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Harnessing the quantum computation power of the present noisy-intermediate-size-quantum devices has re-
ceived tremendous interest in the last few years. Here we study the learning power of a one-dimensional long-
range randomly-coupled quantum spin chain, within the framework of reservoir computing. In time sequence
learning tasks, we find the system in the quantum many-body localized (MBL) phase holds long-term memory,
which can be attributed to the emergent local integrals of motion. On the other hand, MBL phase does not
provide sufficient nonlinearity in learning highly-nonlinear time sequences, which we show in a parity check
task. This is reversed in the quantum ergodic phase, which provides sufficient nonlinearity but compromises
memory capacity. In a complex learning task of Mackey-Glass prediction that requires both sufficient memory
capacity and nonlinearity, we find optimal learning performance near the MBL-to-ergodic transition. This leads
to a guiding principle of quantum reservoir engineering at the edge of quantum ergodicity reaching optimal
learning power for generic complex reservoir learning tasks. Our theoretical finding can be readily tested with
present experiments.

Introduction.— Recent experimental demonstration of the
fascinating quantum computation advantage with supercon-
ducting qubits [1] and interfering photons [2] has triggered
monumental research interests in applications of quantum
computing. Although a scalable error-corrected quantum
computer is still unavailable, a large degree of controllability
has been available in a broad spectrum of noise-intermediate-
scale quantum (NISQ) devices [3–5], including atomic [6],
photonic [7, 8], and solid-state systems [9, 10], whose numer-
ical simulations are exponentially costly in classical computa-
tion resources. This suggests compelling quantum computa-
tional power embedded the present NISQ devices, of potential
importance to applications in science discovery [11], cryptog-
raphy [12], and optimization [13]. How to harness the quan-
tum computational power and how the computational power
manifests in the present NISQ devices demand theoretical in-
vestigation. This is particularly crucial for quantum systems
lacking full programmability.

For classical systems, one way to characterize their com-
putational power is from the learning capability within the
framework of reservoir computing [14], where the system is
interfered by manipulating the input and output only with the
system itself untouched as a “black box”. In time sequence
learning, it has been found that the complex dynamics in the
“black box” mediates both memory and nonlinearity in map-
ping the input to the output. It has been demonstrated that
a classical dynamical system at the phase edge of a chaotic
region [15–19] develops optimal learning power as it main-
tains a balance between integrability and chaoticity that nur-
ture long-term memory and complex nonlinearity.

Generalizing the concept of reservoir computing to quan-
tum dynamical systems leads to quantum reservoir comput-
ing (QRC) [20–24], that does not require precise or full quan-
tum control of the quantum system. This approach provides a
plausible route to harness the ultimate quantum computation

power of NISQ devices [25]. However, what quantum systems
would exhibit optimal learning power in reservoir computing
remains to be understood.

Disordered Spin-Chain Reservoir

Input Stream {sk}

Output Signal S

FIG. 1. Illustration of quantum reservoir computing with a disor-
dered quantum spin chain with long-range interactions. The infor-
mation from the input stream {sk} is fed into the reservoir for in-
formation processing. The output signal S is collected by quantum
measurements on the reservoir qubits.

In this work, we study the learning power of a one-
dimensional quantum reservoir composed of long-range
randomly-coupled qubits (Fig. 1). This system has a quan-
tum many-body localization (MBL) transition with varying
the disorder strength. We investigate the learning perfor-
mance on two computation tasks of Boolean function emu-
lation including the short-term memory (STM), and the par-
ity check (PC) tasks, which characterize the memory capacity
and the amount of nonlinearity of the quantum reservoir, re-
spectively [20]. In the MBL phase, learning the STM task out-
performs the PC task significantly, which we attribute to the
extensive number of emergent local integrals of motion in the
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MBL phase [26–29]. In the quantum ergodic phase [30], we
find the opposite, which implies the quantum dynamics in the
ergodic phase mediates larger amount of nonlinearity, more
resembling the chaotic dynamics in classical systems. We
further examine the learning power of the disordered quan-
tum many-body system on the Mackey-Glass (MG) prediction
task [31], whose performance requires both memory and non-
linearity. In this task, we find that the learning power develops
a peak around the quantum MBL-to-ergodic phase transition.
This work would shed light on the quantum reservoir engi-
neering to invest most quantum learning power for complex
reservoir computing tasks.

