
THE REPRESENTATION O F COMMUNICATION

AND CONCURRENCY

George J. Milne

September 1980

Computer Science Department

California Insti tute of Technology

Pasadena, California 9 1 12 5

This r e s e a r c h has been supported by the
Science Resea rch Council of the United Kingdom,

the National Science Foundation under grant MCS-8011925
and the Air F o r c e Office of Scientific Resea rch

under grant AFOSR-80-0274

ABSTRACT

A formal sys tem is described within which we may represent

the communication and concurrency features found in systems of

interacting computing agents. This formal system may be used both

a s a model in which to represent the behaviour of existing systems

of computing agents o r a s a language i n which to program desired

systems. The notion of acceptance semantics i s introduced and it

is in t e rms of this that we give meaning to programs constructed i n

our framework.

ACKNOWLEDGEMENTS

A number of people have contributed to the ideas which a r e

presented here.

This research is an offshoot of that performed a t Edinburgh

University with Robin Milner; his influence has contributed much to the

ideas expressed here. Suggestions have also been made by Tony Hoare

and his group in Oxford and by my colleagues here a t Caltech.

Financial support was provided by the Science Research Council

of the United Kingdom, the National Science Foundation and the Air

Fo rce Office of Scientific Research.

TABLE OF CONTENTS

ABSTRACT

ACXNOWLEDGEMENTS

1. INTRODUCTION

1.1 Description of Systems

1.2 Our Approach

2. THE LANGUAGE

2.1 Primitive Language Constructs

2.2 Sorts

2.3 Machines, Behaviours and Programs

2.4 Acc eptanc e Semantic s

3. INTERACTION BETWEEN PROGRAMS

3.1 Interaction Between Machines

3.2 A Derived Operator

3.3 Properties of the Language

3.4 Program Axioms

4. IDENTIFIERS, DECLARATIONS AND EXAMPLES

4. 1 Identifiers and Declarations

4 .2 Data Structures

4.3 Other Examples

4.4 The Dining Philo sopher s Problem

5. DEADLOCK AND TERMINATION

6. HIDING

6.1 Why We Require Hiding

6.2 The Hiding Semantics

6.3 Internal and External Guards

6.4 Hiding in our Dining Philosopher's Example

CONCLUDING REMARKS

8. APPENDIX I: The Equivalence Relation i s a Congruence 9 3

9. APPENDIX 11: Consistency of the Axioms

REFERENCES

THE REPRESENTATION O F COMMUNICATION

AND CONC URRENC Y

1, INTRODUCTION

1.1 Description of Systems

In the study of computation, o r computer science i f you like,

we not only have to l ea rn how to build systems on which to perform

computations; we also must know how to describe such systems.

Formal ism is required to enable us to describe and discuss a

computation system in a precise and unambiguous manner. Computa-

tion is a precise science and there i s li t t le use in only being able to

describe systems informally.

When systems a r e computing, they a r e performing actions;

evaluating functions o r comrnunicating with other systems, for

instance. The sequence of actions performed by a system i s i t s be-

haviour. It i s the behaviour of a system which we wish to be able

to describe formally.

We shall use mathematical and logical concepts in constructing

a framework in which to describe behaviour. This allows us to

specify and describe systems in precise t e rms and to reason formally

about their behaviour using mathematical techniques. The specifica-

tions of a system using a formalism allows one to inform others

about a system unambiguously. This, together with the ability to

perform proofs about the behaviour of a system, a r e two of the main

reasons we wish formal descriptions.

In systems where there is a single locus of control, executing

a program written in a ser ia l language for instance, we a r e able to

describe the behaviour using functions. Either we take the function

to be the behaviour itself and so the program denotes the function,

as in denotational semantics, o r the behaviour i s given in t e rms of

an abstract machine which evaluates the program. Here, in this

operational semantics, we have functions with the state of the

abstract machine being the domain and range.

We wish to produce a formalism in which to represent the

behaviour present i n systems which a r e composed f rom a number

of computing agents, either hardware o r software. These agents will

operate concurrently and a r e linked together forming a complex of

interacting components. Networks, multiprocessor machines and

concurrent programs fi t into the above category. Indeed, most systems

we meet involve some degree of concurrency and so could be des-

cribed in the formalism, o r specification language, which we construct

i n this paper.

Our Approach

The formalism presented a ims to allow us to describe complexes

of computing agents in which communication and concurrency i s

inherent. The formalism aims to be both a framework in which to

represent the behaviour of existing systems and a language in which

to program the desired behaviour of projected systems. I t i s believed

that most existing systems can be represented in the formalism in an

intuitive fashion and that we should find i t more natural to program

c ertain phenomena in our language rather than in existing frameworks.

We shall use the words framework, formal ism and language inter-

changeably .

There a r e certain features which we require our language to

clearly represent. These occur frequently in systems and include

the communication between agents, the inherent nondeterminism

within some agents, and the possibility of deadlock among the complex

of agents.

That the language achieves these goals will be illustrated by

giving a collection of examples which examine the representation of

such features in detail. These examples should also indicate to the

reader the underlying philosophy adopted i n this work. It i s hoped to

be able to fully justify the choices taken in arr iving a t the formal ism

by use of a se t of primitive examples.

The language itself consists of a se t of operations allowing us

to construct programs f rom smaller programs. A number of

primitive operators gives us the lowest level programs. Each

operator should not be considered just by itself but should be thought

of in i t s relation to others, though some have more significance and

a r e indeed more powerful than others.

Together with these operators we have a se t of axioms which

the programs will satisfy. These axioms permit us to manipulate

the syntax of programs while preserving their semantics o r meaning.
'

Various properties of programs may be proved by the use of the axioms.

To give the semantics of the language we introduce the notion of

acceptance. The behaviour of a program i s given by i t s ability to

accept, o r reject, stimuli which a r e imposed on them. In terms of

this semantics, we introduce the notions of equivalence and congruence

between programs and show that our axioms a r e consistent. This

experimental semantics i s operational in nature; we experiment on

programs by giving them al l possible stimuli belonging to a se t

known a s a sor t and see how the programs react. They can react

by evolving into a new program o r by rejecting the stimulus and, i n

effect, destructing. Due to programs being able to react to one of a

number of different stimuli a t a time, we wish to observe how they

react to a l l possible stimuli. Due to programs having the ability to

represent nondeterminism, a number of different programs may

result f rom some given stimulus.

In the language, we have features which allow us to distinguish

between a program which can a t some instance react to a number of

different stimuli and produce (usually) different programs and a

program which m a y produce different programs on receipt of a single

stimulus. The former utilizes a choice construct in the language

whilst the latter a nondeterminism language construct.

When programs communicate with others, then they themselves

resolve the choice which can be made with only one interaction taking

place a t a time, but nondeterminism is an internal feature of a

program and no other program can influence the outcome of a

communication; the outcome i s nondeterministic. Nondeterministic

programs can a r r ive i n two ways; they represent the behaviour of

possibly physical computing agents which for some reason o r other

a r e intrinsically nondeterministic i n behaviour; o r they represent

complexes of agents where we have abstracted away f rom the programs

(or par ts of programs) which cooperate to resolve a choice, so

introducing nondeterminism. This situation a r i s e s where a choice

could previously have been made but can now no longer be effected

since the par t of the program which participates in the choice has

been hidden so preventing a choice being made externally to the

program.

Communication, and so also our stimuli, take place via

ports. If we imagine our program in reality a s a machine running

that, and only that program, the ports a r e the physical places on

such machines where the wires between machines plug into. P o ~ t s

have distinct identities and i t i s this which allows us to program

distinct communications.

Meaning i s given to our language using acceptors and this

semantics should accurately describe the intended behaviour though

sometimes i n a rather complex manner. I t i s believed that a similar

semantics which may, in a c lea re r way, give different meanings to

the choice and nondeterminism operators, could be formulated by the

introduchon of the 0 and 0 modal operators, capturing the notion of

"always I f and If sometimes If respectively. This then gives us the ability

in our semantics to talk about experiments which "always cantf happen

and about ones which "possibly may" happen. It would be hoped that

these two semantics would be equivalent. A formulation of the modal

semantics and a n equivalence proof between the semantics remains to

be performed.

2. THE LANGUAGE

Pr imi t ive Language Constructs

To help i l lus t ra te the concepts which we capture using the

language opera tors , we introduce synchronisation t r ees a s a des-

cr ipt ive tool. The meaning of ou r syntax can then b e represented

by t r e e s and the syntax taken to denote this t r e e semantics . We do

not intend to formal i se this denotational semant ics ; only use i t to

explain meaning in t e r m s of the well-understood notion of t r ees .

An operational semantics which gives meaning to p rograms by

experimenting upon them, i s given l a t e r .

We have three pr imit ive language opera tors , the f i r s t being

guarding. This takes a program and appends i n to something called

a synchronisation label to produce a new program. F o r label a, and

p rogram p then a p i s this constructed program. Labels for the

moment can b e thought of a s events, with p rograms being constructed out

of them using our ope ra to r s . Interaction between p rograms takes

place using these labels .' Semantically, p rograms denote t r e e s while

labels denote named a r c s on the t ree . If t r e e A i s denoted by
a

program p then program a,p denotes the t r e e , Guarding gives

us sequentiality. In the above p rogram p follows the a, event.

We wish p rograms to b e ab le to cooperate with o thers , and

depending on the o ther p rograms , to be ab le to pe r fo rm different

actions. A choice operat ion + allows this; i t takes two p rograms

and produces another program. F o r p rograms p i and p2 then p l + p2

i s another such program.

In t e r m s of synchronisation t r e e s , the node r ep re sen t s this

external ly reso lvable choice. The p r o g r a m p i t pZ denotes the t r e e

A s a n example, the two p rog rams crr and ps a r e composed to give

p r o g r a m cur c p r 2 which denotes t r e e
1

Now a p rog ram may , for some r eason o r o ther (to b e made

c l e a r l a t e r) , nondeterministically wish to pe r fo rm ce r t a in events, o r

to p e r f o r m s o m e o ther events, but not the i r union. A p rog ram

interact ing with, o r communicating with, this one has no control a s

to which of the s e t s i t will be ab le to i n t e r ac t with; the nondeterminis t ic

choice will somehow b e made internal ly . F o r p rog rams p and p
1 2'

the p r o g r a m p l 9 pz i s the i r nondeterminis t ic composition. The 0

node i s used to indicate a nondeterminis t ic b ranch in a t r ee .

p1 8 p2 denotes the t r e e A
As an example, the p rog ram (cup + pq) fI3 Yr denotes the t r e e

Our t r e e s a r e thus bipart i te . Some a r c s a r e not labelled;

these join @ roots to a nodes. A r c s joining roots to 0 nodes

will always b e labelled. 8 nodes will always have the i r 0 off-

spring separated f r o m them by a t l e a s t one level of a nodes. This

i s due to us not labelling a r c s appearing f r o m 0 nodes and the

associativity of the @ operation. We have t r e e

r a the r than the t r e e s

The a nodes, corresponding to t , may have a a s their d i r ec t

descendants since the a r c s joining these a nodes will always c a r r y

a label.

The final pr imit ive opera tor is a nullary one A . That i s , A

takes no arguments , and i s itself a program; the null program. A

r ep resen t s termination and deadlock. Terminat ion and deadlock a r e

ve ry s imi lar with termination being specified direct ly a s a property

of a single p rogram and deadlock being a proper ty of a number of

interact ing p rograms . An agent which wishes to pe r fo rm event x o r

event p (to b e decided on by the environment, i. e . , other p r o g r a m s)

and in either case to then terminate , i s represented by p rogram

CYA + PA. The appearance of A represent ing deadlock will b e descr ibed

i n Chapter 5.

2 . 2 Sor ts

Imagine a p rogram a s represent ing a special purpose machine

executing that, and only that code. As p rograms will communicate

with o the r s so machines will communicate with o the r machines. To

c a r r y the analogy fur ther , we join machines using wi res over which

communications pass . Each machine has a number of ports which

can b e considered a s the sockets into which the wi res a r e fixed.

P o r t s a r e used to both send and r ece ive s ignals and to enable us to

specify how send and rece ive por ts a r e interlinked, we introduce

naming on por ts via labels.

To i l lus t ra te the labelling and linkages between machines, we

may picture machines a s boxes. These boxes have ports on the

periphery, some of which a r e labelled. The convention between

machines is that s imi lar ly labelled ports a r e linked.

Hence we may get

We sha l l permi t two o r m o r e por ts with the s a m e label to be

joined together and to facil i tate this we move the label to a connector

between the joined por ts , and join on fur ther por t s via this connector.

A connector has no fur ther significance. T h r e e machines, which can

b e thought of a s being concurrent ly active, can be linked together a s

follows:

A set of labels i s known a s a sort. Each of the machines,

o r boxes above, has a sort and the program which describes the

behaviour of each machine will also have a sort.

The labels which form sorts lie in the name-set A. Every

program we have will have a sor t though not a l l sorts will be made

explicit. The labels used by a program must lie in i ts sor t but the

sor t may well contain others .

Thus, program ap + pq may have the following sorts: {a, a},

{a, P, 61, {a, P, &} and many others. The rules for defining programs

and for constructing programs from programs will tell us what the

sor t of a program is. The sort i s therefore implicit and is given

by context.

As A i s a program then this null program will also have a

sort. W e therefore may have A # A where the two occurrences of A

may have different sorts. Subscripting of A with i ts sor t will some-

times be used to avoid such problems, but again the context usually

helps us.

2 . 3 Machines, Behaviours and Programs

What i s the difference between machines, programs and

behaviours? As we wish to be able to represent both hardware and

software computing agents without distinction, then to make i t easier

to talk about the topology of these concurrent systems, we use the

physical analogy; machines, ports and wires. A machine, of course,

has a behaviour given in our formalism, and the machine may be

realised physically or by using software; i t does not concern us which.

We represent the behaviour not the implementation which produces

that behaviour .

Conceptually we a r e producing a formalism in which to both

represent concurrent systems and to program concurrent systems. What

a representation and a program have in common i s behaviour, o r to

use another word, meaning. . The representation o r model a ims a t

capturing the underlying behaviour of the system; the program i s a

representation o r a denotation of an intended behaviour. In fact, we

will model a concurrent system using a program and the behaviour

of the system is then given in t e rms of a formal semantics for the

language in which the program i s written. Formally, a model i s

designed with respect to the properties we wish to represent. In our

case i t i s qualitative concepts such a s termination, deadlock and

equivalence but other properties may be modelled. F o r instance,

we have performance models of operating systems using queuing

techniques and simulation. We can also have such quantitative models

a s in the realm of complexity theory. We do not concern ourselves

with these two la t ter types of properties.

