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Abstract

Neuroimaging studies using univariate and multivariate approaches have

shown that the fusiform face area (FFA) and parahippocampal place area

(PPA) respond selectively to images of faces and places. The aim of this study

was to determine the extent to which this selectivity to faces or places is based

on the shape or texture properties of the images. Faces and houses were fil-

tered to manipulate their texture properties, while preserving the shape prop-

erties (spatial envelope) of the images. In Experiment 1, multivariate pattern

analysis (MVPA) showed that patterns of fMRI response to faces and houses in

FFA and PPA were predicted by the shape properties, but not by the texture

properties of the image. In Experiment 2, a univariate analysis (fMR-adapta-

tion) showed that responses in the FFA and PPA were sensitive to changes in

both the shape and texture properties of the image. These findings can be

explained by the spatial scale of the representation of images in the FFA and

PPA. At a coarser scale (revealed by MVPA), the neural selectivity to faces and

houses is sensitive to variation in the shape properties of the image. However,

at a finer scale (revealed by fMR-adaptation), the neural selectivity is sensitive

to the texture properties of the image. By combining these neuroimaging para-

digms, our results provide insights into the spatial scale of the neural represen-

tation of faces and places in the ventral-temporal cortex.
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1 | INTRODUCTION

There is an important distinction between shape and tex-

ture properties in visual object perception. Many studies

have shown the importance of the shape or spatial

envelope of an object in recognition (Biederman, 1987;

Grill-Spector et al., 1998; Malach et al., 1995; Op de Beeck

et al., 2008). However, other studies have shown that tex-

ture properties also provide important information for the

perception and recognition of objects and faces (Andrews

et al., 2016; Cant et al., 2009; Cant & Goodale, 2007, 2011;

Cavina-Pratesi et al., 2010; Lowe et al., 2016, 2017; Park &

Park, 2017). Neuroimaging methods, such as fMRI, are

able to discriminate object category in high-level visual

cortex. However, it is not always clear if the selectivity

revealed by these methods is based primarily on the shape

or texture properties of the images.

The most common univariate method involves cogni-

tive subtraction, in which the response to an experimental

condition is compared with a control condition in each

voxel (Friston et al., 1996; Petersen et al., 1988). This has

been used to reveal discrete regions in the ventral temporal

lobe that are specialized for different categories of objects.

For example, the fusiform face area (FFA) shows greater

neural response to images of faces than to nonface objects,

such as scenes or buildings (Kanwisher et al., 1997;

McCarthy et al., 1997). In contrast, the parahippocampal

place area (PPA) is more responsive to images of scenes

and buildings compared with faces (Epstein &

Kanwisher, 1998). However, a potential limitation of cog-

nitive subtraction is that it may not be sensitive to different

subpopulations of neurons within a voxel (Andrews, 2005;

Avidan et al., 2002). This problem can be overcome with

fMR-adaptation or repetition suppression paradigms, in

which the repetition of a stimulus causes a reduction or

habituation in the neural response and a lower fMRI

signal (Grill-Spector et al., 1999; Grill-Spector & Malach,

2001). A number of studies have shown selective adapta-

tion to faces in the FFA (Andrews & Ewbank, 2004;

Avidan et al., 2002; Coggan et al., 2019; Rotshtein et al.,

2005) and houses in the PPA (Andrews et al., 2010; Avidan

et al., 2002; Coggan et al., 2019; Epstein et al., 2003;

Ewbank et al., 2005). The sensitivity of these neural

representations can then be further investigated by chang-

ing the stimulus. If the underlying neural representation is

sensitive to this change, the fMRI signal will increase

towards the unadapted level (release from adaptation).

Multivariate pattern analysis (MVPA) in fMRI mea-

sures the pattern of response across many voxels (Haxby

et al., 2014; Tong & Pratte, 2012). Using MVPA, distinct

patterns of response have been reported for different

categories of objects, including faces and houses

(Haxby et al., 2001). Multivariate approaches are able to

discriminate a greater range of object categories com-

pared with univariate approaches (Haxby et al., 2001;

Kriegeskorte et al., 2008). For example, the pattern of

response in the PPA has been shown to differentiate

between different types of scenes (Walther et al., 2009;

Watson et al., 2014, 2017). Because the ability to differen-

tiate between object categories is still evident after spatial

smoothing, it is typically assumed that MVPA reflects a

coarser-scale representation (Op de Beeck et al., 2010;

Rice et al., 2014; Watson et al., 2014).

The aim of this study is to combine univariate and

multivariate analyses to explore the selectivity in the FFA

and PPA to faces and houses. The rationale for using

these different paradigms is that they provide sensitivity

to coarser-scale (MVPA) and finer-scale (fMR-adaptation)

information about the neural response (Drucker &

Aguirre, 2009; Epstein & Morgan, 2012; Hatfield

et al., 2016; O’Connell & Chun, 2018). In previous stud-

ies, we have shown that different categories of objects

vary in both shape and texture (Rice et al., 2014; Watson

et al., 2014; Watson, Hymers, et al., 2016). Here, we

attempt to determine the relative importance of shape

and texture in the neural response by filtering the images

(by orientation or frequency) to change their texture, but

not their shape. In Experiment 1, a multivariate analysis

compared the patterns of response to the filtered images

in the FFA and PPA. If the pattern of response is depen-

dent on shape, then applying a filter to the images should

not change the patterns of response to faces and houses.

In contrast, if the pattern of response is dependent on the

texture, then applying a filter should change the patterns

of response. In Experiment 2, an fMR-adaptation para-

digm (univariate) was used to determine the sensitivity to

changes in texture properties caused by filtering. If there

is a release from adaptation for a change in filter, this

would suggest that the underlying representation is sensi-

tive to the texture of the image.

2 | METHODS

2.1 | Participants

Twenty participants took part in Experiment 1 (eight male,

median/min/max age = 25/18/35, SD = 4.8 years) and

24 participants took part in Experiment 2 (13 male,

median/min/max age = 23/21/54, SD = 8.9 years). Sample

size was arbitrarily based on previous studies using similar

designs in which significant effects were evident (Coggan,

Liu, et al., 2016; Watson et al., 2017). All participants were

right-handed, had normal or corrected-to-normal vision,

and were neurologically healthy. Each gave their

informed, written consent and the studies were approved
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by the York Neuroimaging Centre (YNiC) Ethics Commit-

tee and adhered to the original wording (1964) of the Dec-

laration of Helsinki.