The Quantum Reservoir Computing Setup.— In QRC [20],
the system is initialized as an infinite temperature state at time
t = 0. The quantum reservoir dynamics corresponds to a uni-
tary time evolution of N qubits described by a time-dependent
density operator, ρ(t), sequentially interrupted by an input
signal {sk}

M
k=1, where sk takes binary numbers 0 and 1 for a

discrete signal, or values in between in a continuous setting.
The time evolution is chopped into multiple τ-durations, i.e.,
t = kτ, with each duration further split into V subintervals. At
time t = kτ, the time evolution is interrupted by the input as,
ρ(t) 7→ ρ(t + 0+) = ρ[1]

sk ⊗Tr1
[
ρ(t)

]
, where Tr1 is a partial trace

with respect to the first qubit, and the state of the first qubit
is modified to ρ[1]

sk → |ψsk〉 〈ψsk |, with |ψsk〉 =
√

1 − sk |+〉 +
√

sk |−〉, and |±〉, the eigenstates of the Pauli-X operator. Mea-
surements are performed in the Pauli-X basis at the end of
each subinterval. The resulting output signal is denoted as S,
with elements S k,v,i =

(
1 + Tr

[
ρ (kτ + τv/V) Xi

])
/2, v and i

indexing subintervals and qubits, respectively.
In learning a time-sequence defined by a nonlinear function,

y?k′ = f ({sk≤k′ }; k′), we cast the time steps into three groups
{K1,K2,K3}, with the casted time sequence and the reservoir
output signal represented by {y?1 , y

?
2 , y

?
3 }, and {S1,S2,S3} ac-

cordingly. The starting time steps K1 are discarded to re-
move the effect of initialization. The following time steps
K2 are used for training a linear regression model, yk =∑

v,i S k,v,iWv,i + Bk with Ws and Bs fitting parameters intro-
duced to minimize

∥∥∥y − y?
∥∥∥. The final time steps K3 are for

prediction, using the reservoir output S3 and the trained linear
regression model, by which a time sequence y3 is predicted.
The performance of the reservoir computing is quantified by
a normalized covariance, C = cov

(
y?3 , y3

) / [
σ

(
y?3

)
σ (y3)

]
,

with σ the standard deviation. Its average C is obtained by
sampling distinctive input-signals (sk).

Disordered Quantum Spin Chain Reservoir.— We consider
a one-dimensional long-ranged coupled transverse-field Ising
model as the quantum reservoir (Fig. 1), whose dynamics is
governed by the Hamiltonian,

H =
∑

16i< j6N Ji jXiX j + 1
2
∑N

i=1 (B + φi) Zi , (1)

Here, X and Z are the Pauli operators, Ji j = J0|i − j|−α repre-
sent the long-range power-law decaying Ising couplings, and
the transverse field contains a background constant part B, and
a random part, φi drawn from

(
−W

2 ,
W
2

)
according to a uniform

distribution. Hereafter, the coupling strength J0 is set as en-
ergy unit. In this work, we choose B = 4, and the main find-
ings are largely independent of this parameter choice. This
disorder spin model has a MBL to quantum ergodic transition,
at a critical disorder strength WC [32]. Long-range coupling is
considered here to support sufficiently complex dynamics for
QRC. To characterize the learning power, we average over the
disorder samples and input signals.

The QRC model in Eq. (1) can be realized in experiments
with the present NISQ devices including NMR [33], trapped
ions [34], and Rydberg atoms [35]. With NMR, the required
Hamiltonian is realizable by pulse shaping [36, 37]. With
trapped ions, the model has already been used to investigate
the MBL transition [38] and discrete time crystals [39]. With
Rydberg atoms, the Ising couplings take specific forms with
exponents α = 3, 6 [35, 40, 41], and generic long-range in-
teracting models can be engineered with the quantum wiring
scheme [42]. In our numerical results to present below, we
neglect the backaction effects in the measurements to comply
with the NMR system [33]. We also confirm the main findings
still hold when the backaction is incorporated.