We use the word model i n the sense of quantitative representa-

tion. To model a complex of interlinked computing agents requires

us to represent the complex by some syntax; namely, a program.

To specify the behaviour of this program requires that we have a

semantics fo r the language in which the program i s constructed. This

semantics gives meaning to the program. Thus the representation of

some particular computing agent, o r complex of computing agents,

consists of a program and the semantics of the language. We can

then reason about properties of the r ea l system by reasoning about

their representations in our formalism; our model.
11

The model we describe i n this paper consists of a language

and a semantics for the language. We model the behaviour of a

complex of agents via a program in our language. Its behaviour,

and so that of the complex, i s given by the formal semantics of the

language.

Our language for complexes of a single computing agent has

been described so far. This sequential language i s extended to deal

with a world of concurrently active computing agents; complexes with

m o r e than one agent, This is dealt with la ter but first we will give

an operational semantics for the language defined so far.

2.4 Acceptance Semantics

We have informally described the properties of single computing

agents which our formalism may represent. We will now formally

give the semantics of our syntactic constructs using the no tion of

acceptors. Our operational s.emantics is then what we shall call an

acceptance semantics.

Definition. F o r every subset L of a name-set A then L is

known a s a sort. The acceptance semantics is given by an acceptance

relation of type

(PROG X A) X (PROG U {*I)

where PROG i s the se t of programs to be the words algebra WZ

formed from the signature Z where

Z = A U { A , + , @,. , -)

A is a nullary operator and A i s a set of unary operators known as

labels. + , fD and e a r e al l binary operators while for X ranging

over A then - X i s a unary operator. The set PROG may be

partitioned according to sort such that PROG = U PROGL
v

PROG is then the union of all phyla PROGL for all sorts L;

that is , for all subsets L of the name-set A.

Our acceptance relation between (PROG X A) and (PROG U {*I)
will be restricted to taking (program, label) pairs where the labels

lie in the sor t of the program. The relation i s undefined for

(program label) pairs where the label lies outside the sort of the

program.

Technically, we could have effected this by having a family of

relations, one relation for each sort. Then for each sort L we have

a relation of type

It will generally be understood what the sort of a given program i s

and thus we need not usually explicitly specify it.

The symbol * i s not in the syntax of the language but i s a

meta-symbol used in the semantics.

Meaning i s given operationally to programs in our language

using the family of acceptance relations. A program and a label

from i ts sort will produce either a new program or the symbol *

under the relation. An experiment i s performed here in that a label

is given to a program and the resulting program (or *) indicates how

the original program reacts to the stimulus of the label.

For programs p, p1 E PROGL and label & E L then the

relation ((p, &), p t) for sor t L i s written as

and indicates that after an & stimulus the prograzn p evolves into

program pt . Our relation can be thought of as defining an acceptor;

here program p accepts & and evolves to program p' .

L
If (p, &) - * then under our & stimulus p produces * ; i t does

not accept the & and so does not produce a new program. The label

I has not been rejected though; program p has evolved into a

degenerate state on receipt of the & stimulus.

The sort of a program will generally be understood and i t will

usually not be necessary to put a sort superfix on the symbol --, as

mentioned previously .

For any program/label pair a number of outcomes may result;

the inherent nondeterminism of the language may cause different

programs to result when the same original program is provided with

the same stimulus label. But whether a program i s nondeterministic

o r not, to fully specify i ts meaning we need to see how it reacts to

al l possible stimuli contained in i ts sort.

The semantics of programs constructed from the signature

set L U { A , + , 9) tor some, L A is given by the smallest relation

satisfying

for cr and p ranging over L

(p, a) " *
6 . 2

(P @q,cr) -- =

All relation symbols - could have had L as superfix. We therefore

see that the following programs all have the same sort L where a, E L ;

It should be pointed out that $I i s a member of L since (cup,@) - *.
If p # L then the relation for (cup, P) would be undefined.

A here i s of sort L but we will have a A for each possible

sort. To be more precise, we should have a collection of them each

subscripted by i ts sort, but once again, we trust the context to keep

us right and so avoid the need for these subscripts.

15

We have defined the semantics for a primitive language not

having the ability to represent concurrency and communication. This

comes later. First we shall explain the intuition behind our definition

of the relations used in our acceptance semantics.

Program crp accepts an cr label and

e ~ l v e s to program p. That is, an a!

stimulus is given to crp and program

p results.

Program crp when given a f3 stimulus

does not accept it.

If program p can accept an cr label

and evolve to p1 then so can program

p+q. Clause 4 is similar.

(p, - * A (q, a) - *
5.

(p+q,) - lr If both programs p and q can fail

when given an cu stimulus, then p i- q

can also fail to accept an a.

If program p receives an cr stimulus

and evolves either to program p1 or

to * (where pt # *) then so also does

p @q. Clauses 7.1 and '9.2 are similar.

The A program cannot accept any label.

It will produce * on all stimuli.

In our language we shall wish to say which programs a r e

equivalent, that i s , which programs behave similarly. F o r two

programs p and q, we say they a r e equivalent if they produce

equivalent programs given the same stimulus, for a l l stimuli i n their

sorts . Also, for a given stimulus, i f * results, then * must result

when a n equivalent program gets given the same stimulus.

Definition, Programs p and q of sor t L a r e equivalent

written p z q, iff Y a EL. We have

a) (p, a) - * * (q, a) - *
b) - * - (p , d - *
C) (p, a) - pf 3 3 qt such that (q, a) - q f and (pt = qf)

d) (q, a) - qt 3 p' such that (p, a) - pt and (p' = q ')

This definition of equivalence i s recursive but is adequate for finite

programs. Finite programs terminate using A.

To handle recursively defined programs, we introduce a new

equivalence - where - is taken to be the intersection of ascending

indexed relations -n. Thus - is defined to be I;! (mn) where pW0q

always holds and for programs p and q of so r t L

fa -n+i
q iff Y ~ E L .

a) (p, a) - * ==;> (q, a) - *
b) (q,cu) - * * ,,p,a) - *
C) (p ,a) - p f s j q such that (q,cu) - q t and pf - q f

n

d) (% -c q' * 3 p such that (p, a) - pt and pf - q ' n

We will perform induction on the lfdepthll of the equivalence -
when proving two programs p and q equivalent.

Later we shall prove that - i s actually a congruence. That is,

f o r all contexts C which can be constructed in our language, then

A context i s a program with a lrholell in it. C [p] has this hole

replaced by program p.

3. INTERACTION BETWEEN PROGRAMS

3. i Interaction Between Machines

Until now we have only concerned ourselves with the behaviour

of a single machine. We now introduce language features which

allow us to represent systems of machines. These machines will

compute concurrently and will interact with each other by synchronised

cormunication from time to time.

The behaviour which we capture in this framework i s that of

programs, or other computing agents, being given an external

stimulus and evolving into some new program. The formal semantics

of the "single component" language presented so far relies on this

notion of stimulus. A stimulus i s accepted and either produces a

new program, or causes failure and so prevents any other stimuli

from being accepted. Note that a program can always accept a

stimuli but that i t may well cause failure. Suppose the machine has

behaviour denoted by program ap t pq. Then i t can receive a stimulus

a t port a and evolve into a new behaviour denoted by program p or i t

can receive stimulus at port p and evolve to program q. The

environment only sends one stimulus a t a time but regardless of

whether i t i s an a or p the program can respond and evolve to sub-

programs p and q respectively.

We have assumed that these stimuli a r e produced by the

environment and our semantics says what happens to a program

when they a r e accepted. The environment may well be another

program, and so programs not only have the ability to receive stimuli

but have the ability to generate stimuli.

Now the environment can a l so b e thought of a s a machine E

generating stimuli on the various "linesrf connecting i t with machine

M. When a synchronisation takes place the two machines M and E

which a r e concurrently running programs, m a y exchange s t imul i on

one, and only one, of the l ines and their behaviours, r ep resen ted by

p rograms m and e evolve into new p rograms m ' and a ' .

In our language, we sha l l not distinguish between generated

and received stimuli. The r eason fo r this is that we a r e in te res ted

in how the s t imuli synchronise a t instances i n the l i fe of our system.

The generation and receipt of a s t imulus i s considered a s an ins tan-

taneous ac t between p rograms . This ac t r equ i re s synchronisation

between the participating p rograms . Synchronisation can therefore

b e thought of a s a n instantaneous exchange of s t imuli with only one

such synchronisation taking place a t a t ime.

E a r l i e r we showed how p r o g r a m s may b e pictured a s machines

having ports. The por ts a r e used to link machines together to f o r m

complexes, o r sys tems, of machines. The convention adopted is

that similarly labelled por ts get joined through a connector node.

F o r machines M, N and 0 as follows:

they link together to give the following complex: -

We see that M, N and 0 have made a three-way linkage using

a! ports and a two-way linkage via the y ports. The P and 6 ports

still have not been connected but they, a s well a s the a ,and y

connectors, can be used to attach further machines.

We now have a convention for representing the communication

structure of a system. But this i s purely static as we have not

specified the behaviour of the complex of machines; we have not

said how they use the communication lines to exchange stimuli among

themselves .

If m, n and o a r e the programs in our language which specify

M, N and 0-the programs running on M, N and 0 i f you like--then

the composite system is m* n@o. How does this composition

operation work? That i s , what a r e i ts semantics?

For programs p and q of sorts L and L respectively:
P 9

The relation below the line in each of these clauses should

have L U L superscripted on the operator, but we know implicitly
P 9

that the sort of peq i s the union of the sorts of i ts components.

To explain how p q behaves in terms of acceptor semantics,

f i r s t note that we a r e considering p and q a s two concurrently active

programs which either communicate with each other by the exchange

of stimuli or attempt to interact with the environment, i. e., receive

a stimulus from the environment,

The first clause, clause 9, states that i f p accepts an a,

stimulus which does not result in *, say program p, and i f a, i s not

a member of the sort of q, then p q accepts an a, stimulus and evolves

into poq. Here, program p evolves to pf after accepting an a,

stimulus but q does not progress due to the a, stimulus. Hence peq

evolves to p'oq on receipt of an a, stimulus. Those labels in the sort

of p but not in the sort of q a r e said to be external, thus a, i s an

external label. The external stimulus, an a, in this case, appears

from the environment and not from the other program q; i t i s there-

fore external to the composite program poq.

Clause 10 gives meaning to external stimuli via labels lying in

the sort of q but not in the sor t of p.

Clause 1 1 states that i f p accepts an a, stimulus and evolves to

pi and q accepts an a, stimulus and evolves to qf with p' and qf not

being * then paq will accept an a, stimulus and evolves to program

pioql. Here the a, i s an internal label; i t lies in the intersection of

the sorts of p and q, The two programs p and q synchronise on

label a, and exchange their a, stimuli allowing both to evolve into the

new programs pf and q' . These two programs a r e similarly composed

using l to give what peq evolves to. The clause
*

(p.q, a) - * states

that i f p on receipt of an a stimulus evolves to * then p q on receipt

of a stimulus also evolves to *.

If a is external to peq then a, will not be in the sor t of q.

Thus i f p on receipt of a, cannot produce a new program then paq

cannot produce a new program given the same stimulus. We therefore

get * a s a result. Of course, program p may involve the nondeter-

ministic operator so p may give a new program a s well on receipt of

a n a. Clause 9 deals with this case.

If a, is internal to paq then a, l ies in the sor t of both p and q.

If p produces 9 on receipt of an a then so also will peq since regard-

l e s s of whether q gives a new program o r * on receipt of a n a,, p

will give *. Of course, p may a lso produce a new program p1 on

receipt of a, which would be due to the presence of our nondeterminism

construct. In this case either clause i i would give a new program i f

q produces a program when given an a stimulus, o r the dual of this

clause would give a n * as the result i f q gives * on receipt of an a.

, 2 A Derived Operator

Using our se t of primitive operators over sorts , we may define

other operators to simplify programs which a r e constructed in some

common fashion. These derived operators may also be used to help

i l lustrate how certain phenomena which a r e met in a concurrent world

a r e represented in our language,

As an example of this, we define a polyadic composition

operation using our binary concurrent composition operator 0 .
will be a sorted operator of so r t L i X LZ X * X Ln - Li

L2
. . .

Ln,
for n arguments. is defined by:

Why do we wish such an operator?

We introduce kt because i t helps to indicate the multiway

synchronisation performed when we compose two o r more programs

using . An n-way synchronisation is represented by repeatedly

applying the binary operator to n o r more programs, but we can

imagine that with the rr operator this n-way synchronisation i s per-

formed a s a single act. In fact, we can directly define a polyadic

operator which does just this (rather than rr which i s a derived

operator) and which has a s i t s 2-argument instance but for technical

reasons our binary i s preferred a s a primitive in our language.

3 . 3 Propert ies of the Language

Using the language features introduced so far, we can construct

programs and give their meaning using our acceptance semantics.

Our understanding of how these language features were derived, i. e.,

i n t e rms of stimuli, leads us to require that these language constructs

possess certain features; that they satisfy certain laws. F i r s t le t us

introduce the notion of normal fo rm programs.

Definition: A p r o g r a m is i n CNF, (Conjunctive Norma l F o r m) , if

e i t he r i t is cons t ruc ted f r o m C N F subprog rams using

only the choice o p e r a t o r o r it is cons t ruc ted f r o m a

s u b p r o g r a m and a l abe l us ing t he guarding ope ra to r

Examples : (ap B pq) t y r is not i n C N F

s ince cup B) pq is not i n C N F

(a p + pq) t y r is i n C N F

&(ap B p q) + y r is i n C N F

Definition: A p r o g r a m is i n DNF, (Disjunctive Norma l F o r m) , if i t

is cons t ruc ted f r o m s u b p r o g r a m s using the nondeter

mina t ion ope ra to r .

Example s : (ap B pq) + yr is i n DNF

even though ~llp @ Pq is in DNF

(crp t Pq) B y r is i n DNF

&(crp t P q) B y r is i n DNF

Definition: A p r o g r a m is i n n o r m a l f o r m if i t i s i n C N F o r DNF and

i t s component s u b p r o g r a m s a r e in no rma l f o r m .

Note tha t the p r o g r a m (ap BPq) + y r i s ne i ther i n C N F o r

DNF. It is thus not i n f o r m a l f o r m .

