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ABSTRACT 

A formal  sys tem is described within which we may represent  

the communication and concurrency features found in  systems of 

interacting computing agents. This formal system may be used both 

a s  a model in  which to represent  the behaviour of existing systems 

of computing agents o r  a s  a language i n  which to program desired 

systems. The notion of acceptance semantics i s  introduced and it  

is in  t e rms  of this that we give meaning to programs constructed i n  

our  framework. 
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THE REPRESENTATION O F  COMMUNICATION 

AND CONC URRENC Y 

1, INTRODUCTION 

1.1 Description of Systems 

In the study of computation, o r  computer science i f  you like, 

we not only have to l ea rn  how to build systems on which to perform 

computations; we also must know how to describe such systems. 

Formal ism is required to enable us to describe and discuss a 

computation system in a precise and unambiguous manner. Computa- 

tion is a precise science and there i s  li t t le use in only being able to 

describe systems informally. 

When systems a r e  computing, they a r e  performing actions; 

evaluating functions o r  comrnunicating with other systems, for  

instance. The sequence of actions performed by a system i s  i t s  be- 

haviour. It i s  the behaviour of a system which we wish to be  able 

to describe formally. 

We shall use mathematical and logical concepts in  constructing 

a framework in which to describe behaviour. This allows us to 

specify and describe systems in  precise t e rms  and to reason formally 

about their behaviour using mathematical techniques. The specifica- 

tions of a system using a formalism allows one to inform others 

about a system unambiguously. This, together with the ability to 

perform proofs about the behaviour of a system, a r e  two of the main 

reasons we wish formal descriptions. 



In systems where there is a single locus of control, executing 

a program written in a ser ia l  language for instance, we a r e  able to 

describe the behaviour using functions. Either we take the function 

to be  the behaviour itself and so the program denotes the function, 

as in  denotational semantics, o r  the behaviour i s  given in  t e rms  of 

an  abstract  machine which evaluates the program. Here, in this 

operational semantics, we have functions with the state of the 

abstract  machine being the domain and range. 

We wish to produce a formalism in which to represent  the 

behaviour present i n  systems which a r e  composed f rom a number 

of computing agents, either hardware o r  software. These agents will  

operate concurrently and a r e  linked together forming a complex of 

interacting components. Networks, multiprocessor machines and 

concurrent programs fi t  into the above category. Indeed, most systems 

we meet involve some degree of concurrency and so could be  des- 

cribed in  the formalism, o r  specification language, which we construct 

i n  this paper. 

Our Approach 

The formalism presented a ims to allow us to describe complexes 

of computing agents in which communication and concurrency i s  

inherent. The formalism aims to be  both a framework in which to 

represent  the behaviour of existing systems and a language in  which 

to program the desired behaviour of projected systems. I t  i s  believed 

that most existing systems can be represented in  the formalism in  an 

intuitive fashion and that we should find i t  more  natural to program 

c ertain phenomena in our language rather than in existing frameworks. 



We shall use the words framework, formal ism and language inter- 

changeably . 

There a r e  certain features which we require our language to 

clearly represent.  These occur frequently in  systems and include 

the communication between agents, the inherent nondeterminism 

within some agents, and the possibility of deadlock among the complex 

of agents. 

That the language achieves these goals will be  illustrated by 

giving a collection of examples which examine the representation of 

such features in  detail. These examples should also indicate to the 

reader  the underlying philosophy adopted i n  this work. It  i s  hoped to 

be  able to fully justify the choices taken in  arr iving a t  the formal ism 

by use of a se t  of primitive examples. 

The language itself consists of a se t  of operations allowing us 

to construct programs f rom smaller  programs. A number of 

primitive operators gives us the lowest level programs. Each 

operator  should not be considered just by itself but should be  thought 

of in i t s  relation to others, though some have more  significance and 

a r e  indeed more  powerful than others. 

Together with these operators we have a se t  of axioms which 

the programs will satisfy. These axioms permit us to manipulate 

the syntax of programs while preserving their semantics o r  meaning. 
' 

Various properties of programs may be  proved by the use of the axioms. 

To give the semantics of the language we introduce the notion of 

acceptance. The behaviour of a program i s  given by i t s  ability to 



accept, o r  reject, stimuli which a r e  imposed on them. In terms of 

this semantics, we introduce the notions of equivalence and congruence 

between programs and show that our axioms a r e  consistent. This 

experimental semantics i s  operational in  nature; we experiment on 

programs by giving them al l  possible stimuli belonging to a se t  

known a s  a sor t  and see  how the programs react. They can react  

by evolving into a new program o r  by rejecting the stimulus and, i n  

effect, destructing. Due to programs being able to react  to one of a 

number of different stimuli a t  a time, we wish to observe how they 

react  to a l l  possible stimuli. Due to programs having the ability to 

represent nondeterminism, a number of different programs may 

result  f rom some given stimulus. 

In the language, we have features which allow us to distinguish 

between a program which can a t  some instance react  to a number of 

different stimuli and produce (usually) different programs and a 

program which m a y  produce different programs on receipt  of a single 

stimulus. The former  utilizes a choice construct in  the language 

whilst the latter a nondeterminism language construct. 

When programs communicate with others, then they themselves 

resolve the choice which can be made with only one interaction taking 

place a t  a time, but nondeterminism is an internal feature of a 

program and no other program can influence the outcome of a 

communication; the outcome i s  nondeterministic. Nondeterministic 

programs can a r r ive  i n  two ways; they represent  the behaviour of 

possibly physical computing agents which for some reason o r  other 

a r e  intrinsically nondeterministic i n  behaviour; o r  they represent  

complexes of agents where we have abstracted away f rom the programs 



(or par ts  of programs)  which cooperate to resolve a choice, so 

introducing nondeterminism. This situation a r i s e s  where a choice 

could previously have been made but can now no longer be  effected 

since the par t  of the program which participates in the choice has 

been hidden so preventing a choice being made externally to the 

program. 

Communication, and so also our stimuli, take place via 

ports.  If we imagine our program in  reality a s  a machine running 

that, and only that program, the ports a r e  the physical places on 

such machines where the wires between machines plug into. P o ~ t s  

have distinct identities and i t  i s  this which allows us to program 

distinct communications. 

Meaning i s  given to our language using acceptors and this 

semantics should accurately describe the intended behaviour though 

sometimes i n  a rather complex manner. I t  i s  believed that a similar  

semantics which may, in a c lea re r  way, give different meanings to 

the choice and nondeterminism operators,  could be formulated by the 

introduchon of the 0 and 0 modal operators,  capturing the notion of 

"always I f  and If sometimes If respectively. This then gives us the ability 

in our semantics to talk about experiments which "always cantf happen 

and about ones which "possibly may" happen. It would be hoped that 

these two semantics would be equivalent. A formulation of the modal 

semantics and a n  equivalence proof between the semantics remains to 

be  performed. 



2. THE LANGUAGE 

Pr imi t ive  Language Constructs  

To help i l lus t ra te  the concepts which we capture  using the 

language opera tors ,  we introduce synchronisation t r ees  a s  a des-  

cr ipt ive tool. The meaning of ou r  syntax can  then b e  represented  

by t r e e s  and the syntax taken to denote this t r e e  semantics .  We do 

not intend to formal i se  this denotational semant ics ;  only use  i t  to 

explain meaning in t e r m s  of the well-understood notion of t r ees .  

An operational semantics  which gives meaning to p rograms  by 

experimenting upon them, i s  given l a t e r .  

We have three pr imit ive language opera tors ,  the f i r s t  being 

guarding. This takes a program and  appends i n  to something called 

a synchronisation label  to produce a new program.  F o r  label  a, and 

p rogram p then a p  i s  this constructed program.  Labels  for  the 

moment  can  b e  thought of a s  events, with p rograms  being constructed out 

of them using our  ope ra to r s .  Interaction between p rograms  takes 

place using these labels  .' Semantically, p rograms  denote t r e e s  while 

labels  denote named a r c s  on the t ree .  If t r e e  A i s  denoted by  
a 

program p then program a,p denotes the t r e e  , Guarding gives 

us sequentiality. In the above p rogram p follows the a, event. 

We wish p rograms  to b e  ab le  to cooperate  with o thers ,  and 

depending on the o ther  p rograms ,  to be ab le  to pe r fo rm different 

actions.  A choice operat ion + allows this;  i t  takes two p rograms  

and produces another program.  F o r  p rograms  p i  and p2 then p l  + p2 

i s  another such program.  



In  t e r m s  of synchronisation t r e e s ,  the node r ep re sen t s  this 

external ly  reso lvable  choice.  The p r o g r a m  p i  t pZ denotes the t r e e  

A s  a n  example, the two p rog rams  crr and ps a r e  composed to give 

p r o g r a m  cur c p r 2  which denotes t r e e  
1 

Now a p rog ram may ,  for  some  r eason  o r  o ther  (to b e  made  

c l e a r  l a t e r ) ,  nondeterministically wish to pe r fo rm ce r t a in  events,  o r  

to p e r f o r m  s o m e  o ther  events,  but not the i r  union. A p rog ram 

interact ing with, o r  communicating with, this one has no control  a s  

to which of the s e t s  i t  will be ab le  to i n t e r ac t  with; the nondeterminis t ic  

choice will somehow b e  made  internal ly .  F o r  p rog rams  p and p 
1 2' 

the p r o g r a m  p l  9 pz i s  the i r  nondeterminis t ic  composition. The  0 

node i s  used to indicate a nondeterminis t ic  b ranch  in a t r ee .  

p1 8 p2 denotes the t r e e  A 
As an example,  the p rog ram (cup + pq) fI3 Yr denotes the t r e e  



Our t r e e s  a r e  thus bipart i te .  Some a r c s  a r e  not labelled; 

these join @ roots to a nodes. A r c s  joining roots to 0 nodes 

will always b e  labelled. 8 nodes will always have the i r  0 off- 

spring separated f r o m  them by a t  l e a s t  one level  of a nodes. This  

i s  due to us not labelling a r c s  appearing f r o m  0 nodes and the 

associativity of the @ operation. We have t r e e  

r a the r  than the t r e e s  

The a nodes, corresponding to t ,  may have a a s  their  d i r ec t  

descendants since the a r c s  joining these a nodes will always c a r r y  

a label.  

The final pr imit ive opera tor  is a nullary one A .  That  i s ,  A 

takes no arguments ,  and i s  itself a program;  the null program.  A 

r ep resen t s  termination and deadlock. Terminat ion and deadlock a r e  

ve ry  s imi lar  with termination being specified direct ly  a s  a property 

of a single p rogram and deadlock being a proper ty  of a number of 

interact ing p rograms .  An agent which wishes to pe r fo rm event x o r  

event p (to b e  decided on by the environment, i. e . ,  other  p r o g r a m s )  

and in  either case  to then terminate ,  i s  represented  by p rogram 

CYA + PA. The appearance of A represent ing deadlock will b e  descr ibed  

i n  Chapter 5. 

2 . 2  Sor ts  

Imagine a p rogram a s  represent ing a special  purpose machine 

executing that, and only that code. As p rograms  will communicate 



with o the r s  so machines will  communicate  with o the r  machines.  To 

c a r r y  the analogy fur ther ,  we join machines using wi res  over  which 

communications pass .  Each  machine has  a number of ports  which 

can  b e  considered a s  the sockets into which the wi res  a r e  fixed. 

P o r t s  a r e  used to both send and r ece ive  s ignals  and to enable us to 

specify how send and rece ive  por ts  a r e  interlinked, we introduce 

naming on por ts  via labels.  

To i l lus t ra te  the labelling and linkages between machines,  we 

may  picture machines a s  boxes. These  boxes have ports  on the 

periphery,  some of which a r e  labelled. The convention between 

machines is that s imi lar ly  labelled ports  a r e  linked. 

Hence we may get 

We sha l l  permi t  two o r  m o r e  por ts  with the s a m e  label  to be 

joined together and to facil i tate this we move the label to a connector 

between the joined por ts ,  and join on fur ther  por t s  via this connector.  

A connector has  no fur ther  significance. T h r e e  machines,  which can  

b e  thought of a s  being concurrent ly active,  can  be  linked together a s  

follows: 



A set of labels i s  known a s  a sort. Each of the machines, 

o r  boxes above, has a sort  and the program which describes the 

behaviour of each machine will also have a sort. 

The labels which form sorts lie in the name-set A. Every 

program we have will have a sor t  though not a l l  sorts will be made 

explicit. The labels used by a program must lie in i ts  sor t  but the 

sor t  may well contain others . 

Thus, program ap + pq may have the following sorts: {a, a}, 

{a, P, 61, {a, P, &} and many others. The rules for defining programs 

and for constructing programs from programs will tell us what the 

sor t  of a program is. The sort i s  therefore implicit and is given 

by context. 

As A i s  a program then this null program will also have a 

sort.  W e  therefore may have A # A where the two occurrences of A 

may have different sorts. Subscripting of A with i ts  sor t  will some- 

times be used to avoid such problems, but again the context usually 

helps us. 

2 . 3  Machines, Behaviours and Programs 

What i s  the difference between machines, programs and 

behaviours? As we wish to be able to represent both hardware and 

software computing agents without distinction, then to make i t  easier 

to talk about the topology of these concurrent systems, we use the 

physical analogy; machines, ports and wires. A machine, of course, 

has a behaviour given in our formalism, and the machine may be 

realised physically or  by using software; i t  does not concern us which. 



We represent  the behaviour not the implementation which produces 

that behaviour . 

Conceptually we a r e  producing a formalism in  which to both 

represent  concurrent systems and to program concurrent systems. What 

a representation and a program have in  common i s  behaviour, o r  to 

use another word, meaning. . The representation o r  model a ims a t  

capturing the underlying behaviour of the system; the program i s  a 

representation o r  a denotation of an intended behaviour. In fact, we 

will model a concurrent system using a program and the behaviour 

of the system is then given in  t e rms  of a formal semantics for  the 

language in which the program i s  written. Formally, a model i s  

designed with respect  to the properties we wish to represent.  In our 

case  i t  i s  qualitative concepts such a s  termination, deadlock and 

equivalence but other properties may be modelled. F o r  instance, 

we have performance models of operating systems using queuing 

techniques and simulation. We can also have such quantitative models 

a s  in  the realm of complexity theory. We do not concern ourselves 

with these two la t ter  types of properties. 

We use the word model i n  the sense of quantitative representa- 

tion. To model a complex of interlinked computing agents requires 

us to represent  the complex by some syntax; namely, a program. 

To specify the behaviour of this program requires that we have a 

semantics fo r  the language in  which the program i s  constructed. This 

semantics gives meaning to the program. Thus the representation of 

some particular computing agent, o r  complex of computing agents, 

consists of a program and the semantics of the language. We can 

then reason about properties of the r ea l  system by reasoning about 

their representations in  our formalism; our model. 
11 



The model we describe i n  this paper consists of a language 

and a semantics for the language. We model the behaviour of a 

complex of agents via a program in  our language. Its behaviour, 

and so that of the complex, i s  given by the formal  semantics of the 

language. 

Our language for complexes of a single computing agent has 

been described so far. This sequential language i s  extended to deal 

with a world of concurrently active computing agents; complexes with 

m o r e  than one agent, This is dealt with la ter  but first we will give 

an operational semantics for  the language defined so far. 

2.4 Acceptance Semantics 

We have informally described the properties of single computing 

agents which our formalism may represent. We will now formally 

give the semantics of our syntactic constructs using the no tion of 

acceptors. Our operational s.emantics is then what we shall call  an  

acceptance semantics. 