2.2 | Stimuli

Forty-eight face images were taken from the Radboud

face database (http://www.socsci.ru.nl) and 48 house

images used in previous experiments (Coggan

et al., 2017; Coggan, Baker, & Andrews, 2016; Coggan,

Liu, et al., 2016; Rice et al., 2014). Face images were

divided across six different identities, half of which were

female, and varied in viewpoint and facial expression. Fil-

tering was performed by weighting the Fourier spectrum

of each image to preserve either horizontal/vertical orien-

tations or high/low spatial frequencies. For orientation

manipulations, filters were wrapped Gaussian profiles,

with a wide-angle cut-off (FWHM = 75�) that ensured

images remained recognizable after filtering. Spatial fre-

quency filters were Gaussian profiles with cut-offs set at

less than 2 cycles/degree and greater than 6 cycles/degree

at FWHM for the low- and high-pass filters respectively.

Filter cut-offs for spatial frequency were based upon

those used in previous studies (Oliva & Schyns, 1997;

Watson, Hymers, et al., 2016). After filtering, the global

mean luminance of the images was rescaled to mid-grey.

Figure 1 shows an exemplar from each category after

filters have been applied. All faces were taken from a

frontal view and showed happy or neutral expressions.

During the experiment, images were back-projected onto

a custom in-bore acrylic screen and viewed via a mirror

placed above the subject’s head. Viewing distance was

approximately 57 cm, with all images subtending approxi-

mately a 10� retinal angle. Images were presented in grey-

scale on a mid-grey background. Stimulus presentation

was controlled through Psychopy (Peirce et al., 2019).

To measure the ‘shape’ and ‘texture’ properties of the

image, we used modified versions of the GIST descriptor

(Oliva & Torralba, 2001; Watson, Hymers, et al., 2016).

Each image was passed through a series of Gabor filters

spanning eight orientations and eight spatial frequencies,

generating 64 filtered images for each input image

(Figure 2a). Next, each filtered image was divided into an

8 � 8 grid and pixel intensities were averaged within

each grid cell. We then constructed two variants of the

GIST descriptor that measured the shape and texture

properties of each image separately.

For the shape GIST descriptor, we averaged across

the filter outputs, yielding a single 8 � 8 grid that was

then flattened to a vector of 64 numbers. This vector

therefore represents the spatial energy across the image

(higher values indicate a greater amount of energy at a

specific spatial location within the image), but is insensi-

tive to the spectral properties. For the texture GIST

descriptor, each filter output was averaged over grid cells

F I GURE 1 Spatial

frequency and orientation filters

(top) with an exemplar from the

face (middle) and house

(bottom) categories. The effect

of high-pass and low-pass

spatial frequency filters (left)

and vertical-pass and

horizontal-pass orientation

filters (right) are shown for each

exemplar

COGGAN ET AL. 3



F I GURE 2 Shape and texture properties of the stimulus set. (a) Each image can be represented as a vector of values based on the low-

level properties of the image; 64 Gabor filters (shown here in Fourier space) were constructed across factorial combinations of eight spatial

frequencies and eight orientations. Each filter was applied to the image in turn, resulting in 64 filtered images. Each filtered image was then

windowed into an 8 � 8 grid and pixel intensities within each window were averaged. The shape GIST vector was constructed by averaging

across filtered images while retaining the 8 � 8 grid, and then reshaping the resulting grid to yield a vector of 64 values. The texture GIST

vector was constructed by averaging across windows for each filtered image separately, and then concatenating images to yield a vector of

64 values. (b) Similarity in shape and texture GIST vectors within and between the different conditions. Vectors were compared through

correlation using a leave-one-image-out paradigm. Legend for the similarity matrices: F = face, H = house, high = high spatial frequency,

low = low spatial frequency, horz = horizontal, vert = vertical

4 COGGAN ET AL.



to yield a single value, and these values then

concatenated into a vector of 64 numbers. This vector

therefore represents the textural or nonspatial properties

of the image (higher values indicate more energy at par-

ticular orientation/frequency within the image), but it is

insensitive to the shape properties of the image.

The shape and texture GISTs were used to compare

images across conditions with correlation (Rice et al.,

2014; Watson et al., 2014; Watson, Young, & Andrews,

2016). The average correlation matrix for each GIST

descriptor type (shape, texture) is shown in Figure 2b. This

shows a clear difference in the shape and texture proper-

ties of the images. Images with the same filter had similar

texture properties, irrespective of category. In contrast,

images from the same category had similar shape proper-

ties, irrespective of filter. This manipulation allowed us to

compare the relative role of shape and texture in the selec-

tivity of responses in category-selective regions.

3 | EXPERIMENT 1—MVPA

3.1 | Design and procedure

For this experiment, all 48 faces and 48 houses were

passed through the four filters (two orientation, two fre-

quency) to generate 384 images. The fMRI experiment

consisted of two scans, one for each filter type (orientation,

frequency). In each scan, images were presented in 9 s

blocks. In each block, nine images from each category/

filter combination (see Figure 1) were presented individu-

ally for 750 ms, with a 250-ms interstimulus interval. This

was followed by a fixation cross on a mid-grey background

for 9 s. Each image in the stimulus set was shown once.

To maintain participants’ attention, a one-back task was

used in which the participant was instructed to press a

button on a response box whenever the current image was

judged to be identical to the immediately previous image.

3.2 | Regions of interest (ROIs)

FFA and PPA locations were identified based on an inde-

pendent localizer scan performed after the experimental

scans (Figure 3). Our rationale for using the FFA and

PPA is that these regions are located in a similar region

of ventral temporal cortex and show strong and opposing

selectivity. Images were presented in a block design iden-

tical to the experimental scan. Forty-eight face and

48 scene images were presented in 12 blocks, with each

image presented once. The FFA was defined by a

face > scene contrast, and the PPA was defined by a

scene > face contrast. A flood-fill algorithm was used to

define group ROIs of 256 voxels per hemisphere. The algo-

rithm works by iteratively reducing the threshold to add

spatially contiguous voxels with the next highest z value to

the cluster. This process continues until there are 256 vox-

els in a cluster. Due to the spatial distortion of the EPI

image, the correspondence with the structural TI image is

slightly misaligned. However, it is important to note the

EPI data from the localizer and the experimental scans are

both distorted in the same way and thus remain aligned.

3.3 | Data analysis

The effect of shape and texture properties on patterns of

neural response was tested using correlation-based multi-

variate pattern analysis (Haxby et al., 2001). This was

conducted independently for the spatial frequency and

orientation scans. First, parameter estimates for each

condition were normalized on a voxel-wise basis for each

participant. This involved subtracting the mean response

across all conditions. Group analyses were then con-

ducted with one participant being left out for each analy-

sis. The responses from the group analyses were

normalized by subtracting the mean response to all con-

ditions. For each pairwise combination of conditions, the

patterns of response in each participant were compared

with a corresponding group parameter estimate from the

group analysis of the remaining participants. This leave-

one-participant-out (LOPO) cross-validation paradigm

was repeated for each participant (Rice et al., 2014). The

MVPA was implemented using the PyMVPA toolbox

(Hanke et al., 2009). The correlation coefficients were

then used to populate a representation similarity

matrix (RSM), which shows the relative similarity of

patterns of response to different conditions. A Fisher’s

Z-transformation was then applied to the correlations

prior to further statistical analysis. A representational

similarity analysis with multiple regression was used to

determine the role of shape and texture (Watson,

Hymers, et al., 2016; Watson, Young, & Andrews, 2016).