A CNF program can be written a s z aipi where

i

z uipi = alp1 t *-• + "nPn and a D N F program can be written a s

i = l , n

a i p i = a l p l O * * - %P,=
The empty sum z = A; so A i s the

i=l, n i

identity for t .

3.4 Program Axioms

Here we l i s t certain laws which our language constructs satisfy

and explain why we require them. Thinking of our language a s a

word algebra W where Z = A U { t , 8, A, we may take these
=1

laws to be axioms.

x t x . x idempo tency

[t2] X + Y = X + Y commutativity

[+A] x t A = x identity

In the above laws x,y, z a r e a l l CNF programs; they do not have

operation B outermost.

We have the idempotency of our choice operation t because to

any program interacting with x t x then the two copies behave just a s

i f one were present; the commutativity of + since the o rder of possible

choices should be immaterial ; the associativity of t since we wish to

allow for more than two choices to be made a t certain times; the

identity since nothing may in teract with A .

[O i l X O X = x idempo t ent

[o,] x ~ y = y ~ x commutative

IO Q] x Q(y E! z) = (x O y) B x associative

[t @ I x t (y@ z) = (xty) 8 (x t z) t distributes over O

[a O t] a x t a y = a x 8 a y

[B B t] x @ y O (x t y) = x B y

Note that A i s not an identity for O, but just for t.

We have the idempotency of B since no matter which sub-

program the program x @ x nondeterministically gives us, then they

a r e the same, i .e . , x; commutivity since our nondeterminism

operator should t rea t i t s operands in an unordered fashion; associativity

since we with to program agents having more than two possible

behaviours.

We allow distributivity x t (y O z) = (xty) @ (x t z) since the left-

hand side says that i t will accept the stimuli due to subprogram x but

only accept the stimuli due to one o r other of y o r z and we do not

know which. The right hand side says that we can accept the stimuli

due to x and y o r accept the stimuli due to x and z but not both. That

is, both sides of the axiom state that the interactions contributed by x

a r e always present together with either those of y o r z and we do not

know which.

We allow that ax + ay = ax Bay since i f an a stimulus i s given

to either side of the axiom either x o r y i s the resulting program and

the a! stimulus has no control over which one results .

I t may be supposed that we would also have the axiom

ax B a y = a (x 8 y), that i s , guarding distributing over @. But the

left-hand side nondeterministically gives us programs x o r y on

receipt of an z stimulus, i. e., af ter an a communication, whilst the

right-hand side deterministically gives us the nondeterministic

program x By. In terms of our acceptance semantics these programs

a r e not equivalent since x i s not equivalent to x 8 y , and y i s not

equivalent to xBy. The problem here i s due to the different "levels"

the nondeterminism appears at. Intuitively we would like the axiom

a x B ay = a(x @ y) but to ensure that a x 8 ay - a(x f8 y) would require a

change in our acceptance semantics. We will not do this.

We have axiom [fD 8 t] since x @ y tB (xty) reacts in the same

way a s x@ y to a given stimulus. If some stimulus a gets nondeter-

ministically sent t o x ty o r x o r y then the program (or *) which

results will be the same a s i f i t were nondeterministically sent to

just x o r y. The possible outcomes of x t y a r e a subset of those

for x @ y . The only way they differ is that xiBy may produce a n *

where x + y would not.

We have previously mentioned that we may introduce so

that a.p. = alp1 t a2p2.
1 1

Similarly, aipi = a lp B a2p2. NOW
i= 1, 2 i= 1, 2

(= A) is the identity for + and similarly, 8 (# A) i s the identity for

O and + . and a r e the tlemptyft choice and nondeterminism

operators respectively and a r e meta-symbols which do not appear

explicitly in our language but rnay be used for convenience. They a r e

derived operators which sugar our language.

In the above we allow + to distribute over @ but not vice-versa.

The reason for this is that i f we have both:

the existing law (I) x + (y B z) = (x t y) a (x + 2)

and i t s dual (11) x 9 (y + z) = (x 9 y) t (x @ Z)

then we produce an inconsistency i n our se t of axioms. An example

illustrates this:

= (a p l @ P ~ 2) t (apl@yq) + (yq@Pp2) + (y q 9 yq) by (II)

= (rrp1@Pp2) + (yqB(apltPp2)) + yq by t assoc. , (II) and B indempotency

= [(aPlfBf3p2) yq@(apl +f3p2) by + asaoc. and comrn. I
Now this i s our f i r s t line composed with [yq 9 (ap1+pp2)] using t ,

F o r this to hold either [yq 9 (apl+ pp2)] = A , which i t patently i s not.

and the identity law is used; o r yq 9 (apl+ pp) i s either equal to,
2

o r i s a subDNF sum of (apl@ pp2) + yq, which i s also

false since the left-hand side has that a y communication may

possibly take place whilst the left-hand side says that i t always can

take place when provided with a y stimulus, and idempotency would

be used. Since we wish to allow law (I) then law (11) must produce

this inconsistency and so (PI) must be false. Note that p is a subDNF

sum of q i f every DNF clause i n p i s also a DNF clause in q.

W e allow guarding to dis t r ibute over fD but not over + . The

reason for this is that B and t a r e c l ea r ly dis t inct a s explained i n

Chapter 1 and so x B y # x t y provided x # y. Now a (x e) y) # cr(xty)

since following a n cr communication the left-hand s ide can p e r f o r m

the communications of e i ther the x o r y subprograms but we non-

determinis t ical ly do not know which, whilst on the right-hand s ide

any of the x and y communications may take place.

As a (x Q y) = axe) cry = ax t ay using our axioms then a x +cry #

Q(X t y) .

Using our acceptance semantics we can easi ly show that

x 63 (y i z) and (x B y) + (x O z) a r e not equivalent and that ax +cuy and

~ (x ~ y) a r e also not equivalent.

Now we introduce the axioms involving our concurrency

opera tor .

[m i] x o x = x idempotent, for x i n C N F

[a 2] x a y = y.x commutative

[.a] x a (y . z) = (x.y).z associat ive

[e t 1 for x = C pixi,

[OBI x o (y O z) = x e y Q x a z where x has s o r t L and y has s o r t 1

distr ibutes over Q.
3'3

Note that we normally do not need to subscript l a s the sorts

of i ts components will be understood. The [o +] law gives z(= A) i f

there exists no y., p. such that pi i~ or p. # L or pi = pj.. A will
1 J J

represent deadlock between the two components p and q.

We have the idempotency law for our concurrency operator l

since identical programs will give stimulus to each other using all

their labels leaving us with an identical program. This is the case

provided that the component programs a r e in CNF, i. e., there i s no

G3 outermost. We do not have idempotency with DNF programs;

consider (x 8 y) l (x 8 y) under axiom [l 83 1.

We have commutativity and associativity for l since it should

be irrelevant the order in which component programs a re composed.

For p and q in CNF then p a q should also be in CNF constructed

out of guards whose labels a r e external to po q and guards whose labels
-

a r e internal to po q. The yi(pi l q) clause contributes to po q
LM

those guards who appear in p but whose labels do not appear in the

sor t of q. Since only the p participates in this then the resulting

program composed with the label i s pi l q . Similarly for labels
LM

in guards of q which a r e not in the sort of p. Finally, the clause

p.(p. l 9.) contributes to p o q a guard whose label is the same
1 1LM 3

Pj

a s guards appearing in p and in q and as both p and q participate in

this synchronisation the program p. l q results which i s composed by
1 j

the guarding operation with label y. Hence p and q have synchronised,

exchanged pi stimuli, and have evolved to programs pi and q. which a r e
J

recursively composed by the a operation.

If (I) we do not have any labels pi in guards of program p such

that pi f M, the sor t of q; 4 i f (2) we do not have any labels p. in
J

guards of q such that p. {L, the sor t of p; _and i f (3) there a r e no
3

guards in p and in q having the same label then p e q = , the
LM

"empty sum" which i s the nullary operator A . A has sort L U M

and we can note that i s the only operation so far which changes

sorts; by unioning the sorts of the components. The operations

defined so far a r e sorted as follows:

a : L - L where a EL

+ : L X L --L

Finally, the (0 tB] law is present since p running concurrently

with program q ff) r means that p will actually run concurrently with

either subprogram q or subprogram r and we

do not know which. (p q) 83 (pm r) i s the program where either p

runs with q or p runs with r and the decision i s made nondetermin-

i s tic ally.

We have justified the laws, o r axioms, informally. In a later

chapter we prove that the laws actually hold with respect to our

acceptance semantics. Thus, for the laws above, the left-hand side

has the same meaning as the right-hand side and so we can quite

happily use the laws to replace programs by semantically equivalent

programs in any program context without changing the complete program

meaning. This i s the case since the laws satisfy our notion of equiva-

lence which also happens to be a congruence.
32

In t e rms of the acceptance semantics and our notion of equi-

valence, we can prove that the following do hold:

x q y + e) = (x a y) t (x B z) and a (x t y) = a x t a y .

We have previously informally justified them a s not being axioms in

our language.

Two further operations require to be introduced into our

language but we f i rs t introduce recursion and recursive definitions.

These allow us to produce some interesting example programs using

our language.

4. IDENTIFLERS, DECLARATIONS AND EXAMPLES

4.1 Identifiers and Declarations

To allow us to give practical examples, we extend the language

wzl
by giving i t the ability to handle data structures. This does not

change any of the preceding language philosophy but allows us to

program, that isst0 represent the behaviour of computing agents such as

registers, memories, stacks and queues.

Let us introduce a set of identifiers I written using capitals,

with which to name programs, and a constructor = to bind programs

to identifiers. We therefore have our new language, the word algebra

W where
%

The = operation is of type I X Prog - Dec. An identifier in

p ~ P r o g i s either the identifier currently being bound to p or else has

previously been bound in p. The identifier after binding then names

a program and thus has a sort, the same a s the program. There a r e

no restrictions on the sort of programs which we can bind with

identifiers .

For ID €1 and p E Prog we give meaning to a declaration by

extending our acceptance semantics:

2 1.

This construct permits us to define recursive programs, i .e. , P=cxP.

Now we assume that after this declaration P identifies and has

the same behaviour as aP. The declaration itself i s not a program

and we must compose i t with a program to form a new program. We

introduce a new operator where giving the alphabet 2 - X 2 u {where) .
3 -

Composing a declaration with a program uses the where operation,

of type:

(Progi x Dec) - ProgZ

Note that an identifier may not appear a s a member of Progl unless

i t has previously been declared by some member of Dec. Declarations

and the use of where a r e really not necessary to our language and

"sugaru i t to make programs read more easily.

We can have the following programs:

a P t 6A where P = aP t p A

We assume here that the operators in alphabet Zl bind more

strongly than where, which in turn binds more strongly than = .

We may also nest declarations to get:

P e Q where P = a P + F A where Q = a A

A derived operation and of type Dec X Dec - Dec can be defined as : -

d ef
d l d2 = di where d 2 .

The acceptance semantics for the extended language W is as for W
r=3 x 2

with the addition of clause 22.

Let {m/n} be the substitution operation in our semantics (not

i n our syntax) such that n gets replaced by m, then

2 2 .

(p where n = m , a) P'

4 . 2 Data Structures

The ability to identify a program with a name allows us not only

to write recursive programs but to introduce data structures. To

effect the lat ter we allow identifiers to be not just names but names

parameterised on some data structure.

We a r e not able to represent the communication of values in

our language; we only can communicate, o r synchronise, stimuli and

this interaction indicates no more than that a synchronisation between

two (or more) programs has taken place. F o r this reason our data

structures will contain only boolean ~ l u e s though other types of values

may be simulated.

Consider a boolean register . What behaviour does i t have?

Well, if it is nonempty i t can output i t s contents which ~ 5 1 %

then remain unchanged o r i t can output a new boolean value and replace

i t s contents by this new value.

Such a behaviour is given by a program identified by REG of

sor t {cis go, ri, co}.

36

REG = El REG(1) + go REG(0) where

This declaration can of course be combined with another program

using the where operation.

A program REG i s the initially empty register which can

therefor only input a 1, represented by a stimulus at the port,

o r a 0 represented by a stimulus at the E port. Since we cannot
0

communicate the values 1 and 0 we have two separate ports which

allow 1 or 0 stimuli to be effected, and so we have two input lines

connecting this register program with other programs. W e also have

two output ports cri and uo , since once a value has been loaded into

the register our program must also have the ability to output the

contents as well a s load new contents. The identifiers REG(Q) and

REG(1) identify register programs whose contents a r e 0 and 1

respectively, the former being able to synchronise through the oo

port and the latter through the u1 port. This represents a 0 and 1

being output respectively.

In the above we have two input and two output ports represent-

ing the input and output of 1 's and Ofs. Conceptually we have only two

ports & and u with the index indicating the value to be communicated.

When lfsimulatingfl value communications like this, we do not distinguish

between a sender and receiver. In fact, since more than two

programs may synchronise on a particular label, this multiway

synchrogisation permits us to represent the broadcasting of a value to

a number of different programs.
37

4 . 3 Other Examples

Memories.

We can construct memories out of registers. To do this we

must give each register a separate identity. Let REG^ be of sort

{cis & i , r i , ri 1
1 0 1 0

and so let i t be defined a s for REG but with label

changes. Then define MEM a memory of sort u (st, c:, ri, st}
i= i ,n

I 2
MEM = REG a REG 8 where "'.

An operation to produce instances of a generic program, will be

introduced later. As the REG'S in MEM have disjoint sorts they

a r e not connected by the concurrency operation.

Stacks

We saw that a register was defined using an identifier param-

eterised on a tuple (or string) o r booleans. A stack of sor t

{ 60, bi, rO, r1 } may be defined by:

where STACK(0 On) = oo STACK(n) + 6O STACK(0 0 n)

and STACK(1 n) = ri STACK(n) + 60 STACK(1 n 0 n) -

Here E; is the empty string. Note that we do capture the behaviour of

a s tack h e r e a s 1 ' s and 0's a r e "putff' on and "takenu off the top of the

stack. A queue m a y b e defined s imi lar ly but we Ifputt1 on a different

end of the s tr ing f r o m where we "takeN off.

Counters

A counter COUNT(i), parameter ised on integer i, will have s o r t

{up, down, ze ro }. As we do not (yet!) have a conditional construct

i n our language we define COUNT(i) by use of two clauses

COUNT(0) = zero COUNT(0) t up COUNT(1)

and -

COUNT(nt1) = down COUNT(n) t up COUNT(nc2)

This counter keeps t r ack of the number of ups that exceed the number

of downs.

