is in CNF, (Conjunctive Normal Form), if
either it is constructed from CNF subprograms using
only the choice operator or it is constructed from a

subprogram and a label using the guarding opefator
Exa.mgiles: (ap ®8q) + yr is not in CNF

since ap ® Bq is not in CNF

(ap + Bq) + yr is in CNF
E(ap ®Bq) + yr is in CNF

Definition: A program is in DNF, (Disjunctive Normal Form), if it

is constructed from subprograms using the nondeter

mination operator,.
Examples: (ap ®Bq) + yr is not in DNF

even though ap ® fq is in DNF

(ap + Bq) ® yr is in DNF
€(ap + Bq) ® yr is in DNF
Definition: A program is in normal form if it is in CNF or DNF and

its component subprograms are in normal form.

Note that the program (ap ®8q) + yr is neither in CNF or

DNF. It is thus not in formal form.
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3.4

A CNF program can be written as Z @;p; where

1

R
e
n

apy o+ @ P, and a DNF program can be written as
@ @,p; = ayp, D -+ O @ P, - The empty sum Z = A; so A is the
i=i,n i

identity for +.

Program Axioms

Here we list certain laws which our languAge constructs satisfy
and explain why we require them. Thinking of our language as 'a

word algebra W where z, = AU {+, D, A, o} we may take these

zy

laws to be axioms.

[+1 ] X+X =X idempotency
[+2] X+y=x+y commutativity
[++] x+(y+z)=(x+vy) +2 associativity
[+a] X+A=x identity

In the above laws x,y,z are all CNF programs; they do not have

operation ® outermost.

We have the idempotency of our choice operation + because to
any program interacting with x + x then the two copies b'ehaveA just as
if one were‘ present; the commutativity of + since the order of possible
choices should be immaterial; the associativity of + since we wish to
allow for more than two choices to be made at certain times; the

identity since nothing may interact with A.
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(2] x®x=x idempotent

[92] xPy=y®Ox commutative

(@8] X éﬁ(y@z)} (x®y)®x associative
[+®] Xf(Y@ z) = (x+y) ® (x+z) + distributes over ®
[aQ-;-] ax+tay = axDay
[2®+] xDy®(x+y) =‘x®y

Note that A is not an identity for ®, but just for +.

We have the idempotency of ® since no matter which sub-
program the program x® x nondeterministically gives us, then they
are the same, i.e., x; commutivity since our nondeterminism
operator should treat its operands in an unordered fashion; associativity
since we’with to program agents having more than two possible

behaviours.

We allow distributivity x + (y ®2z) = (x+y) ® (x+2) since the left-
hand side says that if will accept the stimuli due to subprogram x but
only accept the stimuli due to one or other of y or z and we do not
know which. The right hand side says that we can accept the stimuli
due to x and y or accept the stimuli due to x and z but not both. That
~ is, both sides of the axiom state that the interactions contributed by x

are always present together with either those of y or z and we do not

know which.

We allow that ax +ay = ax®ay since if an o stimulus is given
to either side of the axiom either x or y is the resulting program and

the a stimulus has no control over which one results.
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It 'may be supposed that we would also have the axiom‘
ax®Pay = a(x®y), that is, guarding distributing over ©®. But the
left-hand side nondeterministically gives us programs x or y on
receipt of an z stimulus, i.e., after an « communicatioﬁ, whilst the
right-hand side deterministically gives us the nondeterministic
program x®y. In terms of our accei:tance semantics these programs
are not equivalent since x is not equivalent to x®vy, and y is not
equivalent to x®y. The problem here is due to the different "levels"
the nondeterminism appears at. Intuitively we would like the axiom
ax®Pay = a(xDy) but to ensure that ex®ay ~ a(xPy) would require a

change in our acceptance semantics. We will not do this.

We have axiom [@® +]since x®y® (x+y) reacts in the same
way as x®y to a given stimulus. If some stimulus o« gets nondeter-
fnim'.stically sent to x+y or x or y then the program (or *) which
results will be the same as if it were nondeterministically sent to
just x or y. The possible outcomes of x+y are a subset of those
for x®y. The only way they differ is that x®y may produce an *

where x +y would not,

We have previously mentioned that we may introduce Z so

that 1:21 Zaipi=a1p1+a2p2. Similarly, igi Zaipi=a1p19a2p2. Now

Z(= A) is the identity for + and similarly, E(# A) is the identity for
® and +. E and E are the "empty" choice and nondet-errhinism
operators respectively and are meta-symbols which do not appear
explicitly in our 1anguage but may be used for convenience. They are

derived operators which sugar our language.
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In the above we allow + to distribute over ®© but not vice=-versa.

The reason for this is that if we have both:

the existing law (I) x+ (y ® z)

(x+v)® (x + z)

and its dual (II) x® (y + 2)

(x®vy)+ (x® z)

then we produce an inconsistency in our set of axioms. An example

illustrates this:

(ap,®Pp,) + vq

(ep,; +va) ® Bp, + va) by (@)

(@p® (Bp, +va)) + (Ya® (B1,+va)) by (1)

(apy ®Pp,) + (P ® v ) + (Ya®Pp,) +(va®yq) by (II)

(ap1®{3p2) +(Yq®(ap1+ﬁp2)) +Yq by + assoc., (II) and ® indempotency

[(QP1® 5P2)+Yq]+ [Yqﬁ(apiJi-ﬁpz)] by + assoc. and commn.

Now this is our first line composed with [yq@(ap1+[3p2)] using +.
For this to hold eithér [yq@(apiﬂipz)] = A, which it patently is not,
and the identity law is used; or Yq@(ap1+[3p2) is either equal to,

or is a subDNF sum of (ap1®’ﬁp2)+yq, which is also
false since the left-hand side has that a y communication may

~ possibly take place whilst the left~hand side says that »it always can
take place when provided with a y stimulus, and idempotency would
be used. Since we wish to allow law (I) then law (II) must produce
this inconsistency and 50 (II) must be false. Note that p is a subDNF

sum of q if every DNF clause in p is also a DNF clause in q.
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We allow guarding to distribute over © but not over +., The
reason for this is that ® and + are clearly distinct as explained in
Chapter 1 and so x®y#x+y érovided X# Y. Now a(x®y) # a(x+y)
since following an a communication the left-hand éide can perform
fhe communications of either the x or y subprograms but we non-
deterministically do not know which, whilst on the right-hand side

any of the x and y communications may take place.

As a(x®y) = ax®ay = ax + ay using our axioms then ax+ay #

a(x+v).

Using our acceptance semantics we can easily show that
x® (y+z) and (x®y) + (x®z) are not equivalent and that ex +ay and

a{x+y) are also not equivalent.

Now we introduce the axioms involving our concurrency

operator.

[0,] =xex =x idempotent, for x in CNFV
[02] Xey = yex commutative

([ee] xe0(yez) = (xey)ez associative

[@ +] for x = Z Moo y = z P37

X & Yy = Hi(xi. Y)
LM by fM LM

+ p.(x
pjzﬂ- .

+ Z (x; o y'j)
}""i:pj LM

. ’y’i)
IM

[6D] xe(y®z) =xeyOxez where x has sort L and y has sort ¥

e distributes over D,
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Note that we normally do not need to subscript @ as the sorts
of its components will be understood. The [e +] law gives Z(: A) if
there exists no Hyr Pj such that u, éM or pjé L or By =Py A will

represézit deadlock between the two components p and q.

" We have the idempotency law for our concurrency operator e
since identical programs will give stimulus to each other using all
their labels leaving us with an identical program. This is the case
provided that the component programs are in CNF, i.e., there is no
® outermost. We do not have idempotency with DNF programs;

consider (x®y)e (x®y) under axiom [e D].

We have commutativity and associativity for e since it should

be irrelevant the order in which component programs are composed.

For p and q in CNF then pe q should also be in CNF constructed
out of guards whose labels are external to pe q and guards whose labels

are internal to pe q. The % . (p; ® q) clause contributes to peg
itFi
By M IM

those guards who appear in p but whose labels do not appear in the
sort of q. Since only the p participates in this then the resulting
program composed with the label is p; « 9 . Similarly for labels
in guards of q which are not in the sort of p. Finally, the clause

; pi(pi ° qj) contributes to peq a guard whose label is the same
f] Pj M

- as guards appearing in p and in q and as both p and q participate in
this synchronisa.ﬁon the program pi.qj results which is composed by
the guarding operation with label p. Hence p and q have synchronised,
exchanged By stimulii, ;nd have evolved to programs P; and qj which are

recursively composed by the ¢ operation.
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If (71) we do not ha.ve any labels By in guards of progr_a.nvx P »such
that p,iﬁM, the sort of q; and if (2) we d:o not have a‘.nyvla.bels p:j in
guards of q such that pjﬁL, the sort of p; and if (3) there are no
guards in p and in q having the same label then p e ¢ = Z y . the
"empty sum" which is the nullary operator A. A Il:al\.ds' sort L UM
and we can note that e is the only operation so far which changes

sorts; by unioning the sorts of the components; The operations

defined so far are sorted as follows:
a : L - L where o €L
+: L xXxL —-L
®: LXL—L
e : L xXxXM—-—LUM

Finally, the [e ® ] law is present since p running concurrently
with program q © r means that p will actually run concurrently with
either éubprogram q or subprogram r and we
do not know which. (pe q) ® (pe r) is the program where either p
runs with q or p runs with r and the decision is made nondetermin-

istically.

We have justified the laws, or axioms, informally. In a later
chapter we prove that the laws actually hold with respect to our
acceptance semantics., 7 Thus, for the laws above, f:he left-hand éide»
has the same meaning as the right-hand side and so we can quite
happily use the laws to replace programs by semantically equivélent
programs in any program context without changing the complete program
meaning. This is the case since the laws satisfy our notion of equiva-

lence which also happens to be a congruence.
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In terms of the acceptance semantics and our notion of equi-

valence, we can prove that the following do not hold:
xB(y+2z) = (xPy) + (xPz) and al(x+y) = ax +ay .

We have previously informally justified them as not being axioms in

our language.

Two further operations require to be introduced into our
language but we first introduce recursion and recursive definitions.
These allow us to produce some interesting example programs using

our language.
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IDENTIFIERS, DECLARATIONS AND EXAMPLES

Identifiers and Declarations

To allow us to give practical examples, we extend the language
W21 by giving it the ability to handle data structures.{ ~This does not
change any of the preceding language philosophy but allows us to
program, thatis,to represent the behaviour of computing agents such as

registers, memories, stacks and queues.

Let us introduce a set of identifiers I written using capitals,
with which to name programs, and a constructor = to bind programs

to identifiers. We therefore have our new language, the word algebra

W. where

%

Z,=AUIU{+, ®,40,0, =}.

The = operation is of type I X Prog — Dec. An identifier in
p € Prog is either the identifier currently being bound to p or else has
previously been bound in p. The identifier after binding then names
a program and thus has a sort, the same as the program. There are

no restrictions on the sort of programs which we can bind with

identifiers.

