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Abstract

Although it is commonly thought that first order schemes are not accurate enough to approximate nonlinear hyperbolic problems,
we here explore a conservative time integration with global time steps but local updates (see [F. Alouges, F. De Vuyst, G. Le Coq,
E. Lorin, Un procédé de réduction de la diffusion numérique des schémas à différence de flux d’ordre un pour les systèmes
hyperboliques non linéaires, C. R. Math. Acad. Sci. Paris, Ser. I 335 (7) (2002) 627–632. [1]]; [F. Alouges, F. De Vuyst, G. Le Coq,
E. Lorin, The reservoir scheme for systems of conservation laws, in: Finite Volumes for Complex Applications, III, Porquerolles,
2002, Lab. Anal. Topol. Probab. CNRS, Marseille, 2002, pp. 247–254 (electronic). [2]]). This overall conservative method can be
interpreted as a system of reservoirs at cell interfaces that fill up and empty when local CFL conditions are reached. For Euler
equations, particularly good results are obtained when one uses this technique together with the Riemann solver proposed by
Colella and Glaz.
© 2008 Published by Elsevier Masson SAS.
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1. Introduction

Today’s contributions on the design of numerical schemes to approximate solutions of hyperbolic problems mainly
deal with high order of accuracy. This task is particularly difficult since solutions of such systems likely present singu-
larities, shock waves, contact discontinuities, which are difficult to catch with classical numerical methods. Research
still aims at achieving high order of accuracy while preserving properties of stability, conservation, discrete entropy
inequalities, etc., although large advances have been performed on this subject (spectral methods [3], approximation
using wavelets [4], MUSCL, ENO and WENO constructions [5,6]). We can also cite [7,8], and more recently [9–12].
More particularly, Després, Lagoutière proposed in [13,10], an antidiffusive approach based on an Ultra Bee scheme
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with splitting in multiD. For particular initial data, they were able in 2-D, to prove the exact convection for a constant
velocity on regular grids. Bouchut [14] proposed an entropic version of the Després–Lagoutière scheme for monotone
scalar conservation laws. Xu and Shu have proposed in [15] a WENO version of the first order Després–Lagoutière
anti-diffusive flux corrections. Actually most common high order schemes are not completely satisfactory. First, the
local precision is generally lost when complex unstructured meshes with irregular elements are used. This is due to
interpolation methods losing their high order of accuracy near “irregular” volumes. Secondly, near strong gradient
regions, usual slope limiting methods fall down to first order. Moreover, an error analysis that uses residual estimates
of Taylor expansions have no meaning for discontinuities. In the limit, a shock capturing method with the ability of
capturing discontinuities on very few points would avoid many problems encountered with existing methods such
as material fronts with no mixing process, spurious waves and oscillations generated by linear waves [16], etc. It
could also raise theoretical difficulties that are inextricable today such as, for example: proofs of convergence to weak
solutions of nonconservative schemes [17].

On the other hand, from a practical point of view, first order schemes are still very useful because of their simplicity
and theoretical properties. It is usually quite easy to prove BV or L∞ stability results, in the framework of nonlinear
hyperbolic systems of conservation laws, and discrete entropy properties are fulfilled. In industrial and concrete ap-
plications, first order schemes – although easy to implement – are known to produce a too large amount of numerical
dissipation, making them bad candidates for wave capture (shocks, boundary layers) or physical quantity assessments
and phenomenon modeling (heat flux near walls, turbulence, reactive layers, shock layer for two-phase flows, etc.).

However, in the simple case of pure one-dimensional advection problems with constant propagation velocity a, the
upwind scheme can lead to very accurate results when the time step is calibrated according to the Courant–Friedrich–
Lewy criterion, also called CFL condition.

Let us consider the advection problem, with a > 0:{
∂tu + a∂xu = 0, x ∈ R, t � 0,

u(0, x) = u0(x) ∈ BV(R).
(1)

We consider an uniform grid of constant mesh size �x and time step �t . The solution u of (1) is approximated by the
sequence

un
j ∼ u(j�x,n�t), ∀j ∈ Z, ∀n ∈ N

computed from the initial value (u0
j )j∈Z, and the conservative explicit first order upwind scheme⎧⎨

⎩∀n � 0,∀j ∈ Z, un+1
j = un

j − a
�t

�x
(un

j − un
j−1),

u0
j = u0(j�x).