An al ternat ive counter may count negatives a s well. Let us

ca l l this p rogram COUNTER(i) where i is the number of ups minus

the number of downs. It will have s o r t {up,down).

COUNTER(n) = up COUNTER(nt1) t down COUNTER(n-1)

It is the environment which generates the up and down st imuli and the

COUNTER program will cooperate with whatever is i n the environment

to synchronise on a stimulus and evolve to a new program. We may

wish the environment to interrogate the counter and discover i ts

contents. As we have no value-passing mechanism i n our language

(unlike CSP, for instance) we have problems in getting the value of

the contents ffout." If we allow our counter to be bounded then we

can have an out label for each integer. That i s , a separate output

line corresponds to each integer and i f a synchronisation is made on

one of these lines by some other program we may assume that this

program now knows the contents of the counter.

Suppose our counter only counts positively, a s COUNT(i), and

has a maximum of m. Then COUNTM(i) will have sor t {contents, up,

down, out , out , out } and is defined by:
0 I' m

COUNTM(0) = contents out COUNTM(0) t up COUNTM(1)
0

'and -

COUNTM(m) = contents out, COUNTM(m) t down COUNTM(m-I)

and -

COUNTM(m-I) = contents out
m- I

COUNTM(m-2)

+ up COUNTM(m)

+ down COUNTM(m-2)

The contents guard is really redundant since the interrogating

program which we would compose with COUNTM using i must be

able to synchronise on a l l of out0, "',outm so that i t will know the
>

contents. Leaving the contents guard out has the same effect. We

do not need a special label for zero contents; out i s suitable.
0

The language may be extended to allow values to be communi-

cated whenever a synchronisation takes place. This opens up a much

larger class of examples which can be easily programmed. As we

a r e interested in the synchronisation and nondeterministic aspects of

. our language; we omit the ~ l u e - p a s s i n g features for the meantime.

4.4 The Dining Philosophers Problem

In this example we have two types of computing agents,

philosophers and forks. We have the same number of philosophers

and forks laid out around a table with philosophers and forks alternating.

A philosopher i s allowed to access only the forks on either side. The

ffproblemIf which this example illustrates i s described a s follows: to

enable a philosopher to eat he must be in possession of both his

neighbouring forks and the forks can be obtained in either order.

Unfortunately this may cause a deadlock situation in which all philoso-

phers have "picked upff their left-hand (or all their right-hand) forks.

This means that all forks a r e accessed and no philosopher is able to

obtain the two forks he needs to enable himself to eat; al l philosophers

starve. This i s a problem involving shared resources, each fork being

shared between two philosophers.

We shall program a Hsolutionfl to this ffproblemff in our language.

The solution provides for philosophers to access the forks in such a

way that the system does not deadlock. Our solution i s not fair how-

ever; some philosophers may be prevented from accessing both forks

forever and so s ta rve . F a i r n e s s questions a r e outside the r e m i t of

our language and we bel ieve that fa i rness i s a n implementation i s s u e

and so does not concern us. F o r instance, to rnake o u r dining

philosopher 's p rogram fair, a central ised scheduler may be introduced

to control the o r d e r in which philosophers a c c e s s forks. Many

algori thms can b e adopted by this scheduler to ensure fa i rness .

A cent ra l i sed scheduler , o r control ler , may b e used to ensu re

the absence of a deadlock without even considering fa i rness . h [4]

Hoare uses a " room" as a cent ra l i sed control ler . This r o o m controls

the number of philosophers act ive, o r present , a t any given instant.

A s long a s the number of act ive philosophers i s one l e s s than the

number of forks then the s y s t e m will not deadlock.

We wish a distr ibuted solution, that i s , the behaviour of the

philosophers and forks themselves should be such that when they

in terac t the sys t em a s a whole does not deadlock.

Let us p rogram this f o r a sys t em of th ree philosophers and

three forks. It i s easy to s e e how the sys t em can b e extended to

involve n philosophers and n forks.

The agents will b e interlinked a s follows.

i

The philosophers wish to pick up the forks on either side of

them in eithek order , eat, then put the forks down in either order ,

then think and so on. Synchronisation via the gP and gr ports

represents interaction between a philosopher and the left o r right

fork to pick the fork up while e and t ports a r e used by the philos-

opher programs to represent their des i re to eak and think. The pr

and pP ports a r e used to synchronise the action of placing down the

left o r right forks. This again, is an interaction between a fork and

a philosopher.

The behaviour of the ith philosopher can be represented by the

program P of sor t gPi, pri, grip ti, e defined by
i i

Pi = gP. gr . P! + gr. gl. P!
1 1 1 1 1 1

where

= e.(pl . pr. t. P. t pri pl i ti Pi)
1 1 1 1 1

The behavious of the forks i s given by

Here O i s subtraction modulo n, where n i s the number of forks (and

philosophers) in the system.

We see that the philosopher asks f d r both forks in either o rder

and then eats. The forks a r e placed down in either order , he thinks

and so on. A fork can be picked up by either of the philosophers on

each side of it. When i t i s picked up this prevents the other philos-

opher gaining the fork until i t has been placed down again.

F o r n = 3 we have a system pictured a s above with

Here Pi is Pi with the guards a l l relabelled by changing the index.

This i s performed using the [c r / ~] operator and produces instances

of philosopher programs f rom the generic philosopher P.. Forks
1

a r e treated similarly.

We may apply axiom (e +) a number of times to SYS and we

discover that one of the subprograms produced i s

hence the system may deadlock. Other summands also result in the

appearance of A whilst others do not. The summand above indicates

that all of the forks have been picked up by the philosopher's left

hands so preventing any philosopher gaining both forks and so prevent-

ing any philosopher f rom eating.

To prevent this we change the philosopher's behaviour so that

before starting to pick up and place down the forks the philosopher

rese rves both forks and so prevents the philosophers which share his

forks f rom gaining access to them. We introduce ri guazds on

philosopher P. and his neighbouring forks. To synchronise on this
1

guard (effected by the a operator) the philosopher and both his forks

must cooperate in a three-way synchronisation to rese rve both forks.

44

We redefine our philosopher and fork p rograms to include this

reserva t ion gLard. As the eating and thinking guards do not influence

whether the sys tem deadlocks o r not, we will omit them. We now

have p r o g r i m Pi of s o r t {ri, gli , gri, p l i , Pri}

where

and p rogram Fi of so r t {ri, r i O 1, gri, pri. gPi pPiG I}

Fi = r . gr . p r
F. + r i Q 1 1 i i i

f
g P i @ I p l i ~ l i

Our constructed sys tem SYS = P i e P2e P3e F1 l FZe F3 i s again built

out of instances of the above generic p rograms . To i l lus t ra te where

synchronisation may take place between the components we picture

SYS a s follows

~ 1 3

We may now exhaustively use axiom [a t] to expand SYS.

We can see that we do not obtain subprograms which terminate

(with A) and so our sys tem does not deadlock.

A problem here i s that the expansion via [a +] is quite

t i resome and soon produces a program of unmanageable complexity.

We a r e soon unsure whether we have missed out some subprograms

o r not. F o r three philosophers and three forks, we can just about -

manage. We can progress far enough to see that we do not get

subprograms similar to the gl g12 g l j A which we get in the

original system, but a much la rger expansion i s needed to convince

ourselves that A does not a r i s e a t all.

If our system contained a l a rger number of philosophers and

forks than three then an expansion using axiom [a +] to check for the

presence of A would be impossible. We would eve wish to show

such a system free f rom deadlock for n philosophers and forks, for

all n.

A methodology for this will be introduced in a l a te r paper.

It utilises the rigorous structure of interconnection among philosophers

and forks and allows us to prove the absence of A by induction on n,

the number of components in the system.

5. DEADLOCK AWD TERMINATION

We introduce the nullary operator A a s the identity of operator t,

and so also the empty sum . It has previously been mentioned that

we a r e taking A to represent, in our language, the deadlock phenomena.

Deadlock is a system property that exists when all the components of

the system a r e mutually waiting for each other to perform some action

. which must take place before they can proceed. A classic example

of this appears in the dining philosophers problem where a philosopher

must access two resources, called forks, which he shares with

different philosophers before he can proceed to eating. Deadlock

a r i s e s when we have shared resources; that i s , we have competition

among agents which with to interact with a resource agent. Thus A

may a r i s e due to the definition of the a operator.

Suppose we have the programs P and Q with sor ts (a,P, y } and

{a, P } respectively, which a r e defined by

and we leave subprograms P I , P2 and Ql unspecified for the present.

By axiom [a t] we have that

The a and P labels a r e internal while the y label i s external

to P a Q. As P wishes to perform a y symchronisation with the

environment and a s y i s external then P can evolve to program

a p Pi without any cooperation f rom Q. Now a s a and p a r e both

internal labels program a P Pi must receive a n a stimulus f rom Q

fo r a synchronisation to take place. But program Q wishes a p

stimulus before a synchronisation can take place. As nothing e lse

c a n happen aPP1 and Q become deadlocked so aPP1 Q = A.

P may of course, on a receipt of a y stimulus f rom the

environment, proceed to program P Suppose we define P2 a s
2 '

P2 = P a P then by axiom [. t]we have that

So after an external y we have that synchronisation on the P followed

by a, labels takes place and the original programs P and Q have

evolved to P and Ql respectively.

We now have that P Q gives program

y A t y p a(P Q, using axiom [+] repeatedly.

Following one of the y guards we get P and Q (actually P has evolved

to cr p Pi) becoming deadlocked whilst following the other y guard

deadlock does not resul t and (3 and a synchronisations take place.

Our sys tem composed of P and Q i s pictured a s follows:

In one case , following a y, we have that t fmachinet t 3 wishes to

in te rac t with 9 on the cr l ine whilst machine 9 wishes to in te rac t

with 9 on the p line. Neither of these wishes may be satisfied and

. so A resu l t s . In the other c a s e both 9 and 2 wish to f i r s t of a l l

interact , i .e. , exchange stimuli , on the P l ine followed by an inter-

action on the a line. This can proceed via @ and cr synchronisations

with the behaviour of machine .Y evolving to P and that of machine

2 evolves to the behaviour represented by p rogram Q.

In this example no sepa ra t e r e s o u r c e p rogram i s competed

fo r but programs P and Q can be thought of as r e sources a s viewed

by p rograms Q and P respect ively, Deadlock resu l t s when both wish

to a c c e s s each other . If the a label is in te rpre ted a s "access Q" and

p as l taccess PI1 then i f P wishes to a c c e s s Q while Q wishes to

a c c e s s P then neither P o r Q is available to the other a s a r e s o u r c e

and we get deadlock. If, on the other hand, P wishes to synchronise

on p, that is, i t is offering itself a s a r e s o u r c e to Q and Q a lso

wishes to synchronise on P, that i s , access P, then a P synchronisation

is successfully performed and we do not have deadlock.

The above indicates how A gets introduced into programs a s

the r e su l t of applying the opera tor . We may a lso use A as the

terminat ion opera tor ; the 'fgoodv terminat ion opera tor where deadlock

can be considered a s JJbad" termination. A program R which wishes

to receive an a, stimulus followed by a P stimulus and then successfully

terminate in defined by

When we compose a terminated program A with some other, say

program S, then P will cause A S to deadlock, possibly following

a number of external guards, unless a l l of the guards in S a r e

external to A a S.

As a n example consider A of so r t {a} and S o r so r t

(a, p , y} then if S is defined by

we have A a S giving program

PY(A o S) + y(A S) of sor t {a, p, y }

which never produces A and so, by repeated use of axiom [a t]

never terminates. Suppose A is as above but T of so r t {asp , y } is

defined by

then A a T gives program y(A a T) by use of axiom [a + 1, Again,

A does not result a s a n externally labelled y guard can always appear.

But suppose we replace T by program U which is identical

<

except that the + operator i s replaced by Q then

and

A l U = (A l (ayU)) @ (A l yU) by axiom [e e]

= A e y (~ l U) by axiom [e +] twice

So program A l U nondeterministically may deadlock o r e lse react to

a y stimulus (of one were available f rom the environment) to evolve

back into program A U. Thus following the successful receipt of

a y stimulus again we have that deadlock may result and so on.

Two terminated programs when composed obviously give us

deadlock, due again to axiom [e + j. Note that the sor t of the ,

flresultingft A is the union of that of the two components

This i s a theorem derived f rom axiom [l + 1.

Our language manipulates the representation of deadlock and

termination i n a manner corresponding to the behaviour of rea l

systems. We use only one symbol to represent both deadlock and

termination since in many ways they model the same phenomena.

In conclusion we have termination a s a tfwholesomelf feature and

a property of one computing agent and so of one program. Deadlock

appears when we have two o r more agents present and i s thus a

property of two o r more interacting programs.

6 . 1 Why We Require Hiding

We can define a queue by

where

Q(n-1) = o , a (n) + 6 0 Q (~ n n n l) + 6, Q(l^n f i l)

and -
Q(nno) = ooQ(n) t 6, Q(OnnnO) + 6,Q(lnnfi0)

W e assume that & i s the empty s t r ing and E i = i f i E = i. If we

define another queue we would l ike to be able to ajoin them and

produce a new queue.

Let us introduce a relabelling opera tor into our language. I t i s

not s t r ic t ly necessa ry but i t allows us to produce instances of generic

p rograms without the need to r ewr i t e them

The post fixed opera tor [CY/P when applied to a p r o g r a m p

changes each P label up to a n cr label. All other labels r ema in

unchanged. We m u s t ensu re the cr is not i n the s o r t of 'p.

The following two axioms a r e sufficient to express the intended

meaning of this relabelling operator :

where p i s not a member of the s o r t of
oipi

Y

i
52

I t is clear how this operator behaves. The acceptance semantics
h

for programs constructed using this relabelling operator is not given

and i s left a s an exercise for the reader. We shall not prove the

consistency of these two axioms. This, together with the definition of

other axioms relating [/] to the A, and -rr operators, can be performed

by the reader. Note that [/] can change the sor t of a program. If p

has sort L then p[p/o] has sort (L u { I) - {a}. Here we assume

that p BL.

As an example consider (a p I + f3 p2) [y/a]. This gives

~ p ~ [~ / a] + P P ~ [~ / ~] where we replace all occurrences of rr by y.