Short-Term Memory Task.— We first evaluate the mem-
ory capacity of our quantum spin-chain reservoir through
STM task [20], where the targeting time-sequence function is
y?k = sk−k∆

with k∆ representing the time delay. The learning
performance on this linear task reflects the reservoir memory
capacity. Fig. 2 shows the QRC performance across the MBL
transition. We find that the learning performance has a non-
monotonic dependence on the time duration τ, reaching an op-
timum at a certain intermediate value τc. The increase of C at
small τ is because the reservoir dynamics is essentially frozen
with a too small choice of τ, and that the information injected
through the first qubit is washed away by the subsequent in-
puts without capability of sharing and storing the information
collectively in the reservoir. At τ > τc, the decrease of C
with τ happens because the information would become more
hidden in many-body correlations [43, 44], which cannot be
extracted by the local measurements. An intermediate value
of τ should be used in order to maximize the learning power of
the reservoir. As we increase the disorder strength, the learn-
ing performance exhibits a monotonic increase, demonstrat-
ing an apparent advantage of the MBL phase (W > WC) in
memory holding, compared with the quantum ergodic phase
(W < WC). We attribute this to the emergence of local inte-
grals of motion in the MBL phase [26–29]. With these con-
served quantities, the information stored in the Pauli-X basis
scrambles very slowly through a logarithmic dephasing pro-
cess in quantum dynamics [45–47].

Parity Check Task.— The second learning task we exam-
ine with our QRC is PC, for which the learning function is
y?k =

(∑k∆

m=0 sk−m

)
mod 2. This function is highly nonlinear,

and the QRC learning performance then reflects the amount
of nonlinearity in the reservoir. Fig. 3 shows our numeri-
cal results. As the time duration τ is increased, we find that
C monotonically increases, and then saturates to 1 at large
τ. With increasing disorder strength for J0τ ≤ 1, the learn-
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FIG. 2. The quantum reservoir learning performance on the short-
term memory task with varying disorder strength. The normalized
covariance C characterizes the degree of how the reservoir predic-
tion matches the targeting time sequence. The learning performance
monotonically improves with increasing disorder strength (W). This
is found for a broad range of time duration τ (see main text). The
inset shows the dependence of C on τ. The reservoir is in the MBL
(ergodic) phase when W/WC > 1 (W/WC < 1), with the phase bound-
ary marked by the black “dashed” line. Each task instance consists of
5000 time steps, with the first 1000 steps discarded, the middle 3000
steps used for training, and the last 1000 steps for reservoir prediction
and performance evaluation. Here, we set the qubit number N = 10,
the number of subintervals V = 10, the time delay k∆ = 16, and
the interaction exponent α = 0.4. The results are averaged over 100
random samples, with the statistical error provided in the plot.

ing performance becomes slightly worse within the quantum
ergodic phase, and bends downward dramatically across the
MBL transition—the learning power of the quantum ergodic
phase thus outperforms the MBL phase for the PC task. In
the quantum ergodic phase, the Heisenberg time evolution of
the Pauli-X operators is strongly coupled with an exponential
number (4N − 1) of all Pauli operators, which then resembles
the classical chaotic dynamics, providing a larger degree of
nonlinearity than the integrable MBL phase.

To gain more insight about the nonlinearity of the quan-
tum reservoir, we look into the intrinsic chaotic properties
of the quantum reservoir and calculate the out-of-time-order-
correlator (OTOC) [48, 49],

O(τ) = 1 − 1
N−1

∑N
i=2

〈
X†1(τ)X†i X1(τ)Xi

〉
, (2)

with X1(τ) = eiHτX1e−iHτ and 〈·〉 an average over a thermal
ensemble at infinite temperature. The OTOC has been intro-
duced in the literature to diagnose quantum chaos by gener-
alizing Poisson brackets and Lyapunov exponent from classi-
cal dynamical systems [50]. Here it captures the information
spreading from the first qubit to the rest. From Fig. 4 (a),
we see that OTOC increases monotonically with the time du-