For ID€l and p € Prog we give meaning to a declaration by

extending our acceptance semantics:

21,

(p,a) =p' A (ID = p)
(ID, Q) - p‘

This construct permits us to define recursive programs, i.e., P=¢gP,
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Now we assume that after this declaration P identifies and has
the same behaviour as ozP.. The declaration itself is not a program
'and we must compose it with a program to form a new program. We
introduce a new operator where giving the alphabet 233= 22 U {Where} .
Composing a declaration with a program uses the where operation,

of type:
(Prog1 X Dec) — Prc’g2

Note that an identifier may not appear as a member of Prog'1 unless
it has previously been declared by some member of Dec. Declarations
and the use of where are really not necessary to our language and

"sugar" it to make programs read more easily.,

We can have the following programs:
aP + 6A where P=aoP +BA

We assume here that the operators in alphabet Zl bind more

strongly than where, which in turn binds more strongly than = ,

We may also nest declarations to get:
Pe Q where P =qoP +pfA where Q =aA
A derived operation and of type Dec X Dec — Dec can be defined as:

' ’def
‘cl1 and dZ = d1 where d2 .
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is as for W,

The acceptance semantics for the extended language W. -
=3 2

=
with the addition of clause 22.

Let {m/n} be the substitution operation in our semantics (not
in our syntax) such that n gets replaced by m, then
22,

(p{m/n},a) - p'
(p where n=m,a) — p'

Data Structures

The ability to identify a program with a name allows us not only
to write recursive programs but to introduce data structures., To
effect the latter we allow identifiers to be not just names but names

parameterised on some data structure.

We are not able to represent the communication of values in
our language; we only can communicate, or synchronise, stimuli and
this interaction indicates no more than that a synchronisation between
two (or more) programs has taken place. For this reason our data
structures will contain only boolean values though other types of values

may be simulated.
Consider a boolean register., What behaviour does it have?

Well, if it is nonempty it can output its contents which will
then remain unchanged or it can output a new boolean value and replace

its contents by this new value.

Such a behaviour is given by a program identified by REG of
sort {81, 80,0-1,0-0}.
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REG = '81 REG(1) + 80 REG(0) where

REG(0) = o REG(1) + €

0REC}(O). + € REG(0)

1 0

and REG(1) = ¢,REG(1) + € REG(1) + £,REG(0)

0
This declaration can of course be combined with another program

using the where operation.

A program REG is the initially empty register which can

therefor only input a 1, represented by a stimulus at the 51 port,

or a 0 represented by a stimulus at the 80 port. Since we cannot
communicate the values | and 0 we have two separate ports which
allow 1 or 0 stimuli to be effected, and so we have two input lines
connecting this register program with other programs. We also have
two output ports ¢ and T since once a value has been loaded into
the register our program must also have the ability to output the-
contents as well as load new contents. The identifiers REG(0) and
REG(1) ide'ntify register programs whose contents are 0 and 1
respectively, the former being able to synchronise through the Ty
port and the latter through the o, port. This represents a 0 and 1

being output respectively.

In the above we have two input and two output ports represent-
ing the input and output of i's and 0's. Conceptually we have only two
poi‘ts € and o vﬁth the index indicating the value to be communicated,
When "simulating" value communications like this, we do not distinguish
between a sender a_ﬁd :eceiver. In fact, since more than two
programs may synchronise on a pa.rti.cvular label, this multiway

syhchro‘nisation permits us to represent the broadcasting of a wvalue to

a number of different programs.
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Other Examples

Memories,

We can construct memories out of registers. To do this we
must give each register a separate identity. Let REGi‘ be of sort
{Sii, 8%), o'il,o'ib} and so let it be defined as for REG but with label
changes. Then define MEM a memory of sort .U {Sil,si(‘),o-ié, O'i}

i=i;n L

MEM = REGl ¢ REG% ¢ ¢ REG2 ! ¢ REG® where **°.

An operation to produce instances of a generic program, will be
introduced later., As the REG's in MEM have disjoint sorts they

are not connected by the concurrency operation.
Stacks

We saw that a register was defined using an identifier params-
eterised on a tuple (or string) or booleans., A stack of sort

{60, 61,0'0,0'1} may be defined by:

STACK(e) = 6, STACK(0™¢g) + 61 STACK(LMeg)

*

where STACK(0™n) = o, STACK(n) + 6, STACK(0™ 0"n)

0 0

+ 51 STACK(1 " 0" n)

and STACK(1718) = ¢ STACK(n) + §;STACK(1"0"n)

+ 8 STACK(1"1"n)
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Here € is the empty string. Note that we do cépture the behaviour of
a stack here as 1's and 0's are "put" on and "taken" off the top of the
stack. A queue may be defined similarly but we "put" on a different

end of the string from where we "take" off.
Counters

A counter COUNT(i), parameterised on integer i, will have sort
{up, down, zero}. As we do not (yet!) have a conditional construct

in our language we define COUNT(i) by use of two clauses

COUNT(0) = zero COUNT(0) + up COUNT(1)

COUNT(n+!) = down COUNT(n) + up COUNT(n+2)

This counter keeps track of the number of ups that exceed the number

of downs.

An alternative counter may count negatives as well., Let us
call this program COUNTER(i) where i is the number of ups minus

the number of downs. It will have sort {up, down}.
COUNTER(n) = up COUNTER(n+1) + down COUNTER(n-1)
It is the environment which generates the up and down stimuli and the

COUNTER program will cooperate with whatever is in the environment

to synchronise on a stimulus and evolve to a new program. We may
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wish the environment to interrogate the counter and discover its
contents. As we have no value-passing mechanism in our language
(unlike CSP, for instance) we have problems in getting the value of
the contents '"out." If we allow our counter to be bounded then we
can have an out label for each integer. That is, a separate output
line corresponds to each integer and if a synchronisation is made on
one of these lines by some other program we may assume that this

program now knows the contents of the counter.

Suppose our counter only counts positively, as COUNT(i), and
has a maximum of m. Then COUNT-M(i) will have sort {contents,up,
down,outo,outi, see, oufm} and is defined by:

COUNTM(0) = contents out, COUNTM(0) + up COUNTM(!)

0

COUNTM(m) = contents outm COUNTM(m) + down COUNTM(m~1)

and

COUNTM(m=1) = contents outm COUNTM(m-2) -

-1

+ up COUNTM(m)

+ down COUNTM(m-2)

The contents guard is really redundant since the interrogating
program which we would compose with COUNTM using e must be - .

able to synchronis‘e on all of outb, "*t,out, so that it will k_no“w ti&e
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4.4

" contents. - Leaving the contents guard out has the same effect. We

do not need a special label for zero contents; ou.t:0 is suitable.

The lé.nguage may be extended to allow values to be communi-
cated whenever a synchronisation takes place. This opens up a much
larger class of examples which can be easily programmed. As we

are interested in the synchronisation and nondeterministic aspects of

. our language, we omit the value-passing features for the meantime.

The Dining Philosophers Problem

In this example we have two types of computing agents,
philosophers and forks. We have the same number of philosophers
and forks laid out around a table with philosophers and forks alternating.
A philosopher is allowed to access only the forks on either side. The
"problem" which this example illustrates is described as follows: to
enable a philosopher to eat he must be in possession of both his
neighbouring forks and the forks can be obtained in either order.
Unfortunately this may cadse a deadlock situation in which all philoso=-
phers have "picked up" their left-hand (or all their right-hand) forks.
This means that all forks are accessed and no philosopher is able to
obtain the two forks he needs to enable himself to eat; all philosophers
starve., This is a problem invoiving shared resources, each fork being

shared between two philosophers.

We shall program a "solution" to this "problem!" in our language.
The solution provides for philosophers to access the forks in such a
way that the system does not deadlock. Our solution is not fair how-

ever; some philosophers may be prevented from accessing both forks
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forever and so starve., Fairness questions are outside the remit of
our language and we believe that fairness is an implementation issue
and so does not concern us. For instance, to make our dining
philosopher's program fair, a centralised scheduler may be introduced
to control the order in which philosophefs access forks. Many

algorithms can be adopted b‘y this scheduler to ensure fairness.

A centralised scheduler, or controller, may be used to ensure
the absence of a deadlock without even considering fairness. In (4]
Hoare uses a "room" as a centralised controller. This room controls
the number of philosophers active, or present, at any givén instant.
As long as the number of active philosophers is one less than the

number of forks then the system will not deadlock.

We wish a distributed solution, that is, the behaviour of the
philosophers and forks themselves should be such that when they

interact the system as a whole does not deadlock.

Let us program this for a system of three philosophers and
three forks. It is easy to see how the system can be extended to

involve a philosophers and n forks.

The agents will be interlinked as follows.

gl tze; . BT2



The philosophers wish to pick up the forks on ej.ther side of
tiﬁém in éithe'ii" order, eat, thén put the forks down in either order,
then think and so on. Synchronisation via the gf and gr ports
represents interaction between a philosopher and the left or right
fork to pick the fork up while e apd t ports are used by the philos-
opher progi‘ams to represent their desire to eak and think., The pr

and p{ ports are used to synchronise the action of placing down the
left or right forks. This again, is an interaction between a fork and

a philosopher.

The behaviour of the ith philosopher can be represented by the

program Pi of sort {pﬂi, gli, PT, gri,ti, ei} defined by

= ' !
Pi = gﬁi gT; Pi + gry gzi Pi

where

1
Pi = &(ply pry t; Py + pry ply &, Py)

The behavious of the forks is given by

Fi = gr; pr; Fi + gd{Iol) pt(i ©1) Fi

Here © is subtraction modulo n, where n is the number of forks (and

philosophers) in the system.

We see that the philosopher asks for both forks in either order
and then eats. The forks are placed down in either order, he thinks

and so on. A fork can be picked up by either of the philosophers on
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each side of it., When it is picked up this prevents the other philos-

opher gaining the fork until it has been placed down again.

For n=3 we have a system pictured as above with

SYS = Pil. on P3. Fl. on F3

Here P1 is Pi with the guards allr relabelled by changing the index.
This is performed using the [a/P] operator and produces instances
of philosopher programs from the generic philosopher Pi. - Forks

are treated similarly,

We may apply axiom (e +) a number of times to SYS and we

discover that one of the subprograms produced is
g!l gfz g£3A

hence the system may deadlock. Other summands also result in the
appearance of A whilst others do not. The summand above indicates
that all of the forks have been picked up by the philosopher's left
hands so preventing any philosopher gaining both forks and so prevent-

ing any philosopher from eating.

To prevent this we change the philosopher's behaviour so that
before starting to pick up and place down the forks fhe philosopher
reserves both forks and so preventé the philosophers which share his
forks from gaining access to them. We introduce r, guards on
philosopher Pi and his neighbouring forks. To synchronise on this
guard (effected by the e operator) the philosophei‘ and beth his ‘f‘orksi

must cooperate in a three-way synchronisation to reserve both »foz:ké.’ -
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‘We redefine our philosopher and fork programs to include this
‘r‘e’svervatién guard. As the ea'ting and thinking guards do not influence
whether the syétem deadlocks or not, we will omit them. We now

have program Pi of sort {ri, gli, gT;» pli, pr.l}
- 1 !
P. =Ty (gzi gT; Pi + gr; gzi Pi)

where

‘U
n

j = PLypry Py +pryply Py
and program Fi of sort {ri, ri,@ 1, gr.» PT» gli o 1’P£ie 1}
Fy=renprFy+r9,855,Plig1

Qur constructed system SYS = Pl‘ PZQ P3¢ Fl. FZQ F3 is again built
out of instances of the above generic programs. To illustrate where
synchronisation may take place between the components we picture

SYS as follows
pls

gl gr2
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We may now exhaustively use axiom [e +]to expand SYS.
We can see that we do not obtain subprograms which terminate

(with A) and so our system does not deadlock.

A problem here is that the expansion via [e +] is quite
tiresome and soon produces é, program of unmanageable complexity.
We are soon unsure whether we have missed out some subprograms
or not. For three philosophers and three forks, we can jusf about -
manage. We can progress far enough to see that we do not get
subprograms similar to the g!i glz g!3A which we get in the
original system, but a much larger expansion is needed to convince

ourselves that A does not arise at all.