The operator [y/u] i s recursively applied to the renewal programs

p and p so replacing al l occurrences of a, by y in the whole program.
1 2

Now let us redefine our queue to give i t a maximum size:

where

QN(i, Sn l) = olQN(i- 1, S) t 60QN(i+l, OnSnl) + BIQN(i+l, lnS^ 1)

and -
QN(i, SnO) = roQN(i- 1, S) + BoQN(it 1, OnSnO) + BIQN(i+l, l*SmO)

and -
QN(N, sn 1) = r lQN(N- 1, S) QN(N, SnO) = rOQN(N- 1, S)

Then Qf = QN(&) [aI / r l , aD/rO] is a s for QN(&) but has the output

renamed by a. Similarly, QI1 = a(&) [a l / Bl , ad 60] i s a s for

QM(&) but has the inputs renamed by a,. We can now join up Qt and

Q1! using our concurrency operation to get SYS = Qf Q f l which should

behave a s the single queue Q(MtN)(&) except that i t contains an a

c o ~ e c t o r which allows other programs to synchronise through it.

We wish, after Q1 and Qv have been composed, to hide the a guards

and so "internaliseft them. The a, i s then internal to Q1 and QU and

cannot b e provided with stimulus from without, i .e . , the environment.

As another example of hiding take a binary semaphore. We

may define this by

SEM = pivi SEM

where S E M has sor t U Ip vi}. Suppose we have two agents A
1 < i l - n

and B who access a resource using a and p labels respec-

tively and we wish A to mutually exclusively send an a, stimulus

followed by another a stimulus to the resource . Similarly B should

genera te a pai r of (3 stimuli . Agent A would b e defined a s A = crA

(and B simiikr ly) but we add p and u guards to their behaviour to

allow the semaphore to control them. We can therefore redefine

the agents to be

The p l , v l and pZ, v 2 labels guard the c r i t i ca l sections c ~ c r and p(3

respect ively and these sections mus t send s t imuli to the r e s o u r c e

mutually exclusively.

The constructed sys t em i s theo:

CONSYS = A B SEM

where

S E M = P ~ V , ~ S E M + p2vZ S E M

This can be pictured as follows when the p rograms a r e t rea ted a s

machines

Now we wish the semaphore to control only how A and B

access the resource (which is in the environment!) so we would

wish to hide the p , p , v , and v2 ports (actually they a r e connectors)
1 2 1

and prevent further programs attaching onto them. We would like

the above picture to have the pi, pZ, vl and v labels removed.
2

The operation -a when applied to a program hides the a

guards but we wish that i t leaves the r e s t of the behaviour of the

program unchanged.

We introduce the following axioms to define hiding:

As an example of the f i rs t axiom consider the following:

Here we assume o is internal to ppi c op2. If not then it i s treated

differently and how we do this i s given later. As i t i s internal, the a

guard represents the result of a synchronisation. Thus when

hidden we do not know whether i t may take place or not.

If a p stimulus comes from the environment then two things

may happen; the P may be accepted or the internal a, synchronisation

may take place and prevent the P guard from receiving a stimulus.

The B operator introduces this nondeterministic behavio2r.

But suppose the environment does not produce a P stimulus

then something may always happen; the internalised a synchronisation.

That is why we use the t operator to compose the result of hiding

the synchronisation with the guards that remain unchanged. The

hiding operation is applied recursively to the programs that follow

the guarding labels, both the hidden and unchanged ones.

How &oes this hiding work when applied to our semaphore

example; that is, what program resul ts? Let us use the [o +] axiom

a number of times to expand CONSYS. Of course we could keep on

applying C ONSYS indefinately since none of the constituent programs

of CONSYS terminate (with A) and when composed, A never results.

CONSYS = pl((aavlA) 0 (p2PPv2B) l (vlSE M))

by [o t] 4 times

= P ~ ~ ~ v ~ (A @ B o SEM) t P ~ P P V ~ (A O B . SEM)

by [o t] twice

= pIaavl CONSYS t p2PPv2 CONSYS

The presence of the pf s and v l s prevents the cr and p pairs

interleaving which is what we require but we wish the p l s and v l s

to be internalised. We shall f i rs t of a l l hide out pl and see what we

get:
57

O (a,mriCONSYS) - pl by [to]

= aa,v,(CONSYS-pi) + p2PPv2(C0NSYS-pi)

0 a,rnrl(CONSYS-pi) by [B-] and [+-]

CONSYS-pi-p2 = (~ , ~ , V ~ (C O N S Y S - ~ ~ - ~ ~) + P ~ V ~ (C O N S Y S - ~ ~ - ~ ~))

Here we can see that the a, and f3 pairs a r e uninterleaved as required.

The nondeterminism operator i s introduced since the environment

after hiding has no control over how the semaphore controls the

agents. The semaphore forces pis to the exclusion of a ' s and a ' s to

the exclusion of p f s and as the semaphore i s now abstracted away

so we have 8 introduced.

Hiding usually introduces kD when applied to CNF programs and

a s explained above, this i s to be expected. But suppose in our

semaphore example we want to control the action of the agents A and
x

B so that a and p pairs a re not interleaved and we also wish that

the shared resource (which may be composed on to the controlled

system later) should have the ability to choose an a pair or a (3 pair.

We do not have this when hiding pf s and v 's in CONSYS, as above,

since the hiding introduces @ and we now would require the two

subprograms to be separated by +.

We can design a semaphore to synchronise directly on the

agents a and p guards to produce a new constructed system NSYS

which does not require the removal of additional guards. We require

that NSYS = aaNSYS t PPNSYS.

If our semaphore i s defined as

SEM = aaSEM t ppSEM

and our agents a r e not altered by the addition of p and v guards,

that is , they a r e defined by

A = cuA and B = aB

then our constructed system i s

and so SEM e A e B = NSYS a s required. Note that SEM, NSYS, and

S EM A B a r e all identical programs, that is, they have the same

meaning or behaviour .

6 . 2 The Hiding Semantics

Using our acceptor semantics we now formal ise the meaning of

our hiding operation. Let us a s s u m e that we a r e hiding internal

labels . The external label hiding will be dealt with l a t e r .

We introduce the following notation:

(p, a) = I +) f o r Yq (p .a) - q 3 q = *

[(P* @) = {*}] A [(P, a) = {*}] A [u E Lnr,,] A [p in C N F]

(p-a, P) - Pf-f f

[(P, P) = *] A [@EL,, E X T] ~ [p in C N F]

((p El q)-a , p) -:ic

Condition 15 s ta tes that if p rogram p always produces * on a n cu

stimulus and i t always produces :: on a $ st imulus then p rogram p-cr

always produces :: on a (3 stimulus. A s p is in CNF, (p, P)-::: u (p, p) = {'*}.

For p $3 q, i. e . , a p r o g r a m i n DNF, then condition 19 says that if p-a

gives ::: on a p than so a l so does (p fB q)-a. We t rea t C N F and DNF

p r o g r a m s differently h e r e s ince for DNF r , (r , P) -:: 4 (r , P) = {+) ,

unlike a C N F program.

Condition 16 s ta tes that even i f program p can accept an cr then

provided p accepts a P and produces p' then p-cr a lso accepts a P and

i t produces the p rogram p-a. This holds for a being both internal

and external ,

If p produces ::: on a f3 then we do pot have p-a producing ::: o n

a p since the p rogram q say, which we get when p accepts the cr, may

accept a p o r produce a program whose offspring may accept a P.

It i s only when a (3 i s not accepted by p o r any of i t s offspring which

r e su l t f r o m some number of cr st imuli (possibly one) being fo rced at

i t , do we get p-a! giving a n * on receipt of a P . 17.2 does this for

CNF pn and 17.3 does this for DNF pn. The need for both 17.2 and

17.3 i s the s a m e a s for 15 and 19 (and 20).

Condition 17.1 s ta tes that i f af te r some number n of a s t imuli

(possibly one) p rogram p evolves into p r o g r a m p which produces pf
n

on a p stimulus, then p-a produces p l - a on a (3 st imulus.

As we a r e hiding in terna l labels , then a ' s appear in q due to

a synchronisation on a ' s taking place. When we hide them we wish

to p r e s e r v e the behaviours which r e su l t f r o m such synchronisations.

Hence the behaviour which occur s a f t e r a synchronisation in p , i . e . ,

the p stimulus on condition 17. 1, should a l so occur in p-a.

The difference between in terna l and external guards i s given

in the next chapter but we can note he re that condition 18 s ta tes that

for external a and p i n CNF, i f p gives :$ then so a l so does p-a. I t

is similar to 15 except we ignore whether a ' s can be accepted o r not,

a s a i s external.

Conditions 19 and 20 indicate how we get 4: af te r hiding on DNF

programs. 16 appl ies to both CNF and DNF p and so indicates how a

program resu l t s when a hidden DNF program rece ives a s t imulus.

To see how the semant ics works for hiding le t u s t r y some

examples :

by 16 a s (yp+pq , y) & p

s imi l a r ly

by 17.2 a s yp is i n C N F and

and if 6 i s in the s o r t of o u r p rogram then:

k

((cr(yp @ b r) + pq)-a, 6) - :# by 17.3 a s

((rryp 4- p a , 0) -- (y p @ 6r)

and (yp, 6) - :$ giving

((y p @ 6r)-a, 6) - :% by 19.

6 . 3 Internal and External Guards

We wish to be able to distinguish between guards, i . e . , labels,

which a r e produced by the concurrency opera tor when two o r m o r e

p rograms synchronise, and those which do not. The f o r m e r are

in te rna l guards and the la t te r a r e external guards.

To do this we change the notion of s o r t f r o m being a set of

labels to a pa i r of se t s of labels . The f i r s t s e t a r e external labels

and the second s e t a r e the in te rna l labels . These two se t s a r e

disjoint and when unioned together produce our previous notion of s o r t .

Initially mos t of the s o r t labels will be external unless w e wish

-to designate s o m e a s internal. Our ope ra to r s a r e a l so so r t ed and will

now be a s follows:

[P / ~ I : (Ll' La) - ((L k, {p})-{a}* (L2 u {PI)-{el)

It is the concurrent composition which produces new internal

guards.

We have seen that hiding internal guards preserves the program

which follows the guard (with hiding occurring in i t a s well). The

reason for this i s that an internal guard results f rom a synchronisation

and we wish to preserve that behaviour which follows from this synchronisa-

tion. A synchronisation i s an interaction among programs and once

hidden we do not know whether i t w i l l occur o r not and so need to

allow for all possibilities; one i s that i t does occur and so the

acceptance behaviour which occurs after the synchronisation should

also occur in the hidden program.

But suppose we hide an external guard, one which does not

appear due to a synchronisation having been effected. Then i t does

not make sense to allow the hidden program to accept in the same way

a s for internal guards. Since labels a re used as ffsynchronisation
t

pointsf' an external guard has labels which have not been used in

synchronisation.
64

Thus an interaction has not occurred on an external guard and when
.r

hidden the following program that which i s guarded by the "to be

hidden" i s also lost.

The hiding here prevents entrance to the program which is

protected by the guard. We therefore define hiding for external label

by

and

and we see that, compared to the definition for internal labels, we do

not include the (hidden versions of the) subprograms which a re guarded

by the cu label.

Our semantics for external hiding is given by conditions 16 and

18 above, for successful and unsuccessful receipt of a stimulus

respectively.

Example s

(i)

(ii)

(ii i)

(cup- a ,P) - * since (cup$P) - *

((cup + pq) - c u s p) --q-a since (ap+pq$p) - q

((cup + pq) - a, y) -- * since (cup + Pq, y) - *

((ap@pq) -a ,p) -* a s ((a,p)-a,,p)-*, by (i) above.

' \
The definitions given for hiding a r e axioms of our language. We have

the following set:

[-fl] (C aipi)-a = (C ai(pi-a) +z (pi-")) C (pima)
ai#a a. =a a,. =a

1 1

where a, E L
INT

[-+,I (C a , .) 1 1 a , = 1 a i (p i where aeLEXT
a,.#a,
1

The first two axioms define internal and external hiding on CNF

programs; [- -1 states that it i s immaterial the order in which we

hide while [- @] says that hiding a program in DNF i s the same as

if w e form the program from the hidden subprograms using 8. The

[-] axiom states that concurrently composing then hiding i s the same

as hiding the components and then concurrently composing, provided

that what is hidden i s an external label of p e q.

These axioms together with the preceding ones a re later shown

to satisfy our equivalence relation.
t

>

It should be noted that some of the complelrity i n defining our

acceptance semantics over hiding is i n the need to t reat C N F and D N F

programs differently, particularly when * is a result. The problem

stems f rom the semantics not differentiating between how p iB q and

p + q react to a stimulus which either p or q react acceptably to,, i. e.,

do not give *. Also, the semantics have to distinguish between how

such DNF and CNF programs produce *. I t is possible that a

^ semantics using modal operators to express flsometimesll and Ifalways"

may produce a simpler, cleaner semantics.

6.4 Hiding in our Dining Philosopher1 s Example

In our to the dining philosopher's problem we

introduced a reservation guard to each philosopher and his neighbouring

forks to prevent deadlock. If we abstract out these r e s e r ~ t i o n

guards f rom the composite system SYS, what program a r e we left

with ?

F o r three philosophers and three forks we use axiom [+e] to

get that

where Si = pli pri SYS + pri pli SYS for i = 1,2,3.

Using a x i o m [- +] a n u m b e r of times to h ide i n t e r n a l g u a r d
1

r gives us :

w h e r e

Using axiom [-fl] to h ide t he r2 and then the r3 g u a r d s gives us:

SYS - r1 - rZ - r3 = (R1 t R 2 t R g)

@ (Rl f R2) P (R1 t R 3) @ (R2 t R3)

o (R1 0 R2 P Rg

w h e r e

a n d

1 I

Ri = gl . g r . R. t gr . g l i Ri
1 1 1 1

Using axiom [O O t] three times we get:
%

SYS - r i - r2
- r3 = (R1 + R 2 t R3) O R i O R2 O R 3 .

We now need to use another axiom here; the extension of axiom

[B) B t] to three components rather than two.

Axiom [B O t] states that

Let us replace this axiom by the following alriom, o r rather, family of

axioms.

[C] xi B x. = xi , for al l programs x. and for all i.
1 1

W e now use the instance of this class of axioms for i = 3. This gives

SYS - r i - r2 - r3 = Ri O R 2 O R g .

This constructed system can be seen to be f ree f rom deadlock

by inspection. W e see that the hiding operation introduces O to a

program SYS which previously did not contain such nondeterminism

constructs. Whether our hidden system gives program Ri o r R2 o r R g

now depends on some internalised choice mechanism, the r. guards,
1

which we have abstracted away from.