FIG. 3. The quantum reservoir learning performance on the par-
ity check. The learning performance characterized by the normal-
ized covariance C monotonically decreases with the disorder strength
(W), as opposite to the STM task. The MBL to quantum ergodic
phase transition boundary is indicated by the vertical black “dashed”
line. The inset shows the dependence of C on the time duration τ,
having a monotonic increasing and saturation behavior. In this plot,
all parameters are chosen the same as the results of STM task in
Fig. 2, except for the time delay set by k∆ = 4 here.

ration τ and then saturates, which closely correlates with the
learning performance in Fig. 3. Quantum chaotic dynamics as
illustrated by OTOC is beneficial for producing nonlinearity.
Since all the present NISQ devices have limited quantum co-
herence time [3, 4], it is crucial to know the required time scale
for the QRC to reach satisfactory learning performance. We
thus introduce a time scale, τth, where OTOC exceeds a certain
threshold value (set to be 0.2 here). As shown in Fig. 4 (b), we
find in general the information spreads much more rapidly in
the quantum ergodic phase than the MBL phase. We also find
the information spreads more rapidly at a smaller α, which
implies larger amount of nonlinearity with longer ranged in-
teracting models for a given amount of evolution time. These
findings would shed light on quantum reservoir engineering
for harnessing the learning power of NISQ devices on nonlin-
ear reservoir computing tasks.

Mackey-Glass Task.— With the STM and PC tasks, we have
demonstrated maximizing the memory capacity and nonlin-
earity favors the quantum ergodic, and the MBL phases, re-
spectively. This suggests the QRC has optimal learning power
in between for learning tasks that requires both large memory
capacity and sufficient nonlinearity. We thus analyze the MG
task [31, 51] as a such example. This task is defined by [31],

Fk+1 = γFk +
λFk−k∆

1+Fβ
k−k∆

, (3)

with k∆ a time delay. The dynamical system has a chaotic at-
tractor with k∆ > 16.8, and here we choose γ = 0.9, β = 10,
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FIG. 4. Quantum information scrambling with the disordered quan-
tum spin chain reservoir. (a), The averaged OTOC as a function of
the time duration τ for different disorder strengths (W). The results
are averaged over 100 random disorder samples. In (a), the interac-
tion exponent is fixed at α = 0.4. The horizontal black “dash-dotted”
line marks a threshold OTOC value of 0.2 (see the main text). A
time scale τth is defined as the point where OTOC crosses the thresh-
old line. (b), The threshold time τth as a function of the disorder
strength, with different α exponents. The vertical black “dashed”
line indicates the MBL to quantum ergodic phase transition bound-
ary. Here we choose a qubit number, N = 10.

λ = 0.2, and k∆ = 17. We set sk = (Fk − Fmin)/(Fmax − Fmin),
and y?k = sk+1—the time sequences are shifted and rescaled
to fit into the regime of [0, 1] by introducing Fmax and Fmin in
our numerical simulation. This learning task is to predict the
chaotic time sequence, which is deterministic unlike the two
tasks studied above. For the MG task, the output signals as
measured from the reservoir (Fig. 1) are added with a slight
amount of white noise in the range of (−σ,σ) to improve ro-
bustness [20]. We choose σ = 10−6 for the noise strength. In
predicting the chaotic time sequence, i.e., for k ∈ K3, sk and
yk are decided through an iteration—yk is obtained by giving
the input sk to the reservoir, and then yk+1 obtained by setting
sk+1 = yk.