Definition. F o r  every subset L of a name-set A then L is 

known a s  a sort.  The acceptance semantics is given by an acceptance 

relation of type 

(PROG X A )  X (PROG U {*I) 

where PROG i s  the se t  of programs to be  the words algebra WZ 

formed from the signature Z where 

Z = A U { A ,  + ,  @,.  , - )  



A is a nullary operator and A i s  a set  of unary operators known as  

labels. + , fD and e a r e  al l  binary operators while for X ranging 

over A then - X i s  a unary operator. The set PROG may be 

partitioned according to sort  such that PROG = U PROGL 
v 

PROG is  then the union of all  phyla PROGL for all sorts L; 

that is ,  for all  subsets L of the name-set A. 

Our acceptance relation between (PROG X A)  and (PROG U {*I) 
will be restricted to taking (program, label) pairs where the labels 

lie in the sor t  of the program. The relation i s  undefined for 

(program label) pairs where the label lies outside the sort  of the 

program. 

Technically, we could have effected this by having a family of 

relations, one relation for each sort. Then for each sort  L we have 

a relation of type 

It  will generally be understood what the sort  of a given program i s  

and thus we need not usually explicitly specify it. 

The symbol * i s  not in the syntax of the language but i s  a 

meta-symbol used in  the semantics. 

Meaning i s  given operationally to programs in our language 

using the family of acceptance relations. A program and a label 

from i ts  sort  will produce either a new program or  the symbol * 

under the relation. An experiment i s  performed here in that a label 



is given to a program and the resulting program (or *) indicates how 

the original program reacts to the stimulus of the label. 

For  programs p, p1 E PROGL and label & E L then the 

relation ( (p, &), p t )  for sor t  L i s  written as  

and indicates that after an  & stimulus the prograzn p evolves into 

program pt .  Our relation can be thought of as  defining an acceptor; 

here  program p accepts & and evolves to program p' . 

L 
If (p, & )  - * then under our & stimulus p produces * ; i t  does 

not accept the & and so does not produce a new program. The label 

I has not been rejected though; program p has evolved into a 

degenerate state on receipt of the & stimulus. 

The sort  of a program will generally be understood and i t  will 

usually not be necessary to put a sort  superfix on the symbol --, as 

mentioned previously . 

For any program/label pair a number of outcomes may result; 

the inherent nondeterminism of the language may cause different 

programs to result when the same original program is provided with 

the same stimulus label. But whether a program i s  nondeterministic 

o r  not, to fully specify i ts  meaning we need to see how it reacts to 

al l  possible stimuli contained in i ts  sort. 

The semantics of programs constructed from the signature 

set  L U { A ,  + , 9) tor some, L A is given by the smallest relation 

satisfying 



for cr and p ranging over L 

(p, a) " * 
6 . 2  

(P @q,cr) -- = 

All  relation symbols - could have had L as superfix. We therefore 

see that the following programs all have the same sort  L where a, E L ;  

It should be pointed out that $I i s  a member of L since (cup,@) - *. 
If p # L then the relation for (cup, P)  would be undefined. 

A here i s  of sort  L but we will have a A for each possible 

sort. To be more precise, we should have a collection of them each 

subscripted by i ts  sort, but once again, we trust the context to keep 

us right and so avoid the need for these subscripts. 

15 



We have defined the semantics for a primitive language not 

having the ability to represent concurrency and communication. This 

comes later. First  we shall explain the intuition behind our definition 

of the relations used in our acceptance semantics. 

Program crp accepts an cr label and 

e ~ l v e s  to program p. That is, an a! 

stimulus is  given to crp and program 

p results. 

Program crp when given a f3 stimulus 

does not accept it. 

If program p can accept an cr label 

and evolve to p1 then so can program 

p+q. Clause 4 is  similar. 

(p, - * A (q, a) - * 
5. 

(p+q, ) - lr If both programs p and q can fail 

when given an cu stimulus, then p i- q 

can also fail to accept an a. 

If program p receives an cr stimulus 

and evolves either to program p1 or  

to * (where pt # *) then so also does 

p @q. Clauses 7.1 and '9.2 are  similar. 

The A program cannot accept any label. 

It will produce * on all stimuli. 



In our language we shall wish to say which programs a r e  

equivalent, that i s ,  which programs behave similarly. F o r  two 

programs p and q, we say they a r e  equivalent if they produce 

equivalent programs given the same stimulus, for a l l  stimuli i n  their 

sorts .  Also, for a given stimulus, i f  * results,  then * must result  

when a n  equivalent program gets given the same stimulus. 

Definition, Programs p and q of sor t  L a r e  equivalent 

written p z q, iff Y a EL. We have 

a )  (p, a)  - * * (q, a )  - * 
b)  - *  - ( p , d  - * 
C )  (p, a)  - pf 3 3 qt such that (q, a) - q f  and (pt = qf  ) 

d) (q, a )  - qt 3 p' such that (p, a )  - pt and (p' = q ' )  

This definition of equivalence i s  recursive but is adequate for finite 

programs. Finite programs terminate using A. 

To handle recursively defined programs, we introduce a new 

equivalence - where - is taken to be  the intersection of ascending 

indexed relations -n. Thus - is defined to be I;! (mn) where pW0q 

always holds and for programs p and q of so r t  L 

fa -n+i 
q iff Y ~ E L .  

a) (p, a)  - * ==;> (q, a) - * 
b )  (q,cu) - * * ,,p,a) - * 
C )  (p ,a)  - p f  s j q  such that (q,cu) - q t  and pf - q f  

n 

d)  (% -c q' * 3 p such that (p, a )  - pt and pf - q '  n 



We will perform induction on the lfdepthll of the equivalence - 
when proving two programs p and q equivalent. 

Later we shall prove that - i s  actually a congruence. That is, 

f o r  all contexts C which can be constructed in our language, then 

A context i s  a program with a lrholell in it. C [ p ]  has this hole 

replaced by program p. 



3. INTERACTION BETWEEN PROGRAMS 

3. i Interaction Between Machines 

Until now we have only concerned ourselves with the behaviour 

of a single machine. We now introduce language features which 

allow us to represent systems of machines. These machines will 

compute concurrently and will interact with each other by synchronised 

cormunication from time to time. 

The behaviour which we capture in this framework i s  that of 

programs, or  other computing agents, being given an external 

stimulus and evolving into some new program. The formal semantics 

of the "single component" language presented so far relies on this 

notion of stimulus. A stimulus i s  accepted and either produces a 

new program, or causes failure and so prevents any other stimuli 

from being accepted. Note that a program can always accept a 

stimuli but that i t  may well cause failure. Suppose the machine has 

behaviour denoted by program ap t pq. Then i t  can receive a stimulus 

a t  port a and evolve into a new behaviour denoted by program p or i t  

can receive stimulus at port p and evolve to program q. The 

environment only sends one stimulus a t  a time but regardless of 

whether i t  i s  an a or  p the program can respond and evolve to sub- 

programs p and q respectively. 

We have assumed that these stimuli a r e  produced by the 

environment and our semantics says what happens to a program 

when they a r e  accepted. The environment may well be another 

program, and so programs not only have the ability to receive stimuli 

but have the ability to generate stimuli. 



Now the environment can  a l so  b e  thought of a s  a machine E 

generating stimuli  on the various "linesrf connecting i t  with machine 

M. When a synchronisation takes place the two machines M and E 

which a r e  concurrently running programs,  m a y  exchange s t imul i  on 

one, and only one, of the l ines  and their  behaviours,  r ep resen ted  by 

p rograms  m and e evolve into new p rograms  m '  and a ' .  

In our  language, we sha l l  not distinguish between generated 

and received stimuli. The r eason  fo r  this is that we a r e  in te res ted  

in  how the s t imuli  synchronise a t  instances i n  the l i fe  of our  system. 

The  generation and receipt  of a s t imulus  i s  considered a s  an  ins tan- 

taneous ac t  between p rograms .  This ac t  r equ i re s  synchronisation 

between the participating p rograms .  Synchronisation can therefore 

b e  thought of a s  a n  instantaneous exchange of s t imuli  with only one 

such synchronisation taking place a t  a t ime.  

E a r l i e r  we showed how p r o g r a m s  may b e  pictured a s  machines 

having ports.  The por ts  a r e  used to link machines together to f o r m  

complexes,  o r  sys tems,  of machines.  The convention adopted is 

that similarly labelled por ts  get joined through a connector node. 

F o r  machines M, N and 0 as follows: 

they link together to give the following complex: - 



We see that M, N and 0 have made a three-way linkage using 

a! ports and a two-way linkage via the y ports. The P and 6 ports 

still have not been connected but they, a s  well a s  the a ,and y 

connectors, can be used to attach further machines. 

We now have a convention for representing the communication 

structure of a system. But this i s  purely static as we have not 

specified the behaviour of the complex of machines; we have not 

said how they use the communication lines to exchange stimuli among 

themselves . 

If m, n and o a r e  the programs in our language which specify 

M, N and 0-the programs running on M, N and 0 i f  you like--then 

the composite system is m* n@o. How does this composition 

operation work? That i s ,  what a r e  i ts  semantics? 

For  programs p and q of sorts L and L respectively: 
P 9 



The relation below the line in each of these clauses should 

have L U L superscripted on the operator, but we know implicitly 
P 9 

that the sort  of peq i s  the union of the sorts of i ts  components. 

To explain how p q  behaves in terms of acceptor semantics, 

f i r s t  note that we a r e  considering p and q a s  two concurrently active 

programs which either communicate with each other by the exchange 

of stimuli or attempt to interact with the environment, i. e., receive 

a stimulus from the environment, 

The first  clause, clause 9, states that i f  p accepts an a, 

stimulus which does not result in *, say program p, and i f  a, i s  not 

a member of the sort  of q, then p q  accepts an a, stimulus and evolves 

into poq. Here, program p evolves to pf after accepting an a, 

stimulus but q does not progress due to the a, stimulus. Hence peq 

evolves to p'oq on receipt of an a, stimulus. Those labels in the sort  

of p but not in the sort of q a r e  said to be external, thus a, i s  an 

external label. The external stimulus, an a, in this case, appears 

from the environment and not from the other program q; i t  i s  there- 

fore external to the composite program poq. 

Clause 10 gives meaning to external stimuli via labels lying in 

the sort of q but not in  the sor t  of p. 

Clause 1 1  states that i f  p accepts an a, stimulus and evolves to 

pi and q accepts an a, stimulus and evolves to qf  with p' and qf not 

being * then paq will accept an a, stimulus and evolves to program 

pioql. Here the a, i s  an internal label; i t  lies in the intersection of 

the sorts of p and q, The two programs p and q synchronise on 

label a, and exchange their a, stimuli allowing both to evolve into the 



new programs pf and q' .  These two programs a r e  similarly composed 

using l to give what peq  evolves to. The clause 
* 

(p.q, a) - * states 

that i f  p on receipt of an  a stimulus evolves to * then p q on receipt 

of a stimulus also evolves to *. 

If a is external to peq  then a, will not be  in  the sor t  of q. 

Thus i f  p on receipt of a, cannot produce a new program then paq 

cannot produce a new program given the same stimulus. We therefore 

get * a s  a result.  Of course, program p may involve the nondeter- 

ministic operator so p may give a new program a s  well on receipt of 

a n  a. Clause 9 deals with this case. 

If a, is internal to paq  then a, l ies  in the sor t  of both p and q. 

If p produces 9 on receipt of an a then so also will peq  since regard- 

l e s s  of whether q gives a new program o r  * on receipt of a n  a,, p 

will give *. Of course, p may a lso  produce a new program p1 on 

receipt of a, which would be  due to the presence of our nondeterminism 

construct. In this case  either clause i i  would give a new program i f  

q produces a program when given an a stimulus, o r  the dual of this 

clause would give a n  * as the result  i f  q gives * on receipt of an a. 

, 2  A Derived Operator 

Using our se t  of primitive operators over sorts ,  we may define 

other operators to simplify programs which a r e  constructed in some 

common fashion. These derived operators may also be used to help 

i l lustrate how certain phenomena which a r e  met in a concurrent world 

a r e  represented in our language, 



As an  example of this, we define a polyadic composition 

operation using our binary concurrent composition operator 0 . 
will be a sorted operator of so r t  L i  X LZ X * X Ln - Li  

L2 
. . . 

Ln, 
for n arguments. is defined by: 

Why do we wish such an  operator? 

We introduce kt because i t  helps to indicate the multiway 

synchronisation performed when we compose two o r  more programs 

using . An n-way synchronisation is represented by repeatedly 

applying the binary operator to n o r  more programs, but we can 

imagine that with the rr operator this n-way synchronisation i s  per-  

formed a s  a single act. In fact, we can directly define a polyadic 

operator which does just this (rather than rr which i s  a derived 

operator)  and which has a s  i t s  2-argument instance but for technical 

reasons our binary i s  preferred a s  a primitive in our language. 

3 . 3  Propert ies of the Language 

Using the language features introduced so far, we can construct 

programs and give their meaning using our acceptance semantics. 

Our understanding of how these language features were derived, i. e., 

i n  t e rms  of stimuli, leads us to require that these language constructs 

possess certain features; that they satisfy certain laws. F i r s t  le t  us 

introduce the notion of normal fo rm programs. 



Definition: A p r o g r a m  is i n  CNF,  (Conjunctive Norma l  F o r m ) ,  if 

e i t he r  i t  is cons t ruc ted  f r o m  C N F  subprog rams  using 

only the  choice  o p e r a t o r  o r  it is cons t ruc ted  f r o m  a 

s u b p r o g r a m  and a l abe l  us ing t he  guarding ope ra to r  

Examples :  (ap  B pq) t y r  is not i n  C N F  

s ince  cup B) pq is not i n  C N F  

( a p  + pq) t y r  is i n  C N F  

&(ap  B p q )  + y r  is i n  C N F  

Definition: A p r o g r a m  is i n  DNF, (Disjunctive Norma l  F o r m ) ,  if i t  

is cons t ruc ted  f r o m  s u b p r o g r a m s  using the nondeter  

mina t ion  ope ra to r .  

Example  s : ( ap  B pq) + yr  is i n  DNF 

even  though ~llp @ Pq is in DNF 

(crp t Pq) B y r  is i n  DNF 

&(crp t P q )  B y r  is i n  DNF 

Definition: A p r o g r a m  is i n  n o r m a l  f o r m  if i t  i s  i n  C N F  o r  DNF and  

i t s  component s u b p r o g r a m s  a r e  in  no rma l  f o r m .  

Note tha t  the p r o g r a m  (ap  BPq)  + y r  i s  ne i ther  i n  C N F  o r  

DNF. It is thus  not i n  f o r m a l  f o r m .  



A CNF program can be written a s  z aipi where 

i 

z uipi = alp1 t *-• + "nPn and a D N F  program can be written a s  

i = l ,  n 

a i p i = a l p l  O * * -  %P,= 
The empty sum z = A; so A i s  the 

i=l, n i 

identity for t . 

3.4 Program Axioms 

Here we l i s t  certain laws which our language constructs satisfy 

and explain why we require them. Thinking of our language a s  a 

word algebra W where Z = A U { t , 8, A, we may take these 
=1 

laws to be axioms. 

x t x .  x idempo tency 

[t2] X + Y  = X + Y  commutativity 

[+A] x t A =  x identity 

In  the above laws x,y,  z a r e  a l l  CNF programs; they do not have 

operation B outermost. 

We have the idempotency of our choice operation t because to 

any program interacting with x t x then the two copies behave just a s  

i f  one were present; the commutativity of + since the o rder  of possible 

choices should be immaterial ;  the associativity of t since we wish to 

allow for more  than two choices to be  made a t  certain times; the 

identity since nothing may in teract  with A .  



[O i l  X O X  = x idempo t ent 

[o,] x ~ y  = y ~ x  commutative 

IO Q] x Q(y E! z) = (x O y) B x associative 

[t @ I  x t (y@ z) = (xty)  8 (x t z )  t distributes over O 

[ a O t ]  a x t a y  = a x 8 a y  

[ B B t ]  x @ y O ( x t y )  = x B y  

Note that A i s  not an identity for O, but just for  t. 