If our system contained a larger number of philosophers and
forks than three then an expansion using axiom [e +] to check for the
presence of A would be impossible. We would eve wish to show
such a system free from deadlock for n philosophers and forks, for

all n.

A methodology for this will be introduced in a later paper.
It utilises the rigorous structure of interconnection among philosophers
and forks and allows us to prove the absence of A by induction on n,

the number of components in the system.
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" DEADLOCK AND TERMINATION |

We introciuce the nullary operator A as the identity of operator +,
and so a.lsb tn:he empty sum Z . It has previously been mentioned that
we are taking A to represent, in our language, the deadlock phenomena.
Deadlock is .a. systermn property that exists when all the componentsb of

the system are mutually waiting for each other to perform some action

. which must take place before they can proceed. A classic example

of this appears in the dining philosophers problem where a philosopher
must access two resources, called forks, which he shares with
different philosophers before he can proceed to eating. Deadlock
arises when we have shared resources; that is, we have competition
among agents which with to interact with a resource agent. Thus A

may arise due to the definition of the e operator.
Suppose we have the programs P and Q with sorts {a,ﬁ,y} and

{a,ﬁ} respectively, which are defined by

P=yaBP

"+ vy P

1 2

Q=paQ

and we leave subprograms Pl’ P2 and Q1 unspecified for the present,

By axiom [# +] we have that

PoQ=yA+y(onQ)

The o and B labels are internal while the y label is external

to Pe Q. As P wishes to perform a y symchronisation with the
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environment and as y is external then P can evolve to program
ap P1 without any cooperation from Q. Now as « and B are both
internal labels program af P1 must receive an a stimulus from Q
for a synchronisation to take pla.ce.‘ But program Q wishes a
stimulus before a synchronisation can take place. Ag nothing else

can happen crﬁP1 and Q become deadlocked so aﬁPi e Q = A,
P may of course, on a receipt of a y stimulus from the

environment, proceed to program PZ' Suppose we define P2 as

P,=faP then by axiom [e + ]we have that

P,eQ =paPeQ))

So after an external y we have that synchronisation on the B followed
by « labels takes place and the original programs P and Q have

evolved to P and Q1 respectively.

We now have that P e Q gives program
YA + YBalPe Q) using axiom [e +] repeatedly.
Following one of the y guards we get P and Q (actually P has evolved

to ¢ B Pl) becoming deadlocked whilst following the other y guard

deadlock does not result and f and a synchronisations take place.

Our system composed of P and Q is pictured as follows:

48



i L S ——

B

In one case, following a Yy, we have that "machine" 4  wishes to
interact wifh 2 on the o line whilst machine 2 wishes to interact
with & on the B line. Neither of these wishes may be satisfied and
so ‘A results, In the other case both & and 2 wish to first of all
interact, i.e., exchange stimuli, on the p line followed by an inter-
action on the a line. This can proceed via § and o synchronisations
with the behaviour of machine # evolving to P and that of machine

2 evolves to the behaviour represented by program Q.

In this example no separate resource program is competed
for but programs P and Q can be thought of a.s‘ resources as viewed
by programs Q and P respectively. Deadlock results when both wish
to access each other. If the o label is interpreted as "access Q" and
B as "access P" then if P wishes to access Q while Q wishes to
access P then neither P‘ or Q is available to the other as a resource
and we get deadlock. If, on the other hand, P wishes to synchronise
on B, that is, it is offering itself as a resource to Q and Q also
“wishes to )sync}hronise on B, that is, access P, then a B synchronisation

is successfully performed and we do not have deadlock.

The above indicates how A gets introduced into programs as
the result of applying the @ operator. We may also use A as the
termination operator; the "good" termination operator where deadlock
can be considered as "bad” termination. A program R which wishes

to receive an o stimulus followed by a f stimulus and then successfully
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terminate in defined by
R=apA

When we compose a terminated program A with some other, say
program S, then A will cause A e S to deadlock, possibly following
a number of external guards, unless all of the guards in S are

external to A e S.
As an example consider A of sort {a} and S or sort
{@,B, Yy} then if S is defined by
S=p8YS + ¥S
- we have A ¢ S giving program

BY(A® S) + y(AeS) of sort {a,B,V}

which never produces A and so, by repeated use of axiom [e +]
never terminates, Suppose A is as above but T of sort {a,p,y} is

defined by
T=z=ay T+ vy T
then A o T gives program y(A e T) by use of axiom [ e +]. Again,

A does not result as an externally labelled y guard can always appear.

But suppose we replace T by program U which is identical

¥

except that the + operator is replaced by ® then

50



U=zayU®yU

and

>
)
c
i

(A o (aYU)) & (A o YU) by axiom [e ®]

A ® y(A e U) by axiom [e +]twice

So program A e U nondeterministically may deadlock or else react to
a Yy stimulus (of one were available from the environment) to evolve
back into program & e U. Thus following the successful receipt of

a y stimulus again we have that deadlock may result and so on.

Two terminated programs when composed obviously give us
deadlock, due again to axiom [e +]. Note that the sort of the

"resu.lting"b A is the union of that of the two components

This is a theorem derived from axiom [e +].

Our language manipulates the representation of deadlock and
termination in a manner corresponding to the behaviour of real
systems. We use only one symbol to represent both deadlock and

termination since in many ways they model the same phenomena.

In conclusion we have termination as a "wholesome" feature and
a property of one computing agent and so of one program. Deadlock
appears when we have two or more agents present and is thus a

property of two or more interacting programs.
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6.

6.1

HIDING

Why We Require Hiding

We can define a queue by

Qe) = 8, Q(0) + & Q1)

where

Q(n~1) = ¢,Qn) + 50Q(0"n’"1) + 61 Q(1™n"1)
and

Q(n™0) = crOQ(n) + 50 Q0™ n"0) + ﬁlQ( 1°n"0)

We assume that £ is the empty string and € i =17 € =i, If we
define another queue we would like to be able to ajoin them and

produce a new queue.

Let us introduce a relabelling operator into our language. It is
not strictly necessary but it allows us to produce instances of generic

programs without the need to rewrite them

The post fixed operator [a/p] when applied to a program p
changes each B label up to an « label. All other labels remain

unchanged. We must ensure the a is not in the sort of-p.

The following two axioms are sufficient to express the intended

meaning of this relabelling operator:

(/+1 (Do) 8/al= (L sip;(B/a)) +(Z; a;(p; [8/a]))
1 ai=oz - \&i (23

where B is not a member of the sort of Z 2 Ps

i
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It.‘ is clsar how this operator behaves. The a.écepté.nce semantics
for programs copstruéted using this relabelling operator is not given
and is left aé an exercise for the reader. We shall not prove the
consistency of these two axioms. This, together with the definition of
other axioms relating [/] to the A, and -a operators, can be performed
by the reader. Note that [/] can change the sort of a program. If p
has sort L then p[p/a] has sort (L y {[3}) - {a}. Here we assume
" that p ¢ L. ‘

As an example consider (ap, + Bp,) [v/a]. This gives
ypl[y/a] + Bp, [y/a] where we replace all occurrences of a by v.
The operator [y/a] is recursively applied to the renewal programs

Py and p,s0 replacing all occurrences of @ by y in the whole program.

Now let us redefine our queue to give it a maximum size:
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QN(0,€) = 5,QW(L,0) + 5QW(L, 1)

where

QN(i, S™1) = c'lQN(i-l,S) + 6OQN(i+1,O"S"1) + 61QN(i+1, 17s™ 1)
and

QN(i, S™0) = o-oQN(i-i, S) + 60QN(i+1, 07°570) + §QN(i+1, 17570)
and

QN(N,S™1) = (rlQN(N-l,S) and QN(N,S70) = O'OQN(N-l,S)

Then Q' = QN(E)[ai/cri,aO/o-o] is as for QN(g) but has the output
renamed by @. Similarly, Q'' = QM(E)[ai/ﬁl,ao/ 50] is as for

QM(g) but has the inputs renamed by . We can now join up Q' and
Q'' using our concurrency operation to get SYS = Q' ¢ Q'' which should
behave as the single queue Q(M+N)(E€) except that it contains an «
connector which allows other programs to synchronise through it.

We wish, after Q' and Q'' have been composed, to hide the o guards _
and so "internalise" them. The « is then internal to Q' and Q'' and

cannot be provided with stimulus from without, i.e., the environment.

As another example of hiding take a binary semaphore. We

may define this by

SEM= ), p,v, SEM

i<i<n

where SeM has sort U {pi, vi}. Suppose we have two agents A
1<i<n

and B who access a resource using « and P labels respec-

tively and we wish A to mutually exclusively send an « V‘Z,stimululs

followed by another ¢ stimulus to the resource. Similarly B should
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‘g‘e,rierate a pair of § stimuli. Agent A would be defined as A = gA
’iand B similarly) but we add'p and o guards to their behaviour to
allow the semaphore to control them. We can therefore redefine

the agents to be

A = pya « viA

td
1

_pzﬁﬁsz

The Py vy and Py V5 labels guard the critical sections aa and BB
respectively and these sections must send stimuli to the resource

mutually exclusively,

The constructed system is then:

CONSYS = A ¢ B ¢ SEM
where

SEM = p,v,SEM + p,v, SEM

This can be pictured as follows when the programs are treated as

machines
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Now we wish the semaphore to control only how A and B
access the resource (which is m the environment!) so we would
wish to hide the PysPys Vs and v, ports (actually they are connectors)
and prevent further programs attaching onto them. We Wou.ldrlike

the above picture to have the.pi,pz,v1 and v, labels removed.

The operation -a when applied to a program hides the «
guards but we wish that it leaves the rest of the behaviour of the

program unchanged.

We introduce the following axioms to define hiding:

[°+1] (Z aipi);a = (az#:aai(Pi‘a) + aZ:.a(Pi"a’)) Qaz_a(Pi"a)
i i~ i

[-9]( § p)-a = ) (p;-a)

As an example of the first axiom consider the following:

(Bpy+ap,)=a = (B(p =a) + (P,~a)) @ (p,=a)

Here we assume ¢ is internal to f3p1 + ap2. If not then it is treated
differently and how we do this is given later., As it is internal, the a
guard represents the result of a synchronisation. Thus when

hidden we do not know whether it may take place or not.

If a p stimulus comes from the environment then two things
may happen; the B may be accepted or the internal ¢ synchronisation
may take place and prevent the § guard from receiving a vstimulu”s.

The ® operator introduces this nondeterministic behaviour.

il
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’ But .suppose the enﬁronment does not produce a { .stimw.ﬂ.us
then somethix;g may a.iways happen; the internalised o synchronisation.
That is why we use the + operator to compose the result of hiding
the synchronisation with the guards that remain unchanged. The
hiding operation is applied recursively to the programs that follow

the guarding labels, both the hidden and unchanged ones.

How does this hiding work when applied to our semaphore
example; that is, what program results? Let us use the [e +] axiom
a number of times to expand CONSYS., Of course we could keep on
applying CONSYS indefinately since none of the constituent programs

of CONSYS terminate (with A) and when composed, A never results.