This involved using the shape and texture GIST correla-

tion matrices from Figure 2b as regressors, while the

fMRI MVPA correlation matrices for each participant

were entered as the outcome variable.

4 | EXPERIMENT 2—FMR-
ADAPTATION

4.1 | Design and procedure

Six faces and six houses from each category were used in

this experiment. The faces included three male and three

COGGAN ET AL. 5



female identities that were front facing and were smiling.

These images were passed through four different filters

(two orientation, two frequency) to give a total of 48 dif-

ferent images. There were two fMRI scans with images

filtered by orientation and frequency presented in differ-

ent scans. The order of scans was counterbalanced across

subjects. In each scan, images were presented in 6-s

blocks. In each block, six images were presented individ-

ually for 800 ms, with a 200-ms interstimulus interval.

This was followed by a fixation cross lasting 9 s.

The fMR-adaptation had three different image

sequences: no change; shape change; texture change

(see Figure 5a). These image sequences were shown for

each object category. The advantage of using a limited

number of exemplars is that the same images are used

in different conditions and it is only the sequence of

images that is different. Each combination of filter, cat-

egory and sequence was shown in six blocks. The order

of the blocks was randomized for each subject and

scan. Participants performed a task that consisted of

pressing a button on a response box whenever the fixa-

tion cross during the inter-stimulus interval was shown

in green while viewing images. The task was designed

to maintain attention for the duration of the scan.

Green fixation crosses were randomly placed after 36 of

the 216 images presented throughout each scan. Analy-

sis of variance (ANOVA) and post-hoc t-tests were used

to determine the effect of shape and texture properties

on the response to faces and houses. Benjamini–

Hochberg correction for multiple comparisons was

applied across comparisons for each ROI (Benjamini &

Hochberg, 1995).

To determine if participants were able to discriminate

a change in filter from a change in exemplar, we ran a

behavioural experiment outside the scanner using the

same stimulus conditions. Participants (n = 10, 5 male,

median/min/max age = 23/19/28, SD = 3.0 years) were

asked to indicate if two images were from the same iden-

tity (change in filter) or from a different identity (change

in exemplar). For spatial frequency trials, participants

were accurate on 87.0 � 0.03% (mean � sem) with a

d0 = 3.04. For orientation trials, participants were accu-

rate on 85.0 � 0.04% (mean � sem) of Orientation fil-

tered trials with a d0 = 3.04.

F I GURE 3 Group analysis

of localizer scans in Experiment

1 and Experiment 2. The FFA

and PPA were defined by the

contrast between face > house

and house > face, respectively.
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4.2 | ROIs

FFA and PPA locations (Figure 3) were identified based

on a group analysis of the experimental fMRI data. First,

two parameter estimates were generated, combining all

face or all house conditions. The peak face- and house-

selective voxels (i.e., those with the highest z value) were

identified using face > house and house > face contrasts,

respectively. For the peak FFA and PPA voxels in left

and right hemispheres, a flood fill algorithm was used to

identify a cluster of 16 spatially contiguous voxels for

each ROI.

4.3 | Data analysis

Functional time-series of responses were collapsed across

voxels in each ROI and converted to percent signal

change for each participant. The time-series from each

ROI was then divided into six TR (18 s) stimulus blocks.

The data were normalized by subtracting a baseline (cal-

culated as the mean of the six TR values from each block)

from each value within a block. Blocks from the same

stimulus condition were averaged to produce a mean

time-series. The peak neural responses at TR 3 (9 s, post-

stimulus onset) were entered into a four-way ANOVA

with ROI (FFA, PPA), Filter (frequency, orientation),

Category (face, house) and Sequence (no change; shape

change; texture change) as repeated measures.

4.4 | Data acquisition

All fMRI data were acquired with a General

Electric 3T HD Excite MRI scanner in YNiC at the

University of York, fitted with an eight-channel,

phased-array, head-dedicated gradient insert coil tuned

to 127.4 MHz. A gradient-echo echo-planar imaging

(EPI) sequence was used to collect data from

38 contiguous axial slices (TR = 3000 ms, TE = 32.7 ms,

FOV = 288 � 288 mm, matrix size = 128 � 128, voxel

dimensions = 2.25 � 2.25 � 3 mm, flip angle = 90�). The

fMRI data were analysed with FEAT v5.98 (http://www.

fmrib.ox.ac.uk/fsl). In all scans, the initial 9 s of data

were removed to reduce the effects of magnetic satura-

tion. Motion correction (MCFLIRT, FSL) and slice-timing

correction were applied, followed by temporal high-pass

filtering (Gaussian-weighted least-squares straight line

fitting, sigma = 50 s). Gaussian spatial smoothing was

applied at 6-mm FWHM. Parameter estimates were gen-

erated for each cluster by regressing the hemodynamic

response of each voxel against a box-car function con-

volved with a single-gamma HRF. Functional data were

first registered to a low-resolution T1-anatomical image

oriented in the same plane as the EPI (TR = 2.5 s,

TE = 9.98 ms, FOV = 288 � 288 mm, matrix size =

512 � 512, voxel dimensions = 0.56 � 0.56 � 3 mm, flip

angle = 90�), then to a high-resolution T1-anatomical

image (TR = 7.96 ms, TE = 3.05 ms, FOV =

290 � 290 mm, matrix size = 256 � 256, voxel

dimensions = 1.13 � 1.13 � 1 mm, flip angle = 20�) and

finally onto the standard MNI brain (ICBM152).

An arbitrary alpha value of 0.05 was used to indicate

significant effects.

5 | RESULTS

5.1 | Experiment 1—MVPA

The similarity in the patterns of response across condi-

tions in the FFA and PPA is shown in Figure 4a. To

determine the role of shape and texture properties on the

patterns of neural response, we used a representational

similarity analysis with multiple regression (Watson,

Hymers, et al., 2016; Watson, Young, & Andrews, 2016).

The shape and texture GIST correlation matrices from

Figure 2b were entered as regressors, while the fMRI

MVPA correlation matrices for each participant, were

entered as the outcome variable. The coefficient for each

regressor is shown in Figure 4b.