The informal justification for axiom [] just extends that

f o r [B B t 1. In our appendix we prove that axiom [B B + I i s sound

with respect to our semantic interpretation of the language. We

believe that a generalised f o r m of this proof would also show the

soundness of [1.

7 GONGLUDING REMARKS

The formal sys tem presented he re allows us to represent

communication and concurrency features a s found in systems of

interacting computing agents. This corresponds to how the functional

concepts i n se r ia l programs a r e represented using the calculus.

Propert ies such as termination and deadlock can be expressed in the

formalism. *Proofs of equivalence type properties can be performed

while the framework can also be used to reason about deadlock

features, for instance. Other proof tools need to be developed; one

approach i s to enable ourselves to perform induction on the number

of components in a system, the dining philosophers problem for

example. Work along this line has been fairly successful and will be

reported in a future paper.

One problem m e t in concurrent programming is how to deal

with the interleaving of synchronisation and computation features. One

approach,as adopted by Campbell and Habermann,uaes Path Expressions

[i] to remove the synchronisation and control constructs f rom the

r e s t of the program. The computation and control features a r e then

separated. To a l esse r extent monitors [3] also perform this function.

The approach we adopt is to have synchronisation a s the

primitive language feature with the more usual computation being

added to this core. The simplest example of this approach, a s presented

in this paper, excludes values and so computation. It is not difficult

though to add i n value-passing and computation features. These a r e

present in a related formal system; the CCS of Milner [8]. Both

CCS and our formal system a r e developed f rom a process model of

concurrency [7] where value-passing is present. Related work

includes that of Hoare [4] together with the work of Hoare and

others on models of G S P [5].

We have adapted the concept of experimentation as used by

Milner and Hennessay [Z] in the construction of our notion of

acceptance semantics. This opperational approach is due originally

to Landin [6] , who used an abstract machine to represent the

semantics of a language. A l ess concrete operational semantics

involving relations ra ther than abstract machines was introduced by

Plotkin in [9]. This i s closer to our notion of acceptance semantics.

One possible deficiency of this work i s in the use of interleaving

to deal with concurrent action. Future work will attempt to produce a

model which does not rely on such arbi t rary interleaving. Fur ther

proof methodologies remain to be developed and this should allow us

to test our formal system on some large and realistic examples.

This empirical approach should, i t i s hoped, justify our design of

model and i f not, to i l lustrate how i t could be altered to better

represent reality,

8. APPENDIX I: The Equivalence Relation i s a Congruence
A

We define - to be the intersection i;! - over n where

p -0
q if p,q E Wz and of sor t L

Y a EL. (a) (p ,a) - * * (q,a) --*

(b) (q, a) -c * * (p, a) -c *

(c) (p.a) -p ' 3 3 4' . (9.a) -9 ' . P' p q '

(d) (q. a) - qt * 3 p' (P, a) -- P I , p1 mn q '

Note that pf and qf a r e program variables and so cannot be *. Thus

we wish to show that for any words m and n in Wz then

m - n * Y contexts C [] C [m] - C [n].

Contexts a r e formed using the guarding, choicq nondeterminism,

hiding and concurrency operations. To show congruence i t i s therefore

sufficient to show that for m, n and q of sor t L

m - n implies:

(1) Vq O m t q - n t q

(4) V Y E L * ~ - y - n - y

(5) W ' m e p - n e p

Proof. Assume m - n. Then for some a c L, the sort of m and n we

have

1) Show for m t q. Assume m, a and q in CNF. If not we use

[t B] to get for some CNF component of m that (m t q, a) - * i f

(ml+q, a) -*. Then show that (m i t q , a) - * implies (n l tq , a) -- *
for some CNF nl, a component of n. This is just the CNF case below.

1. a) Case (m t q, a) - * then by 15 we have that (m, a) - * and

(% a) - * . As m - n then (n,cr)-* hence (n t q , a) - - * by 15, a s

required.

1.b) Case (n t q , a) - * , a s (l . a) .

1. c) Case (m t q, c .) - p where p f *.

Then by 3 and 4 either (m, a) - p o r (q, a) - p.

1.c.1) (m.a) - p and a s m - n then jpf such that

(n, a) - pr and p - pr and so (n + q, a) - pr by 3, a s

required.

I. c . 2) (q,a) --p and by 4 (n t q,a) - p .

As p - p then we have what i s required.

1.d) Case (n t q , a) - - p where p{ *, a s 1.c)

We now have that i f m - n then V9 (m+q) - (ntqf.

2 Show f ~ r m f3 q. Assume m , n and q in CNF.

2. a) Case (m @ q, a) - * then by 6 . 2 and 7 . 2 either (m, a) - * o r

(q, a) - *, respectively.

2.a. l) (m,a) ---* and a s m - n then (n ,a) ---*.

By 6 . 2 (n t 4) -c *, as required.

2.a.2) (q , a) - * implies (n + q) - * bu 7.2.

2.b) Case (n @ q , a) - - * , a s 2.a)

2.c) Case (m @ q, a) - p where p # *. By 6.1 and 7.1 either

(m, a) - p or (q, a) - p, respectively.

2.c. i) (m , a) - p . As m - n then (n , a) - - p t and P - P ' .

By (n B q, a) - pt, as required.

2. c. 2) (q, a) - p and by 7.1 (n B q) - pt , as required.

2.d) Case (n B q ,a) -p, a s 2.c).

So have that m - n implies (m t q) - (n t q) for a l l q.

3 Show for ym.

3. a) Case (ym, a) - * implies a f y by 2 . W e thus have (y n ; ~) -L *.

3.b) Case (yn,a) - *, as above.

3. c) Case (ym, a) - m, from 1 with a = y. Then (yn, a) -cn and a s

m - n w e have required result.

3. d) Case (yn, a) - n, a s 3. c). Thus m a n implies ym -

4) Show for rn-y. Assume m and n a r e in CNF, otherwise

axiom [- 81 can be used to get CNF terms.

4. a) (m- y, a) -. * then either

4.a. i) (rn,a) - * and (m,y) = { * } and y i s internal then as

m-n, so @,a) - * and (n, y) = { * } and again y i s

internal (as m and n have the same sorts) . Thus

(n, a) - *.

and a i s internal to m (and so also n). As m - n then

(n, y) - nl and m l - ni, in which cas e (n l, y) - n2 * -
and (nn,y) - - a and (",,a) --*. Hence (n-y,a) -*,

as required.

4. a. 3) (m, cu) - * and a i s external to m (and so also to n).

As m - n then (n, a) - * and so (n- y, a) 8 , as required.

4,b) a s for 4.a) by symrnetry

4. c) (rn- y, a) -- p-y then either

4.c.1) (m,a) - p . AS m - n then 3 i such that m m i c l n and

(n ,a) - -q with p m i q and (n-y,rr)-q-a. Now p m O q

(always true) and let us assume that p-y -i q-y. This

i s sufficient a s (n-y, a) - q-a and p- y q- y to give

m-y - n-y and so m-y - n-y if other clauses hold..
i

i

76

f

This follows by induction on the index of our
>

equivalence relation and i s used i n some of the

following clauses.

4.c.2) 3 s . t . [(m, y) - m l] A [(m i , Y -m2] A ' * '

A [(Inn-i. y) -- mn] A [(mn, a) - p] and a i s internal

to m (and so to n). As m - n then 3 n i such that

(n, y) - n l and m l - nl. Hence (ni, y) -n2 ' * * and

(nn,l,a) - n and (nn,y) -q with p - q . Using an n

argument as in 4. c. 1) we get (n-y, a) - q-a with

m-y - n-y i f other clauses hold.

4.d) as for 4 .c) by symmetry. Thus Worn-n implies m-y - n-y

where y l ies in the sor t of m and so of n).

5) Show for mop. Let m and n be i n CNF. Axiom [o B] can be

used on DNF t e rms to get CNF components on which to reason

a s follows:

5.a) (m p ,a) - * then by 12 and 13 either

5.a.1) (m,a) - * and so (n,a) - * by m - n and by 12,

(n e. p, at) - *.
or 5. a. 2) (p, a) - * and so by 13 (n p, a) -+ *.

5.b) follows 5. a) by symmetry.

5.c. 1) (m a p,a) --m p and (m,a) - m f and a is not in the sor t of p.

Now a s m - n then (n ,a) - nf and m f - n'. Here we assume

m f p NO nf p and m f l p nf* P. As (n, a) - n' and a not in

sor t of p then (n a p, at) - nf p. Thus m p - ne p and so
i+ 1

also m l p - n o p i f other clauses for l hold.

5. c . 2) (rn p, a) - m pf and (p, a) - pf and cr is not in so r t of m.

As m - n then (n o p , a) - - n o p l . Assume m o p f m O n e p f and

m 0 p1 ; n 0 p t and so m o p -i+i n l p and also m 0 p - n l p

if other clauses for l hold.

5 . c . 3) (m o p , c u) - - m f e p f and (m , a) - m f and (p , a) - p f . As m - n

then (n, cr) - n1 and m f - n' . Assume m f l pf mO n' l pf and -

m' l pf n f p f and so we have m f l p wi+l n o p and so also

m p - n o p i f other clauses for e hold.

5. d) follows 5 .c) by symmetry.

We therefore have, f o r a l l programs p, that m - n implies m o p m n l p.

By 1) to 5) we hove that our equivalence relation - i s a congruence

and we can now replace par ts (or subprograms) of programs in our

language by equivalent par ts without changing the meaning of the

program a s a whole.

What programs in our language a r e equivalent, o r to rephrase

this question, how do we construct equivalent programs ?

Our axioms define an equivalence relation and we would like
'

that this equivalence i s the same a s -. We now show that our axioms

a r e sound with respect to -; that is , i f a = b i s an equality a r r ived

a t by using the axioms then a - b. We a r e then able to replace

program a by program b without changing mear+ng (as a - b).

Our axioms a r e thus consistent with our notion of equivalence (in t e rms

of our acceptance relation). We would also like that o u r se t of axioms

be complete; that is, i f a - b then we have a = b using the axioms
x

alone. This i s believed to be the case but a proof remains to be

performed. The proof of consistency of the axioms now follows.

9. APPENDIX 11: Consistency of the Axioms

We shall show that i f p = q using our aldoms, then p - q.

I t is sufficient to show that every axiom gives us an equivalence.

Proof. We shall assume that expression variables x and y i n the

following a r e in CNF. If they were in DNF conditions 6 , 7, 19 and 20

a r e used to access their CNF components, and we then need reason

o - about these.

Axioms [+ 1], [+2], [++I and [+ A] are obvious. As an example

l e t us deal with [th].

[+A] a) (X t A, a) - 4 implies (x, a) - * and (A, a) - * by 5. The la t ter

is always true.

b) (x, a) -C * implies (x +A, a) - 4 by 5 since (A, a) - * always

holds, and x is in CNF .

c) (x t A, a) - X I implies (x, a) - x f by 3, since we never have

d) (x, a) - x1 implies (x + A, a) - x t by 3.

All four clauses follow f rom relation conditions 5 and 3 and x + A - x a s

required.

[al] a) (X @ X, a) - 4 implies that (x, a) - *
b) (x, a) - * implies that (x iB x, a) -c *

<

r

c) (x @ x, a) -c xf implies that (x, a) - XI
>

d) (x, a) - xf implies (x 83 x, a) - xf
using conditions 6 and 7. Axioms [[02] and [[0 O] again

follow immediately from conditions 6 and 7 and a r e omitted,

[+ tD] a) (x t (y O z), a) - * implies that (x, a) - * and (y O z, a) - *
and this lat ter implies that either (y, a) -L * o r (2, a) - *.
~ e n c e (x, a) - * A (y, a) - * o r (x, a) - * A (z, a) - *, in
which case ((xty) @ (xtz), a) - *.

b) ((xty) [O (xtz), a) - * implies that (x t (y [O z), a) a s for a) above.

c) (x t (y O z), a) - p implies that (x, a) - p o r (y O z, a) - p, the
I

latter again giving that either (y, a) -, p o r (z, a) - p.

c. 1) if (x, a) - p then (x + y, a) - p and so ((x t y) [O (xtz), a) -C p.

c.2) if (y,~) - p then (x + y,a) - p and so ((xty) (x+z)~a) -Po

c - 3) if (a, a) -L p then (xtz,a) - p and so ((xty) [O (x+z), a) - p.

d) ((xty) O (xtz), a) - p and so either (x+y, a) - p o r (xtz, a) - p.

So either (x , a) - p o r (y, a) - p or (z, a) -- p.

d. 1) (x, a) - p and so (x + (y @ z),a) --p

d. 2) (y, a) - p and so (y [O z, a) - p then (x + (y z),rr) -- p.

x t (y [O z) - (xty) @ (xtz) follows. In the above, conditions 3,4, 5, 6 and 7

a r e used.

[BB) +] a) (x B y B (x+y),a) a- * implies either

a.1) (x,a) - * a n d so (x 8 y,a) - * , by 6.2

a .2) (y,a) - * and so (x B, y,a) - * , by 7.2 a n d 6.2

a. 3) (xty, a) - * and so (x, a) - * a n d (y, a) - * hence

(x B) y ,a) - *, by 7.2 a n d 5.

b) (x B y, a) - 4 implies either, by 6.2,

b .2) as for 6.1)

c) (x 43 y B (x+y), a) - p implies either

c - 1) h a) --p a n d so (x 8 Y , ~) 4 p b y 6.1,

c.2) (y,cu) - p and so (x B y ,a) - p b y 6.1 a n d 7.1

c. 3) (x+y), a) - p and so either (x, a) -) p in which c a s e

(x @ y , a) - p o r (y ,a) - p a n d a g a i n (x 8 Y , ~) ~ P .

By 3, 4, 6.1 a n d 7.1.

d) (x 8 y, a) - p implies either

d. 1) (x, a) - p and so (x B y B (xty), a) -- p, by 6 .1 o r

d. 2) (y, a) .- p, as for d. 1).

x 8 y 8 (x+y) - x 43 y then follows.

[e] a) (x l y ,a) - * implies that

a.2) by 13, (y,a) --* and by 12, (y l x) - * .

b) a s for a)

c) (x l y, a) - p implies that

and x' l y -o y l xf then condition 9 gives (y l x, a) -- y e X I ,

with y l x1 - xi l y by induction on - .