CONSYS

]

Pl((aale) o (pzﬁpsz) ] (VlsE M))

+ p,((pyaav,A) o (BBV,B) e (v,SEM)

by [e +]

pjaa((v,A) e (Pzﬁﬁsz) o (vS EM))

T+ pzﬁﬁ((plaale) ° (VZB) ° (VZS EM))

by (e +] 4 times

'pjaav,(AeBe SEM) + p,ppv,(AeBe SEM)

by [e +] twice

pjaav, CONSYS + P,PBv, CONSYS

The presence of the p's and v's prevents the o and B pairs
interleaving which is what we require but we wish the p's and v's
to be internalised. We shall first of all hide out Py and see what we

et: "
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CONSYS - p; = (((aav,CONSYS)-p,) + p,((36v,CONSYS)-p,))

® (aa‘riCONSYS) - Py by [+-]

aavl(CONSYS-pl) + pzﬁﬁvz(CONSYS-pl)
® aavi(CONSYS-pl) by [B-]and [+~]
CONSYS-pl-pZ = (aavi(CONSYS-pl-pZ)+{3f3v2(CONSYS-p1-p2))

® ppv,(CONSYS-p,-p,) Daav,(CONSYS-p,-p,)

CONSYS-pl-pZ-vl-vz = (aa(CONSYS-pl-pZ-vl-vz)
+ PB(CONSYS-p, -p,=v,-v,))
® pB(CONSYS-p,-p,-v,~v,)

® aa(CONSYS-pl-pZ-vl-vz)
= aa(CONSYS-pl-pZ-vl-va)

® BB(CONSYS-p,~p,-v,-v,) by @O +]

Here we can see that the o and B pairs are uninterleaved as required.
The nondeterminism operator is introduced since the envix:onment ,
after hiding has no control over how the semaphore controls the
agents. The semaphore forces p's to the exclusion of a's and a's to
the exclusion of B's and as the semaphore is now abstracted away

s0o we have © introduced.

Hiding usually introduces ® when applied to CNF programs and

as explained above, this is to be expected. But éuppose‘% in our
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: gfeﬂ;nafpho'i'evexample we want tov controi the action of the agents A and
B‘ so that a aé& B pairs are not interleaved and we also wish that
the shared resoﬁrce (which may be composed on to the controlled
system lat'erS‘ should have the ability to choose an ¢ pair or a f pair.
We do not have this when hiding p's and v's in CONSYS, as above,

since the hiding introduces ® and we now would require the two

subprograms to be separated by +.

We can design a semaphore to synchronise directly on the
agents o and B guards to produce a new constructed system NSYS
which does not require the removal of additional guards. We require

that NSYS = aaNSYS + BRNSYS.

If our semaphore is defined as
SEM = @qaSEM + BRSEM

and our agents are not altered by the addition of p and v guards,

that is, they are defined by

A

aA and B aB

then our constructed system is

SEMe AeB = aa(SEM e A e B) + BR(SEM e A e B)

and so SEM e A @ B = NSYS as required. Note that SEM, NSYS, and
SEM o A e B are all identical programs, that is, they have the same

meaning or behaviour.
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6.2 The Hiding Semantics

Using our acceptor semantics we now formalise the meaning of
our hiding operation. Let us assume that we are hiding internal

labels. The external label hiding will be dealt with later,

We introduce the following notation:

(p,a)={*} for ¥q * (pyo) —~q => g = *-

15.
(pa,p) = {*}
(pv B) ""P'
16.
(P'O!:ﬁ) - p'-x
17.1 R4 [(p)a) "’P1] A [(Pl,a) —“pz] Aves A[(Pn- B) —p'] A[O’ELPINT] [pApninCNF]
. n?_l (p_a,B) .y P"Q
zl[(P,a)"Pl]/\[(Pl,a) "PZ]/\-..,\[(Pn,B)={*}]/\[(pn, a)={*}]’\[Q’*ELpINT]/\[PApninCNF
17.2 ==
(p~a,B) = {*}
7.3 n§1 [(pba’)—'Pl]/\[(pl,a)"’PZ]/\-.-/\[(pn-a,ﬁ)——*]A[aeLPINT]A [P/\Pn i{n CNF]
(P"Q’, ﬁ) — 3
18. [(p:B) = *] a [ael gxqlalp in CNF]

(p-a,B) = {*}
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v,(yp'as 6) — X

(p®Q)ma, p)—*

(q-a: B) —

((PBQ)'Q, ﬂ) —

20.

Condition 15 states that if program p always produces * on an «
stirﬁulus anci it always produces * on a f stimulus then program p-oa
always produces * on a § stimulus. As p is in CNF, (p,B)—=* <> (p,B) = {*}.
Forp ® q, i.e., a program in DNF, then condition 19 says that if p-a
gives * on a2 B than so also does (p ® q)=a. We treat CNF and DNF
programs differently here since for DNF r, (r,f) — * <& (r,p) = {*} ,

unlike a CNF program.

Condition 16 states that even if program p can accept an o then
provided p accepts a fp and produces p' then p-a also accepts a B and
it produces the program p~a. This holds for « being both internal

and external.

If p produces * on a B then we do not have p-a producing * on
a B since the program q say, which we get when p accepts the o, may
accept a B or produce a program whose offspring may accept a §.
It is oniy whén a f is not accepted by p or any of its offspring which
result from some number of o stimuli (possibly one) being forced at
it, do we get p-a giving an * on receipt of a 8. 17.2 does this for
CNF Py and 17.3 does this for DNF Pp The need fqr both 17.2 and

17.3 is the same as for 15 and 19 (and 20).
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Condition 17.1 states that if after some number n of o stimuli
(possibly one) program p evolves into program Py which produces p!

on a B stimulus, then p-o produces p'-a on a P stimulus.

As we are hiding internal labels, then o's appear in g due to
a synchronisation on a's taking place. When we hide them we wish
to preserve the behaviours which result from such a synchronisations.
Hence the behaviour which occurs after o synchronisation in p,i.e.,

the B stimulus on condition 17.1, should also occur in p-a.

The difference between internal and external guards is given
in the next chapter but we can note here that condition {8 states that
for external o and p in CNF, if p gives * then so also does p=-a. It
is similar to 15 except we ignore whether a's can be accepted or not,

as o is external.

Conditions 19 and 20 indicate how we get * after hiding on DNF
programs, 16 applies to both CNF and DNF p and so indicates how a

program results when a hidden DNF program receives a stimulus.

To see how the semantics works for hiding let us try some

examplgs:

(1) ((yp + fe)-a, Y) = p-a by 16 as (Yyp+B4q, y) =P
((yp + Ba)~a,B) — gq=a similarly

(2) ((eyp + Ba)-a, Y) = p-a | by 17.1 as (ayp+pq)—YP . (YP, Y)=P.
((ayp + P4)-a, B) —~ q-a by 16 as (ayp +ﬁq,ﬁ);é
((ayp +’5Q)-a.ﬁ) — ¥ by 17.2 ?.s yp is in CNE ana

(ayp +Baa) —vp and (yp, B) —=*.
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~ - and "if & is in the sort of our program then:

X

((a(yp ® or) + B\q)-'-a, §) == by 17.3 as

((ayp +Ba), @) == (yp © 6r)
and (yp, 6) — * giving

((yp ® 6r)=a, 6) — * by 19.

Internal and External Guards

We wish to be able to distinguish between guards, i.e., labels,
which are produced by the concurrency operator ¢ when two or more
programs synchronise, and those which do not. The former. are

internal guards and the latter are external guards.

To do this we change the notion of sort from being a set of
labels to a pair of sets of labels. The first set are external labels
and the second set are the internal labels. These two sets are

disjoint and when unioned together produce our previous notion of sort.

Initially most of the sort labels will be external unless we wish
to desig_nate some ‘as internal. Our operators are also sorted and will

now be as follows:
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a :(LI,LZS—-(LI,LZ)
o : (LI,LZ} X (M, M,) =(L, U M-P,L, UM, U P)
where P = (L U L,) n (M; U M,)
-2 :(L,L,) =(L,~{e}, L,-{e])
(L L) X(LpLy) =(LLy)
® : (L, L,y X(L,,L,) = (L, L)

[(B/al : (L L,y = ((L, u {h-{a} (L, u {8h-{a}y

It is the concurrent composition which produces new internal

guards,

We have seen that; hiding internal guards preserves the program
which follows the guard (with hiding occurring in it as well). The
reason for this is that an internal guard results from a synchronisation
and we wish to preserve that behaviour which follows from this synchronisa-
tion. A synchronisation is an interaction among programs and once
hidden we do not know whether it will occur or not and so need to
allow for all possibilities; one is that it does occur and so the

-

acceptance behaviour which occurs after the synchronisation should

also occur in the hidden program.

But suppose we hide an external guard, one which does not
appear due to a synchronisation having been effected. Then it does
not make sense to allow the hidden program to accept in the same way
as for internal guards. Since labels are used as "synchfonisatibn
points" an external guard has labels whiéh have not been used in

synchronisation. ‘ ]
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. Thus an interaction has not occurred on an external guard and when
RN

hidden the following program that which is guarded by the "to be
hidden" label is also lost.

The hiding here prevents entrance to the program which is

protected by the guard. We therefore define hiding for external label

a by
() @p;) = a = ) a; (p;=a)
a;&ai
and
(Q P = & ((p;)-a)

and we see that, compared to the definition for internal labels, we do
not include the (hidden versions of the) subprograms which are guarded

by the a label.

Our semantics for external hiding is given by conditions 16 and

18 above, for successful and unsuccessful receipt of a stimulus

respectively.

Examples

i) - (ap - a,B) = * since (ap,B) — *

(ii) ((ap + PQ) = @, B) = q=a since . (ep +Bq,B) —q

((ap +PQ) = a,y) — * since (ap + B, y) — *

(iii) (Bap + vya)=a,B) = ap)~a since (Bap+vyq,B) —ap
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(iv) (eap®pa)-a,B) = * as ((ap)=-a,B)—%*, by (i) above.

(ep®Bq) - @,8) =g~ as ((fd)-a,p) = q-a

The definitions given for hiding are akioms of our language. We have

the following set:

[-+1] ( E aipi)-a = (QZ:#Q Oli(Pi'Ol) +a§_a(pi‘a)> e‘az_a'(pi'a’) .
i i~ i~

whelfe a € LINT

[-"'2] (Zaipi)-a= éai(pi-a) where aeLEXT
4w
[--]p-a-B = p-B-a

[-8] (p@®g-a = (p-a) ® (g-a)
[~e] (p®g)-a=(p-a)e (q-a) if a’{LpoqINT

The first two axioms define internal and external hiding on CNF
programs; [--] states that it is immaterial the order in which we
hide while [-®] says that hiding a program in DNF is the same as
if we form the program from the hidden subprograms. usiné ©. The
[-e ] axiom states that concurrently composing then hiding is the same
as hiding the components and then concurrently composing, provided

that what is hidden is an external label of pe q.

These axioms together with the preceding ones are later shown

to satisfy our equivalence relation.
X - %

66



6.4

It smhougd be noted that some 6f the comple:dtf in defining our
acceptance semantics over hiding is in the need to treat CNF and DNF
programs differently, particularly when * is a result. The problem
stems from the semantics not differentiating between how p ® q and
p +4 react to a stimulus which either p or q react acceptably to,. i.e.,
do not give *. Also, the semantics have to distinguish between how

such DNF and CNF programs produce *, It is possible that a

" semantics using modal operators to express "sometimes" and "always"

may produce a simpler, cleaner semantics.

Hiding in our Dining Philosophert's Example

In our "solution'" to the dining philosopher's problem we
introduced a reservation guard to each philosopher and his neighbouring
forks to prevent deadlock. If we abstract out these reservation
guards from the composite system SYS, what program are we left

with ?