We have the idempotency of B since no matter  which sub- 

program the program x @ x nondeterministically gives us, then they 

a r e  the same, i .e . ,  x; commutivity since our nondeterminism 

operator should t rea t  i t s  operands in an unordered fashion; associativity 

since we with to program agents having more  than two possible 

behaviours. 

We allow distributivity x t (y O z)  = (xty)  @ (x t z )  since the left- 

hand side says that i t  will accept the stimuli due to subprogram x but 

only accept the stimuli due to one o r  other of y o r  z and we do not 

know which. The right hand side says that we can  accept the stimuli 

due to x and y o r  accept the stimuli due to x and z but not both. That 

is, both sides of the axiom state that the interactions contributed by x 

a r e  always present together with either those of y o r  z and we do not 

know which. 

We allow that ax  + ay = ax  Bay since i f  an  a stimulus i s  given 

to either side of the axiom either x o r  y i s  the resulting program and 

the a! stimulus has no control over which one results .  



I t  may be  supposed that we would also have the axiom 

ax B a y  = a ( x 8  y), that i s ,  guarding distributing over @. But the 

left-hand side nondeterministically gives us programs x o r  y on 

receipt of an  z stimulus, i. e.,  af ter  an a communication, whilst the 

right-hand side deterministically gives us the nondeterministic 

program x By.  In terms of our acceptance semantics these programs 

a r e  not equivalent since x i s  not equivalent to x 8 y ,  and y i s  not 

equivalent to xBy.  The problem here  i s  due to the different "levels" 

the nondeterminism appears at. Intuitively we would like the axiom 

a x  B ay  = a(x @ y) but to ensure that a x 8  ay  - a(x f8 y) would require a 

change in our acceptance semantics. We will not do this. 

We have axiom [fD 8 t ] since x @ y tB (xty)  reacts  in the same 

way a s  x@ y to a given stimulus. If some stimulus a gets nondeter- 

ministically sent t o  x ty  o r  x o r  y then the program (or *) which 

results  will be the same a s  i f  i t  were nondeterministically sent to 

just x o r  y. The possible outcomes of x t y  a r e  a subset of those 

for  x @ y .  The only way they differ is that xiBy may produce a n  * 

where x + y  would not. 

We have previously mentioned that we may introduce so 

that a.p. = alp1 t a2p2. 
1 1  

Similarly, aipi = a lp B a2p2. NOW 
i= 1, 2 i= 1, 2 

(= A) is the identity for + and similarly, 8 (# A) i s  the identity for 

O and + . and a r e  the tlemptyft choice and nondeterminism 

operators respectively and a r e  meta-symbols which do not appear 

explicitly in our language but rnay be used for convenience. They a r e  

derived operators which sugar our  language. 



In the above we allow + to distribute over @ but not vice-versa. 

The reason for this is that i f  we have both: 

the existing law (I) x + (y B z) = (x t y) a (x + 2)  

and i t s  dual (11) x 9 (y + z )  = (x 9 y) t (x @ Z )  

then we produce an inconsistency i n  our se t  of axioms. An example 

illustrates this: 

= ( a p l @ P ~ 2 )  t (apl@yq) + (yq@Pp2) + ( y q 9  yq) by (II) 

= (rrp1@Pp2) + (yqB(apltPp2)) + yq by t assoc. ,  (II) and B indempotency 

= [(aPlfBf3p2) yq@(apl +f3p2) by + asaoc. and comrn. I 
Now this i s  our f i r s t  line composed with [yq 9 (ap1+pp2) ] using t , 

F o r  this to hold either [yq 9 (apl+ pp2)] = A ,  which i t  patently i s  not. 

and the identity law is used; o r  yq 9 (apl+ pp ) i s  either equal to, 
2 

o r  i s  a subDNF sum of (apl@ pp2) + yq, which i s  also 

false since the left-hand side has that a y communication may 

possibly take place whilst the left-hand side says that i t  always can 

take place when provided with a y stimulus, and idempotency would 

be used. Since we wish to allow law (I) then law (11) must produce 

this inconsistency and so (PI) must be false. Note that p is a subDNF 

sum of q i f  every DNF clause i n  p i s  also a DNF clause in  q. 



W e  allow guarding to dis t r ibute  over  fD but not over  + . The 

reason  for  this  is  that B and t a r e  c l ea r ly  dis t inct  a s  explained i n  

Chapter  1 and so  x B y  # x t y provided x # y. Now a ( x  e)  y )  # cr(xty) 

since following a n  cr communication the left-hand s ide can  p e r f o r m  

the communications of e i ther  the x o r  y subprograms but we non- 

determinis t ical ly  do not know which, whilst on the right-hand s ide  

any of the x and y communications may take place. 

As a ( x  Q y )  = axe) cry = ax t ay  using our  axioms then a x  +cry # 

Q(X t y) .  

Using our  acceptance semantics  we can easi ly  show that 

x 63 ( y i z )  and ( x B y )  + ( x O  z )  a r e  not equivalent and that ax  +cuy and 

~ ( x ~ y )  a r e  also not equivalent. 

Now we introduce the axioms involving our  concurrency 

opera tor .  

[ m i ]  x o x  = x idempotent, for x i n  C N F  

[ a 2 ]  x a y  = y.x commutative 

[.a] x a ( y . z )  = (x.y).z associat ive 

[e t 1 for  x = C pixi, 

[OBI x o  (y O z )  = x e y  Q x a  z where  x has  s o r t  L and y has  s o r t  1 

distr ibutes  over  Q. 
3'3 



Note that we normally do not need to subscript l a s  the sorts 

of i ts  components will be understood. The [ o  + ]  law gives z(= A) i f  

there exists no y., p. such that pi i~ or p. # L or pi = pj.. A will  
1 J J 

represent deadlock between the two components p and q. 

We have the idempotency law for our concurrency operator l 

since identical programs will give stimulus to each other using all 

their labels leaving us with an identical program. This is  the case 

provided that the component programs a r e  in CNF, i. e., there i s  no 

G3 outermost. We do not have idempotency with DNF programs; 

consider (x 8 y) l (x 8 y) under axiom [ l 83 1. 

We have commutativity and associativity for l since it should 

be irrelevant the order in which component programs a re  composed. 

For  p and q in CNF then p a  q should also be in CNF constructed 

out of guards whose labels a r e  external to po q and guards whose labels 
- 

a r e  internal to po q. The yi(pi l q) clause contributes to po q 
LM 

those guards who appear in p but whose labels do not appear in the 

sor t  of q. Since only the p participates in this then the resulting 

program composed with the label i s  pi l q . Similarly for labels 
LM 

in guards of q which a r e  not in the sort of p. Finally, the clause 

p.(p. l 9.) contributes to p o q  a guard whose label is the same 
1 1LM 3 

Pj 

a s  guards appearing in p and in q and as  both p and q participate in 

this synchronisation the program p. l q results which i s  composed by 
1 j 

the guarding operation with label y. Hence p and q have synchronised, 

exchanged pi stimuli, and have evolved to programs pi and q. which a r e  
J 

recursively composed by the a operation. 



If ( I )  we do not have any labels pi in guards of program p such 

that pi f M, the sor t  of q; 4 i f  ( 2 )  we do not have any labels p. in 
J 

guards of q such that p. {L, the sor t  of p; _and i f  ( 3 )  there a r e  no 
3 

guards in p and in q having the same label then p e q = , the 
LM 

"empty sum" which i s  the nullary operator A .  A has sort L U M 

and we can note that i s  the only operation so far which changes 

sorts;  by unioning the sorts of the components. The operations 

defined so far a r e  sorted as  follows: 

a : L - L where a EL 

+ : L X L  --L 

Finally, the ( 0  tB ] law is present since p running concurrently 

with program q ff) r means that p will actually run concurrently with  

either subprogram q or subprogram r and we 

do not know which. (p q) 83 (pm r )  i s  the program where either p 

runs with q or p runs with r and the decision i s  made nondetermin- 

i s tic ally. 

We have justified the laws, o r  axioms, informally. In a later 

chapter we prove that the laws actually hold with respect to our 

acceptance semantics. Thus, for the laws above, the left-hand side 

has the same meaning as  the right-hand side and so we can quite 

happily use the laws to replace programs by semantically equivalent 

programs in any program context without changing the complete program 

meaning. This i s  the case since the laws satisfy our notion of equiva- 

lence which also happens to be a congruence. 
32 



In  t e rms  of the acceptance semantics and our notion of equi- 

valence, we can prove that the following do hold: 

x q y + e )  = ( x a y )  t ( x B z )  and a ( x t y )  = a x t a y  . 

We have previously informally justified them a s  not being axioms in  

our  language. 

Two further operations require to be introduced into our 

language but we f i rs t  introduce recursion and recursive definitions. 

These allow us to produce some interesting example programs using 

our language. 



4. IDENTIFLERS, DECLARATIONS AND EXAMPLES 

4.1 Identifiers and Declarations 

To allow us to give practical examples, we extend the language 

wzl 
by giving i t  the ability to handle data structures. This does not 

change any of the preceding language philosophy but allows us to 

program, that isst0 represent the behaviour of computing agents such as  

registers, memories, stacks and queues. 

Let us introduce a set of identifiers I written using capitals, 

with which to name programs, and a constructor = to bind programs 

to identifiers. We therefore have our new language, the word algebra 

W where 
% 

The = operation is of type I X Prog - Dec. An identifier in  

p ~ P r o g  i s  either the identifier currently being bound to p or else has 

previously been bound in p. The identifier after binding then names 

a program and thus has a sort, the same a s  the program. There a r e  

no restrictions on the sort  of programs which we can bind with 

identifiers . 

For ID €1 and p E Prog we give meaning to a declaration by 

extending our acceptance semantics: 

2 1. 

This construct permits us to define recursive programs, i .e. ,  P=cxP. 



Now we assume that after this declaration P identifies and has 

the same behaviour as aP. The declaration itself i s  not a program 

and we must  compose i t  with a program to form a new program. We 

introduce a new operator where giving the alphabet 2 - X 2  u {where ) . 
3 - 

Composing a declaration with a program uses the where operation, 

of type: 

(Progi  x Dec) - ProgZ 

Note that an  identifier may not appear a s  a member of Progl unless 

i t  has previously been declared by some member of Dec. Declarations 

and the use of where a r e  really not necessary to our language and 

"sugaru i t  to make programs read more  easily. 

We can have the following programs: 

a P  t 6A where P =  aP t p A  

We assume here  that the operators in alphabet Zl  bind more  

strongly than where, which in  turn binds more strongly than = . 

We may also nest declarations to get: 

P e Q  where P = a P  + F A  where Q = a A  

A derived operation and of type Dec X Dec - Dec can be defined as :  - 

d ef 
d l  d2 = di  where d 2 .  



The acceptance semantics for the extended language W is as for W 
r=3 x 2  

with the addition of clause 22. 

Let {m/n} be the substitution operation in our semantics (not 

i n  our syntax) such that n gets replaced by m,  then 

2 2 .  

(p where n = m , a )  P' 

4 . 2  Data Structures 

The ability to identify a program with a name allows us not only 

to write recursive programs but to introduce data structures.  To 

effect the lat ter  we allow identifiers to be not just names but names 

parameterised on some data structure. 

We a r e  not able to represent  the communication of values in  

our language; we only can communicate, o r  synchronise, stimuli and 

this interaction indicates no more  than that a synchronisation between 

two (or more)  programs has taken place. F o r  this reason our data 

structures will contain only boolean ~ l u e s  though other types of values 

may be simulated. 

Consider a boolean register .  What behaviour does i t  have? 

Well, if it is nonempty i t  can output i t s  contents which ~ 5 1 %  

then remain unchanged o r  i t  can output a new boolean value and replace 

i t s  contents by this new value. 

Such a behaviour is given by a program identified by REG of 

sor t  {cis go, ri, co}.  

36 



REG = El  REG(1)  + go REG(0) where 

This declaration can of course be combined with another program 

using the where operation. 

A program REG i s  the initially empty register which can 

therefor only input a 1, represented by a stimulus at  the port, 

o r  a 0 represented by a stimulus at  the E port. Since we cannot 
0 

communicate the values 1 and 0 we have two separate ports which 

allow 1 or 0 stimuli to be effected, and so we have two input lines 

connecting this register program with other programs. W e  also have 

two output ports cri  and uo , since once a value has been loaded into 

the register our program must also have the ability to output the 

contents as well a s  load new contents. The identifiers REG(Q) and 

REG(1)  identify register programs whose contents a r e  0 and 1 

respectively, the former being able to synchronise through the oo 

port and the latter through the u1 port. This represents a 0 and 1 

being output respectively. 

In the above we have two input and two output ports represent- 

ing the input and output of 1 's  and Ofs. Conceptually we have only two 

ports & and u with the index indicating the value to be communicated. 

When lfsimulatingfl value communications like this, we do not distinguish 

between a sender and receiver. In fact, since more than two 

programs may synchronise on a particular label, this multiway 

synchrogisation permits us to represent the broadcasting of a value to 

a number of different programs. 
37 



4 . 3  Other Examples 

Memories. 

We can construct memories out of registers. To do this we 

must give each register a separate identity. Let  REG^ be of sort  

{cis & i , r i ,  ri 1 
1 0  1 0  

and so let  i t  be defined a s  for REG but with label 

changes. Then define MEM a memory of sort u (st, c:, ri, st} 
i= i ,n 

I 2 
MEM = REG a REG 8 where "'. 

An operation to produce instances of a generic program, will be 

introduced later. As the REG'S in MEM have disjoint sorts they 

a r e  not connected by the concurrency operation. 

Stacks 

We saw that a register was defined using an identifier param- 

eterised on a tuple (or string) o r  booleans. A stack of sor t  

{ 60, bi, rO, r1 } may be defined by: 

where STACK(0 On) = oo STACK(n) + 6O STACK(0 0 n) 

and STACK(1 n) = ri  STACK(n) + 60 STACK(1 n 0 n) - 



Here  E; is the empty string. Note that we do capture  the behaviour of 

a s tack h e r e  a s  1 ' s  and 0's a r e  "putff'  on and "takenu off the top of the  

stack. A queue m a y  b e  defined s imi lar ly  but  we Ifputt1 on a different 

end of the s tr ing f r o m  where  we "takeN off. 

Counters 

A counter COUNT(i), parameter ised  on  integer  i, will have s o r t  

{up, down, ze ro  }. As we do not (yet! ) have a conditional construct  

i n  our  language we define COUNT(i) by use  of two clauses 

COUNT(0) = zero  COUNT(0) t up COUNT(1) 

and - 

COUNT(nt1) = down COUNT(n) t up COUNT(nc2) 

This  counter keeps t r ack  of the number of ups that exceed the number 

of downs. 

An al ternat ive counter may count negatives a s  well. Let  us 

ca l l  this p rogram COUNTER(i) where  i is the number of ups minus 

the number of downs. It will have s o r t  {up,down). 

COUNTER(n) = up COUNTER(nt1) t down COUNTER(n-1) 

It is the environment which generates  the up and down st imuli  and the 

COUNTER program will cooperate with whatever is i n  the environment 

to synchronise on a stimulus and evolve to a new program. We may  



wish the environment to interrogate the counter and discover i ts  

contents. As we have no value-passing mechanism i n  our language 

(unlike CSP, for instance) we have problems in  getting the value of 

the contents ffout." If we allow our counter to be  bounded then we 

can have an out label for each integer. That i s ,  a separate output 

line corresponds to each integer and i f  a synchronisation is made on 

one of these lines by some other program we may assume that this 

program now knows the contents of the counter. 