2) U $ L ~ and (y,a) - y ' and p = x l Y' , similarly*

c.3) a # L x n L and (x,a) - x l and (y,a) -y l and p = X I * y f .
Y

As for c. 1) using 11.

d) a s for c)

Then x e y - y e x .

[e l 1 similar to [a] using conditions 9, 10, 11, 12 and 13.

[a t] for x = pixi and y = p .y. then
J J

a) (x l y, a) - * implies that either

a. 1) by 12 for CNF x, (x, a) = (*} in which case either

a 1- 1) (pi(xie~) ,a)=(a) by 5, for a eLx and r r # ~ o r

Pi #LY Y

a. 2) by 13 for C N F y, (y, a) = {*I. As for a. 1).

8 3

By condition 5 this makes the right hand side of axiom [e +] give

{ *) on receipt of an a. stimulus, via our relation. The three clauses

making up the right hand side a r e mutually exclusive in their reaction

to stimuli since we have a I(L . a $ ~ ~ and a. eLX fl L
Y Y'

b) Let us call the right hand side of axiom [e t] rhs. Then

(rhs, CY) - * i f all three clauses only give * on receipt of an a. As

explained above this ar ises when either

b. 3) (pi(xie yj), a) = { f } and a. $ L ~ n~~
P..= P:

By conditions I2 and 13 and above (x a y, a) = {*) as required.

c) (x y, a) - p implies that

c.1) a . 4 ~ and (x,a.) - X I and p = XI. y, by 9. Then
Y

pi(xi y), a) -- x e y where p. = a and x. = xf
1 1

and so (rhs ,a) - x f e y.

or c . 2) a { L ~ and (y, a) -yt and p = x a y ' , by 10. As for c . 1).

o r c . 3) a e L x n L and (x,a)-xf and (y,a) -yl ,by 11. As for c . I).
Y

d) (rhs, a) - p implies, using conditions 3 and 4, that
1

d - 1) (pi(xio Y) , c ~) - - X I l y where p. 1 = a and x. I = XI.

Pi /LY

As ax ' is a summand of x then by 9 (x oy, a) - x' l y.

d- 2) (pj(xo yj), a) -- x o y l . Similar to d. 1)
Pj 4LX

d.3) (- p i (x i o y j) , a) - x ' o y l . Similar tod.1).

Pi- P j

By a), b), c) and d) we have that

x l y - rhs , a s required.

[o d3] a) (xo (y d3 z), a) - * implies that either (x, a) - * by 12, o r

a. 1) (x ,a) - * in which case (x a y , ~) - * and (x e z , a) - c * by i 2 ,

hence (x o y tB x e z , a) - * by 6.2 and 7.2,

a. 2) (y @ z, a) - * and so either (y, a) - * or (z, a) - by 6 . 2

and 7.2 respectively.

a . 2 . i) (y,a) - * and by 12 (x o y , a) - * so by 6.2

(x o y 83 x.z,cr) -. *.

a. 2.2 follows similarly.

b) (x l y 43 x l z, a) - * implies either (x l y, a) - * 01- (xe a, a) -*.

b, 1) (x l y, a) - * and by conditions 12 and 13 either

(x, a) - * o r (y, a) - *.
b. 1.1) (x,a) - * and so (x m (y Bz),cr) - * b y L2.

b. 2) (x l z, a) - * follows a s for 6. 1).

c) (x l (y B z), a) - p implies either

c.1) (x ,a) --x1 and ~ B L by 9 w i t h p = x t o (y B z). Thus
Y

(x o y , a) - X I e y, so (x o y fD x o z , a) - x t l y by 6.1.

and a s L = Lz then
Y

XI l y B X I l z by an inductive argument on indexed equivalent es a s used

in proofs above ([o] for instance). Or

c . 2) (y 8 z . a) - y f and a e L x by 10 with p = x o y ' .

Conditions 6.1 and 7. 1 imply that (y, a) - y! o r (z, a) -z '

c-2.1) (y,cu)-yf and (x o y , a) - x o y l by 10 and so

(xey 8 x o z , a) - - x o y l by 6. 1.

c. 2.2) (2, a) - z f follows similarly, O r

c.3) (x,a) e x t and (y B z , a) - - y 1 b y 1 1 w i t h p = x t o y f e Either

(y, a) -yl o r (z, a) -y1 by 6.1 and 7. 1. I

.1
c.3.1) (y,a) ---yr and (x o y , a) - X I o y f by 11,

" c. 3.2) (z, a) - y f , follows similarly.

d) (x my 03 x l z, a) - p implies either (x oy , a) - p by 6. 1 o r

(x o z , a) - p by 7. 1.

d. $) (x o y, a) - p in which case either

d. 1.1) (a) x and a $ ~ ~ , wtth p = xroy.

As LZ = L
Y'

(X .(y O z) ,a) -xf. (y Bz) .

Now xf l (y 03 z) - (xf l y 03 X I l z) by an inductive

argument on indexed equivalences. By 14,

(x . (y 03 z), a) - x' 0 y.

d. l .2) (y , ~) -y l and u,kLx, with p = x . y l . By 6.1,

(y O z , a) --yf and a s ~ C L , (x o (y @ z) , a) - x e y f by 10.

d.1.3) (x,a) -x f and (y,a) - y l , with p = x l o y r .

By 6. 1, (y z, a) - y1 hence

(x e (y @ z) , a) - X I e y l , by 11.

d. 2) (x z, a) - p, similar to d. 1). By above

x e (y B z) - x 0 y i D x . z

[a B t] Showthat rux t a y = a x B a y .

a) (ax + ay, y) - implies by 2 and 5 that a f y. By 2,

(ax, y) - * and (ay, y) - * and (ax @ ay, y) --, * by 6.2 and 7.2.

b) (ax CB ay, y) -, * implies by 6.2 and 7.2 that e i ther b. 1)

(ax, y) - * and by 2, a # y. Then (a y , y) --** and

(a x + a u , y) - * by 5. Or

b. 2) (ay, y) - *, as above.

c) (ax + ay, y) - p and by 3 and 4 (ax, y) -,p o r (ox, y) --p,

respectively .

c . 1) (ax, y) - p and by 6. i (ax @ ay, y) - p.
c. 2) (ax, y) - p follows by symmetry.

d) (ax El ay , y) -) p and by 6. 1 and 7. 1 either (ax, y) - p o r

(ay , 1) - p, respectively.

d.l) (ax,y) --p and by 3, (ax t a y , y) - p .

d. 2) (try, y) -- p similarly.

F o r all PF L - {a} with x = a.x..
T 1 1

a) (x-a, p) -- :* implies ei ther

a. 1) (x, p) - :: and (x, a) - + by 15. As x = xrr ixi

then 3 no x f such that (x, a) = XI. (xi-a) i s then
ai= a

the null 0 sum. This derived operation in

i t s null fo rm is in effect an identity for both + and fD.

As (x, P) - + then (2 ai(xi-a), p) - F inally,
a:# a

(rhs , a) - :+.
1

a .2) 1 n 2 1 such that

(x,I) - X ~ A * * * A (X ~ - ~ a) - x A (x,, p) - :* by 7.2.
n

As (xna) - * and (x,, p) - * then (xn-a, P) - *: by 15.

Let us assume x - a - r h s fo r i _< n. Now e i ther
i

x n- 1 = LJ) ' aixn- li9 i n which c a s e

* t z Cxn- -a). As (X ~ - ~ , C Y) -xn then 3 ai =
a,= a i

L

a with x = x As (xn-a, P) - * SO
n- 1

i
n

(Xn- 1,
a ,) - . By 6 . 2 , a s i s derived f r o m
1

O , so (E (x,-~ -a),P) -:* and by 6 . 2 again
a. =a
1

i

a .2 .2 x = y @z. By axiom [- O] we have
n- 1

(xn- l -a) = y-rr O z - a and can apply i t repeatedly

to get some y (or z) of fo rm aixn-i We
i

then follow a. 2, I) to again get (x -a, P) - ::.
n- 1

89

This procedure can be repeated to get

(xl-a, p) - * with (x, a) - xi. AS x = z aixi

then for some i, a. = a with x. .
1 1

We

therefore have (E xi-a, p) - * by 6.2 and by

6.2 again have (rhs,P) -*.

a.3) 17.3 gives a similar chain but with xn in DNF. We

argue a s for a.2) for one of i ts CNF components.

b) (rhs, P) - * implies either b. 1) or b. 2) by 6.2 and 7.2.

b. 1) (ai(xi -a) + 8 (xi-a), P) - +. Condition 5 gives us
a.# a
1

(Ti= a!

that either

The latter gives (ax P) - * by 2 and the former
i'

gives (z aixi,p) - * by 3,4, and 16. By 3 and 4
a. f a
1

again and 17.2 we have (x-a,P) -*. O r

b. 1.2) (rri(xi-a), f3) - * and i s null, that is ,
ai#a a .=a

1

there i s no a. = a. In this case (x, a) - * and .
1

15 gives (x-asp) - * a

b.1.3) (z (xi-a),P)-* and z i s null. Thus all
Pi= a ai= P

~ . l s = a and as (z (x i -) - 17.2 gives
1

a. =a
1

c) (x-a, p) - p implies that either
>

c.1) (x,p) -p f and p = pf - a. As p = z aipi 3 some a.
1

such that ai = p and pi = pf , by 3. For this i,

z (pi-a), p) -- (pt-a) and by 6. 1, (rhs, B) - pt-a. O r
a.= a
1

c.2) 3 some n > 1 such that (x , a) - -x i A * * * A (x ~ - ~ , ~) - x n

and (xn,p) - pf . Let us assume p-a -i rhs for i 5 n.

BY 16, (x n - ~ , p) - pf -a, and as (xn- a) ' x then
n

(xn- i
-a, p) - pt -a using equivalence for i 5 n, as we

did in a) . Repeating this for i up to n we get

As (x, a) - xI and x = aixi then 3 some i

such that a i = a and x. = xl.
1

As (xi-", p) - a then

((xi-a), p) -. pf-a by 6. 1. Again by 6.1,

(rhs, pL -- pl-a.

d) (rhs, P) -. p implies that either

d 1) (ai(xi-a) + (xi-a), p) - p and either
ai# a a.= a

1

d. 1.1) (CY. (x.-a), p) - p in which case 2 some i
1 1

ai+ a

such that ai = p and p = (xi-.). SO

(a.x., p) - x., and (x, p) - xi. Condition 16 then
1 1 1

gives (x-a, 9) -- xf -CY.

d. 1.2) ((xi-a),P) --P and by 6.1).
a.= a
1

3 Some i such that ((x.-a), p) - p and a = u..
1 1

As (a.x a) - x. then by 3,
1 i' 1

7' (aixi, a) - x., i. e . , (p, a) - xi.
1

AS (xi-a, p) - p then by 16 (xi, P) ' P' with P = p'-a=

Using (p, a) - xi and 16.1 we have (p-a, p) - pf -a.

d. 2) ((xi-a), p) - p, as for d. 1.2. W e therefore h a v e
f f .= a
1

p-a - (C ai(pi-a) + 1 (Pi-a)) O 1 (xi-") f o r internal a.
ai# a a = a i

ai= a

[- c ~] Let x = C aixi.

a) (x -a ,p) -* implies , by 16, that

(x, p) - *. B y 5, for a l l i, (aixi, P) - 4. Thus '

(C ?(xi-a)' p) ' ".
ai# a

b) (ai(xi-a), p) - * implies that for all i such that a. # a,
a.# a

1

1

(a i i - a) ,) . In this c a s e the re is no i such that

a i = P i n a i 4 . B y Z a n d 5 . (x ,P) -*.

C) (x-a, p) - p impl ies that (x, p) - p1 with p = p'-a,. by 16.

Then 3 some i such that ai = f3, and xi = pl , and

d) (ai(xi-a), B) - p implies, by 3, that 3 i such that
a.f a
1

a i # a and (ai(xi-a),p) -p. B y 16, (aixi,P) - P I with

P = pf-a , and by 3 (p, p) - p'. This gives (p-a, R) -. p'-a by 16.

p-a " ai(p,-a) f o r external a.

ffi# a I

-[- m] We shqw (X l y) - a - (x-a) l (y-a) for a c Lx and a #L . Because
Y

of this y-a = y. The case with a EL and a 4 Lx follows by
Y

symmetry. Case internal a:

a) (x my) - a, p) - * implies either

a. 1) ((xoy), p) -c + and (x y), a) - *, by 15. In this case either

a, 1; i) . fx , p)-*, by 12 and a s (x,a) - * SO (x-a?P) -*by 15-

By 12, ((x-a) l (YS P) -c * *

a.2) 3 s o m e n 2 1 such that

((xmy).a) - P ~ A * * A (P , _ ~ , a) - pn and (p,, a) -- * and

(P,, P) - * by 17.2. By 9 we have (x ,p) - x i and

(XI, a) - X2 where pi = xi l y (as a $L~).

As (x , a * and (xn7 p) -c * we have by 1 7 . 2 that

(a ,) - . By 12, ((x-a) l Y, P) -L ** Or

a. 3) By 17.3 we have a similar chain but with pn in DNF.