For three philosophers and three forks we use axiom [+e] to

get that

SYS = r-i(g.l’.1 gry Si + 8Ty gy Sl)
+ 1'2(g£2 gr, S2 + 8T, glz SZ)

+ r3(gﬂ3 gr 4 S3 + 8T, g13 S3)

where Si = pli PT; SYS + pr; pL; SYS for i=1,2,3,
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Using axiom [-+1] a number of times to hide internal guard
T, gives us:
SYS - r, = ((gﬂ1 grl(Sl-rl) +gry g.!l (Si-ri)
+ rz(gzz gfz (Sz-ri) +gr, 84, (Sz-ri)) |
+r3lgly Ty (S3-ry) + a7y 8ty @3“’1”)
9<r2(g£2 gr, (S,-r,) + gr, gf, (S,-1,))
b ry(gl, 8T, (S4=r,) + gry gl, (S5-r)))) |

where

(Si-rl) = pli 220 (SYS-rl) + Pry{ 1£i(SYS-r1)
Using axiom [-+,] to hide the r, and then the r, guards gives us:

SYS-r1 =T, =Ty = (R1 +R2+R3)
® (R1 + RZ) 5] (R1+R3) D (R2+R3)

® (R, ®R, ® R

2 3

where R

1 1
gli gri Ri + gri gli Ri

o
n

and p.li PT; (SYS-r 1-r2fr3) + pripli(SYS-r 1-1-2-1'3).
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7 Usmg axiom [® ® +] three times we get:

SYS-r, -r +R

=T, -1, =(R, +R ;) ®R, ®R, ®R

2 3°
We now need to use another axiom here; the extension of axiom

[® ® +] to three components rather than two.

Axiom [® ® +] states that
xPDyDP(x+y)=xOvy.

Let us replace this axiom by the following axiom, or rather, family of

axioms.

[@ Z] Q x; ® Z X, = @xi » for all programs x; and for all i.

We now use the instance of this class of axioms for i =3, This gives

SYs-’rl-rz‘-r =R, ®R. ®R

This constructed system can be seen to be free from deadlock
by inspection. We see that the hiding operation introduces ® to a
program SYS which previously did not contain such nondeterminism

constructs., Whether our hidden system gives program R1 or R, or R

2 3
now depends on some internalised choice mechanism, the r, guards,

which we have abstracted away from.
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The informal justification for axiom [Q ), ] just extends that
for [®®+]. In our appendix we prove that axiom [®® +] is sound
with respect to our semantic interpretation of the language. We

believe that a generalised form of this proof would also show the

soundness of [@ Z ].
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 CONCLUDING REMARKS

The forrrial'system presented here allows us to represent
communication and concurrency features as found in systems of
interacting computing agents. This corresponds to how the functional
concepts in serial programs are represented using the calculus,
Properties such as termination and deadlock can be expressed in the
) forma.lisxﬁ. Proofs of equivalence type properties can be performed
while the framework can also be used to reason about deadlock
features, for instance. Other proof tools need to be developed; one
approach is to enable ourselves to perform induction on the number
of components in a system, the dining philosophers problem for
example. Work along this line has been fairly successful and will be

reported in a future paper.

.One problem met in concurrent programming is how to deal
with the interleaving of synchronisation and computation features. One
approach,as adopted by Campbell and Habermann,uses Path Expressions
[{] to remove the synchronisation and control constructs from the
rest of the program. The computation and control features are then

separated. To a lesser extent monitors [3] also perform this function.

The a.ppro’a.ch'we adopt is to have éynchronisation as the
primitive language feature with the more usual computation being
added to this core. The simplest example of this approach, as presented
in this paper, excludes values and so computation. It is not difficult
though to add in value-passing and computation features. These are
present in a related formal system; the CCS of Milner [8]. Both

CCS and our formal system are developed from a process model of
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concurrency [7] where value-passing is present. Related work
includes that of Hoare [4] together with the work of Hoare and

others on models of CSP [5].

We have adapted the concept of experimentation as used by
Milner and Hennessay [2] in‘the construction of our notion of
acceptance semantics. This opperational approach is due originally
to Landin [6], who used an abstract machine to r-epre's‘ent the
semantics of atla.nguage. A less concrete operational semantics
involving relations rather than abstract machines was introduced by

Plotkin in [9]. This is closer to our notion of acceptance semantics.

One possible deficiency of this work is in the use of interleaving
to deal with concurrent action. Future work will attempt to produce a
model which does not rely on such arbitrary interleaving. Further
proof methodologies remain to be developed and this should allow us
to test our formal system on some large and realistic examples.
This empirical approach should, it is hoped, justify our design of
model and if not, to illustrate how it could be altered to better

represent reality.
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' ,AP‘PENDIXWI: The Equivalence Rglation is a Congruence

We define ~ to be the intersection Q ~n over n where

p ~0'q if ‘p,gq € WE and of sort L

P "yt iff

Vael. (a) (pra) = * = (q,a) = *
(b) (Q:a) -k =D (P,a) — K
() (pra) =p' => 3 4q' * (@Qa) =q's p'~ q'
(d (@) =q' = Jp' " (pya) =p', p'~_ q
Note that p' and q' are program variables and so cannot be *, Thus
we wish to show that for any words m and n in WZ then
m ~n => ¥ contexts C [ ] - C[m] ~C[n].

Contexts are formed using the guarding, choice nondeterminism,
hiding and concurrency operations. To show congruence it is therefore
sufficient to show that for m, n and q of sort L
m ~ n implies:

(1) Y@ m+q9 ~n+gq

(2) ¥q ‘m ®q~ndP g

(3) ¥yeL:ym~yn
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(4) ¥Y€L'm-y~n-y

(5) ¥P "me p~nerp
Proof. Assume m ~n. Then for some a€cl, the sort of m and n we
have

1) Show for m + q. Assume m, « and q in CNF, If not we use
[+ ®] to get for some CNF component of m that (m+q,a) — * if
(m1+q, a)—%*, Then show that (m1+q, a) ~= * implies (n1+q, @) == *

for some CNF n,, a component of n. This is just the CNF case below.

1.a) Case (m + q,a) = * then by {5 we have that (m,a) — * and
(@) = *. As m ~n then (n,a) — * hence (n + q,a) = * by 15, as

required.
1.b) Case (n +gq,a) =%, as (i.a).
t.c) Case (m +q,a) = p where p £ *,
Then by 3 and 4 either (m,a) = p or (g,a) - p.

l.c.1) (m,a) =p and as m ~ n then avp' such that
(n,a) = p' and p~p' and so (n+4q,a) =p' by 3, as

required.

1.¢.2) (9,a) = p and by 4 (n + q,a) = p.

As p~p then we have what is required.
1.d) Case (n+q,a) == p where p# *, as 1l.c)

We now have that if m ~ n then }Vq * (m+q) ~ (n+q).
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2)‘.‘ | Show for m ® q.' Assume m,n and q in CNF.

2.a) Case (m® q,q) = * then by 6.2 and 7.2 either (m,qa) = * or

(@, @) = *, respectively.

2.a.1) (m,a) = * and as m ~ n then (n,a) — *.

By 6.2 (n +q) = *, as required.
2.a.2) (g,a) = * implies (n +gq) — * bu 7.2.
2.b) Case m® q,a) =%, as 2.a)

2.c) Case (m ® q,a) = p where p# *. By 6.1 and 7.1 either

(m,a) =~ p or (q,a) — p, respectively.

2.c.l) (m,a) =-p. As m~n then (n,a) —p' and p ~ p'.

By (n® q,a) —~p', as required.
2.c.2) (g9,a) —~p and by 7.1 (n® q) —p', as required.
2.4d) Case (n® g,a) = p, as 2.c).
So have tha.t m ~ n implies (m +q5 ~ (n+q) for all q.
3) Show for ym.
3.;a.) Case (ym,a) -’ * implies a £ y by Z We thus have (yn;a) — *,
3.b) Case (yn,a) — *, as above.

3.c) Case (ym,a) =m, from { with a =y. Then (yn,a)—n and as

m ~ n we have required result.
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3.4)

4)

axiom

4.b)

4,.¢)

Case (yn,a) —=n, as 3.c). Thus m ~ n implies ym ~ yn.

Show for m=-y, Assume m and n are in CNF, otherwise

[- ®] can be used to get CNF terms.
(m-y, @) = * then either

4.2.1) (m,a) = * and (m,y) = {*} and vy is internal then as
m-~n, so (n,a)~=* and (n,y) = {*} and again vy is
internal (as m and n have the same sorts). Thus

(n,a) — x,
4.a.2) ans.t. ‘[(m,y) —-mi] A [{m, Y) *m?_] A
RPN [(mn’ Y) = *] A [(mn’a) - *]

and ¢ is internal to m (and so also n). As m ~n then

(i, ¥) —=n, and m  ~n,, in which case (n;,y) = n, ***

1 2
and (nn,y) — % and (nn,a) - %, Hence (n-y,a) — %,

as required.

4.a.3) (m,a) = * and o is external to m (and so also to n).

As m ~n then (n,a) = * and so (n-y,a) = %, as required.
as for 4.a) by symmetry
(m=vy, @) = p~y then either

4.c.1) (mye) =-p. As m ~n then Ji such that m~, n and

(n, @) == q with p ~;4 and (n-vy,a) =-q~a. Now p ~04
(always true) and let us assume that p-y ~; a-ve This
is sufficient as (n-y,@) =~ g-a and p-y ~ @-Y to give

m=y ~; n-y and so m=y ~ n-y if other clauses hold.
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5.a)

5.b)

r

This follows by induction on the index of our
equiva‘lence relation and is used in some of the

following clauses.

4.c.2) das.t. [(m,y) —m ]a [(my,v —m,] A
| Tt [(mn_i’y)--mn] A [(mn, a) = p] and a is internal
to m (and so to n). As m ~n then J n, such that
(n,y) =~n, and m; ~ n,. Hence (a;,y) =n, *** and
(nn_ l,a)_-" n and (nn,y) —q with p~q. Using an
argument as in 4.c.1) we get (n-y,a) —q-a with

m=-=y ~ n-Y if other clauses hold.

as for 4.c) by symmetry. Thus ¥Yy'm~n implies m-y ~ n~-y

where y lies in the sort of m and so of n).

-Show for mep. Let m and n be in CNF, Axiom [e ® ] can be

used on DNF terms to get CNF components on which to reason

as follows:
(m e pya) — * then by 12 and 13 either

S.a;i) (m,a) == * and 80 (p,a) = * by m ~n and by 12,

(n @ p,a) = *,

or 5.a.2) (p,a) —* and so by 13 (ne pya) — *.

follows 5.a) by symmetry.

5.c.1) m e pya) =m ' e p and (m,a) = m' and o is not in the sort of p.

Now as m ~ n then (n,a) =~ n' and m' ~ n'. Here we assume
m'ep ~yn'epand m'ep ~, n'eP. As (n,a) -~ n' and ¢ not in

sort of p then (ne p,a) =n' @ p. Thus mep~; , Dep and so
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also me p ~ne p if other clauses for e hold.’

5.¢.2) (m @ psa) = m e p' and (p,a) —=p' and o is not in sort of m.
As m~n then (ne p,a) -ne p'. Assume me p' ~o 2@ P and

me p' ~in.p' and so mep~;  nep and also mep~nep

+1

if other clauses for e hold.

5.c.3) (me p,a) -m'e p' and (m,e) - m' and (p,a) =-p'. As m~n
then (n,ao) - n' and m' ~n'. Assume m'e p' ~0 n' e p' and -

m'e p' ~; n' @ p' and so we have m'e p~, , nep and so also

+1

me p ~ne p if other clauses for e hold.
5.d) follows 5.c) by symmetry.

We therefore have, for all programs p, that m~n implies mep~n ep.
By 1) to 5) we have that our equivalence relation ~ is a congruence
and we can now replace parts (or subprograms) of programs in our
language by equivalent parts without changing the meaning of the

program as a whole.