Suppose our counter only counts positively, a s  COUNT(i), and 

has a maximum of m. Then COUNTM(i) will have sor t  {contents, up, 

down, out , out , out } and is defined by: 
0 I' m 

COUNTM(0) = contents out COUNTM(0) t up COUNTM(1) 
0 

'and - 

COUNTM(m) = contents out, COUNTM(m) t down COUNTM(m-I) 

and - 

COUNTM(m-I) = contents out 
m- I 

COUNTM(m-2) 

+ up COUNTM(m) 

+ down COUNTM(m-2) 

The contents guard is really redundant since the interrogating 

program which we would compose with COUNTM using i must be 

able to synchronise on a l l  of out0, "',outm so that i t  will know the 
> 



contents. Leaving the contents guard out has the same effect. We 

do not need a special label for zero contents; out i s  suitable. 
0 

The language may be extended to allow values to be communi- 

cated whenever a synchronisation takes place. This opens up a much 

larger class of examples which can be easily programmed. As we 

a r e  interested in the synchronisation and nondeterministic aspects of 

. our language; we omit the ~ l u e - p a s s i n g  features for the meantime. 

4.4 The Dining Philosophers Problem 

In this example we have two types of computing agents, 

philosophers and forks. We have the same number of philosophers 

and forks laid out around a table with philosophers and forks alternating. 

A philosopher i s  allowed to access only the forks on either side. The 

ffproblemIf which this example illustrates i s  described a s  follows: to 

enable a philosopher to eat he must be in  possession of both his 

neighbouring forks and the forks can be obtained in either order. 

Unfortunately this may cause a deadlock situation in which all philoso- 

phers have "picked upff their left-hand (or all their right-hand) forks. 

This means that all forks a r e  accessed and no philosopher is  able to 

obtain the two forks he needs to enable himself to eat; al l  philosophers 

starve. This i s  a problem involving shared resources, each fork being 

shared between two philosophers. 

We shall program a Hsolutionfl to this ffproblemff in our language. 

The solution provides for philosophers to access the forks in such a 

way that the system does not deadlock. Our solution i s  not fair how- 

ever; some philosophers may be prevented from accessing both forks 



forever  and so  s ta rve .  F a i r n e s s  questions a r e  outside the r e m i t  of 

our  language and we bel ieve that  fa i rness  i s  a n  implementation i s s u e  

and so  does not concern  us.  F o r  instance, to rnake o u r  dining 

philosopher 's  p rogram fair, a central ised scheduler  may  be  introduced 

to control the o r d e r  in which philosophers a c c e s s  forks.  Many 

algori thms can  b e  adopted by  this scheduler to ensure  fa i rness .  

A cent ra l i sed  scheduler ,  o r  control ler ,  may b e  used to ensu re  

the absence of a deadlock without even considering fa i rness .  h [ 4  ] 

Hoare uses  a " room" as a cent ra l i sed  control ler .  This  r o o m  controls  

the number of philosophers act ive,  o r  present ,  a t  any given instant.  

A s  long a s  the number of act ive philosophers i s  one l e s s  than the 

number of forks then the s y s t e m  will not deadlock. 

We wish a distr ibuted solution, that i s ,  the behaviour of the 

philosophers and forks  themselves should be such that when they 

in terac t  the sys t em a s  a whole does not deadlock. 

Let  us  p rogram this f o r  a sys t em of th ree  philosophers and 

three  forks.  It i s  easy to s e e  how the sys t em can  b e  extended to 

involve n philosophers and n forks.  

The agents  will  b e  interlinked a s  follows. 



i 

The philosophers wish to pick up the forks on either side of 

them in  eithek order ,  eat, then put the forks down in either order ,  

then think and so on. Synchronisation via the gP and gr  ports 

represents interaction between a philosopher and the left o r  right 

fork to pick the fork up while e and t ports a r e  used by the philos- 

opher programs to represent their des i re  to eak and think. The pr  

and pP ports a r e  used to synchronise the action of placing down the 

left o r  right forks. This again, is an interaction between a fork and 

a philosopher. 

The behaviour of the ith philosopher can be represented by the 

program P of sor t  gPi, pri, grip ti, e defined by 
i i 

Pi = gP. gr .  P! + gr. gl. P! 
1 1 1  1 1 1  

where 

= e.(pl . pr. t. P. t pri pl i  ti Pi) 
1 1  1 1  1 

The behavious of the forks i s  given by 

Here O i s  subtraction modulo n, where n i s  the number of forks (and 

philosophers) in the system. 

We see  that the philosopher asks  f d r  both forks in either o rder  

and then eats. The forks a r e  placed down in either order ,  he thinks 

and so on. A fork can be picked up by either of the philosophers on  



each side of it. When i t  i s  picked up this prevents the other philos- 

opher gaining the fork until i t  has been placed down again. 

F o r  n = 3 we have a system pictured a s  above with 

Here Pi is Pi with the guards a l l  relabelled by changing the index. 

This i s  performed using the [ c r / ~  ] operator and produces instances 

of philosopher programs f rom the generic philosopher P.. Forks  
1 

a r e  treated similarly. 

We may apply axiom ( e  +) a number of times to SYS and we 

discover that one of the subprograms produced i s  

hence the system may  deadlock. Other summands also result  in the 

appearance of A whilst others do not. The summand above indicates 

that all  of the forks have been picked up by the philosopher's left 

hands so  preventing any philosopher gaining both forks and so prevent- 

ing any philosopher f rom eating. 

To prevent this we change the philosopher's behaviour so  that 

before starting to pick up and place down the forks the philosopher 

rese rves  both forks and so prevents the philosophers which share  his 

forks f rom gaining access  to them. We introduce ri guazds on 

philosopher P. and his neighbouring forks. To synchronise on this 
1 

guard (effected by the a operator)  the philosopher and both his forks 

must  cooperate in a three-way synchronisation to rese rve  both forks. 
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We redefine our  philosopher and fork p rograms  to include this 

reserva t ion  gLard. As  the eating and thinking guards do not influence 

whether the sys tem deadlocks o r  not, we will omit  them. We now 

have p r o g r i m  Pi of s o r t  {ri, gli ,  gri, p l i ,  Pri} 

where  

and p rogram Fi of so r t  {ri, r i O  1, gri, pri. gPi pPiG I} 

Fi = r .  gr .  p r  
F. + r i Q 1  1 i i i  

f 
g P i @ I  p l i ~ l  i 

Our constructed sys tem SYS = P i e  P2e P3e F1 l FZe  F3 i s  again built 

out of instances of the above generic  p rograms .  To i l lus t ra te  where  

synchronisation may take place between the components we picture 

SYS a s  follows 

~ 1 3  



We may now exhaustively use axiom [a t ] to expand SYS. 

We can see  that we do not obtain subprograms which terminate 

(with A) and so our sys tem does not deadlock. 

A problem here  i s  that the expansion via [a +] is quite 

t i resome and soon produces a program of unmanageable complexity. 

We a r e  soon unsure whether we have missed out some subprograms 

o r  not. F o r  three philosophers and three forks, we can just about - 

manage. We can progress far enough to see that we do not get 

subprograms similar  to the gl  g12 g l j A  which we get in the 

original system, but a much la rger  expansion i s  needed to convince 

ourselves that A does not a r i s e  a t  all. 

If our system contained a l a rger  number of philosophers and 

forks than three then an  expansion using axiom [a +] to check for the 

presence of A would be  impossible. We would eve wish to show 

such a system free  f rom deadlock for n philosophers and forks, for 

all n. 

A methodology for this will be introduced in a l a te r  paper. 

It utilises the rigorous structure of interconnection among philosophers 

and forks and allows us to prove the absence of A by induction on n, 

the number of components in the system. 



5. DEADLOCK AWD TERMINATION 

We introduce the nullary operator A a s  the identity of operator t, 

and so also the empty sum . It has previously been mentioned that 

we a r e  taking A to represent,  in our language, the deadlock phenomena. 

Deadlock is a system property that exists when all the components of 

the system a r e  mutually waiting for each other to perform some action 

. which must take place before they can proceed. A classic example 

of this appears in the dining philosophers problem where a philosopher 

must access  two resources,  called forks, which he shares with 

different philosophers before he can proceed to eating. Deadlock 

a r i s e s  when we have shared resources;  that i s ,  we have competition 

among agents which with to interact with a resource  agent. Thus A 

may a r i s e  due to the definition of the a operator.  

Suppose we have the programs P and Q with sor ts  (a,P, y }  and 

{a, P } respectively, which a r e  defined by 

and we leave subprograms P I ,  P2 and Ql unspecified for  the present. 

By axiom [a t ] we have that 

The a and P labels a r e  internal while the y label i s  external 

to P a Q. As P wishes to perform a y symchronisation with the 



environment and a s  y i s  external then P can evolve to program 

a p Pi without any cooperation f rom Q. Now a s  a and p a r e  both 

internal  labels program a P Pi must  receive a n  a stimulus f rom Q 

fo r  a synchronisation to take place. But program Q wishes a p 

stimulus before a synchronisation can take place. As nothing e lse  

c a n  happen aPP1 and Q become deadlocked so  aPP1 Q = A. 

P may of course,  on a receipt of a y stimulus f rom the 

environment, proceed to program P Suppose we define P2 a s  
2 ' 

P2 = P a P then by axiom [. t ]we  have that 

So after  an  external y we have that synchronisation on the P followed 

by a, labels takes place and the original programs P and Q have 

evolved to P and Ql respectively. 

We now have that P Q gives program 

y A t y p a(P Q, using axiom [ + ] repeatedly. 

Following one of the y guards we get P and Q (actually P has evolved 

to  cr p Pi) becoming deadlocked whilst following the other y guard 

deadlock does not resul t  and (3 and a synchronisations take place. 

Our sys tem composed of P and Q i s  pictured a s  follows: 



In one case ,  following a y, we have that t fmachinet t  3 wishes to 

in te rac t  with 9 on the cr l ine whilst machine 9 wishes to in te rac t  

with 9 on the p line. Neither of these wishes may  be satisfied and 

. so  A resu l t s .  In the other c a s e  both 9 and 2 wish to f i r s t  of a l l  

interact ,  i .e. ,  exchange stimuli ,  on the P l ine followed by an inter-  

action on the a line. This can proceed via @ and cr synchronisations 

with the behaviour of machine .Y evolving to P and that of machine 

2 evolves to the behaviour represented  by p rogram Q. 

In  this  example no sepa ra t e  r e s o u r c e  p rogram i s  competed 

fo r  but programs P and Q can  be  thought of as  r e sources  a s  viewed 

by p rograms  Q and P respect ively,  Deadlock resu l t s  when both wish 

to a c c e s s  each other .  If the a label  is in te rpre ted  a s  "access  Q" and 

p as l taccess  PI1 then i f  P wishes to a c c e s s  Q while Q wishes to 

a c c e s s  P then neither P o r  Q is available to the other a s  a r e s o u r c e  

and we get deadlock. If, on the other  hand, P wishes to synchronise 

on p, that  is, i t  is offering itself a s  a r e s o u r c e  to Q and Q a lso  

wishes to synchronise on P,  that i s ,  access  P, then a P synchronisation 

is successfully performed and we do not have deadlock. 

The above indicates how A gets introduced into programs a s  

the r e su l t  of applying the opera tor .  We may  a lso  use A as the 

terminat ion opera tor ;  the 'fgoodv terminat ion opera tor  where deadlock 

can  be considered a s  JJbad" termination. A program R which wishes 

to receive an  a, stimulus followed by a P stimulus and then successfully 



terminate in defined by 

When we compose a terminated program A with some other, say 

program S, then P will cause A S to deadlock, possibly following 

a number of external guards, unless a l l  of the guards in S a r e  

external to A a S. 

As a n  example consider A of so r t  {a} and S o r  so r t  

(a, p ,  y} then if S is defined by 

we have A a S giving program 

PY(A o S) + y(A S) of sor t  {a, p, y }  

which never produces A and so, by repeated use of axiom [a t ] 

never terminates. Suppose A is as above but T of so r t  {asp ,  y }  is 

defined by 

then A a T gives program y(A a T) by use of axiom [ a + 1, Again, 

A does not result  a s  a n  externally labelled y guard can always appear. 

But suppose we replace T by program U which is identical 

< 

except that the + operator i s  replaced by Q then 



and 

A l U = (A l (ayU)) @ (A l yU) by axiom [e  e] 

= A e y ( ~  l U) by axiom [e  +] twice  

So program A l U nondeterministically may deadlock o r  e lse  react  to 

a y stimulus (of one were  available f rom the environment) to evolve 

back into program A U. Thus following the successful receipt of 

a y stimulus again we have that deadlock may result  and so on. 

Two terminated programs when composed obviously give us  

deadlock, due again to axiom [ e  + j. Note that the sor t  of the , 

flresultingft A is the union of that of the two components 

This i s  a theorem derived f rom axiom [ l + 1. 

Our language manipulates the representation of deadlock and 

termination i n  a manner corresponding to the behaviour of rea l  

systems. We use only one symbol to represent  both deadlock and 

termination since in  many ways they model the same phenomena. 

In conclusion we have termination a s  a tfwholesomelf feature and 

a property of one computing agent and so of one program. Deadlock 

appears when we have two o r  more  agents present and i s  thus a 

property of two o r  more  interacting programs. 



6 .  1 Why We Require Hiding 

We can define a queue by 

where 

Q(n-1) = o , a ( n )  + 6 0 Q ( ~ n n n l )  + 6, Q( l^n f i l )  

and - 
Q(nno) = ooQ(n) t 6, Q(OnnnO) + 6,Q(lnnfi0) 

W e  assume  that & i s  the empty s t r ing and E i = i f i  E = i. If we 

define another queue we would l ike to be able to ajoin them and 

produce a new queue. 

Let us introduce a relabelling opera tor  into our  language. I t  i s  

not s t r ic t ly  necessa ry  but i t  allows us to produce instances of generic  

p rograms  without the need to r ewr i t e  them 

The post fixed opera tor  [CY/P when applied to a p r o g r a m  p 

changes each  P label  up to a n  cr label.  All  other  labels  r ema in  

unchanged. We m u s t  ensu re  the cr is not i n  the s o r t  of 'p.  

The following two axioms a r e  sufficient to express  the intended 

meaning of this relabelling operator :  

where  p i s  not a member  of the s o r t  of 
oipi 

Y 

i 
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I t  is clear how this operator behaves. The acceptance semantics 
h 

for  programs constructed using this relabelling operator is  not given 

and i s  left a s  an exercise for the reader. We shall not prove the 

consistency of these two axioms. This, together with the definition of 

other axioms relating [/] to the A, and -rr operators, can be performed 

by the reader. Note that [/] can change the sor t  of a program. If  p 

has sort L then p[p/o] has sort (L  u { I )  - {a}. Here we assume 

that p BL. 

As an example consider (a p I + f3 p2) [y/a]. This gives 

~ p ~ [ ~ / a ]  + P P ~ [ ~ / ~ ]  where we replace all  occurrences of rr by y. 

The operator [y/u] i s  recursively applied to the renewal programs 

p and p so replacing al l  occurrences of a, by y in the whole program. 
1 2 

Now let us redefine our queue to give i t  a maximum size: 



where 

QN(i, Sn l )  = olQN(i- 1, S) t 60QN(i+l, OnSnl) + BIQN(i+l, lnS^ 1) 

and - 
QN(i, SnO) = roQN(i- 1, S) + BoQN(it 1, OnSnO) + BIQN(i+l, l*SmO) 

and - 
QN(N, sn 1) = r lQN(N- 1, S) QN(N, SnO) = rOQN(N- 1, S) 

Then Qf = QN(&) [aI / r l ,  aD/rO ] is a s  for QN(&) but has the output 

renamed by a. Similarly, QI1 = a(&) [ a l /  Bl ,  ad 60] i s  a s  for 

QM(&) but has the inputs renamed by a,. We can now join up Qt and 

Q1! using our concurrency operation to get SYS = Qf Q f l  which should 

behave a s  the single queue Q(MtN)(&) except that i t  contains an a 

c o ~ e c t o r  which allows other programs to synchronise through it. 