In the FFA, the shape GIST significantly predicted

responses in both the frequency scan (β = 0.46, t(19)

= 3.74, Cohen’s dz = 0.84, p = 0.002) and the orientation

scan (β = 0.71, t(19) = 6.98, Cohen’s dz = 1.56,

p < 0.001). In contrast, the texture GIST coefficient was

significantly below zero for the frequency scan

(β = �0.05, t(19) = 2.44, Cohen’s dz = 0.54, p = 0.027)

and not significantly different from zero in the orienta-

tion scan (β � 0.01, t(19) = 0.15, Cohen’s dz = 0.03,

p = 0.881). The shape GIST coefficient was significantly

greater than the texture GIST coefficient in both scans

(frequency: t(19) = 3.72, Cohen’s dz = 1.30, p = 0.002;

orientation: t(19) = 5.69, Cohen’s dz = 1.97, p < 0.001).

In the PPA, the shape GIST significantly predicted

responses in the frequency scan (β = 1.27, t(19) = 11.66,

Cohen’s dz = 2.61, p < 0.001) and the orientation scan

(β = 1.27, t(19) = 10.29, Cohen’s dz = 2.30, p < 0.001).

Conversely, the texture GIST coefficient was significantly

below zero for both frequency (β = �0.15, t(19) = �6.88,

Cohen’s dz = 1.54, p < 0.001) and orientation (β = �0.36,

t(19) = 7.61, Cohen’s dz = 1.70, p = 0.129). The shape

GIST coefficient was significantly greater than the texture

GIST coefficient in both scans (frequency: t(19) = 12.62,

Cohen’s dz = 4.04, p < 0.001; orientation: t(19) = 10.51,

Cohen’s dz = 3.90, p < 0.001).

COGGAN ET AL. 7



We also analysed responses in other known face- and

scene-selective regions in visual cortex. This included the

face-selective occipital face area (OFA) and posterior

superior temporal sulcus (pSTS) and the scene-selective

occipital place area (OPA) and retrosplenial complex

(RSC). Table S1 shows that the patterns of response in

these category-selective regions were more strongly pre-

dicted by the shape model than the texture model in both

the orientation and spatial frequency scans.

To understand how the representation in category-

selective regions emerges, we also analysed regions in the

occipital and temporal cortices using probabilistic maps

of visual topography (Wang et al., 2015). The perfor-

mance of the shape and texture models in these regions

is shown in Table S2. Although there was a general bias

towards the shape model compared with the texture

model, the pattern of neural response was predicted by

the texture model in a number of these regions. However,

this was only for the frequency scans, with some of the

ventral regions (V1v, V2d and hV4) showing no differ-

ence between the shape and texture models.

5.2 | Experiment 2

fMR-adaptation was used to determine the sensitivity in

the FFA and PPA to sequences of faces or houses in

which there was either a change in exemplar or a change

in filter (Figure 5a). First, we asked whether there was

any difference in the choice of filter (orientation or

spatial frequency). A four-way, repeated-measures

ANOVA (Filter, ROI, Category, Sequence) revealed no

main effect or interactions involving Filter (Filter * ROI:

F(1,23) = 3.75, p = 0.065; Filter * Category: F(1,23)

= 2.22, p = 0.150; Filter * Sequence: F(2,46) = 0.034,

p = 0.966; Filter * ROI * Category: F(1,23) = 1.48,

p = 0.237; Filter * ROI * Sequence: F(1,23) = 0.03,

p = 0.969; Filter * Category * Sequence: F(2,46) = 0.52,

p = 0.599; Filter * ROI * Category * Sequence: F(2,46)

= 0.25, p = 0.780), so all subsequent data were collapsed

across Filter.

Figure 5b (Figure S1) shows the response in the FFA

and PPA to different conditions (no change, shape

change, texture change) with faces and houses. There

was a significant three-way interaction between ROI, cat-

egory and sequence (F(2,46) = 13.93, ηG
2
= 0.005,

p < 0.001). This suggests that different sequences had

varying effects on the neural responses across the FFA

and PPA, depending on which category was presented.

To explore this, we conducted 12 planned pairwise com-

parisons: For each combination of ROI and category, all

three sequences were contrasted against one another.

In the FFA, the response to faces was significantly

lower (indicating adaptation) for no change condition

compared with both shape change (t(23) = 3.02, Cohen’s

dz = 0.62, p = 0.018) and texture change (t(23) = 3.65,

Cohen’s dz = 0.75, p = 0.008) conditions. However, there

was no significant difference (indicating a similar release

from adaptation) in the response to faces between shape

change and texture change conditions (t(23) = 0.37,

F I GURE 4 Experiment 1—MVPA. (a) Similarity matrices in the FFA and PPA (F = face, H = house, high = high spatial frequency,

low = low spatial frequency, horz = horizontal, vert = vertical). (b) Coefficients for the shape and texture GIST models (see Figure 2b) in a

multiple regression of the fMRI similarity matrices. All regressors and outcomes were Z-scored such that coefficients are given in

standardised units. Error bars represent standard error of the mean. The pattern of response was predicted by the shape rather than the

texture GIST model. Horizontal line indicates p < 0.05
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Cohen’s dz = 0.08, p = 0.713). Finally, there was no sig-

nificant adaptation across the different house conditions

(for all comparisons, t(23) < 2.22, Cohen’s dz < 0.46,

p > 0.07). This shows a comparable face-selective release

from adaptation in the FFA when either the shape or tex-

ture properties are changed.

In the PPA, the neural response to houses was signifi-

cantly lower (indicating adaptation) for no change condi-

tion compared with the shape change condition (t(23)

= 3.14, Cohen’s dz = 0.64, p = 0.028). The response to

texture change condition was significantly higher than

the no change condition for houses (t(23) = 2.61, Cohen’s

dz = 0.53, p = 0.046). There was also no difference

(indicating a similar release from adaptation) between

shape change and texture change (t(23) = 0.39, Cohen’s

dz = 0.08, p = 0.701) house conditions. Finally, there

were no significant differences in the neural response

across the sequences of faces (for all comparisons, t(23)

< 1.90, Cohen’s dz < 0.39, p > 0.07). This shows a compa-

rable house-selective release from adaptation in the PPA

when either the shape or texture properties are changed.

Again, we tested responses in other face-selective and

scene-selective regions (OFA, STS, OPA, RSC). There was

no effect of Sequence or any interaction between

Sequence and Category in any of the regions (Table S3).