It is well known that this scheme is stable under the CFL condition:

λ = a
�t

�x
∈]0,1],

so that taking �t = �x/a (λ = 1) leads to

un+1
j = un

j−1,

which describes the exact propagation of the solution at the discrete level. We generally observe that un+1
j =

(1 − λ)un
j−1 + λun

j is a convex combination of un
j−1 and un

j and therefore a mixing of both states if λ < 1. This
mixing may be seen as a loss of information excepted when λ = 1. Indeed, taking any strictly convex entropy S leads
to

S(un+1
j ) � (1 − λ)S(un

j−1) + λS(un
j )

and the inequality is strict if λ < 1. Hence any total entropy
∑

j S(un
j ) decreases in time if λ < 1. For λ = 1 the

entropy is conserved which is what we expect on the exact solution.
Unfortunately, taking �t = �x/a is too restrictive with more general equations (if a is not constant in space

for example). At best, the time step �t may be adapted to ensure the stability condition λ � 1 everywhere, which
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Fig. 1. Reservoir technique principle in (x,u)-space.

involves regions in space where λ < 1. In these regions, the scheme solves (up to a second order error term) the
following equation

∂tu + a∂xu = �x

2
(1 − λ)∂x(a∂xu)

and therefore a smoothing of the solution (due to the viscous term) will occur. From these observations, keeping
sharp interfaces in the computation requires to avoid as most as possible this numerical viscosity effect. We therefore
design our numerical scheme to behave as if λ were equal to one (or any user prescribed value) although the time step
(constrained by another phenomenon elsewhere in the simulation) is smaller than �t∗ = �x/a. The idea is to freeze
the solution while the local cumulated time step (see details below) is not equal to �t∗. For example, if �t = �t∗/2,
it is easily seen that one obtains the correct solution by waiting two time steps before updating the solution.

Let us generalize this idea in the case of the advection equation with nonconstant speed

∂tu + a(x)∂xu = 0.

The speed a(x) > 0 is discretized with one value per interface aj−1/2 = a((j − 1/2)�x). We introduce a sequence of
time steps �tn (to be determined later), Rn

j−1/2 the reservoir associated to the interface j − 1/2 at time tn (initialized

to R0
j−1/2 = 0) and cn

j−1/2 a positive real CFL counter (also initialized to c0
j−1/2 = 0). At each time step, we fill

up Rn
j−1/2 with the local current numerical flux difference multiplied by �tn/�x (see Fig. 1). Then we update the

solution and reinitialize both the reservoir and the counter only when the local CFL counter reaches 1. In other words
these three quantities (solution, counter and reservoir) are updated in the following manner:

⎛
⎝ un+1

j

cn+1
j−1/2

Rn+1
j−1/2

⎞
⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

un
j

cn
j−1/2 + aj−1/2�tn

�x

Rn
j−1/2 − aj−1/2

�tn

�x
(un

j − un
j−1)

⎞
⎟⎟⎟⎠ , if cn

j−1/2 + aj−1/2
�tn

�x
< 1,

⎛
⎜⎝un

j + Rn
j−1/2 − aj−1/2

�tn

�x
(un

j − un
j−1)

0
0

⎞
⎟⎠ , if cn

j−1/2 + aj−1/2
�tn

�x
= 1.

Notice that for classical stability reasons, �tn must satisfy

sup
j

(
cn
j−1/2 + aj−1/2

�tn

�x

)
� 1,

and be as big as possible to shorten the computation time. This leads to the choice

�tn = min
j

(
(1 − cn

j−1/2)
�x

a

)
.

j−1/2
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Fig. 2. Counters: an interpretation of the dynamics of computational cells by counters that fill up then empty-up once they are equal to 1.

In this scheme, reservoirs fill up until the local CFL counter is equal to one. They are then emptied in the current cell
yielding a CFL = 1 like behavior. Note that this process is stable and consistent with the original equation (1) since
time steps are smaller than the ones of the CFL = 1 scheme. Remark also that in all the above expressions, we could
choose to update the solution when counters reach any value less than 1. It may even be taken depending on j as far as
values smaller than 1 are chosen. In that case, one introduces some numerical dissipation that regularizes the solution.
This possibility, although not desirable, will be used in our numerical results in the case of a non-highly precise
Riemann solver. Moreover in general, CFL counters do not reach arithmetically exactly 1 (in particular, because ratios
between velocities and space steps are not a priori rational).

It is tempting to generalize this idea to nonlinear hyperbolic systems of conservation laws for one-dimensional
variables. However, many difficulties occur:

• first, the speed of propagation is not unique and Riemann problems for systems of several equations are expected
to generate several waves.

• secondly, due to nonlinear effects, characteristic velocities of the solution vary in space making appear shock or
rarefaction waves for genuinely nonlinear characteristic fields.