What programs in our language are equivalent, or to rephrase

this question, how do we construct equivalent programs?

Our axioms define an equivalence relation a-nd we would like
that this equivalence is the same as ~. We now show that our axioms
are sound with respect to ~; that is, if a = b is an equ;.lity arrived
at by using the axioms then a ~b'. We are then able to replace
program a by program b without changing meaning (as a ~ b).
Our axioms are thus consistent with our notion of equivalence (in terms

of our acceptance relation). We would also like that our set} of axioms
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' "’g_ae‘-*cc/)mpzlete; that is, if a ~ b then we have a = b using the axioms

alone. . This is believed to be the case but a proof remains to be

performed. The proof of consistency of the axioms now follows,
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9, APPENDIX II: Consistency of the Axioms

We shall show that if p = q using our axioms, then p ~gq.
It is sufficient to show that every axiom gives us an equivalence.

Proof, We shall assume that expression variables x and y in the
following are in CNF. If they were in DNF conditions 6, 7,19 and 20
are used to access their CNF components, and we then need reason

o .- about these.

Axioms [+,], (+2], [++] and [+A] are obvicus. As an example

let us deal with [+A].

[+A] a) (x + A,a) = * implies (x,a) = * and (A, a) = * by 5. The latter

is always true.

b) (x, @) == * implies (x +A, @) = * by 5 since (A, @) — * always

holds, and x is in CNF,

c) (x + A, ) == x' implies (x,a) — x' by 3, since we never have

(A, @) = x!',
d) (x,a) — x' implies (x + A,a) = x' by 3.

All four clauses follow from relation conditions 5 and 3 and % + A~ xas

required.
[91] a) (x ® x, @) = * implies that (x, @) — *

b) (x, @) — * implies that (x ® x,q) = *
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4

cj (x ® x, ) == x' implies that (x, a) = x'

: d) (%, @) — x' implies (x ® x,a) —~ x'
using conditions 6 and 7. Axioms [@2] and [® ®©] again

follow immediately from conditions 6 and 7 and are omitted.

[+®] a) (x+ (y D z), ) — * implies that (x,a) — * and (y ®z,a) = *
“and this latter implies that either (y,a) — * or (z, a) — *.
Hence (X,a) = * A (ysa) = *or (X,a) = * A (Z,a) = %, in

which case ((x+y) ® (x+z),a) — *.
b) ((x+y) ® (x+z), @) — * implies that (x + (y ® z), a) as for a) above.

c)(x+ (y ® z), ) = p implies that (x,a) = por (y ® z,a) — p, the

f
latter again giving that either (y,a) —p or (z,a) — p.

c.1l) if (x,a) — p then (x + y,a) = p and so ((x + y) ® (x+z), a) ~ p.
c.2) if (y,a) == p then (x + y, @) = p and so ({x+y) ® (x+z),a) = p.
c.3) ‘if (z,¢) = p then (x+z,a) = p and so ((x+y) ® (x+z), @) = p.

d) ((x+y) ® (x+z), @) = p and so either (x+y,a) = p or (x+z,a) = p.

So either (x,a) =~ p or (y,a) == p or (z,a) — p.

d.1) (x,a¢) =pandso (x+ (y ® z),a) =~p

d.2) (y,a) =-pandso(y® z,a) =~pthen (x+ (y ® z),e) =~ p.
d.3) as d.2).

x + (y ® z) ~ (x+y) ® (x+z) follows. In the above, conditions 3,4,5,6 and 7

are used.
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[PD+]a) (x®y D (x+y), @) — * implies either
a.1) (x,a) =-*and so (x® y,a) = *, by 6.2
a.2) (y,a) =*and so (x® y,a) =*, by 7.2 and 6.2

a.3) (x+y,a) —* and so (x,a) — * and (y,a) — * hence

(x®vy,a) =%, by 7.2 and 5,
b) (x ® y,a) — * implies either, by 6.2,
b.1) (x,a) =-*and so (x D y ® (x+y),a) = *
b.2) as for 6.1) |
c) (x®y D (x+y), ) — p implies either
c.1) (x,a) -pandso (x® y,a) =pby 6.1,
c.2) (y,a) =pandso (x®y,a) —=pbyb.1and 7.1

c.3) (x+y),a) — p and so either (x,a) — p in which case
(x®y,a) =por (y,a) = p and again (x ® y,a) = p.
By 3, 4, 6.1 and 7.1.

d) (x ® y,a) — p implies either
d.1) (x,2) =-pand so (x® y ® (x+y),a) = p, by 6.1 or
d.2) (y,a) —=p, as for d.1).

x®y® (x+ty) ~ x DOy then follows.
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| A"E.j]]»'. /‘a)“(x ® y,a) = *implies that
a.1) by 12, (x,2) = *and by 13, (y e x) — *
a.é) ‘by 13, (y,a) == *and by 12, (ye x) — * .
b) as for a) |

c) (x @ y,a) — p implies that

c.l) «a ¢'LY and (x,@¢) = x'andp=x'ey. Assumex' ey ~;yvex
and x' @ ¥ “5ye x' then condition 9 gives (v @ x,a) ~ve x',

with y @ x' ~ x' ¢ y by induction on ~ .
c.2) a#Lx and (y,a) =~y' and p = x e y', similarly.

c.3) aﬁ’Lxﬂ LY and (x,a) == x' and (y,a) =y' and p=x'e y'.

Ag for c.1) using 11.
d) as for c)
Then xey~vex.
[e @] similar to [e] using conditions 9, 10, 11, 12 and 13.
[o; +] for x = Z by X énd y = Z P5Y; then
a) (:? ° y{ai — % implies that either
a.1l) by 12 for CNF x, (x, @) = {*} in which case either
a.1.1) ( Z by (x; 0 q),a)={*} by 5, for aeL_and a{LY or
By ¢’Ly

a. 1.2)(}'";}:. p.i(xi. YJ-), a) = {*} for a GLX n LY by 5.

a.2) by 13for CNF y, (y,a) = {*}. As for a.1).
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By condition 5 this makes the right hand side of axiom [e +] give
{*} on receipt of an o stimulus, via our relation. The three clauses
making up the right hand side are mutually exclusive in their reaction

to stimuli since we have « g’Ly,zzg{Lx and « c:‘Lx N Ly'
b) Let us call the right hand side of axiom [e +] rhs. Then

(rhs, ) = * if all three clauses only give * on receipt of an a. As

explained above this arises when either

bo1) (), w(x,ey)a)={*}andagL
. ¢ L y
i* "y

5.2) ()  plxey)ia)={*}andadL
L J J X

Pj %

b.3) ( Z w (x; @ Yj)’ a) = {*} and ou{Lx(‘\LY
M= P
J
p.ieLx N Ly

By conditions 12 and 13 and above (xe y,a) = {*} as required.
c) (xey,a) — p implies that
c.1) a#LY and (x,a) =x' and p=x'ey, by 9. Then
( ; p.(x.® ¥),a) ~x @ vy where g, = ¢ and x, = x!
i1 i i
My Ly : ,
and so (rhs,a) =x'eyvVy.

or c.2) ag{Lx and (y,a)=y' and p=xey', by 10. As for c.1).

or c¢.3) aeLxﬂLY and (x,a)=—x' and (y,a) —vy', by 11 As for c. 1),
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d) (vrhsga) — p implies, using conditions 3 and 4, that

d.1) ( Z pi(x;e0y),a) =~ x' ey where p, =a and x, = x'.
] ¢LY

As ax' is a surnmand of x then by 9 (xey,a) — x' ey.

d.2) () p.xe y;)»a) = xey'. Similar to d.1)

J
Pj ng

d.3) ( Z p‘i(xi' YJ-). a) = x' @ y'. Similar to d.1).

p'i=pj

By a), b), ¢) and d) we have that
x @ y ~ rhs , as required.
[e®] a) (xe (y ®2z),a) = * implies that either (x,a) — * by 12, or

(y ®z,a) = * by 13,

a.1l) (x,a) = *in which case (xey,a) — * and (x¢2z,a) —=* by 12,

hence (xey ® x @#2,a) ~ * by 6.2 and 7.2.

a.2) (y®z,a) = * and so either (y,a) == *or (z,a) = *by 6.2

and 7.2 respectively.

a.2.1) (yya) = * and by 12 (xey,a) = * so by 6.2

(xey ® x02z,a) = *,

a.2,2 follows similarly.
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b) (xey ® xe z,a) = *implies either (X @y, a) — * or (xe z,a) —*,

b.l) (xey,a) — * and by conditions 12 and 13 either

(x, @) = * or (y,a) = *,
b.1.1) (x,@) =~ * and so (xe(y ®z),a) = * by 2.

b.1.2) (y,a) == *, soby 6 (y ® z,a) = *, By 13

(xo(y®z),a) = *
b.2) (x @z,a) — * follows as for 6.1).
c) (xe(y ®z),a) — p implies either

c.l) (x,@) —x' and ag(Lyby‘)withp:x'.(y@z). Thus
(xey,a) ~x'@y, s0 (xey P xez,a —x'e y by 6.1.
and as L. = L_ then

y z

(xez,a) ~x'@2z, so (xeyD® xez,a) ~x'e z by 7.1,

Then (xey ® xe0z,0) ~x' 0oy ®Dx' 0zby 14, and x' ¢ {y Dz) ~
x'ey ® x' @z by an inductive argument on indexed equivalences as used

in proofs above ([e] for instance). Or

c.2) (y®z,a)= y' and aeL by 10 with p=xey!'.

Conditions 6.1 and 7.1 imply that (y,a) = y! or (z,a)=—z'"

c.2.1) (y,a)—y' and (xey,a) =xey' by 10 and so

(xey®xeo0z,a) -xey' by 6.1.
c.2.2) (z,a) —z' follows similarly, Or

c.3) (x,@) =x'and (y ® z,a)—~y' byl with p=x'e y'. Either

(y, @) =y’ or (z,a) —~y' by 6.1 and 7. 1. ¥
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>,°'3'1) (ysa) =y ' and (xey,a) =x' oy' by'ii,

(xeyDPxez,a) ~x'ey' by 6.1,
c.3.2) (z,a) —vy', follows similarly.

d) (xey ® x @2,a) = p implies either (xey,a) ==p by 6.1 or

(xe2z,a) —p by 7.1.
d.$) (x icy, a) =~ p in which case either

d.1.1) (%,e) = x' and ag/Ly, with p = x' ev.
As I_.z = Ly’ (xo(y ® z),a) ~x'e (y ®2z).
Now x' e(y ®z)~(x'ey D x' @2z) by an inductive
argument on indexed equivalences., By 14,

(xe(y ®z),a) ~x' @Y.

d.1.2) (y,a) = vy' and af L. with p=xey'. Byé.t,

(y ® z,a) —=y' and as ag’Lx (xe(y ®Dz),a) = xeoy' by 10.

d.1.3) (x,a) =~ x' and (y,a) =y', with p=x' ey'.
By 6.1, (y ®z,a) = y' hence

(xo(y®z),a) =x'0y', by 11.

d.2) (x 2z,a)—=p, similar to d.1). By above

Xeo(yPz)~xeyDPxez
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[ ®+] Show that ax + ay = ax ® ay.

a) {(ax + ay,y) — * implies by 2 and 5 that ¢ # y. By 2,

(ex, y) =~ * and (ay,y) — * and (ex ® ay,y) = * by 6.2 and 7, 2.

b) (ax ® ay,y) — * implies by 6.2 and 7.2 that either b.1)
(QX’ Y) - * and bY 2, a# Y. Then (er’ \{) — * and

(ex + au, y) = * by 5. Or

b.2) (ey,y) = *, as above.

c) (ax +ay,Y) = p and by 3 and 4 (ax,Yy) =~ p or (ax,y) = p,

respectively.
c.1l}) (ex,y) = p and by 6.1 (ax & avy, y) = p.
c.2) (ex,y) — p follows by symmetry,

d) (ax ® ay,»y) —p and by 6.1 and 7.1 either (ax,y) —p or

(ay, y) — p, respectively,
d.1) (ex,y) —p and by 3, (ax + ay,y) — p.

d.2) (ey,y) — p similarly.
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'4-F‘_o‘;rva1‘1 Be Lx - {a} with x = Z 2., .