In the visual field regions (Table S4), an effect of

F I GURE 5 Experiment 2. (a) Stimulus presentation sequences for house stimuli. There were three different stimulus conditions: No

change; shape change; texture change. These conditions were presented using images manipulated by spatial frequency or orientation. Pairs

of images in each condition were presented sequentially and repeated three times to give a total of six images in each block. (b) Response in

FFA and PPA to different conditions. Data were collapsed across frequency and orientation filters. Error bars represent standard error of the

mean. Higher responses were evident to the texture change and shape change conditions compared with the same exemplar, same filter

condition for the preferred, but not the nonpreferred stimulus in each region. Horizontal line indicates p < 0.05
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Sequence was found in V4 (F(2,46) = 10.88, p = 0.002),

V3v (F(2,46) = 4.17, p = 0.022) and V01 (F(2,46) = 7.39,

p = 0.002). However, there was no interaction between

Sequence and Category. This suggests that the category-

specific fMR-adaptation shown by the interaction

between Sequence and Category emerges in the FFA

and PPA.

6 | DISCUSSION

Understanding the image properties that are important

for the perception and recognition of objects is a central

goal in vision science. To this end, an important distinc-

tion has been made between the role of shape and texture

properties. As objects vary in both shape and texture,

both sources of information could contribute to percep-

tion. Some studies have suggested the primacy of shape

properties or the spatial envelope in object recognition

(Biederman, 1987; Grill-Spector et al., 1998; Malach

et al., 1995; Op de Beeck et al., 2008). However, other

studies have shown that texture properties can also pro-

vide important information for the perception and recog-

nition of objects (Andrews et al., 2016; Cant et al., 2009;

Cant & Goodale, 2007, 2011; Cavina-Pratesi et al., 2010).

The aim of this study was to investigate how shape and

texture properties are represented in category-selective

regions of ventral temporal cortex. Using MVPA and

fMR-adaptation, we asked whether the selectivity of

response in the FFA and PPA to faces and houses, respec-

tively, is due to differences in the shape or texture proper-

ties of the stimulus.

Shape and texture properties were manipulated by

applying orientation or frequency filters to the images.

To measure the effect of filter, we generated modified

versions of the GIST descriptor (Oliva & Torralba, 2001):

One version of the GIST descriptor was sensitive to shape

properties of the stimulus (shape GIST), while the other

version was sensitive to nonshape properties, such as ori-

entation and spatial frequency content (texture GIST).

Filtering had a marked effect on the texture properties,

but it had little effect on the shape properties of the

images (see Figure 2).

We then measured the patterns of response to filtered

images of faces and houses using MVPA. We found that

the pattern of response to faces and houses in the FFA

and PPA was predicted by the shape properties, but not

by the texture properties, of the images. The importance

of the shape properties of the image in predicting pat-

terns of response in high-level visual cortex fits with

other studies using MVPA (Bracci & Op de Beeck, 2016;

Op de Beeck et al., 2008; Vernon et al., 2016; Watson,

Young, & Andrews, 2016). For example, we showed that

patterns of response to different objects in ventral tempo-

ral cortex was predicted more by shape properties than

by texture properties (Watson, Young, & Andrews, 2016).

However, our current findings show some differences to

other studies, which have shown an effect of texture

properties on patterns of response in the PPA (Berman

et al., 2017; Lowe et al., 2016, 2017; Watson, Hymers,

et al., 2016). These studies show that the frequency con-

tent of the image does influence the pattern of response.

The differences between the current study and these pre-

vious studies are likely to reflect the images we have

used. Here, we showed isolated images of faces and

houses superimposed on a uniform background, while

these other studies showed images of scenes that encom-

passed the full extent of the display. Therefore, in our

study, significant differences in the spatial extent of the

images remain after they have been passed through a fil-

ter (see Figure 1). It seems that these spatial differences

play a dominant role in differentiating patterns of

response to isolated faces and houses.

Next, we used fMR-adaptation to measure the

response to faces and houses. We found a release from

adaptation to images that differed in texture properties.

This is consistent with previous studies that have shown

sensitivity to texture properties in high-level visual cortex

(Andrews et al., 2016; Cant et al., 2009; Cant &

Goodale, 2007, 2011). However, the release from adapta-

tion caused by changing the texture properties was only

evident for the preferred category (FFA: faces, PPA:

houses). Although this implies a greater sensitivity to the

properties of the preferred stimulus (Andrews

et al., 2010), it is important to note that this difference

could be explained by the lower response to the nonpre-

ferred stimulus. Our findings are consistent with other

studies using fMR-adaptation that have shown a release

from adaptation to changes in the image of the same

exemplar (Andrews & Ewbank, 2004; Byrne et al., 2016;

Davies-Thompson et al., 2009, 2013; Eger et al., 2004;

Ewbank et al., 2005; Grill-Spector et al., 1999; Lowe

et al., 2017; O’Connell & Chun, 2018; Pourtois

et al., 2005a, 2005b). For example, O’Connell et al. (2018)

showed in the PPA that successive presentations of two

line drawings or two photographs of the same scene

resulted in a reduced response (adaptation) compared

with the presentation of two different scenes. However,

when a line drawing and then a photograph of the same

scene were presented in sequence, thus changing the tex-

ture properties, there was a release from adaptation

(higher response).

The difference in the sensitivity to filtering between

the fMR-adaptation and MVPA analyses provides infor-

mation about the scale at which shape and texture infor-

mation is represented in the FFA and PPA. Because

10 COGGAN ET AL.



MVPA reveals patterns of response across voxels it pro-

vides coarser-scale information about neural representa-

tion than is evident at the single voxel level (Haxby

et al., 2014; Tong & Pratte, 2012). There has been some

debate about the spatial scale of the pattern of response

in MVPA (cf Freeman et al., 2011; Kamitani &

Tong, 2005). Our MVPA method compared the pattern of

response in each participant with the pattern from the

group (with that participant left out). This leave one par-

ticipant out (LOPO) approach has been used in previous

studies shows that patterns of response are consistent

across participants (Coggan, Liu, et al., 2016; Flack

et al., 2015; Rice et al., 2014; Watson et al., 2014; Weibert

et al., 2018). However, because of the need for registering

patterns of response across different brains, this will only

reveal a coarse scale representation. Because the MVPA

experiment showed that the pattern of neural response

was predicted by the shape properties of the images, but

not by their texture properties, this implies that shape

information is represented is represented at a coarser

level. In contrast, fMR-adaptation can detect finer-scale

neural responses within voxels (Andrews, 2005; Avidan

et al., 2002; Epstein & Morgan, 2012). Therefore, the sen-

sitivity to the texture properties of the images in the fMR-

adaptation experiment suggests that it is dependent on a

finer scale of representation.

A number of studies have shown that differences

between textures can also be perceived from the second

order differences and that selectivity to these differences

emerges at later stages of processing (Coggan et al., 2017;

Freeman et al., 2013; Freeman & Simoncelli, 2011). More

recent reports have begun to directly uncover the rela-

tionship between textural properties of the image and

physical surfaces in the real world (Fleming &

Storrs, 2019; Schmid et al., 2021). Our findings suggest

that future studies that attempt to uncover the neural

correlates of surface properties will need to investigate

neural responses at this finer scale of representation.