We wish, after Q1 and Qv have been composed, to hide the a guards 

and so "internaliseft them. The a, i s  then internal to Q1 and QU and 

cannot b e  provided with stimulus from without, i .e . ,  the environment. 

As another example of hiding take a binary semaphore. We 

may define this by 

SEM = pivi SEM 

where S E M  has sor t  U Ip vi}. Suppose we have two agents A 
1 < i l  - n 

and B who access a resource using a and p labels respec- 

tively and we wish A to mutually exclusively send an a, stimulus 

followed by another a stimulus to the resource .  Similarly B should 



genera te  a pai r  of (3 stimuli .  Agent A would b e  defined a s  A = crA 

(and B simiikr ly)  but we add p and u guards to their  behaviour to  

allow the semaphore to control  them. We can  therefore redefine 

the agents to be  

The  p l , v l  and pZ, v 2  labels  guard the c r i t i ca l  sections c ~ c r  and p(3 

respect ively and these sections mus t  send s t imuli  to the r e s o u r c e  

mutually exclusively. 

The constructed sys t em i s  theo: 

CONSYS = A B SEM 

where  

S E M  = P ~ V , ~ S E M  + p2vZ S E M  

This  can be pictured as follows when the p rograms  a r e  t rea ted  a s  

machines 



Now we wish the semaphore to control only how A and B 

access the resource (which is in the environment!) so we would 

wish to hide the p , p , v , and v2 ports (actually they a r e  connectors) 
1 2 1  

and prevent further programs attaching onto them. We would like 

the above picture to have the pi, pZ, vl and v labels removed. 
2 

The operation -a when applied to a program hides the a 

guards but we wish that i t  leaves the r e s t  of the behaviour of the 

program unchanged. 

We introduce the following axioms to define hiding: 

As an example of the f i rs t  axiom consider the following: 

Here we assume o is internal to ppi c op2. If not then it i s  treated 

differently and how we do this i s  given later. As i t  i s  internal, the a 

guard represents the result of a synchronisation. Thus when 

hidden we do not know whether i t  may take place or not. 

If a p stimulus comes from the environment then two things 

may happen; the P may be accepted or the internal a, synchronisation 

may take place and prevent the P guard from receiving a stimulus. 

The B operator introduces this nondeterministic behavio2r. 



But suppose the environment does not produce a P stimulus 

then something may always happen; the internalised a synchronisation. 

That is why we use the t operator to compose the result  of hiding 

the synchronisation with the guards that remain unchanged. The 

hiding operation is applied recursively to the programs that follow 

the guarding labels, both the hidden and unchanged ones. 

How &oes this hiding work when applied to our semaphore 

example; that is, what program resul ts?  Let us use the [ o  +] axiom 

a number of times to expand CONSYS. Of course we could keep on 

applying C ONSYS indefinately since none of the constituent programs 

of CONSYS terminate (with A) and when composed, A never results.  

CONSYS = pl((aavlA) 0 (p2PPv2B) l (vlSE M)) 

by [ o  t] 4 times 

= P ~ ~ ~ v ~ ( A @ B o  SEM) t P ~ P P V ~ ( A O B .  SEM) 

by [o t ]  twice 

= pIaavl CONSYS t p2PPv2 CONSYS 

The presence of the pf s and v l s  prevents the cr and p pairs 

interleaving which is what we require but we wish the p l s  and v l s  

to be internalised. We shall f i rs t  of a l l  hide out pl  and see  what we 

get: 
57 



O (a,mriCONSYS) - pl  by [to] 

= aa,v,(CONSYS-pi) + p2PPv2(C0NSYS-pi) 

0 a,rnrl(CONSYS-pi) by [B- ] and [+- ] 

CONSYS-pi-p2 = ( ~ , ~ , V ~ ( C O N S Y S - ~ ~ - ~ ~ )  + P ~ V ~ ( C O N S Y S - ~ ~ - ~ ~ ) )  

Here we can see that the a, and f3 pairs a r e  uninterleaved as  required. 

The nondeterminism operator i s  introduced since the environment 

after hiding has no control over how the semaphore controls the 

agents. The semaphore forces pis to the exclusion of a ' s  and a ' s  to 

the exclusion of p f s  and as  the semaphore i s  now abstracted away 

so  we have 8 introduced. 

Hiding usually introduces kD when applied to CNF programs and 

a s  explained above, this i s  to be expected. But suppose in our 



semaphore example we want to control the action of the agents A and 
x 

B so that a and p pairs a re  not interleaved and we also wish that 

the shared resource (which may be composed on to the controlled 

system later)  should have the ability to choose an a pair or  a (3 pair. 

We do not have this when hiding pf s and v 's  in CONSYS, as  above, 

since the hiding introduces @ and we now would require the two 

subprograms to be separated by +. 

We can design a semaphore to synchronise directly on the 

agents a and p guards to produce a new constructed system NSYS 

which does not require the removal of additional guards. We require 

that NSYS = aaNSYS t PPNSYS. 

If our semaphore i s  defined as  

SEM = aaSEM t ppSEM 

and our agents a r e  not altered by the addition of p and v guards, 

that is ,  they a r e  defined by 

A = cuA and B = aB 

then our constructed system i s  

and so SEM e A e B = NSYS a s  required. Note that SEM, NSYS, and 

S EM A B a r e  all identical programs, that is, they have the same 

meaning or behaviour . 



6 . 2  The Hiding Semantics 

Using our acceptor  semantics  we now formal ise  the meaning of 

our  hiding operation. Let  us a s s u m e  that we a r e  hiding internal  

labels .  The external label  hiding will be dealt  with l a t e r .  

We introduce the following notation: 

(p, a )  = I + )  f o r  Yq (p .a )  - q 3 q = * 

[(P* @ )  = {*} ] A [(P, a)  = {*} ] A [u E Lnr,,] A [ p  in  C N F ]  

(p-a,  P )  - Pf-f f  

[(P, P )  = * ] A [@EL,, E X T ] ~  [p in  C N F  ] 



( (p  El q)-a ,  p )  -:ic 

Condition 15 s ta tes  that if p rogram p always produces * on a n  cu 

stimulus and i t  always produces :: on a $ st imulus then p rogram p-cr 

always produces :: on a (3 stimulus.  A s  p is in  CNF, (p, P)-::: u (p,  p )  = {'*}. 

For p $3 q, i. e . ,  a p r o g r a m  i n  DNF, then condition 19 says that if p-a 

gives ::: on a p than so a l so  does (p  fB q)-a. We t rea t  C N F  and DNF 

p r o g r a m s  differently h e r e  s ince for DNF r ,  ( r , P )  -:: 4 ( r , P )  = {+) , 

unlike a C N F  program.  

Condition 16 s ta tes  that even i f  program p can accept an cr then 

provided p accepts  a P and produces p' then p-cr a lso accepts  a P and 

i t  produces the p rogram p-a. This holds for  a being both internal  

and external ,  

If p produces ::: on a f3 then we do pot have p-a producing ::: o n  

a p since the p rogram q say,  which we get when p accepts  the cr, may 

accept  a p o r  produce a program whose offspring may accept a P.  

It i s  only when a (3 i s  not accepted by p o r  any of i t s  offspring which 

r e su l t  f r o m  some number of cr st imuli  (possibly one)  being fo rced  at  

i t ,  do we get p-a! giving a n  * on receipt  of a P .  17.2 does this for 

CNF pn and 17.3 does this for  DNF pn. The  need for  both 17.2 and 

17.3 i s  the s a m e  a s  for  15 and 19 (and 20).  



Condition 17.1 s ta tes  that i f  af te r  some number n of a s t imuli  

(possibly one) p rogram p evolves into p r o g r a m  p which produces pf  
n 

on a p stimulus,  then p-a produces p l - a  on a (3 st imulus.  

As we a r e  hiding in terna l  labels ,  then a ' s  appear  in  q due to 

a synchronisation on a ' s  taking place. When we hide them we wish 

to p r e s e r v e  the behaviours which r e su l t  f r o m  such synchronisations.  

Hence the behaviour which occur s  a f t e r  a synchronisation in p , i . e . ,  

the p stimulus on condition 17. 1, should a l so  occur  in p-a. 

The difference between in terna l  and external  guards i s  given 

in the next chapter  but  we can  note he re  that condition 18 s ta tes  that 

for  external  a and p i n  CNF, i f  p gives :$ then so a l so  does p-a. I t  

is  similar to 15 except we ignore  whether a ' s  can be accepted o r  not, 

a s  a i s  external.  

Conditions 19 and 20 indicate how we get 4: af te r  hiding on DNF 

programs.  16 appl ies  to both CNF and DNF p and so indicates how a 

program resu l t s  when a hidden DNF program rece ives  a s t imulus.  

To see  how the semant ics  works for  hiding le t  u s  t r y  some  

examples : 

by 16 a s  (yp+pq ,  y ) & p  

s imi l a r ly  

by 17.2 a s  yp is i n  C N F  and 



and if 6 i s  in  the s o r t  of o u r  p rogram then: 

k 

((cr(yp @ b r )  + pq)-a, 6) - :# by 17.3 a s  

((rryp 4- p a ,  0) -- ( y p  @ 6r)  

and (yp, 6) - :$ giving 

( ( y p  @ 6r)-a,  6 )  - :% by 19. 

6 . 3  Internal  and External  Guards 

We wish to be able  to distinguish between guards,  i . e . ,  labels, 

which a r e  produced by the concurrency opera tor  when two o r  m o r e  

p rograms  synchronise,  and those which do not. The f o r m e r  are 

in te rna l  guards and the la t te r  a r e  external  guards.  

To do this we change the notion of s o r t  f r o m  being a set  of 

labels  to a pa i r  of se t s  of labels .  The f i r s t  s e t  a r e  external  labels 

and the second s e t  a r e  the in te rna l  labels .  These two se t s  a r e  

disjoint and when unioned together produce our  previous notion of s o r t .  

Initially mos t  of the s o r t  labels  will be external  unless w e  wish 

-to designate s o m e  a s  internal.  Our ope ra to r s  a r e  a l so  so r t ed  and will  

now be  a s  follows: 



[ P / ~ I  : ( Ll'  La) - ( (L k, {p} )-{a}* (L2 u {PI )-{el) 

It is the concurrent composition which produces new internal 

guards. 

We have seen that hiding internal guards preserves the program 

which follows the guard (with hiding occurring in i t  a s  well). The 

reason for this i s  that an internal guard results f rom a synchronisation 

and we wish to preserve that behaviour which follows from this synchronisa- 

tion. A synchronisation i s  an interaction among programs and once 

hidden we do not know whether i t  w i l l  occur o r  not and so need to 

allow for all  possibilities; one i s  that i t  does occur and so the 

acceptance behaviour which occurs after the synchronisation should 

also occur in the hidden program. 

But suppose we hide an external guard, one which does not 

appear due to a synchronisation having been effected. Then i t  does 

not make sense to allow the hidden program to accept in the same way 

a s  for  internal guards. Since labels a re  used as  ffsynchronisation 
t 

pointsf' an external guard has labels which have not been used in 

synchronisation. 
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Thus an interaction has not occurred on an external guard and when 
.r 

hidden the following program that which i s  guarded by the "to be 

hidden" i s  also lost. 

The hiding here prevents entrance to the program which is 

protected by the guard. We therefore define hiding for external label 

by 

and 

and we see that, compared to the definition for internal labels, we do 

not include the (hidden versions of the) subprograms which a re  guarded 

by the cu label. 

Our semantics for external hiding is given by conditions 16 and 

18 above, for successful and unsuccessful receipt of a stimulus 

respectively. 

Example s 

(i ) 

(ii ) 

(ii i ) 

(cup- a ,P)  - * since (cup$P) - *  

((cup + pq) - c u s p )  --q-a since (ap+pq$p) - q  

((cup + pq) - a,  y)  -- * since (cup + Pq, y )  - * 



( ( ap@pq) -a ,p ) -*  a s  ((a,p)-a,,p)-*, by (i) above. 

' \ 
The definitions given for hiding a r e  axioms of our language. We have 

the following set: 

[-fl] ( C aipi)-a = ( C ai(pi-a) +z (pi-")) C (pima) 
ai#a a. =a a,. =a 

1 1 

where a, E L  
INT 

[-+,I ( C a , . )  1 1  a ,  = 1 a i ( p i  where aeLEXT 
a,.#a, 
1 

The first  two axioms define internal and external hiding on CNF 

programs; [- -1 states that it i s  immaterial the order in which we 

hide while [- @] says that hiding a program in DNF i s  the same as  

if w e  form the program from the hidden subprograms using 8. The 

[- ] axiom states that concurrently composing then hiding i s  the same 

as hiding the components and then concurrently composing, provided 

that what is  hidden i s  an external label of p e  q. 

These axioms together with the preceding ones a re  later shown 

to satisfy our equivalence relation. 
t 

> 



It should be noted that some of the complelrity i n  defining our 

acceptance semantics over hiding is i n  the need to t reat  C N F  and D N F  

programs differently, particularly when * is a result.  The problem 

stems f rom the semantics not differentiating between how p iB q and 

p + q react  to a stimulus which either p or q react  acceptably to,, i. e., 

do not give *. Also, the semantics have to distinguish between how 

such DNF and CNF programs produce *. I t  is possible that a 

^ semantics using modal operators to express flsometimesll and Ifalways" 

may produce a simpler, cleaner semantics. 

6.4 Hiding in our Dining Philosopher1 s Example 

In our to the dining philosopher's problem we 

introduced a reservation guard to each philosopher and his neighbouring 

forks to prevent deadlock. If we abstract  out these r e s e r ~ t i o n  

guards f rom the composite system SYS, what program a r e  we left 

with ? 

F o r  three philosophers and three forks we use axiom [+e ] to 

get that 

where Si = pli pri SYS + pri pli  SYS for i = 1,2,3. 



Using a x i o m  [- + ] a n u m b e r  of times to h ide  i n t e r n a l  g u a r d  
1 

r gives  us  : 

w h e r e  

Using axiom [-fl] to h ide  t he  r2 and  then  the  r3  g u a r d s  gives  us:  

SYS - r1 - rZ - r3 = (R1 t R 2  t R g )  

@ (Rl f R2) P (R1 t R 3 )  @ (R2 t R3) 

o (R1 0 R2 P Rg 

w h e r e  

a n d  

1 I 

Ri = gl .  g r .  R. t gr .  g l i  Ri 
1 1 1  1 



Using axiom [O O t] three times we get: 
% 

SYS - r i  - r2 
- r3 = (R1 + R 2  t R3) O R i  O R2 O R 3 .  

We now need to use another axiom here;  the extension of axiom 

[B) B t] to three components rather than two. 

Axiom [B O t] states that 

Let us replace this axiom by the following alriom, o r  rather,  family of 

axioms. 

[ C] xi B x. = xi , for al l  programs x. and for all i. 
1 1 

W e  now use the instance of this class of axioms for i = 3. This gives 

SYS - r i  - r2 - r3 = Ri  O R 2  O R g  . 

This constructed system can be seen to be  f ree  f rom deadlock 

by inspection. W e  see  that the hiding operation introduces O to a 

program SYS which previously did not contain such nondeterminism 

constructs. Whether our hidden system gives program Ri  o r  R2 o r  R g  

now depends on some internalised choice mechanism, the r. guards, 
1 

which we have abstracted away from. 