[- -+i] Let ( Z ai(xi-a) + @ (pi-a)) ® Q‘ (pi-a) be rhs.

a.Fa o.=q .= o
i i i
a) (x-g,B) — * implies either
a.l) (x,B) =% and (x,a) = * by 15. As x = Q. X.

i1

then 3 no x' such that (x,¢a) = x'. @ (xi-a) is then
a.=a

the null ® sum. This derived t operation in

its null form is in effect an identity for both + and ®.

As (x,B) —= * then ( Z ai(xi-a),ﬁ) — %, Finally,

afi$a
(rhs, a) —= *,
an > 1 such that
(%, a) —’XlA"'A(Xn_i’a) —x_ ax,p)— * by 7.2.

— 3 — R - [
As (xna) and (xn,B) then (:-:n as B) by 15. .
Let us assume x-¢o ~i rhs for i < n. Now either

X = E a.x ,» in which case
i"n=1.

© Z (xn_l.-o:). As (xn_i,a) —-x then 3 @, =

a.<= o 1
1

a with x 'li =X, As (xn-a,ﬁ) — * s0
(xn_i_-a, p) — *, By 6.2, as @ is derived from

i
®, so ( Q (xn_1 -a),ﬁ)—'* and by 6.2 again
.= i
i

(xn_ 1‘&’ B) - *lo Or

a,2.2 x =y ®z. By axiom [- ® ] we have

n-1

(x ,=a) = y=a ® z-o and can apply it repeatedl
n=-1 ¥y

to get some y (or z) of form Z aixn-li‘ We

then follow a.2.1) to again get (Xn-i'a’ﬁ) — %,
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This procedure can be repeated to get
(xi-a,ﬁ) — * with (x, @) - X As x = Z @, x,
thenfor some i, @, = a with X =X We
therefore have (@ xi-a,ﬁ)—- * by 6.2 and by

6.2 again have (rhs,p) — *,

a.3) 17.3 gives a similar chain but with X, in DNF., We

argue as for a.2) for one of its CNF components.

b) (rhs,p) — * implies either b.1) or b.2) by 6.2 and 7.2.

b.t) ( Z a;(x; =a) + @ (x;,-a), )= *. Condition 5 gives us

a.+a
i

Q.=
1

that either

b.ivl) (), a(%;-a),p) = * and (@ (x;-a),B)—= *.
a.Fa a.=a
i i
The latter gives (axi,ﬁ) — % by 2 and the former
gives ( Z aixi,ﬁ) ~ * by 3,4, and 16. By 3 and 4
a.Fa
i
again and 17.2 we have (x-a,fB) — *. Or
b.1.2) ( ) w(%-a) ) —* and ), is null, that is,
a.¥a = a
i i
there is no a; = a. In this case (x,a) —-# and .
15 gives (x=a,p) — *.
b.1.3) ( ) (x-e)f) —*and ), is null. Thus all
a.=a , a:=a '
i i
ai’s = g and as ( Z (xi-a),ﬁ) - % 17.2 gives
a;=a S
(p=a,p) — *.
b.2) ( ), (x=a)p—=*. As for b.1.3).
R aiza
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c) {x-a,B) — p implies that either

c.i) (x48) —~p' and p=p' = a. As p = Z a; P, 3 some a;
such that Q; = B and p; = p's by 3. For this i,

(a;(p;=a), p) = (p'=a) by t. By 3, ( 2, o (p;=a) +
ozi¢af

) (p;-a),B) —~ (p'-a) and by 6.1, (rhs,p) —~p'~a. Or

a;=a

c.2) 3 some n > 1 such that (x,a) - XA ---,\(xn_i,a) - x
and (xn‘,@) —p'. Let us assume p=c« ~i rhs for i < n.
By 16, (xn-a.ﬁ) ~= p'=a, and as (Xn-i’a) —-x then

(x. ,~a,B) = p'~a using equivalence for i < n, as we

n-1

did in a). Repeating this for i up to n we get

(xl-a, B) — p'=c.

As (x,@) =x, and x = Z X, thena some i

1

such that a; = a and X, = X,. As (xl-a,ﬁ) — a then

(), (x;-a),) = p'=a by 6.1. Again by 6.1,

(rhs,p) = p'=a.
d) (rhs,p) — p implies that either

d.1t) ( Z ai(xi-a) + @ (xi-az),[i) — p and either

[* FEN 4 a.=a
1¢ 1

d.1.1) ( Z a;(x;~e), ) = p in which case J some i
ai¢a

such that @; = B and p = (xi-a). So
(aixi,ﬁ) - % and (x,B) - x. Condition 16 then

gives (x=a,B) — x'=q.
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[""2]

d.1.2) ( ) (x,-a),$) =~p and by 6. 1).
ai=a

J Some i such that ((x,=a),p) = Pand a = a,.

As (aixi, a) — % then by 3,
Y

(uaix.,a) -~ x., i.e., (pya) —=x..

i i i
As (xi-a,[s) ~— p then by 16 (xi,ﬁ) — p' with p = p'-a.

Using (psa) = x, and 16.1 we have (p-a, 8) — p'-a.

d.2) ( ), (%-a),B)—p, as for d.1.2. We therefore have

x.=a
1

p~a ~ ( Z ai(pi-a) + az_a(pi-a))g Z (xi-‘a) for internal «a.
e

x.+ a.=a
1* . 1

Let x = Z @.X. .

a) (x-a,B)— * implies, by 16, that
(x,p) = *. By 5, for alli, (aixi,ﬁ) — *, Thus

() alx;-a)p) = *.

a.¥a
1#

b) ( Z ai(xi-a),ﬁ) - % implies that for all i such that ai#: a,
a.+a
i

(ai(xi-a),ﬂ) — % In this case there is no i such that

ai='p in E a; X . By 2 and 5, (x,B) — *.

¢) (x-a,B) — p implies that (x,B) — p' with p = p’-a,” by 16.
Then 3 some i such that a, = B, and X, = p's and

(ai(xi-a),ﬁ) — p'=a by 16. By 3, ( Z ai(xi'“)'ﬁ) — p'=a.
, a.Fa
i

d) ( Z ai(xi-a),ﬂ) ~ p implies, by 3, that 3 i such that
a.Fa R
i \

a; # a and (ai(xi-a), B) ~~p. By 16, (aixi,ﬁ) -~ p' with |
p = p'-a, and by 3 (p,p) — p'. This gives (p-a,) — p'-a by 16.

p=-a ~ Z a:i(pi-a) for external a.
ai¢a
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We show (xey) - a~ (x-a) @ (y=a) for «a eLx and o g{LY. Because

“of this y-a = y. The case with a eLY and ayé’Lx follows by

symmetry. Case internal a:

a) (xey) - a, ) — * implies either

a.l) ((xey),B) —~ * and (x @y), @) — *, by 15. In this case either

a.l.1) (x,p)==%*,by 12 and as (x,a) = * so (x=a,p) —~*by 15.

By 12, ({x-a) e (y,B) — *.
a.1.2) (y.B) = *. By 13, ((x-a) e (y=a),p) = *.

a.z2) 3 some n > { such that
((xey)ha) =p A" Alp,_(»@) —=p and (p,e)—~* and
(pn,[s) - * by 17.2. By 9 we have (x,B) —-x and
(x,,a) =~x, -+ where p, =x, 0y (as a#Ly).

As (xn,a)—- * and (xn,ﬁ) — * we have by 17.2 that

(x=a,B) = *. By 12, ((x~a) @y,p) = *. Or

a.3) By 17.3 we have a similar chain but with P, in DNF.

Follows a.2) for some CNF component.
b) ((x=a) @y,B) — * implies either
‘b.1) (x-a,p) = *, in which case either

b.1.1) (x,2) = * and (x,B) — * and by 12, (xey,a) = *

and (xevy,B) = *. By 15, ((x ey)-a,B) = *.

b.1.2) 3 some n > 1 such that (x,a)—-xil\---/\ (xn_l.a
(xn,a) = *and (x,p) =%, by 17.2. As

ag‘Ly, by 9 we have
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(xoy,a) = (x; 0y) Avee(x ,0y,02)™ (x o7v)
and ((x_ e y),a) = * and ((x_ey),p) =*. By

17.2, (.(x e y)-a)p) =™ *,

b.1.3)by 17.3 we have a similar chain with DNF X - As

for b.1.2) with a CNF component.
b.2) (y,B) — * and by 13, (xe y,B) — *,

b.2.1) (x,a) = * and as ag’Ly, (xe® y,a) = * and by 15,

((x® y)=a),p) — *.

b.2.2) (x,a) = x Ao A(xn,an —* A (x B) =¥
As azg:’LY then (x@y,a) =x ey A " "A(x oy, a) —=*

and (x_evy,B) = * By 17.2, (x ey)a,p) —= *.
c) ({(x ey)~a,B) — p implies
c.l) (xey,B) —~p' and p = p'-a, by 16.

c.i.1) [3¢’LY and 9 gives
(x,8) —p'" with p' =p'"' ey. By 16,
(x=a, ) = p''=a and as ﬁ;{LY 9 gives
(X~ @ y=a,B) = (p''=a) @ (y=a). Now
(p'' ® y)=a ~ (p''=a) @ (y=a) by an inductive

argument on our indexed definition of ~, as required.
c.1.2) ﬁg’Lx, as for c.1.1) by symmetry using 10.

c.1.3) ad L NL, similar to c.1.1) using .
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c'.Z),z-H some n such that (xo v,a)— X, 0y A cee A
Al(x,_y®y)ha) —x and (x ey,a)—= * and
(xnoy,ﬁ) — p' with p = p'=a. For this (x,oz)—-x1 Ao
A (xn_l.a)—— x ~and (xn,a)—- *, by 9. Now

(xno v,B) = p' in three ways by 9, 10, and 11,

c.2.1) ﬁ{LY and 9 gives (xn,ﬁ) —p'' with p' = p'' @ V.
By 17.1 (x-a,B) = p''~a and as ﬁg{Ly, by 9
(x~c @ y,B) = (p''~a) @ y. Now
(p'' @ y)=a ~ (p''-a) @ ¥ by an inductive argument

on the indexed definition of ~, as required.
c.2.2) B {Lx follows similarly using 10.
c.2.3) Be Lxﬂ LY follows using 11.
d) ((x~-a) @ v,p) — p implies either

d.1) (x=a,p) —p', ﬁ{Ly with p=p' ey, by 9. This arises

with either

d.1.1) (x,pB) —Fp" where p' = p''=a. As BJLY 9 gives
(xey,B) =p'' ey and 16 gives ((x @y)-a,B) —
(p'"' @y)~a. As p = (p''-a) ey then (p''=a) ey ~

(p'' e y)=a by induction on definition of ~.

d.i.a) 3 n where (x, a) =Xy A A (xn_i,a) —-x, and
(xn, a) = * and (xn,ﬁ) — p'' where p' = p''=a.
As a,f:lg{Ly » (xey,a) = (x ey) Ao A (x .y oV )

—~x,ey and (x ey,a) = * and (x_ ey,B) —=p'' ey.