Clearly, to get λ = 1 for each characteristic field, and for each computational point, one needs to locally adapt the
time step in space, and along each characteristic field. This is precisely the purpose of this paper, which is organized
as follows. Section 2 is devoted to the linear hyperbolic system case with constant coefficients. Section 3 deals with
nonlinear scalar equations and Section 4 with hyperbolic systems of conservation laws. We will see in this section
that any linear or nonlinear approximate Riemann solver as those used in flux schemes may be improved using our
methodology. However, for Euler equations and the Colella–Glaz [18] nonlinear Riemann solver, whose principle will
be recalled in this paper, numerical results given in Section 5 show a particularly accurate description of both shocks
and contact discontinuities as well as nicely computed rarefaction waves.

2. Linear hyperbolic systems

Consider the linear hyperbolic system with m equations:{
∂tV + ∂x(AV ) = 0, x ∈ R, t � 0,

V (x,0) = V0(x)
(2)

with V = (v1, . . . , vm)T , A ∈ Mm(R) diagonalizable in R with eigenvalues (λ1, λ2, . . . , λm), and corresponding right
eigenvectors R = col(r1, . . . , rm), associated to the initial data V0 ∈ BV(R). Note that the change of variable W =
R−1V = (w1, . . . ,wm)T , satisfies the following diagonal system of m independent advection equations:
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⎡
⎢⎢⎣

∂tw1 + λ1∂xw1 = 0,

...

∂twm + λm∂xwm = 0.

Let us introduce the flux F defined by F(V ) = AV . We are looking for an approximation V n
j of V (tn, j�x) in (2).

The initial data is defined by: V 0
j = V0(j�x), j ∈ Z. Then the classical upwind scheme may be written in this case:

V n+1
j = V n

j − �tn

�x

(
Φn

j+1/2 − Φn
j−1/2

)
, j ∈ Z, n � 1, (3)

where �tn = tn+1 − tn and Φn
j−1/2 is the interfacial flux:

Φn
j−1/2 = F(V n

j ) + F(V n
j−1)

2
− 1

2
sgn(A)

(
F

(
V n

j

) − F
(
V n

j−1

))
. (4)

Here, sgn(·) is the sign matrix operator given by sgn(A) = R diagi=1,...,p(sgn(λi))R
−1. We easily see that the scheme

can also be written as:

Wn+1
j = Wn

j − �tn

�x
R−1(Φn

j+1/2 − Φn
j−1/2

)
with Wn

j = R−1V n
j or component-wise,⎡

⎣ wn+1
k,j = wn

k,j − αk(w
n
k,j+1 − wn

k,j ), αk � 0,

wn+1
k,j = wn

k,j − αk(w
n
k,j − wn

k,j−1), αk > 0,

with αk = λk�tn/�x, k = 1, . . . ,m. It is well known that this scheme is �2-stable under the CFL condition:

α
def:= �tn

�x
max

(|λ1|, . . . , |λm|), satisfying α � 1. (5)

If �tn is chosen such that α = 1, the propagation is perfectly solved on the components wk for which αk = 1, and
using the analysis done in the introduction, some numerical diffusion will be produced on the other components wj

for which αj < 1. To obtain a CFL equal to one on each characteristic field, let us consider different time steps �tn
(not necessarily equal). We introduce m vectorial reservoirs R1;j−1/2, . . . ,Rm;j−1/2 ∈ R

m associated to the interface
j − 1/2 and CFL counters ck;j−1/2 ∈ [0,1], k = 1, . . . ,m, initialized to zero.

Remark 2.1. Note that for each characteristic field these quantities are constant in space so that spatial indexing is
then not necessary. We keep this notation for coherence with forthcoming sections.

We denote by V k
R(V ,W) the solution of the Riemann problem with left state V and right state W which lies

between the kth and the (k + 1)th wave where V 0
R(V ,W) := V , and V m

R (V ,W) := W by convention. For convenience
we introduce a temporary variable:

Cn+1
k;j−1/2 := cn

k;j−1/2 + |λk|�tn

�x
.

At each time step we fill up the reservoirs Rk;j−1/2 with the current numerical flux difference upwinding depending
on the sign of λk . More precisely, we have for λk < 0, for all n and j

⎛
⎝ Ṽ n+1

k;j+1/2

cn+1
k;j+1/2

Rn+1
k;j+1/2

⎞
⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0

cn
k;j+1/2 + |λk|�tn

�x

Rn
k;j+1/2 − �tn

�x

(
F

(
V k

R

(
V n

j ,V n
j+1

)) − F
(
V k−1

R

(
V n

j ,V n
j+1

)))
⎞
⎟⎟⎠ , if Cn+1

k;j+1/2 < 1,

⎛
⎜⎝Rn

k;j+1/2 − �tn

�x

(
F

(
V k

R

(
V n

j ,V n
j+1

)) − F
(
V k−1

R

(
V n

j ,V n
j+1

)))
0

⎞
⎟⎠ , if Cn+1

k;j+1/2 = 1,
0
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whereas, for λk > 0, we upwind on the right side, for all j and n