The informal justification for axiom [ ] just extends that 

f o r  [ B B t 1. In our appendix we prove that axiom [B B + I  i s  sound 

with respect to our semantic interpretation of the language. We 

believe that a generalised f o r m  of this proof would also show the 

soundness of [ 1. 



7 GONGLUDING REMARKS 

The formal  sys tem presented he re  allows us to represent  

communication and concurrency features a s  found in systems of 

interacting computing agents. This corresponds to how the functional 

concepts i n  se r ia l  programs a r e  represented using the calculus. 

Propert ies such as termination and deadlock can be  expressed in the 

formalism. *Proofs of equivalence type properties can be performed 

while the framework can also be used to reason about deadlock 

features, for instance. Other proof tools need to be developed; one 

approach i s  to enable ourselves to perform induction on the number 

of components in  a system, the dining philosophers problem for 

example. Work along this line has been fairly successful and will be 

reported in  a future paper. 

One problem m e t  in  concurrent programming is  how to deal 

with the interleaving of synchronisation and computation features. One 

approach,as adopted by Campbell and Habermann,uaes Path Expressions 

[ i ]  to remove the synchronisation and control constructs f rom the 

r e s t  of the program. The computation and control features a r e  then 

separated. To a l esse r  extent monitors [ 3 ]  also perform this function. 

The approach we adopt is to have synchronisation a s  the 

primitive language feature with the more  usual computation being 

added to this core.  The simplest example of this approach, a s  presented 

in  this paper, excludes values and so computation. It is not difficult 

though to add i n  value-passing and computation features. These a r e  

present  in a related formal  system; the CCS of Milner [8]. Both 

CCS and our formal system a r e  developed f rom a process model of 



concurrency [7 ] where value-passing is present. Related work 

includes that of Hoare [4] together with the work of Hoare and 

others on models of G S P  [5]. 

We have adapted the concept of experimentation as used by 

Milner and Hennessay [Z  ] in  the construction of our notion of 

acceptance semantics. This opperational approach is due originally 

to Landin [ 6 ] ,  who used an abstract  machine to represent  the 

semantics of a language. A l ess  concrete operational semantics 

involving relations ra ther  than abstract  machines was introduced by 

Plotkin in [9]. This i s  closer to our notion of acceptance semantics. 

One possible deficiency of this work i s  in  the use of interleaving 

to deal with concurrent action. Future work will attempt to produce a 

model which does not rely on such arbi t rary  interleaving. Fur ther  

proof methodologies remain to be developed and this should allow us 

to test  our formal system on some large and realistic examples. 

This empirical approach should, i t  i s  hoped, justify our design of 

model and i f  not, to i l lustrate how i t  could be altered to better 

represent  reality, 



8. APPENDIX I: The Equivalence Relation i s  a Congruence 
A 

We define - to be the intersection i;! - over n where 

p -0 
q if p,q E Wz and of sor t  L 

Y a EL. (a) (p ,a)  - * * (q,a)  --* 

(b) (q, a )  -c * * (p, a)  -c * 

(c) (p.a) -p '  3 3 4' . (9.a) -9 ' .  P' p q '  

(d) (q. a) - qt  * 3 p' (P, a) -- P I ,  p1 mn q '  

Note that pf and qf  a r e  program variables and so cannot be *. Thus 

we wish to show that for any words m and n in Wz then 

m - n * Y contexts C [ ] C [m] - C  [n]. 

Contexts a r e  formed using the guarding, choicq nondeterminism, 

hiding and concurrency operations. To show congruence i t  i s  therefore 

sufficient to show that for  m, n and q of sor t  L 

m - n implies: 

(1) Vq O m t q  - n t q  



(4) V Y E L * ~ -  y - n -  y 

(5) W ' m e  p - n e p  

Proof. Assume m - n. Then for some a c  L, the sort  of m and n we 

have 

1) Show for m t q. Assume m, a and q in  CNF. If not we use 

[t B] to get for some CNF component of m that (m t q, a )  - * i f  

(ml+q, a)  -*. Then show that ( m i t q ,  a) - * implies (n l tq ,  a) -- * 
for some CNF nl, a component of n. This is just the CNF case  below. 

1. a )  Case (m t q, a )  - * then by 15 we have that (m, a)  - * and 

( % a ) - * .  As m - n  then (n,cr)-* hence (n t q , a ) - - *  by 15, a s  

required. 

1.b) Case ( n t q , a ) - * ,  a s  ( l . a ) .  

1. c )  Case (m t q, c . )  - p where p f *. 

Then by 3 and 4 either (m, a )  - p o r  (q, a )  - p. 

1.c.1) (m.a) - p  and a s  m - n then jpf such that 

(n, a) - pr and p - pr and so (n + q, a )  - pr by 3, a s  

required. 

I. c . 2 )  (q,a) --p and by 4 (n t q,a)  - p .  

As p - p then we have what i s  required. 

1.d) Case ( n t q , a ) - - p  where p{ *, a s  1.c) 

We now have that i f  m - n then V9 (m+q) - (ntqf.  



2 Show f ~ r  m f3 q. Assume m , n  and q in CNF. 

2. a )  Case (m @ q, a) - * then by 6 . 2  and 7 . 2  either (m, a )  - * o r  

(q, a )  - *, respectively. 

2.a. l)  (m,a)  ---* and a s  m - n then (n ,a)  ---*. 

By 6 . 2  (n t 4) -c *, as  required. 

2.a.2) ( q , a ) - *  implies ( n + q ) - *  bu 7.2. 

2.b) Case ( n @ q , a ) - - * ,  a s  2.a) 

2.c) Case (m @ q, a)  - p where p # *. By 6.1 and 7.1 either 

(m, a )  - p or  (q, a )  - p, respectively. 

2.c. i)  ( m , a ) - p .  As m - n  then ( n , a ) - - p t  and P - P ' .  

By (n B q, a) - pt,  as required. 

2. c. 2)  (q, a) - p and by 7.1 (n B q)  - pt ,  as  required. 

2.d) Case (n B q ,a )  -p, a s  2.c). 

So have that m - n  implies ( m t q )  - ( n t  q) for a l l  q. 

3 Show for ym. 

3. a )  Case (ym, a )  - * implies a f y by 2 .  W e  thus have ( y n ; ~ )  -L *. 

3.b) Case (yn,a) - *, as  above. 

3. c )  Case (ym, a) - m, from 1 with a = y. Then (yn, a) -cn and a s  

m - n w e  have required result. 



3. d) Case (yn, a )  - n, a s  3. c). Thus m a n implies ym - 

4) Show for rn-y. Assume m and n a r e  in CNF, otherwise 

axiom [- 81 can be used to get CNF terms. 

4. a) (m- y, a )  -. * then either 

4.a. i)  (rn,a) - *  and (m,y) = { * }  and y i s  internal then as  

m-n, so @,a)  - * and (n, y )  = { * }  and again y i s  

internal (as m and n have the same sorts) .  Thus 

(n, a)  - *. 

and a i s  internal to m (and so also n). As m - n then 

(n, y )  - nl and m l  - ni, in which cas e (n l,  y)  - n2 * - 
and (nn,y) - - a  and (",,a) --*. Hence (n-y,a) -*, 

as  required. 

4. a. 3 )  (m, cu) - * and a i s  external to m (and so also to n). 

As m - n then (n, a) - * and so (n- y, a )  8 ,  as  required. 

4,b) a s  for 4.a) by symrnetry 

4. c )  (rn- y, a )  -- p-y then either 

4.c.1) (m,a) - p .  AS m - n  then 3 i  such that m m i c l n  and 

(n ,a) - -q  with p m i q  and (n-y,rr)-q-a. Now p m O q  

(always true) and let us assume that p-y -i q-y. This 

i s  sufficient a s  (n-y, a) - q-a and p- y q- y to give 

m-y - n-y and so m-y - n-y if other clauses hold.. 
i 

i 
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f 

This follows by induction on the index of our 
> 

equivalence relation and i s  used i n  some of the 

following clauses. 

4.c.2) 3 s . t .  [(m, y)  - m l ]  A [ ( m i ,  Y -m2]  A ' * '  

A [(Inn-i. y) -- mn] A [(mn, a) - p] and a i s  internal 

to m (and so to n). As m - n then 3 n i  such that 

(n, y )  - n l  and m l  - nl. Hence (ni, y) -n2 ' * *  and 

(nn,l,a) - n  and (nn,y) -q with p - q .  Using an n 

argument as in  4. c. 1) we get (n-y, a) - q-a with 

m-y - n-y i f  other clauses hold. 

4.d) as for 4 .c)  by symmetry. Thus Worn-n implies m-y - n-y 

where y l ies in the sor t  of m and so of n). 

5) Show for mop. Let m and n be  i n  CNF. Axiom [ o  B ] can be 

used on DNF t e rms  to get CNF components on which to reason 

a s  follows: 

5.a) ( m  p ,a )  - * then by 12 and 13 either 

5.a.1) (m,a) - *  and so (n,a)  - *  by m - n  and by 12, 

(n e. p, at) - *. 
or  5. a. 2)  (p, a) - * and so by 13 (n p, a) -+ *. 

5.b) follows 5. a)  by symmetry. 

5.c. 1) ( m  a p,a)  --m p and (m,a)  - m f  and a is not in the sor t  of p. 

Now a s  m - n then (n ,a)  - nf  and m f  - n'. Here we assume 

m f  p NO nf  p and m f  l p nf*  P. As (n, a)  - n' and a not in 

sor t  of p then (n a p, at) - nf p. Thus m p - ne p and so 
i+ 1 



also m l p - n o  p i f  other clauses for l hold. 

5. c .  2 )  (rn p, a )  - m pf  and (p, a) - pf and cr is not in so r t  of m. 

As m - n  then ( n o p , a ) - - n o p l .  Assume m o p f m O n e p f  and 

m 0 p1  ; n 0 p t  and so m o p -i+i n l p and also m 0 p - n l p 

if other clauses for l hold. 

5 . c . 3 )  ( m o p , c u ) - - m f e p f  and ( m , a ) - m f  and ( p , a ) - p f .  As m - n  

then (n, cr) - n1 and m f  - n' . Assume m f  l pf mO n' l pf and - 

m'  l pf  n f  p f  and so we have m f  l p wi+l n o  p and so also 

m p - n o p i f  other clauses for  e hold. 

5. d) follows 5 .c)  by symmetry. 

We therefore have, f o r  a l l  programs p, that m - n  implies m o  p m n  l p. 

By 1 )  to 5 )  we hove that our equivalence relation - i s  a congruence 

and we can now replace par ts  (or  subprograms) of programs in our 

language by equivalent par ts  without changing the meaning of the 

program a s  a whole. 

What programs in  our language a r e  equivalent, o r  to rephrase 

this question, how do we construct equivalent programs ? 

Our axioms define an  equivalence relation and we would like 
' 

that this equivalence i s  the same a s  -. We now show that our axioms 

a r e  sound with respect  to -; that is ,  i f  a = b i s  an  equality a r r ived  

a t  by using the axioms then a - b. We a r e  then able to replace 

program a by program b without changing mear+ng (as  a - b). 

Our axioms a r e  thus consistent with our notion of equivalence (in t e rms  

of our acceptance relation). We would also like that o u r  se t  of axioms 



be complete; that is, i f  a - b then we have a = b using the axioms 
x 

alone. This i s  believed to be the case but a proof remains to be 

performed. The proof of consistency of the axioms now follows. 



9. APPENDIX 11: Consistency of the Axioms 

We shall show that i f  p = q using our aldoms, then p - q. 

I t  is sufficient to show that every axiom gives us an equivalence. 

Proof. We shall assume that expression variables x and y i n  the 

following a r e  in CNF. If they were in  DNF conditions 6 ,  7, 19 and 20 

a r e  used to access their CNF components, and we then need reason 

o - about these. 

Axioms [+ 1], [+2], [++I and [+ A] are obvious. As an example 

l e t  us  deal with [th]. 

[+A] a )  (X t A, a )  - 4 implies (x, a)  - * and (A, a )  - * by 5. The la t ter  

is always true. 

b )  (x, a) -C * implies (x +A, a) - 4 by 5 since (A, a) - * always 

holds, and x is in CNF . 

c )  (x t A, a )  - X I  implies (x, a) - x f  by 3, since we never have 

d) (x, a )  - x1 implies (x + A, a) - x t  by 3. 

All four clauses follow f rom relation conditions 5 and 3 and x + A - x a s  

required. 

[al] a )  (X @ X, a )  - 4 implies that (x, a )  - * 
b) (x, a )  - * implies that (x iB x, a)  -c * 

< 



r 

c )  (x @ x, a) -c xf implies that (x, a) - XI 
> 

d) (x, a) - xf implies (x 83 x, a) - xf 
using conditions 6 and 7. Axioms [ [02 ] and [[0 O] again 

follow immediately from conditions 6 and 7 and a r e  omitted, 

[+ tD] a) (x t (y O z), a) - * implies that (x, a) - * and (y O z, a) - * 
and this lat ter  implies that either (y, a) -L * o r  (2, a) - *. 
~ e n c e  (x, a) - * A (y, a) - * o r  (x, a) - * A (z, a) - *, in 
which case ((xty) @ (xtz), a) - *. 

b)  ((xty) [O (xtz), a) - * implies that (x t (y [O z), a) a s  for  a )  above. 

c )  (x t (y O z), a) - p implies that (x, a) - p o r  (y O z, a) - p, the 
I 

latter again giving that either (y, a) -, p o r  (z, a) - p. 

c. 1) if (x, a) - p then (x + y, a) - p and so ((x t y) [O (xtz), a) -C p. 

c.2) if (y,~) - p  then (x + y,a) - p  and so ((xty) (x+z)~a) -Po 

c -  3) if (a, a) -L p then (xtz,a) - p  and so ((xty) [O (x+z), a) - p. 

d) ((xty) O (xtz), a) - p and so either (x+y, a) - p o r  (xtz, a) - p. 

So either (x ,  a) - p o r  (y, a) - p or  (z, a) -- p. 

d. 1) (x, a) - p  and so (x + (y @ z),a) --p 

d. 2) (y, a) - p and so (y [O z, a) - p then (x + (y z),rr) -- p. 

x t (y [O z) - (xty) @ (xtz) follows. In the above, conditions 3,4, 5, 6 and 7 

a r e  used. 



[BB) +] a) (x B y B (x+y),a) a- * implies either 

a.1) (x,a)  - *  a n d  so (x 8 y,a)  - * ,  by 6.2 

a .2)  (y,a)  - * and  so (x B, y,a)  - *  , by 7.2 a n d  6.2 

a. 3) (xty, a )  - * and so (x, a )  - * a n d  (y, a )  - * hence 

(x B) y ,a )  - *, by 7.2 a n d  5. 

b )  (x B y, a )  - 4 implies either, by 6.2, 

b .2)  as for 6.1) 

c )  (x 43 y B (x+y), a )  - p implies either 

c - 1 )  h a )  --p  a n d  so (x 8 Y , ~ )  4 p b y  6.1,  

c.2) (y,cu) - p  and  so  ( x B  y ,a )  - p b y  6.1 a n d  7.1 

c.  3)  (x+y), a) - p and  so either (x, a )  -) p in which c a s e  

(x @ y , a )  - p  o r  (y ,a)  - p  a n d  a g a i n  (x 8 Y , ~ ) ~ P .  

By 3, 4, 6.1 a n d  7.1. 

d) (x 8 y, a )  - p implies either 

d. 1)  (x, a) - p and  so (x B y B (xty), a )  -- p, by 6 .1  o r  

d. 2 )  (y, a )  .- p, as for d. 1). 

x 8 y 8 (x+y) - x 43 y then  follows. 