By 17.1, ((x @ y)=a,B) = (p'' ® y)-a. Now
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p=(p'-a)ey ~ (p' @y)-a, by induction on

definitdon of ~ .
d.2) (y,8) —p', B¢ L, follows in a simpler way.

d.3) (x~a,p) —p' and (y,p) =p''. Follows in a similar

manner to d.1).

We now have (x @y)-a ~ (x~a) @y for internal a such tha.ﬁ ad Ly' The

case with ag’Lx follows by symmetry.

Case external @:- Again assume x and y in CNF as laws [- ®] and

[® @] can be used to get this.

a) ((x @ y)=a, B) — * implies by 18 that (x e y,) — * Either

(x,B) = * or (y,B) —*.
a;i) (x,B) = * and by 18, (x~a,p) — * and (x~c @y, p)—%*, by 12.
a.2) (y,p) —=* and by 13, (x-a oy,ﬁ) -,

b) (x-a ® y,p) = #*. By 12 and 13 either

b.1) (x-a,B) = * in which case (x,p) — *, by 18. Then
(xey,B) = * by 12 and ((x ey)-a,B) = * by 18, as a is

external.

b.2) (y.B) = * and so (xe y,B) —* by 13, and

((x @ ¥)=a,B) = * by 18.
c) ((x ey)-a, p) — p implies by 16 that (x ey,p) —p' wherep =p'-a.

c.l) By 9, (x,8) —p'"" and ﬁ{LY withp' =p'' @y then

(x~a,B) = p''-a, by 16 and (x-a ov,B) —(p''-a) ey by9
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Nowp=(p'ey)la~(p''-a) ey by induction on

definition of ~.
¢.2) By 10, (y,B) —p'' and ﬁg’Lx. As for c.1) using 10,
c.3) By i1, (x,p) —p'' and (y,p) —p''' . As for c.1) using 11.
d)‘ ((x=a) ® v, B) — p implies that

d.1) (x-a,f) —p' and {Sg’Ly, with p=p' @ y. By 16 we have
(x,B) = p'' where p' =p''=a. By 9, (xey,B) =p''ey
and by 16 ((xe y)-a,8) =~ (p'' @ y)~a. Now

p=(p''-a)e vy ~ (p'' @ ¥)=a by induction on definition of ~.

d.2) (y,p) —=p' and [3¢Lx’ with p = (x-a) @p' and
((xey),p) = xep', by 10. (xey)-a,) —~(xep')-aby lb.

Now p = (x=a) p' ~(xep')=a by induction on ~.

d.3) (x-a,p) —p' and (y,p) = p'' follows in a similar fashion

to d. 1) using 11.
Now have that (x ey)-a ~ (x-a) e v for external «. The case with
ad Lx’ i.e.., (x @ y)=a ~x @ (y=a) follows by symmetry.
["9] Show (X'QY)-Q ~ (x=a) ® (y-a) for CNF x and v.
a) ((x ®y)=a,f) — * if either
a.1) by 19, (x-a,p) — * and so ((x~a) ® (y-a),p) = *, by 6.2.

or a.2) by 20, (y=a,p) = *. As for a.l)
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b) ((x=a) ® (y~-a), ) — * implies that either

b.1) by 6.2, ((x~a),B) — * hence, ((x=a) ® (y=-a),p) — *, by 19.

b.2)

by 7.2, ({y=a),B) = *. As for b.1).

c) ((x ®y) -a,p) — p implies either

c.l)

for internal or external @ := by 16, (x ® y,p) — p'

with p = p'=a. Either

c.l.1) (x,p) =~ p' by 6.1, and
(x~a, B) = p'~a by 16, and

((x~a) ® (y=a),B) ~=p'-a by 6. 1.
c.1.2) (y,B) —=p' by 7.1. As forc.i.1).

for internal « only:~ by 17.1 3 some n such that

p = p'=a. Either

c.2.1) by 6.1, (%x,a) —p, and by above (x-a, ) = p and

((x=a) ® (x~a),B) = p's by 6.1. Or

c.2.2) by 7.4, (y,a) ~Py- As for c.2.1).

d. ((x=a) ® (y=a), )= p which implies that either

d.1) by 6.1, (x-a,p) == p. Now either

d.1.1) for internal and external o:- by 16, (x%,8) —p'

where p = p'-a. Now (x ®y,p) —=p' by 6.1 and

((x ® y)-a,p) = p by 16.
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A,d' 1.2) for internal @ only:= by 17.1 3 some n such that
(%, ) —~p; A A (pn,p) —= p' where p = p'=-a.
By 6.1, (x® v,a) - P and ((x ® y)=a,pB) —=p
follows by 17. 1.

d.2) by 7.1, (y=a,B) = p. As ford.l). We now have that

(x By)=a ~ (x=a) © (y=-a).

[==] Show x=a-B ~ x-f-a. Case CNF x; thatis, x =Z Yi%;
i
a) Case internal o and B:- (x=a=f,y) — * if either, for CNF x-a,

a.1) by 15, (x=a,y) = {*} and (x-a,8) = {*} for CNF x-a.

Now (x=a,y) = {*} if either

a.1.1) by 15, (x.y) = {*} and (x,e) = {*}. Now
(x=a, B) = {*} if (x,B) = {*} since (p,a) = {*}.
By 15, (x=B,v) = {*} and (x-B,a) = {*} and

(x-B=~a, y) = {*}, by 15 again.

a.1.2) by 17.2, 9 n such that
(x, a) - P, Asse A (pn,a) — % and (pn,Y) — 3,
As (x-a,B) — * and (x, a) — Py i.e., (pra) # {*},
3 m such that (x,a) ~q A /\(qm,a) — * and
(qm,ﬂ) — %, Then, (x=B,y) = *by 17.2. As
(x, @) —~q, A then (x-f, a) —~q B A
(q,-B>a) = * and (q_ -B,y) =%, by 16 and 15 or
19 and 20 depending on whether 9 is in CNF or DNF.

This gives (x=f=a,y) = * by 17.2,
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a.2) by 17.2 § some n such that
(X"Q,ﬁ) —-i-p1 A see A (pn,p) — A (pn, Y) - % and
P, is in CNF. Supposen = 1, then (pl,ﬁ) — % and
(py»y) =~ * and p, is in CNF. Now (x-a,8) =~ p, in

one of two ways:i-

a.2.1) by 16, (x,8) =~ p' and p, = P'~a. Asp'-~ais in

CNF then so is p'. Now (p'~a,p) — * either by

a.2.1.1) (p,p) ={*} and (p',a) = {*} and
(p'=a, y) — * by 15 with (p', y) = {*}
and (p',a) = {*} and by 17.2 and
(x,8) = p', (x-B,y) = {*} and

(=B, @) = {*} and (x-B-a,y) — *, by 15.

or a.2.1.2) Jr such that, by 17.2,
(p'ra) == pyA-eeA (p'r,qz) ={*} and
(p;_,ﬂ) = {*} and (p'=a, y) — * with some
m such that (p', @) —p}A+++ A (p,a) = {*}

and (pl’_n,y) = {*} Neow as

(x,B) = p' we have (x-8, ) "'p'i. By 16,
we have (p'i-ﬁ,a) —-p'z..@ Asee A (p'r..g,a.) =
{=} A (p;n-ﬁ, y) ={*}. Thenr =mas
(pyra) ={*} and (p_, @) = {#} and 17.2

gives (x-f-a) %, as required.
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a“..3)/2_for DNF x-a, then x-a = X, ~a :2] X, -0 fovr 'soine Xy and
x,, by axiom [- ®]. Then (x=-a=,y) — * if either
(xi-a-p,y) — % or (xz-a-ﬁ, y) = *by 19 and 20, and we
can assume X, and x, are in CNF or else we repeat
the above argument. Then it is only necessary to show

(x'=a=f,y) = * for some CNF x' and the other cases

follow by symmetry.

Case internal ¢ and external B:-

(x=a=B,y) = * if (x=a,y) = {*} for CNF x-a. Follows a. 1)

above. Again we only need consider the CNF case.

Case external 8 and internal o:-

Follows by only considering certain of the cases above.

Case external o and external B:-

Here (x-a=f,y) — * if (x-a,Y) = {*} which arises when
(x,y) = {*} by 18. Then (x-B,Y) = {*} and (x-P=a,y) = {*} again by
18 as we only need consider CNF expression. Hence (x-8-a,y) —= *.

We now have completed part a) of the proof.

Part b) follows by symmetry.
C) (x-f-a,y) — p implies either
c.1) by 16, (x-B,y) — p' where p = p' - a implies either

c.1.1) by 16, (x,y) = p'' where p' =p'' =p. By 16,
(x=a, y) = p''-a and (x-a=8,y) — p''-a=-f, by 16 again.

Now p = p''=f=a ~ p''-a-p by an inductive argument on ~,
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c.2) by 17.1, (x-B,a) =py A(pysa) =Py Ave- A (P, Y) =P

where p = p’-a. Suppose n = 1, then (pl, v} = p'. Now

(x=fra) = py if either

c.2.1) by 16, (x, ) --*p'1 with Py = p'l-ﬁ. As

c.2.2)

(P'l'ﬁ» y) = p' then by 16 (P'i:Y) —= p'' where

p' =p''~p. As (x,a) = p) and (p},y) = p'' we get
(x=a, y) =~ p''=a by 17.1 and (x-a=B,y) — p''~a=B. by 16.
Now p = p''=p=a ~ p''=a~f by our inductive

argument on ~. Or

by 17.14, 3 some m where (<, B) — Xy Neee A
(xm, a) *p'l, where Py = p'l-ﬁ and by 16
(x=a,B) —~x, A (xl-a,ﬁ) - x, Aese A (Xm-l-a’ B) pa
Asn=1, (p'l-ﬁ, y) = p' and so (p}, y) = p'' by 16.
As we also have (x_,a) --'-p'l then 17.1 gives
(xm-a. y) = p''-a and by the (x-a,p) —-x, string
above, and 17.1 we get (x-a=B,y) —=p''-a=fB.
Now p = p''=f~a and we use an inductive argument
to get p!''~f-a ~ p''-a=pf. We

We have shown b.2) for n = 2 by showing for
the two ways in which (x-8, y) — Py- For any i,

(pi,a) —-p in a similar way, and so for any n

i+t
we will have 2 X n cases where each is like

c,2.1) or ¢c.2.2). Then for any n, we have c.2).

d) {x-a-p,y) — p follows exactly as ¢) by symmetry.

We now have p-a-f

~ P-B-a, as required.
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ERRATA

Page 7 ‘
line 4 - "ar. + Br." should read "“ar + Bs"
._ 1 2

Page 8
line 2 - "® roots" should read "O roots"

para. 3, line 6 - "event x" should read "event "

Page 9
diagram 1 - The a on the 1eft—hand—s1de of the leftmost box
should be replaced by a vy.
Page 16

para. 2, line 1 - "(a,p,a) = p" should be replaced by

Page 43
line -6 - "ef(I61) pi(i © 1) Fi" should read

1" n

8oy P*aen ¥

Page 45

- - 1t " . "
line 8 ri e 1 should read riel

1"

Page 52
after the last line add in the following:

(/81 (Ep,)is/al =(§(Pi[8/a]))
1

Page 71

line 4 - "the calculus" should be replaced by

"(ap,a) + p

" the A calculus"