In conclusion, these findings reveal novel insights

into the way that shape and texture properties of objects

are represented in category-selective regions and demon-

strate the importance of combining MVPA and fMR-

adaptation paradigms to understand how information is

represented in ventral temporal cortex across different

neuronal scales (Drucker & Aguirre, 2009; Hatfield

et al., 2016; O’Connell & Chun, 2018).

ACKNOWLEDGEMENTS

We would like to thank the staff at the York Neuro-

imaging Centre (YNiC) who helped with this project.

We would also like to thank the editor and two anony-

mous reviewers for the help in the revision of this

manuscript.

CONFLICT OF INTEREST

The authors declare no competing financial interests.

AUTHOR CONTRIBUTIONS

DDC, DMW and TJA conceived and designed the experi-

ments. DDC, DMW, AW, RB, CE, KJ and CK collected

and analysed the data. DDC and TJA wrote the initial

draft of the manuscript. All authors contributed to the

submitted manuscript.

PEER REVIEW

The peer review history for this article is available at

https://publons.com/publon/10.1111/ejn.15737.

DATA AVAILABILITY STATEMENT

Data and code are available at https://github.com/

ddcoggan/p008.

ORCID

Timothy J. Andrews https://orcid.org/0000-0001-8255-

9120

REFERENCES

Andrews, T. J. (2005). Visual cortex: How are faces and objects

represented? Current Biology, 15(12), 451–453. https://doi.org/

10.1016/j.cub.2005.06.021

Andrews, T. J., Baseler, H., Jenkins, R., Burton, A. M., &

Young, A. W. (2016). Contributions of feature shapes and sur-

face cues to the recognition and neural representation of facial

identity. Cortex, 83, 280–291. https://doi.org/10.1016/j.cortex.

2016.08.008

Andrews, T. J., Clarke, A., Pell, P., & Hartley, T. (2010). Selectivity

for low-level features of objects in the human ventral stream.

NeuroImage, 49(1), 703–711. https://doi.org/10.1016/j.

neuroimage.2009.08.046

Andrews, T. J., & Ewbank, M. P. (2004). Distinct representations for

facial identity and changeable aspects of faces in the human

temporal lobe. NeuroImage, 23(3), 905–913. https://doi.org/10.

1016/j.neuroimage.2004.07.060

Avidan, G., Hasson, U., Hendler, T., Zohary, E., & Malach, R.

(2002). Analysis of the neuronal selectivity underlying low

fMRI signals. Current Biology, 12(12), 964–972. https://doi.org/

10.1016/S0960-9822(02)00872-2

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discov-

ery rate: A practical and powerful approach to multiple testing.

Journal of the Royal Statistical Society B, 57(1), 289–300.

https://doi.org/10.2307/2346101

Berman, D., Golomb, J. D., & Walther, D. B. (2017). Scene content

is predominantly conveyed by high spatial frequencies in

scene-selective visual cortex. PLoS ONE, 12(12), 1–16. https://

doi.org/10.1371/journal.pone.0189828

Biederman, I. (1987). Recognition-by-components: A theory of

human image understanding. Psychological Review, 94(2), 115–

147. https://doi.org/10.1037/0033-295X.94.2.115

Bracci, S., & Op de Beeck, H. (2016). Dissociations and associations

between shape and category representations in the two visual

COGGAN ET AL. 11



pathways. Journal of Neuroscience, 36(2), 432–444. https://doi.

org/10.1523/JNEUROSCI.2314-15.2016

Byrne, H., Andrews, T. J., Harris, R. J., Weibert, K., Mitchell, A., &

Young, A. W. (2016). An image-invariant neural response to

familiar faces in the human medial temporal lobe. Cortex, 84,

34–42. https://doi.org/10.1016/j.cortex.2016.08.014

Cant, J. S., Arnott, S. R., & Goodale, M. A. (2009). fMR-adaptation

reveals separate processing regions for the perception of form

and texture in the human ventral stream. Experimental Brain

Research, 192(3), 391–405. https://doi.org/10.1007/s00221-008-

1573-8

Cant, J. S., & Goodale, M. A. (2007). Attention to form or surface

properties modulates different regions of human occipitotem-

poral cortex. Cerebral Cortex, 17(3), 713–731. https://doi.org/

10.1093/cercor/bhk022

Cant, J. S., & Goodale, M. A. (2011). Scratching beneath the surface:

New insights into the functional properties of the lateral occip-

ital area and parahippocampal place area. Journal of Neurosci-

ence, 31(22), 8248–8258. https://doi.org/10.1523/JNEUROSCI.

6113-10.2011

Cavina-Pratesi, C., Kentridge, R. W., Heywood, C. A., &

Milner, A. D. (2010). Separate channels for processing form,

texture, and color: Evidence from FMRI adaptation and visual

object agnosia. Cerebral Cortex, 20(10), 2319–2332. https://doi.

org/10.1093/cercor/bhp298

Coggan, D. D., Allen, L. A., Farrar, O. R. H., Gouws, A. D.,

Morland, A. B., Baker, D. H., & Andrews, T. J. (2017). Differ-

ences in selectivity to natural images in early visual areas

(V1–V3). Scientific Reports, 7(2444), 1–8. https://doi.org/10.

1038/s41598-017-02569-4

Coggan, D. D., Baker, D. H., & Andrews, T. J. (2016). The role of

visual and semantic properties in the emergence of category-

specific patterns of neural response in the human brain.

ENeuro, 3(August), ENEURO.0158-16.2016. https://doi.org/10.

1523/ENEURO.0158-16.2016

Coggan, D. D., Baker, D. H., & Andrews, T. J. (2019). Selectivity for

mid-level properties of faces and places in the fusiform face

area and parahippocampal place area. European Journal of

Neuroscience, 49(12), 1587–1596. https://doi.org/10.1111/ejn.

14327

Coggan, D. D., Liu, W., Baker, D. H., & Andrews, T. J. (2016). Cate-

gory-selective patterns of neural response in the ventral visual

pathway in the absence of categorical information. Neuro-

Image, 135, 107–114. https://doi.org/10.1167/15.12.622

Davies-Thompson, J., Gouws, A., & Andrews, T. J. (2009). An

image-dependent representation of familiar and unfamiliar

faces in the human ventral stream. Neuropsychologia, 47(6),

1627–1635. https://doi.org/10.1016/j.neuropsychologia.2009.

01.017

Davies-Thompson, J., Newling, K., & Andrews, T. J. (2013). Image-

invariant responses in face-selective regions do not explain the

perceptual advantage for familiar face recognition. Cerebral

Cortex, 23(2), 370–377. https://doi.org/10.1093/cercor/bhs024

Drucker, D. M., & Aguirre, G. K. (2009). Different spatial scales of

shape similarity representation in lateral and ventral LOC.