[e ] a )  (x l y ,a )  - * implies that 

a.2) by 13, (y,a) --* and by 12, (y l x) - *  . 

b)  a s  for a )  

c )  (x l y, a) - p implies that 

and x' l y -o y l xf then condition 9 gives (y l x, a )  -- y e X I ,  

with y l x1 - xi l y by induction on - . 

2 )  U $ L ~  and (y,a) - y '  and p = x l Y' ,  similarly* 

c.3) a # L x n  L and (x,a) - x l  and (y,a) -y l  and p = X I *  y f .  
Y 

As  for c. 1) using 11. 

d)  a s  for c )  

Then x e y - y e x .  

[e l 1 similar to [a ] using conditions 9, 10, 11, 12 and 13. 

[a t] for x = pixi and y = p .y. then 
J J  

a) (x l y, a )  - * implies that either 

a. 1) by 12 for CNF x, (x, a )  = (*}  in which case either 

a 1- 1) ( pi(xie~) ,a)=(a)  by 5, for a eLx and r r # ~  o r  

Pi #LY Y 

a.  2 )  by 13 for C N F  y, (y, a )  = {*I. As for a. 1). 

8 3  



By condition 5 this makes the right hand side of axiom [e +] give 

{ * )  on receipt of an a. stimulus, via our relation. The three clauses 

making up the right hand side a r e  mutually exclusive in their reaction 

to stimuli since we have a I(L . a $ ~ ~  and a. eLX fl L 
Y Y' 

b) Let us call the right hand side of axiom [e t] rhs. Then 

(rhs, CY) - * i f  all three clauses only give * on receipt of an a. As 

explained above this ar ises  when either 

b. 3 )  ( pi(xie yj), a) = { f  } and a. $ L ~  n~~ 
P..= P: 

By conditions I2 and 13 and above (x a y, a)  = {* )  as required. 

c )  (x y, a )  - p implies that 

c.1) a . 4 ~  and (x,a.) - X I  and p = XI.  y, by 9. Then 
Y 

pi(xi y), a) -- x e y where p. = a and x. = xf  
1 1 

and so ( rhs ,a )  - x f  e y. 

or c .  2 )  a { L ~  and (y, a )  -yt and p = x a y ' ,  by 10. As for  c .  1). 

o r  c . 3 )  a e L x n L  and (x,a)-xf and (y,a) -yl ,by 11. As for c .  I). 
Y 



d) (rhs, a) - p implies, using conditions 3 and 4, that 
1 

d - 1 )  ( pi(xio Y ) , c ~ )  - - X I  l y where p. 1 = a and x. I = XI. 

Pi /LY 

As ax '  is a summand of x then by 9 (x oy,  a) - x' l y. 

d-  2) ( pj(xo yj), a) -- x o  y l .  Similar to d. 1) 
Pj 4LX 

d.3) ( - p i ( x i o y j ) , a ) - x ' o y l .  Similar tod.1). 

Pi- P j  

By a),  b),  c) and d) we have that 

x l y - rhs  , a s  required. 

[o d3 ] a )  (xo (y d3 z), a)  - * implies that either (x, a) - * by 12, o r  

a. 1) (x ,a)  - *  in  which case  ( x a y , ~ )  - * and ( x e z , a ) - c *  by i 2 ,  

hence ( x o y  tB x e z , a )  - * by 6.2 and 7.2, 

a. 2) (y @ z, a) - * and so either (y, a)  - * or  (z, a) - by 6 . 2  

and 7.2 respectively. 

a . 2 . i )  (y,a)  - *  and by 12 ( x o y , a )  - *  so by 6.2 

( x o y  83 x.z,cr) -. *. 

a.  2.2 follows similarly. 



b) (x l y 43 x l z, a) - * implies either ( x  l y, a) - * 01- (xe a, a) -*. 

b, 1) (x l y, a) - * and by conditions 12 and 13 either 

(x, a )  - * o r  (y, a) - *. 
b. 1.1) (x,a) - * and so (x m (y Bz),cr) - * b y  L2. 

b. 2 )  (x l z, a) - * follows a s  for 6. 1). 

c )  (x l (y B z), a)  - p implies either 

c.1) (x ,a)  --x1 and ~ B L  by 9 w i t h p  = x t o  (y B z). Thus 
Y 

( x o y , a )  - X I  e y, so ( x o y  fD x o  z , a )  - x t  l y by 6.1.  

and a s  L = Lz then 
Y 

XI  l y B X I  l z by an  inductive argument on indexed equivalent es  a s  used 

in  proofs above ( [ o  ] for instance). Or 

c . 2 )  ( y 8 z . a ) -  y f  and a e L x  by 10 with p = x o y ' .  

Conditions 6.1 and 7. 1 imply that (y, a) - y! o r  (z, a)  -z ' 

c-2.1) (y,cu)-yf and ( x o y , a ) - x o y l  by 10 and so 

(xey 8 x o z , a )  - - x o y l  by 6. 1. 

c. 2.2) (2, a) - z f  follows similarly, O r  

c.3) (x,a)  e x t  and ( y B z , a ) - - y 1  b y 1 1  w i t h p = x t o y f e  Either 

(y, a) -yl o r  (z, a )  -y1 by 6.1 and 7. 1. I 



.1 
c.3.1) (y,a)  ---yr and ( x o y , a )  - X I  o y f  by 11, 

" c. 3.2) (z, a )  - y f ,  follows similarly. 

d) (x my 03 x l z, a )  - p implies either (x oy ,  a )  - p by 6. 1 o r  

( x o z , a )  - p  by 7. 1. 

d. $) (x o y, a )  - p in which case either 

d. 1.1) ( a )  x and a $ ~ ~ ,  wtth p = xroy. 

As LZ = L 
Y' 

(X .(y O z) ,a )  -xf.  (y Bz) .  

Now xf  l (y 03 z)  - (xf l y 03 X I  l z) by an inductive 

argument on indexed equivalences. By 14, 

(x . (y 03 z), a )  - x' 0 y. 

d. l .2)  ( y , ~ )  -y l  and u,kLx, with p = x . y l .  By 6.1, 

(y O z , a )  --yf and a s  ~ C L ,  ( x o ( y  @ z ) , a )  - x e y f  by 10. 

d.1.3) (x,a)  -x f  and (y,a) - y l ,  with p = x l  o y r .  

By 6. 1, (y z, a )  - y1 hence 

( x e ( y @ z ) , a )  - X I  e y l ,  by 11. 

d. 2 )  (x z, a )  - p, similar to d. 1). By above 

x e ( y B z ) - x 0 y i D x . z  



[ a B t ]  Showthat  rux t a y  = a x  B a y .  

a )  (ax + ay, y )  - implies  by 2 and 5 that a f y. By 2, 

(ax, y) - * and (ay, y) - * and (ax @ ay, y) --, * by 6.2 and 7.2. 

b )  (ax CB ay, y) -, * implies  by 6.2 and 7.2 that e i ther  b. 1) 

(ax, y) - *  and by 2, a # y. Then ( a y , y )  --** and 

( a x  + a u ,  y )  - *  by 5. Or 

b. 2) (ay, y) - *, as above. 

c )  (ax + ay, y )  - p and by 3 and 4 (ax, y )  -,p o r  (ox, y )  --p,  

respectively . 

c .  1) (ax, y )  - p and by 6. i (ax @ ay, y) - p. 
c. 2 )  (ax, y) - p follows by symmetry.  

d )  (ax El ay ,  y )  -) p and by 6. 1 and 7. 1 either (ax, y )  - p o r  

(ay ,  1)  - p, respectively. 

d.l) (ax,y)  --p and by 3, (ax t a y , y )  - p .  

d. 2)  (try, y) -- p similarly. 



F o r  all PF L - {a} with x = a.x.. 
T 1 1  

a )  (x-a, p )  -- :* implies  ei ther  

a. 1) (x, p )  - :: and (x, a)  - + by 15. As x =  xrr ixi  

then 3 no x f  such that (x, a)  = XI. (xi-a) i s  then 
ai= a 

the null 0 sum. This derived operation in 

i t s  null fo rm is in  effect an  identity for  both + and fD. 

As (x, P )  - + then ( 2 ai(xi-a), p) - F inally, 
a:# a 

( rhs ,  a )  - :+. 
1 

a .2 )  1 n 2 1 such that 

(x,I)  - X ~ A * * * A ( X ~ - ~  a )  - x A (x,, p )  - :* by 7.2. 
n 

As (xna) - * and (x,, p ) - * then (xn-a, P )  - *: by 15. 

Let us assume x - a - r h s  fo r  i _< n. Now e i ther  
i 

x n- 1 = LJ ) '  aixn- li9 i n  which c a s e  

* t z  Cxn- -a). As ( X ~ - ~ , C Y )  -xn then 3 ai = 
a,= a i 

L 

a with x = x As (xn-a, P )  - * SO 
n- 1 

i 
n 

(Xn- 1, 
a , )  - . By 6 . 2 ,  a s  i s  derived f r o m  
1 

O ,  so ( E (x,-~ -a),P) -:* and by 6 . 2  again 
a. =a 
1 

i 

a .2 .2  x = y @z. By axiom [- O ] we have 
n- 1 

(xn- l -a)  = y-rr O z - a  and can  apply i t  repeatedly 

to get some y (or  z )  of fo rm aixn-i We 
i 

then follow a.  2, I )  to again get (x -a, P )  - ::. 
n- 1 
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This procedure can be repeated to get 

(xl-a, p )  - * with (x, a )  - xi. AS x = z aixi 

then for some i, a. = a with x. . 
1 1 

We 

therefore have ( E  xi-a, p) - * by 6.2  and by 

6.2 again have (rhs,P) -*. 

a.3) 17.3 gives a similar chain but with xn in DNF. We 

argue a s  for a.2) for one of i ts  CNF components. 

b )  (rhs, P)  - * implies either b. 1) or  b. 2)  by 6.2 and 7.2. 

b. 1) ( ai(xi -a) + 8 (xi-a), P )  - +. Condition 5 gives us 
a.# a 
1 

(Ti= a! 

that either 

The latter gives (ax P )  - * by 2 and the former 
i' 

gives ( z aixi,p) - * by 3,4, and 16. By 3 and 4 
a. f a  
1 

again and 17.2 we have (x-a,P) -*. O r  

b. 1.2) ( rri(xi-a), f3) - * and i s  null, that is ,  
ai#a a .=a  

1 

there i s  no a. = a. In this case (x, a) - * and . 
1 

15 gives (x-asp) - * a  

b.1.3) ( z (xi-a),P)-* and z i s  null. Thus all  
Pi= a ai= P 

~ . l s  = a  and as  (z ( x i - ) -  17.2 gives 
1 

a. =a 
1 



c)  (x-a, p )  - p implies that either 
> 

c.1) (x,p) -p f  and p = pf - a. As p = z aipi 3 some a. 
1 

such that ai = p and pi = pf , by 3. For this i, 

z (pi-a), p )  -- (pt-a) and by 6. 1, (rhs, B )  - pt-a. O r  
a.= a 
1 

c.2) 3 some n >  1 such that (x , a ) - -x i  A * * * A ( x ~ - ~ , ~ ) - x  n 

and (xn,p) - pf .  Let us assume p-a -i rhs  for i 5 n. 

BY 16, ( x n - ~ ,  p )  - pf -a, and as  (xn- a )  ' x then 
n 

(xn- i 
-a, p )  - pt -a using equivalence for i 5 n, as  we 

did in a) .  Repeating this for i up to n we get 

As (x, a )  - xI  and x = aixi then 3 some i 

such that a i =  a and x. = xl. 
1 

As (xi-", p)  - a then 

( (xi-a), p )  -. pf-a by 6. 1. Again by 6.1, 

(rhs,  pL -- pl-a. 

d) (rhs, P )  -. p implies that either 

d 1) ( ai(xi-a) + (xi-a), p )  - p and either 
ai# a a.= a 

1 

d. 1.1) ( CY. (x.-a), p)  - p in which case 2 some i 
1 1  

ai+ a 

such that ai = p and p = (xi-.). SO 

(a.x., p )  - x., and (x, p )  - xi. Condition 16 then 
1 1  1  

gives (x-a, 9 )  -- xf -CY. 



d. 1.2) ( (xi-a),P) --P and by 6.1). 
a.= a 
1 

3 Some i such that ((x.-a), p )  - p and a = u.. 
1 1 

As (a.x a)  - x. then by 3, 
1 i' 1 

7' ( aixi, a) - x., i. e . ,  (p, a )  - xi. 
1 

AS (xi-a, p )  - p then by 16 (xi, P )  ' P' with P = p'-a= 

Using (p, a) - xi and 16.1 we have (p-a, p )  - pf -a. 

d. 2 )  ( (xi-a), p )  - p, as for d. 1.2. W e  therefore h a v e  
f f .=  a 
1 

p-a - ( C ai(pi-a) + 1 (Pi-a)) O 1 (xi-") f o r  internal  a.  
ai# a a = a  i 

ai= a 

[ - c ~ ]  Let  x = C aixi. 

a )  (x -a ,p ) -*  implies ,  by 16, that 

(x, p )  - *. B y  5, for  a l l  i, (aixi, P )  - 4. Thus ' 

( C ?(xi-a)' p )  ' ". 
ai# a 

b) ( ai(xi-a), p )  - * implies that for all i such that a. # a, 
a.# a 

1 

1 

( a i i - a ) , )  . In this c a s e  the re  is no i such that 

a i = P  i n  a i 4 .  B y Z a n d 5 .  (x ,P)  -*. 

C )  (x-a, p )  - p impl ies  that (x, p )  - p1 with p = p'-a,. by 16. 

Then 3 some  i such that ai = f3, and xi = pl ,  and 

d) ( ai(xi-a), B )  - p implies,  by 3, that 3 i such that 
a.f a 
1 

a i #  a and (ai(xi-a),p) -p.  B y  16, (aixi,P) - P I  with 

P = pf-a ,  and by 3 (p, p )  - p'. This gives (p-a, R)  -. p'-a  by 16. 

p-a " ai(p,-a) f o r  external  a. 

ffi# a I 



-[- m ]  We shqw (X l y)  - a - (x-a) l (y-a) for a c Lx and a #L . Because 
Y 

of this y-a = y. The case  with a EL and a 4 Lx follows by 
Y 

symmetry. Case internal a: 

a )  (x my) - a,  p )  - * implies either 

a. 1) ((xoy), p )  -c + and (x y), a) - *, by 15. In this case  either 

a, 1; i ) . fx ,  p)-*, by 12 and a s  (x,a) - * SO (x-a?P) -*by 15- 

By 12, ((x-a) l (YS P )  -c * *  

a.2) 3 s o m e n 2 1  such that 

( (xmy).a)  - P ~ A * * A ( P , _ ~  , a) - pn and (p,, a) -- * and 

(P,, P )  - *  by 17.2. By 9 we have (x ,p)  - x i  and 

(XI,  a) - X2 where pi = xi l y (as a $L~). 

As ( x ,  a * and (xn7 p )  -c * we have by 1 7 . 2  that 

( a ,  ) - . By 12, ((x-a) l Y, P )  -L ** Or 

a.  3) By 17.3 we have a similar  chain but with pn in DNF. 