Follows a. 2) for some CNF component.

b) ((x-a) l y, p) -.L * implies either

b. 1) (x-a, p) - *, in which case either

b. 1.1) (x ,a) - * and (x,p) - * and by 12, (x my, a) - *

and (x l y, p) -c *. By 15, ((x O Y) - ~ , P) **

b.1.2) 3 some n t 1 such that (X , ~) - X ~ A * * - A (X ~ - ~ ~ ~) - X ~ A

(Xn
, a) -- * and (xn7 P) - +. by 17.2. As

Q ~ L ~ , by 9 we have

and ((xn l y) , a) -. * and ((xn l y). p) -*. By

17.2, ((x l y)-a) , p) - *.
b . l . 3) b y 17.3 we have a s imi lar chain with DNF xn. As

for b. 1.2) with a CNF component.

b.2.1) (x , a) --* and as ~ B L (x o y , a) - * and by 15,
Y *

((x o y)- a), p) - * *

b.2.2) (x .a) - x l A A (x,, a) -. * A (xnp) - *
As a i L then (x e y , a) - x l e y " * . * A

Y
(x n e y, rr) -- *

and (xn y, p) - *. By 17.2, ((x O Y) - ~ Y P) * a

c.1) (x o y , p) - - p 1 and p = p r - a , by 16.

c .1 . l) P # L and 9 gives
Y

(x, p) - p f f with p1 = pI1 e y . By 16,

(x-a, P) - ptl-cr and a s (3 4 L 9 gives
Y

(x-a l y-a, p) -9 (P I ' - a) l (y-a) Now

(p" Q y)-a - (pw-a) l (y-a) by an inductive

argument on our indexed definition of -, as required.

c . 1.2) P # L ~ , a s for c . 1. 1) by symmetry using 10.

c. 1.3) a / L x n Ly, s imilar to c. 1. 1) using k.

c . 2) . 3 s o m e n s u c h t h a t (x . y , a) - x l ~ y A . - . A

A ((xn- 8 y), a) - xn and (xn l y, a) - * and

(xn y, p) - p1 with p = pf-a. F o r this (x, a) - x A
1

x n , a - x n and (xn, a) - * , by 9. Now

(xn. y , p) - p l in three ways by 9, 10, and 11.

c.2.1) ~ B L and 9 gives (xn,p) -pH with pf = pH a y.
Y

By 17.1 (x-a, p) - pU-a and a s P 4 Ly, by 9

(x-a . y, p) -- (PI'-a) . y. Now

(pf 1 y)-a - (pH -a) y by a n inductive argument

on the indexed definition of -, a s required.

c . 2.2) P 4 L follows similarly using 10.
X

c.2.3) P E L x n L follows using 11.
Y

d) ((x-a) y, p) - p implies either

d. 1) (x-a, p) - p f , p 4 L with p = p t y, by 9 , This a r i s e s
Y

with either

d.1.1) (x ,p) - p u where pf = pw-a. As p # L y 9 gives

(x l y, p) - pll y and 16 gives ((x y)-a, p)

(pf l yf-a. As p = (p" -a) y then (pH-a) y -
(pf ' l y)-a by induction on definition of - .

d.1.a) 3 n where (x , a) - x i A - * * (x n l , x and
n

(x , a) - * and (xn, P) - pf where pr = pu -a.

As a , p 4 L Y , (x.y,a) - (x l O Y) A * * * A (x ~ - ~ • ~9 a)

- x o y and (xn.y,a) - * and (xn.y.P) - p W e y .
n

By 17. 1, ((x y)-a, P) -c (p t r y)-a. Now

p = (pl -a) y - (p f l y)-a, by induction on

definition of - .

d. 2) (y, P) - pl, P / L~~ follows in a simpler way.

d. 3) (x-a, p) - pl and (y, (3) - p f r . Follows in a s imilar

manner to d. 1).

We now have (x e y)-a - (x-a) e y for internal a such that a / L . The
Y

case with a / Lx follows by symmetry.

Case external a:- Again assume x and y in CNF a s laws [- fD] and

[fD e] can be used to get this.

a) ((x y) - a , p) - * implies by 18 that (x l y7 p) - * Either

(x, p) - * o r (Y, P) --C *.

a.1) (x,p) - * and by 1 8 , (~ - a , P) and (X - ~ . Y * P) ~ * * by 12*

a. 2) (y, p) - * and by 13, (x-a .Y, P) **

b) (x-a e y 7 p) - *. By 12 and 13 either

b. 1) (x-a, p) - * in which case (x, P) - *, by 18. Then

(X y, p) - * by 12 and ((x l y)-a, P) - * by 18, a s a i s

external.

b. 2) (y, p) - * and so (x l Y S 9) -* * 13* and

((x . y)-a1 P) - * by 18-

c) ((x ey) -a , p) - p implies by 16 that (x ~7 P) pi where P = p t - ~ -

c.1) By 9, (x ,p) - p t l and P ~ L withp ' = p t t p y then
Y

(x-Q, p) pt ' - a , by 16 and (x-cu .y,P) - (p l ' - a) e y by 9.

NOW p = (p" l y)-a - (p f f - a) a y by induction on
\

definition of -.

c . 2) By 10, (y ,p) - p r r and (3 4 ~ ~ . As for c. 1) using 10.

c .3) By 11, (x ,P) - p H and (y , p) - p f r f . As for c .1) using 11,

d. 1) (x-(2, p) - pl and f3 $ Ly, with p = pf l Y - BY 16 we have

(x, p) -C p f r where pr = pf r - a . By 9, (x l Y, P) -L P" Y

and by 16 ((x a y l - a , P) - - (p r r my)-a. Now

p = (pr -a) a y - (pr a y)-a by induction on definition of -.

d.2) (y ,P) - P I and p # L x * with p = (x-a) @ p r and

((X a ~) , p) - x a p l , by 10. (x ay)-cr, p) -L (x a p r) - @ 16*

Now p = (x-a) pf - (x a pr)-a by induction on - .

d. 3) (x-a, p) - pf and (y, p) - -pH follows in a similar fashion

to d. 1) using 11.

Now have that (x a y) - a - (x-a) a y for external a. The case with

a # Lx, i. e., (x a y)-a - x a (y-a) follows by symmetry

-] Show (x By)-a - (x-a) te (y-a) for CNF x and y .

a) ((x 8 y)-a, p) - * i f either

a. 1) by 19, (x-a, p) - * and so ((x-a) @ (pa) , P) -c $ 9 by 6- 2.

o r a .2) by 20, (y-asp) - * . As for a . i)

b) ((x-a) G3 (y-Q), p) - * implies that either

b. 1) by 6.2, ((x-a), P) - * hence, ((x-a) @ (y-a), P) -+ * Y by 19-

b.2) by 7 . 2 , ((y-a),P) -*. As f o r b . 1) -

c) ((x 10 y) -a, p) - p implies either

c. 1) for internal o r external a :- by 16, (x fD y, PI pr

with p = pf -a. Either

c . i .1) (x ,p) --pr by 6.1, and

(x-a, (3) - pr-a by 16, and

((x-a) B (y-a), P) -. pf-Q by 6.1.

c.2) for internal a only:- by 17. 1 3 some n such that

(X a Y, a) 'Pi A (pis@) 'PZ A A (p,, p) - pr with

p = pl-a. Either

d. ((x-a) 8 (y-a), PI-- p which implies that either

d . l) by 6.1, (x-a,@) -p. Now either

d. 1. I) for internal and external a:- by 16, (x,p) =---PI

where p = pr-a. Now (x 10 y ,p) - pt by 6 .1 and

f

d. 1.2) for internal a only:- by 17. 1 3 some n such that
b

(7 a) p A A (pn, P) --. p1 where p = pf-a.

By 6. 1, (x fD y, a) - pl and ((x 0 y)-a, P) - p

follows by 17. 1.

d. 2) by 7.1, (y-a, p) - p. As for d. 1). We now have that

(X By)-a - (x-a) fB (y-a).

[--I Show x-a-f3 - x-f3-a. Case CNF x; that i s , x =z y.x..
i

1 1

a) Case internal a and p:- (x-a-p, y) -- * if either, fo r CNF x-a,

a. I) by 15, (x-a, y) = { * } and (x-a. p) = { * } for C N F x-a*

Now (x-a, y) = { * } if either

a. 1. I) by 15, (x. y) = { *) and (x, a) = {a) . Now

(x-a, P) = { * } if (x, p) = { * } since (p, a) = {*}.

By 15, (x-P, y) = { * } and (x-p,a) = {*) and

(x-@-a, y) = {*I, by 15 again.

a.1.2) by 17.2, 3 n such that

(X.CY) -PI A - A (pn,a) - * and (pn, y) -- *.
As (x-asp) - * a n d (x ,a) - p i , i .e . , (p ,a) # {*} ,

3 m such that (x7a) - - q l ~ * * * A (h, a) -+ * and

(~ , p) - *. Then, (x-f3.y) - - * b y 17.2. As

(x, a) - q l A then (x-p, a) - ql-p A . . . A

(q,-p, a) - 4 and (LOB, y) - *, by 16 and 15 or

19 and 20 depending on whether qm i s in CNF or DNF.

This gives (x-@-a, y) - * by 17.2.

a.2) by 17.2 3 some n such that

(x-a,B) - p i A *-• A (pn,P) - * n.(pn,y) - * and

pn is in CNF. S u p p o s e n = 1, t hen (p l ,P) '*and

(p l , y) - * and pi is in CNF. Now (x - a , p) - p l in

one of two ways:-

a.2.1) by 16, (x. p) - pr and pi = Pr-a. As pl-a is in

CNF then so is pr . Now (P I - a , P) - * either by

a. 2.1.1) (pr , (3) = {*) and (p f , a) = {*I and

(PI-a, y) - * by 15 with (p r , y) = { *)

and (P I , *) = { *) and by 17.2 and

(x, (3) - p t , (x-P, y) = {*I and

(x-p. a) = { * } and (x-(3-a, y) - *, by 15.

o r a. 2. I. 2) 3 r such that, by 17.2,

(P I , *) - -p ; r . * .* A (p:,g) = { * } and

(p:, p) = { * } and (pl-a, y) - * with some

m such that (pl . a) -. P ; ~ A (p k , a) = { * }
f

and(pm,y) ={ *) . Now a s

By16, (x, p) - pr we have (x-f3, a) -- p l.

I

we have (p;-p, a) - p2-P A = A (pk-p, a) =

{*) A (pk-p,Y) ={*) . ~ h k n r = m a s

I
a) = {*) and (p,, a) = (* } and 17.2

gives (x-P-a) -a, a s required.

a. 3) for DNF x-a, then x-a = xi-a @ x2-a for some x and
1 1

X2'
by axiom [- &)I. Then (x-a-p, y) -L * i f either

(xi-a-P, y) - * or (x2-a-f3, y) - * by 19 and 20, and we

can assume x and x2 a r e in CNF o r else we repeat
1

the above argument. Then i t i s only necessary to show

(xt-a+, y) -c * for some CNF x1 and the other cases

follow by symmetry.

Case internal a and external P:-

(x-cr-g 9 Y) - * if (x-a, y) = { * } for CNF x-a. Follows a. 1)

above. Again we only need consider the CNF case.

Case external p and internal a:-

Follows by only considering certain of the cases above.

Case external a and external 9:-

Here (x-a=$, y) - * i f (a , y) = { } which a r i s e s when

(x,y) = { * } by 18. Then (x-P, y) = {*} and (x-P-a. y) = {*} again by

18 a s we only need consider CNF expression. Hence (x-9-a, y) - *.
We now have completed part a) of the proof.

Pa r t b) follows by symmetry.

C) (x-p-a, y) - p implies either

c . 1) by 16, (x-p, y) - pf where p = p' - a implies either

c . 1.1) by 16, (x, y) - p t f where p1 = p" - P . BY 16,

(x-a, y) - p f f -a and (x-a-f3, y) -C pl'-a-P 9 by 16 again*

~ ~ w p = P I ~ - P - ~ - P ~ - ~ - P by an inductive argument: on

c.2) by 17.1, (x-(3,u)-p1 A (~ 1 . a) 'P2 A " ' " (P ~ ~ Y) 'pf

where p = pf-a . Suppose n = 1, then (pi , Y) - P ' * Now

(x-p, a) p i i f either

c.2.1) by 16. (x , a) - p i with pi = pi-@. As

(pi-(3, y) - pf then by 16 y) - p1 where

pf = p f -p. As (x, CY) - p i and (p i , y) -- pf we get

(x-a, y) - -pff-a , by 17.1 and (x-a-(3, y) - pff-a-(3, by 16.

Now p = pff-(3-cr - pff-a-(3 by our inductive

argument on -. Or

c . 2.2) by 17.1, 3 some m where (x, P) - x A * * A
1

(x,,cY) where p l = pi-P and by 16

(x-a.p) --xi A (xi-a.P) --x2 " * * * A (x ~ - ~ - c Y ~ (~) - * ~ *

As n = i, (pi-(3,y) --pl and so (p i y y) -P" by 16.

As we also have (xm. a) - p \ then 17.1 gives

(Xrn
-., y) - p r l - u and by the (x-a. (3) - x i string

above, and 17.1 we get (x-a-(3, y) - p f I-a-P.

Now p = pw-P-a, and we use an inductive argument

to get p f ! - (~ - C Y - pf f-a-(3. We

We have shown b. 2) for n = 2 by showing for

the two ways i n which (x-(3, y) - p i e For any i,

(pi,ct) -picl in a similar way, and so for any n

we will have 2 X n cases where each is like

c .2 .1) o r c . t . 2) . Then for any n, we have c.2).

d) (x-a-(3, y) - p follows exactly a s c) by symmetry.

We now have p-a-P - p-P-a, a s required.

I REFERENCES

[l] R. Campbell and A. Habermann, "The Specification of Process
Synchronisation by Path Experssions, If Lecture notes i n
Computer Science, Vol. 16, Springer-Verlag, 1974

[2] M. Hennessy and R. Milner, "On Observing Nondeterminism
and Concurrency, If Lecture Notes i n Computer Science,
Vol. 85, Springer-Verlag, 1980

[3 1 C .A. R. Hoare, IfMonitors: An Operating System Structuring
Concept, If Comm. ACM 17, 10, 1974

[4] C . A. R. Hoare, NCommunicating Sequential Processes, Comm.
ACM 21, 8, 1978

[5] C.A.R. Hoare, S. Brookes and W. A. Roscoe, "A Theory of
Communicating Sequential Processes , " Programming
Research Group, Oxford University

[6] P. 3- Landin, "The Mechanical Evaluation of Expressions, I f

Computer 3 . 6, 4, 1964

[7] G. Milne and R. Milner, flConcurrent Processes and their Syntax, If

3 . ACM 26, 2, 1979

[8] R. Milner, IfA Calculus of Communicating Systems, " to be
published by Springer-Verlag in Lecture Notes in
Computer Science

[9] G. Plotkin, "Call-by-name, call-by-value and the X-calculus, I f

3 . Theoretical Computer Science 1, 1, 1974

ERRATA

Page 7 . "

l i n e 4 - "ar + Br2" should read "ar + B s "
1

Page 8

l i n e 2 - 11 49 roots" should read "0 ,roots"

para. 3, l i n e 6 - "event x" should read "event a"

Page 9

diagram 1 - The u on t h e left-hand-s2de of t h e lef tmost box
should b e replaced by a y.

Page 16

para. 2, l i n e 1 - " (a,p,a) -+ pl' should be replaced by "(ap,a) -+ p"

Page 43

l i n e - 6 - lSgL(I e 1) p t (i 8 1) Fit' should read

Page 45

l i n e 8 - 11 xi 8 1" should read ''riel1'

Page 52

a f t e r t h e l a s t l i n e add i n t h e following:

Page 71

l i n e 4 - "the ca lculus" should be replaced by " t h e X calculus"