Cerebral Cortex, 19(10), 2269–2280. https://doi.org/10.1093/

cercor/bhn244

Eger, E., Schyns, P. G., & Kleinschmidt, A. (2004). Scale invariant

adaptation in fusiform face-responsive regions. NeuroImage,

22(1), 232–242. https://doi.org/10.1016/j.neuroimage.2003.

12.028

Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-

specific scene representations in human parahippocampal

cortex. Neuron, 37(5), 865–876. https://doi.org/10.1016/S0896-

6273(03)00117-X

Epstein, R., & Kanwisher, N. (1998). A cortical representation of

the local visual environment. Nature, 392(6676), 598–601.

https://doi.org/10.1038/33402

Epstein, R. A., & Morgan, L. K. (2012). Neural responses to visual

scenes reveals inconsistencies between fMRI adaptation and

multivoxel pattern analysis. Neuropsychologia, 50(4), 530–543.

https://doi.org/10.1016/j.neuropsychologia.2011.09.042

Ewbank, M. P., Schluppeck, D., & Andrews, T. J. (2005). fMR-

adaptation reveals a distributed representation of inanimate

objects and places in human visual cortex. NeuroImage, 28(1),

268–279. https://doi.org/10.1016/j.neuroimage.2005.06.036

Flack, T. R., Andrews, T. J., Hymers, M., Al-Mosaiwi, M.,

Marsden, S. P., Strachan, J. W. A., Trakulpipat, C., Wang, L.,

Wu, T., & Young, A. W. (2015). Responses in the right poste-

rior superior temporal sulcus show a feature-based response to

facial expression. Cortex, 69, 14–23. https://doi.org/10.1016/j.

cortex.2015.03.002

Fleming, R. W., & Storrs, K. R. (2019). Learning to see stuff. In Cur-

rent opinion in behavioral sciences (Vol. 30) (pp. 100–108). Else-

vier Ltd. https://doi.org/10.1016/j.cobeha.2019.07.004

Freeman, J., Brouwer, G. J., Heeger, D. J., & Merriam, E. P. (2011).

Orientation decoding depends on maps, not columns. Journal

of Neuroscience, 31(13), 4792–4804. https://doi.org/10.1523/

JNEUROSCI.5160-10.2011

Freeman, J., & Simoncelli, E. P. (2011). Metamers of the ventral

stream. Nature Neuroscience, 14(9), 1195–1201. https://doi.org/

10.1038/nn.2889

Freeman, J., Ziemba, C. M., Heeger, D. J., Simoncelli, E. P., &

Movshon, J. A. (2013). A functional and perceptual signature

of the second visual area in primates. Nature Neuroscience,

16(7), 974–981. https://doi.org/10.1038/nn.3402

Friston, K. J., Price, C. J., Fletcher, P., Moore, C.,

Frackowiak, R. S. J., & Dolan, R. J. (1996). The trouble with

cognitive subtraction. NeuroImage, 2, 97–104. https://doi.org/

10.1006/nimg.1996.0033

Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G.,

Itzchak, Y., & Malach, R. (1999). Differential processing of

objects under various viewing conditions in the human lateral

occipital complex. Neuron, 24(1), 187–203. https://doi.org/10.

1016/S0896-6273(00)80832-6

Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y., &

Malach, R. (1998). Cue-invariant activation in object-related

areas of the human occipital lobe. Neuron, 21(1), 191–202.

https://doi.org/10.1016/S0896-6273(00)80526-7

Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for

studying the functional properties of human cortical neurons.

Acta Psychologica, 107(1–3), 293–321. https://doi.org/10.1016/

S0001-6918(01)00019-1

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J.,

Haxby, J. V., & Pollmann, S. (2009). PyMVPA: A python

toolbox for multivariate pattern analysis of fMRI data.

Neuroinformatics, 7(1), 37–53. https://doi.org/10.1007/s12021-

008-9041-y

12 COGGAN ET AL.



Hatfield, M., McCloskey, M., & Park, S. (2016). Neural representa-

tion of object orientation: A dissociation between MVPA and

repetition suppression. NeuroImage, 139, 136–148. https://doi.

org/10.1016/j.neuroimage.2016.05.052

Haxby, J. v., Gobbini, M., Furey, M., Ishai, A., Schouten, J., &

Pietrini, P. (2001). Distributed and overlapping representations

of faces and objects in ventral temporal cortex. Science (New

York, N.Y.), 293(5539), 2425–2430. https://doi.org/10.1126/

science.1063736

Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014). Decoding

neural representational spaces using multivariate pattern anal-

ysis. Annual Review of Neuroscience, 37, 435–456. https://doi.

org/10.1146/annurev-neuro-062012-170325

Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective

contents of the human brain. Nature Neuroscience, 8(5), 679–

685. https://doi.org/10.1038/nn1444

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform

face area: A module in human extrastriate cortex specialized

for face perception. The Journal of Neuroscience : The Official

Journal of the Society for Neuroscience, 17(11), 4302–4311.

https://doi.org/10.1523/JNEUROSCI.17-11-04302.1997

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J.,

Esteky, H., Tanaka, K., & Bandettini, P. A. (2008). Matching

categorical object representations in inferior temporal cortex

of man and monkey. Neuron, 60(6), 1126–1141. https://doi.

org/10.1016/j.neuron.2008.10.043

Lowe, M. X., Gallivan, J. P., Ferber, S., & Cant, J. S. (2016). Feature

diagnosticity and task context shape activity in human scene-

selective cortex. NeuroImage, 125, 681–692. https://doi.org/10.

1016/j.neuroimage.2015.10.089

Lowe, M. X., Rajsic, J., Gallivan, J. P., Ferber, S., & Cant, J. S.

(2017). Neural representation of geometry and surface

properties in object and scene perception. NeuroImage,

157(December 2016), 586–597. https://doi.org/10.1016/j.

neuroimage.2017.06.043

Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H.,

Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., &

Tootell, R. B. H. (1995). Object-related activity revealed by

functional magnetic resonance imaging in human occipital

cortex. Neurobiology, 92, 8135–8139. https://doi.org/10.1073/

pnas.92.18.8135

McCarthy, G., Puce, A., Gore, J. C., & Truett, A. (1997). Face-

specific processing in the human fusiform gyrus. Journal of

Cognitive Neuroscience, 9(5), 605–610. https://doi.org/10.1162/

jocn.1997.9.5.605

O’Connell, T. P., & Chun, M. M. (2018). Predicting eye movement

patterns from fMRI responses to natural scenes. Nature Com-

munications, 9(1), 5159. https://doi.org/10.1038/s41467-018-

07471-9

O’Connell, T. P., Sederberg, P. B., & Walther, D. B. (2018).