Follows a. 2) for some CNF component. 

b )  ((x-a) l y, p )  -.L * implies either 

b. 1) (x-a, p )  - *, in which case  either 

b. 1.1) (x ,a)  - * and (x,p) - * and by 12, (x my, a) - *  

and (x l y, p) -c *. By 15, ((x O Y ) - ~ ,  P )  ** 

b.1.2) 3 some n t 1  such that ( X , ~ ) - X ~ A * * - A ( X ~ - ~ ~ ~ ) - X ~ A  

(Xn 
, a) -- * and (xn7 P )  - +. by 17.2. As 

Q ~ L ~ ,  by 9 we have 



and ((xn l y) ,  a) -. * and ((xn l y). p )  -*. By 

17.2, ((x l y)-a) ,  p )  - *. 
b . l . 3 ) b y  17.3 we have a s imi lar  chain with DNF xn. As 

for  b. 1.2) with a CNF component. 

b.2.1) ( x , a )  --* and as ~ B L  ( x o  y , a )  - *  and by 15, 
Y * 

( (x  o y)- a), p )  - * *  

b.2.2) (x .a )  - x l  A A (x,, a )  -. * A (xnp) - * 
As a i L  then ( x e  y , a )  - x l  e y "  * . * A  

Y 
( x n e  y, rr) -- * 

and (xn y, p )  - *. By 17.2, ((x O Y ) - ~ Y  P )  * a  

c.1) ( x o y , p ) - - p 1  and p = p r - a ,  by 16. 

c .1 . l )  P # L  and 9 gives 
Y 

(x, p )  - p f f  with p1 = pI1 e y .  By 16, 

(x-a, P )  - ptl-cr and a s  (3 4 L 9 gives 
Y 

(x-a l y-a, p )  -9 ( P I ' - a )  l (y-a) Now 

(p" Q y)-a - (pw-a) l (y-a) by an  inductive 

argument on our indexed definition of -, as required. 

c .  1.2) P # L ~ ,  a s  for c .  1. 1) by symmetry using 10. 

c.  1.3) a / L x n  Ly, s imilar  to c.  1. 1) using k. 



c . 2 ) .  3 s o m e n s u c h t h a t  ( x . y , a ) - x l ~ y  A . - . A  

A ((xn- 8 y), a )  - xn and (xn l y, a )  - * and 

(xn y, p )  - p1 with p = pf-a. F o r  this (x, a )  - x A 
1 

x n ,  a - x n and (xn, a) - * , by 9. Now 

(xn. y , p )  - p l  in  three ways by 9,  10, and 11. 

c.2.1) ~ B L  and 9 gives (xn,p)  -pH with pf  = pH a y. 
Y 

By 17.1 (x-a, p)  - pU-a  and a s  P 4 Ly, by 9 

(x-a . y, p )  -- (PI'-a) . y. Now 

(pf  1 y)-a - (pH -a) y by a n  inductive argument 

on the indexed definition of -, a s  required. 

c .  2.2) P 4 L follows similarly using 10. 
X 

c.2.3)  P E L x n  L follows using 11. 
Y 

d) ((x-a) y, p )  - p implies either 

d. 1) (x-a, p )  - p f ,  p 4 L with p = p t  y, by 9 ,  This a r i s e s  
Y 

with either 

d.1.1) (x ,p)  - p u  where pf  = pw-a.  As p # L y  9 gives 

(x l y, p )  - pll y and 16 gives ( (x  y)-a, p)  

(pf  l yf-a. As p = (p" -a) y then (pH-a)  y - 
(pf  ' l y)-a by induction on definition of - . 

d.1.a) 3 n where ( x , a ) - x i  A - * *  ( x n l ,  x and 
n 

( x ,  a) - * and (xn, P)  - pf  where pr  = pu -a. 

As a , p 4 L Y ,  (x.y,a)  - ( x l  O Y )  A * * *  A ( x ~ - ~  • ~9 a)  

- x  o y  and (xn.y,a) - *  and (xn.y.P) - p W e y .  
n 

By 17. 1, ((x y)-a, P )  -c ( p t r  y)-a.  Now 



p = (pl -a) y - ( p f l  y)-a, by induction on 

definition of - . 

d. 2) (y, P )  - pl,  P / L~~ follows in a simpler way. 

d. 3) (x-a, p )  - pl and (y, (3) - p f r  . Follows in a s imilar  

manner to d. 1). 

We now have (x  e y)-a - (x-a) e y  for internal a such that a / L . The 
Y 

case  with a / Lx follows by symmetry. 

Case  external a:- Again assume x and y in  CNF a s  laws [- fD ] and 

[fD e ] can be used to get this. 

a )  ((x y ) - a ,  p )  - * implies by 18 that (x l y7 p )  - * Either 

(x, p )  - * o r  (Y,  P )  --C *. 

a.1) (x,p) - *  and by 1 8 , ( ~ - a , P )  and ( X - ~ . Y * P ) ~ * *  by 12* 

a.  2 )  (y, p )  - * and by 13, (x-a .Y, P )  **  

b )  (x-a e y 7 p )  - *. By 12 and 13 either 

b. 1) (x-a, p )  - * in which case  (x, P )  - *, by 18. Then 

(X y, p )  - * by 12 and ((x l y)-a, P )  - * by 18, a s  a i s  

external. 

b. 2 )  (y, p )  - * and so (x l Y S  9 )  -* * 13* and 

( ( x  . y)-a1 P )  - * by 18- 

c) ((x ey) -a ,  p )  - p implies by 16 that (x ~7 P )  pi where P = p t - ~ -  

c.1) By 9, (x ,p)  - p t l  and P ~ L  withp '  = p t t  p y  then 
Y 

(x-Q, p )  pt  ' - a ,  by 16 and (x-cu .y,P) - (p l ' - a )  e y  by 9. 



NOW p = (p" l y)-a - (p f f - a )  a y by induction on 
\ 

definition of -. 

c . 2 )  By 10, (y ,p)  - p r r  and ( 3 4 ~ ~ .  As for c.  1) using 10. 

c .3 )  By 11, (x ,P)  - p H  and ( y , p ) - p f r f  . As for c .1)  using 11, 

d. 1) (x-(2, p )  - pl and f3 $ Ly, with p = pf  l Y -  BY 16 we have 

(x, p )  -C p f r  where pr = pf r - a .  By 9,  (x l Y, P )  -L P" Y 

and by 16 ( ( x a y l - a , P )  - - ( p r r  my)-a. Now 

p = (pr -a) a y - (pr  a y)-a by induction on definition of -. 

d.2) (y ,P)  - P I  and p # L x *  with p = (x-a) @ p r  and 

( (X  a ~ ) , p )  - x a p l ,  by 10. (x  ay)-cr, p )  -L (x a p r ) - @  16* 

Now p = (x-a) pf - (x a pr)-a  by induction on - . 

d. 3) (x-a, p )  - pf and (y, p )  - -pH follows in a similar  fashion 

to d. 1) using 11. 

Now have that (x a y) - a - (x-a) a y for  external a. The case  with 

a # Lx, i. e.,  (x a y)-a - x a (y-a) follows by symmetry 

- ] Show (x  By)-a - (x-a) te (y-a) for CNF x and y .  

a )  ((x 8 y)-a, p )  - * i f  either 

a. 1) by 19, (x-a, p )  - * and so ((x-a) @ ( pa ) ,  P )  -c $ 9  by 6- 2. 

o r  a .2 )  by 20, (y-asp)  - *  . As for  a .  i )  



b)  ((x-a) G3 (y-Q), p )  - * implies that either 

b. 1) by 6.2, ((x-a), P )  - * hence, ((x-a) @ (y-a), P )  -+ * Y  by 19- 

b.2) by 7 . 2 ,  ((y-a),P) -*. As f o r b . 1 ) -  

c )  ((x 10 y)  -a, p )  - p implies either 

c. 1) for  internal o r  external a :- by 16, (x fD y, PI  pr 

with p = pf -a. Either 

c . i .1)  (x ,p)  --pr by 6.1, and 

(x-a, (3) - pr-a by 16, and 

((x-a) B (y-a), P )  -. pf-Q by 6.1. 

c.2) for internal a only:- by 17. 1 3 some n such that 

(X a Y, a) 'Pi A (pis@) 'PZ A A (p,, p )  - pr  with 

p = pl-a. Either 

d. ((x-a) 8 (y-a), PI-- p which implies that either 

d . l )  by 6.1, (x-a,@) -p. Now either 

d. 1. I )  for internal and external a:- by 16, (x,p)  =---PI 

where p = pr-a.  Now (x 10 y ,p )  - pt by 6 .1  and 



f 

d. 1.2) for internal a only:- by 17. 1 3 some n such that 
b 

( 7  a) p A A (pn, P )  --. p1 where p = pf-a.  

By 6. 1, (x fD y, a) - pl  and ( (x  0 y)-a, P )  - p 

follows by 17. 1. 

d. 2)  by 7.1, (y-a, p )  - p. As for d. 1). We now have that 

(X By)-a - (x-a) fB (y-a). 

[--I Show x-a-f3 - x-f3-a. Case CNF x; that i s ,  x =z y.x.. 
i 

1 1  

a)  Case internal a and p:- (x-a-p, y) -- * if either, fo r  CNF x-a, 

a.  I )  by 15, (x-a, y )  = { * }  and (x-a. p )  = { * }  for  C N F  x-a* 

Now (x-a, y)  = { * }  if either 

a. 1. I) by 15, (x. y )  = { * )  and (x, a) = {a) .  Now 

(x-a, P )  = { * }  if (x, p )  = { * }  since (p, a) = {*}. 

By 15, (x-P, y )  = { * }  and (x-p,a) = {* )  and 

(x-@-a, y )  = {*I, by 15 again. 

a.1.2) by 17.2, 3 n such that 

(X.CY) -PI  A -  A (pn,a)  - * and (pn, y) -- *. 
As (x-asp) - * a n d  (x ,a )  - p i ,  i .e . ,  (p ,a)  # {*} ,  

3 m such that (x7a )  - - q l ~ * * *  A (h, a) -+ * and 

( ~ , p )  - *. Then, (x-f3.y) - - * b y  17.2. As 

(x, a)  - q l  A then (x-p, a)  - ql-p A . . . A 

(q,-p, a) - 4 and (LOB, y) - *, by 16 and 15 or  

19 and 20 depending on whether qm i s  in CNF or DNF.  

This gives (x-@-a, y )  - * by 17.2. 



a.2) by 17.2 3 some n such that 

(x-a,B) - p i  A *-• A (pn,P) - *  n.(pn,y) - *  and 

pn is in CNF. S u p p o s e n =  1, t hen (p l ,P )  '*and 

(p l , y )  - *  and pi is in CNF. Now ( x - a , p ) - p l  in 

one of two ways:- 

a.2.1) by 16, (x. p )  - pr and pi = Pr-a. As pl-a  is in 

CNF then so is pr . Now ( P I - a ,  P )  - * either by 

a. 2.1.1) (pr ,  (3) = {*)  and (p f ,  a )  = {*I and 

(PI-a, y )  - * by 15 with (p r ,  y)  = { * )  

and ( P I , * )  = { * )  and by 17.2 and 

(x, (3) - p t ,  (x-P, y )  = {*I and 

(x-p. a )  = { * }  and (x-(3-a, y )  - *, by 15. 

o r  a. 2. I. 2 )  3 r such that, by 17.2, 

( P I , * )  - -p ; r . * .*  A (p:,g) = { * }  and 

(p:, p)  = { * }  and (pl-a, y )  - * with some 

m such that (pl .  a )  -. P ; ~  A ( p k ,  a)  = { * }  
f 

and(pm,y)  ={ * ) .  Now a s  

By16,  (x, p )  - pr we have (x-f3, a) -- p l. 

I 

we have (p;-p, a) - p2-P A = A (pk-p, a) = 

{*) A (pk-p,Y) ={* ) .  ~ h k n r  = m a s  

I 
a) = {*)  and (p,, a) = ( * }  and 17.2 

gives (x-P-a) -a, a s  required. 



a. 3) for  DNF x-a, then x-a = xi-a @ x2-a for some x and 
1 1 

X2' 
by axiom [- &)I. Then (x-a-p, y )  -L * i f  either 

(xi-a-P, y )  - * or  (x2-a-f3, y)  - * by 19 and 20, and we 

can assume x and x2 a r e  in CNF o r  else we repeat 
1 

the above argument. Then i t  i s  only necessary to show 

(xt-a+, y )  -c * for some CNF x1 and the other cases  

follow by symmetry. 

Case  internal a and external P:- 

(x-cr-g 9 Y )  - * if (x-a, y )  = { *  } for CNF x-a. Follows a. 1) 

above. Again we only need consider the CNF case. 

Case external p and internal a:- 

Follows by only considering certain of the cases above. 

Case external a and external 9:- 

Here (x-a=$, y )  - * i f  ( a ,  y) = { } which a r i s e s  when 

(x,y) = { *  } by 18. Then (x-P, y) = {*}  and (x-P-a. y)  = {*}  again by 

18 a s  we only need consider CNF expression. Hence (x-9-a, y) - *. 
We now have completed part  a )  of the proof. 

Pa r t  b )  follows by symmetry. 

C) (x-p-a, y)  - p implies either 

c .  1) by 16, (x-p, y)  - pf where p = p' - a implies either 

c .  1.1) by 16, (x, y) - p t f  where p1 = p" - P .  BY 16, 

(x-a, y) - p f f  -a and (x-a-f3, y) -C pl'-a-P 9 by 16 again* 

~ ~ w p  = P I ~ - P - ~  - P ~ - ~ - P  by an inductive argument: on 



c.2)  by 17.1, (x-(3,u)-p1 A ( ~ 1 . a )  'P2 A " ' " ( P ~ ~ Y )  'pf 

where p = pf-a .  Suppose n = 1, then (pi ,  Y )  - P ' *  Now 

(x-p, a)  p i  i f  either 

c.2.1) by 16. ( x , a )  - p i  with pi  = pi-@.  As 

(pi-(3, y) - pf then by 16 y )  - p1 where 

pf  = p f  -p. As (x, CY) - p i  and ( p i ,  y) -- pf we get 

(x-a, y) - -pff-a ,  by 17.1 and (x-a-(3, y) - pff-a-(3, by 16.  

Now p = pff-(3-cr - pff-a-(3 by our inductive 

argument on -. Or 

c .  2.2) by 17.1, 3 some m where (x, P )  - x A * *  A 
1 

(x,,cY) where p l  = pi-P and by 16 

(x-a.p) --xi A (xi-a.P) --x2 " * * *  A ( x ~ - ~ - c Y ~ ( ~ ) - * ~ *  

As n = i, (pi-(3,y) --pl and so ( p i y  y) -P" by 16. 

As we also have (xm. a) - p \  then 17.1 gives 

(Xrn 
-., y) - p r l - u  and by the (x-a. (3) - x i  string 

above, and 17.1 we get (x-a-(3, y) - p f  I-a-P. 

Now p = pw-P-a, and we use an inductive argument 

to get p f  ! - ( ~ - C Y  - pf f-a-(3. We 

We have shown b. 2 )  for n = 2 by showing for 

the two ways i n  which (x-(3, y) - p i e  For any i, 

(pi,ct) -picl in a similar way, and so for any n 

we will have 2 X n cases where each is like 

c .2 .1 )  o r  c . t . 2 ) .  Then for any n, we have c.2).  

d) (x-a-(3, y) - p follows exactly a s  c )  by symmetry. 

We now have p-a-P - p-P-a, a s  required. 
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ERRATA 

Page 7 . " 

l i n e  4 - "ar + Br2" should read "ar + B s "  
1 

Page 8 

l i n e  2 - 11 49 roots" should read "0 ,roots" 

para. 3, l i n e  6 - "event x" should read "event a" 

Page 9 

diagram 1 - The u on t h e  left-hand-s2de of t h e  lef tmost  box 
should b e  replaced by a y. 

Page 16 

para. 2, l i n e  1 - " (a,p,a) -+ pl' should be replaced by "(ap,a) -+ p" 

Page 43 

l i n e  - 6  - lSgL(I e 1) p t ( i  8 1) Fit' should read 

Page 45 

l i n e  8 - 11 xi 8 1" should read ''riel1' 

Page 52 

a f t e r  t h e  l a s t  l i n e  add i n  t h e  following: 

Page 71  

l i n e  4 - "the ca lculus"  should be replaced by " t h e  X calculus" 