The QRC performance on this MG task strongly depends
on the number of forward steps (l = |K3|) to predict. The de-
pendence of C on l is shown in Fig. 5 (a). The QRC prediction
for the chaotic time sequence works perfectly if the number of
forward steps is small, producing C ≈ 1 for l < 10. It fails if
l at request is too large. We then define a critical time step
lc, above which C drops down below a threshold (chosen to
be 0.5 here). This critical time step quantifies the learning
power of the quantum reservoir in predicting the chaotic time
sequence. As shown in Fig. 5 (b), as we vary the disorder
strength, lc develops a peak generically around the MBL lo-
calization transition point, as demonstrated for a broad range

FIG. 5. The quantum reservoir learning performance on the Mackey
glass task. The normalized covariance C characterizes the learning
performance of this chaotic time sequence prediction task. (a), The
dependence of C on the number of forward time steps (l) for the
reservoir computing to predict. Here we set the interaction expo-
nent α = 0.8, the time duration J0τ = 2, the number of subintervals
V = 10, and the qubit number N = 10. The results are calculated by
averaging over 300 samples, with the standard deviations illustrated
by the shaded error bands. Each learning task instance consists of
1000 time steps at the beginning discarded, the following 10000 time
steps for training, and the last l time steps for prediction. The hor-
izontal black “dash-dotted” line marks a threshold value of 0.5 (see
the main text). A critical number of forward time steps lc is defined
as the point where C traverses the threshold value. (b) The critical
number lc as a function of disorder strength for different interaction
exponents α and time duration τ. The inset shows the results with
different qubit numbers N = 8, 9, 10, where we choose α = 0.8, and
J0τ = 2. The vertical black “dashed” lines in (b) indicate the MBL
transition phase boundary. Here, the time durations τ for different
exponent α are chosen to optimize the overall critical time step lc.

of α ∈ {0.4, 0.8, 1.2}. This feature becomes more prominent
for larger number of qubits. This finding implies the quan-
tum reservoir has an optimal learning power near the edge
of quantum ergodicity for complex learning tasks that require
both memory and nonlinearity being sufficient.

Conclusion and Outlook.— We have investigated the learn-
ing power of a disordered quantum spin chain in both quan-
tum ergodic and MBL phases. The MBL quantum reservoir is
advantageous in holding long-term memory, for the presence
of emergent local integrals of motion. The quantum ergodic
phase provides a larger degree of nonlinearity, with a compro-
mise on the memory holding. In dealing with the MG task
that requires both memory capacity and nonlinearity, we find
the learning performance develops a peak near the edge of the
quantum ergodic phase, as analogous to the optimal compu-
tational power established for the classical reservoir comput-
ing at the edge of chaos. This leads to an important guiding
pricinple of quantum reservoir engineering for complex reser-
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voir computing tasks, that is to prepare the quantum system at
the edge of quantum ergodicity.
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the edge of chaos in recurrent neural networks, Neural compu-
tation 16, 1413 (2004).

[18] R. Legenstein and W. Maass, Edge of chaos and prediction of
computational performance for neural circuit models, Neural
Networks 20, 323 (2007).

[19] M. Rafayelyan, J. Dong, Y. Tan, F. Krzakala, and S. Gigan,
Large-Scale Optical Reservoir Computing for Spatiotemporal
Chaotic Systems Prediction, Phys. Rev. X 10, 041037 (2020).

[20] K. Fujii and K. Nakajima, Harnessing Disordered-Ensemble
Quantum Dynamics for Machine Learning, Phys. Rev. Applied
8, 024030 (2017).

[21] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H.
Liew, Quantum Reservoir Processing, npj Quantum Informa-
tion 5, 35 (2019).

[22] J. Chen, H. I. Nurdin, and N. Yamamoto, Temporal Information
Processing on Noisy Quantum Computers, Phys. Rev. Applied
14, 024065 (2020).

[23] S. Ghosh, A. Opala, M. Matuszewski, T. Paterek, and T. C. H.
Liew, Reconstructing Quantum States With Quantum Reservoir
Networks, IEEE Transactions on Neural Networks and Learn-
ing Systems , 1 (2020).

[24] J. Nokkala, R. Martı́nez-Peña, G. L. Giorgi, V. Parigi, M. C.
Soriano, and R. Zambrini, Gaussian states provide univer-
sal and versatile quantum reservoir computing, arXiv preprint
arXiv:2006.04821 (2020).

[25] K. Fujii and K. Nakajima, Quantum reservoir computing:
a reservoir approach toward quantum machine learning on
near-term quantum devices, arXiv preprint arXiv:2011.04890
(2020).
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