Representational differences between line drawings and pho-

tographs of natural scenes: A dissociation between multi-voxel

pattern analysis and repetition suppression. Neuropsychologia,

117(January), 513–519. https://doi.org/10.1016/j.neuropsy

chologia.2018.06.013

Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evi-

dence that information diagnosticity changes the perception of

complex visual stimuli. Cognitive Psychology, 34(1), 72–107.

https://doi.org/10.1006/cogp.1997.0667

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A

holistic representation of the spatial envelope. International

Journal of Computer Vision, 42(3), 145–175. https://doi.org/10.

1023/A:1011139631724

Op de Beeck, H. P., Brants, M., Baeck, A., & Wagemans, J. (2010).

Distributed subordinate specificity for bodies, faces, and

buildings in human ventral visual cortex. NeuroImage,

49(4), 3414–3425. https://doi.org/10.1016/j.neuroimage.2009.

11.022

Op de Beeck, H. P., Haushofer, J., & Kanwisher, N. G. (2008). Inter-

preting fMRI data: Maps, modules and dimensions. Nature

Reviews. Neuroscience, 9(2), 123–135. https://doi.org/10.1038/

nrn2314

Park, J., & Park, S. (2017). Conjoint representation of texture

ensemble and location in the parahippocampal place area.

Journal of Neurophysiology, 117(4), 1595–1607. https://doi.org/

10.1152/jn.00338.2016

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,

Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2:

Experiments in behavior made easy. Behavior Research

Methods, 51(1), 195–203. https://doi.org/10.3758/s13428-018-

01193-y

Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., &

Raichle, M. E. (1988). Positron emission tomographic studies

of the cortical anatomy of single-word processing. Nature,

331(6157), 585–589. https://doi.org/10.1038/331585a0

Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., &

Vuilleumier, P. (2005a). Portraits or people? Distinct represen-

tations of face identity in the human visual cortex. Journal of

Cognitive Neuroscience, 17(7), 1043–1057. https://doi.org/10.

1162/0898929054475181

Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., &

Vuilleumier, P. (2005b). View-independent coding of face

identity in frontal and temporal cortices is modulated by

familiarity: An event-related fMRI study. NeuroImage, 24(4),

1214–1224. https://doi.org/10.1016/j.neuroimage.2004.10.038

Rice, G. E., Watson, D. M., Hartley, T., & Andrews, T. J. (2014).

Low-level image properties of visual objects predict patterns of

neural response across category-selective regions of the ventral

visual pathway. The Journal of Neuroscience : The Official Jour-

nal of the Society for Neuroscience, 34(26), 8837–8844. https://

doi.org/10.1523/JNEUROSCI.5265-13.2014

Rotshtein, P., Henson, R. N. A., Treves, A., Driver, J., & Dolan, R. J.

(2005). Morphing Marilyn into Maggie dissociates physical

and identity face representations in the brain. Nature Neurosci-

ence, 8(1), 107–113. https://doi.org/10.1038/nn1370

Schmid, A. C., Barla, P., & Doerschner, K. (2021). Material category

determined by specular reflection structure mediates the pro-

cessing of image features for perceived gloss. BioRxiv, 10, 1–45.

https://doi.org/10.1101/2019.12.31.892083

Tong, F., & Pratte, M. S. (2012). Decoding patterns of human brain

activity. Annual Review of Psychology, 63(1), 483–509. https://

doi.org/10.1146/annurev-psych-120710-100412

Vernon, R. J. W., Gouws, A. D., Lawrence, S. J. D., Wade, A. R., &

Morland, A. B. (2016). Multivariate patterns in the human

object-processing pathway reveal a shift from retinotopic to

shape curvature representations in lateral occipital areas, LO-1

and LO-2. Journal of Neuroscience, 36(21), 5763–5774. https://

doi.org/10.1523/JNEUROSCI.3603-15.2016

COGGAN ET AL. 13



Walther, D. B., Caddigan, E., Fei-Fei, L., & Beck, D. M. (2009).

Natural scene categories revealed in distributed patterns of

activity in the human brain. Journal of Neuroscience, 29(34),

10573–10581. https://doi.org/10.1523/JNEUROSCI.0559-09.

2009

Wang, L., Mruczek, R. E. B., Arcaro, M. J., & Kastner, S. (2015).

Probabilistic maps of visual topography in human cortex.

Cerebral Cortex, 25(10), 3911–3931. https://doi.org/10.1093/

cercor/bhu277

Watson, D. M., Andrews, T. J., & Hartley, T. (2017). A data driven

approach to understanding the organization of high-level

visual cortex. Scientific Reports, 7(1), 3596. https://doi.org/10.

1038/s41598-017-03974-5

Watson, D. M., Hartley, T., & Andrews, T. J. (2014). Patterns of

response to visual scenes are linked to the low-level properties

of the image. NeuroImage, 99, 402–410. https://doi.org/10.

1016/j.neuroimage.2014.05.045

Watson, D. M., Hymers, M., Hartley, T., & Andrews, T. J. (2016).

Patterns of neural response in scene-selective regions of the

human brain are affected by low-level manipulations of spatial

frequency. NeuroImage, 124(2016), 107–117. https://doi.org/

10.1016/j.neuroimage.2015.08.058

Watson, D. M., Young, A. W., & Andrews, T. J. (2016). Spatial prop-

erties of objects predict patterns of neural response in the

ventral visual pathway. NeuroImage, 126(2016), 173–183.

https://doi.org/10.1016/j.neuroimage.2015.11.043

Weibert, K., Flack, T. R., Young, A. W., & Andrews, T. J. (2018).

Patterns of neural response in face regions are predicted by

low-level image properties. Cortex, 103, 199–210. https://doi.

org/10.1016/j.cortex.2018.03.009

SUPPORTING INFORMATION

Additional supporting information can be found online

in the Supporting Information section at the end of this

article.

How to cite this article: Coggan, D. D., Watson,

D. M., Wang, A., Brownbridge, R., Ellis, C., Jones,

K., Kilroy, C., & Andrews, T. J. (2022). The

representation of shape and texture in

category-selective regions of ventral-temporal

cortex. European Journal of Neuroscience, 1–14.

https://doi.org/10.1111/ejn.15737

14 COGGAN ET AL.


	The representation of shape and texture in category-selective regions of ventral-temporal cortex
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  Stimuli

	3  EXPERIMENT 1-MVPA
	3.1  Design and procedure
	3.2  Regions of interest (ROIs)
	3.3  Data analysis

	4  EXPERIMENT 2-FMR-ADAPTATION
	4.1  Design and procedure
	4.2  ROIs
	4.3  Data analysis
	4.4  Data acquisition

	5  RESULTS
	5.1  Experiment 1-MVPA
	5.2  Experiment 2

	6  DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