⎛
⎝ Ṽ n+1

k;j−1/2

cn+1
k;j−1/2

Rn+1
k;j−1/2

⎞
⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0

cn
k;j−1/2 + |λk|�tn

�x

Rn
k;j−1/2 − �tn

�x

(
F

(
V k

R

(
V n

j−1,V
n
j

)) − F
(
V k−1

R

(
V n

j−1,V
n
j

)))
⎞
⎟⎟⎠ , if Cn+1

k;j−1/2 < 1,

⎛
⎜⎝Rn

k;j−1/2 − �tn

�x

(
F

(
V k

R

(
V n

j−1,V
n
j

)) − F
(
V k−1

R

(
V n

j−1,V
n
j

)))
0
0

⎞
⎟⎠ , if Cn+1

k;j−1/2 = 1.

(6)

We then update the solution by taking

V n+1
j = V n

j +
m∑

k=1

[
Ṽ n+1

k;j−1/2 + Ṽ n+1
k;j+1/2

]
.

Above Ṽ is simply a temporary variable, introduced to lighten the notations. Note that classical flux schemes are
updated by taking (3) with (4). As before, the time step �tn must be chosen according to the classical stability
condition and as big as possible. This leads to the natural choice

�tn = min
j,k

(
(1 − cn

k;j−1/2)
�x

|λk|
)

. (7)

Example. We show a simple example in order to understand the principle of the reservoir technique. Consider the
following diagonal 2 × 2-system:

Vt + ΛVx = 0,

with

Λ =
(

λ1 0
0 λ2

)
.

In order to simplify the notations, we also suppose that 2λ1 = λ2 > λ1 > 0, and the initial data satisfies, for some
j0 ∈ Z

V 0
j =

{
V 0

j0
if j � j0,

V 0
j0+1 if j > j0.

At the beginning of the process, at each interface (j + 1/2)�x we have to solve a Riemann problem VR(V 0
j ,V 0

j+1).

In our case, the only interface of interest is (j0 + 1/2)�x, we then decompose V 0
j0

and V 0
j0+1 in the canonical right-

eigenbasis (r1,r2){
V 0

j0
= α1r1 + α2r2,

V 0
j0+1 = β1r1 + β2r2,

and the solution to the Riemann problem at the interface is then given by:

VR(V 0
j0

,V 0
j0+1) =

⎧⎨
⎩

V 0
j0

= α1r1 + α2r2 if x/t < λ1,

β1r1 + α2r2 if λ1 < x/t < λ2,

V 0
j0+1 = β1r1 + β2r2 if x/t > λ2.

Moreover, since all speeds are nonnegative, all the changes occur in the (j0 + 1)th cell, then we focus our analysis
on this cell. In the (j0 + 1)th cell, at time t0 = 0 we initialize reservoirs and counters according to R0

1;j0+1/2 =
R0 = 0 and c0 = c0 = 0. Then:
2;j0+1/2 1;j0+1/2 2;j0+1/2
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• The formula (7) leads to t1 = t0 + �t1, with �t1 = �x/λ2, and we get C1
2;j0+1/2 = 1 then c1

2;j0+1/2 = 0 and

c1
1;j0+1/2 = λ1/λ2 = 1/2. The update (6) gives⎛

⎜⎝
Ṽ 1

2;j0+1/2

c1
2;j0+1/2

R1
2;j0+1/2

⎞
⎟⎠ =

(
0 − �t1

�x

(
F

(
V 2

R

(
V 0

j0
,V 0

j0+1

)) − F
(
V 1

R

(
V 0

j0
,V 0

j0+1

)))
,0,0

)T

and ⎛
⎜⎝

Ṽ 1
1;j0+1/2

c1
1;j0+1/2

R1
1;j0+1/2

⎞
⎟⎠ =

(
0,0 + λ1

�t1

�x
,0 − �t1

�x

(
F

(
V 1

R

(
V 0

j0
,V 0

j0+1

)) − F
(
V 0

R

(
V 0

j0
,V 0

j0+1

))))T

=
(

0,
1

2
,−1

2
(β1 − α1)r1

)T

and

V 1
j0+1 = V 0

j0+1 + Ṽ 1
2;j0+1/2

= V 0
j0+1 − �t1

�x

(
F

(
V 2

R

(
V 0

j0
,V 0

j0+1

)) − F
(
V 1

R

(
V 0

j0
,V 0

j0+1

)))
= β1r1 + β2r2 − �t1

�x

(
F(β1r1 + β2r2) − F(β1r1 + α2r2)

)
= β1r1 + α2r2.

We remark that we catch exactly the intermediate solution to the Riemann problem.
• Afterwards, at time t2 = t1 + �t2, and �t2 = �t1, we get C2

1;j0+1/2 = 1 then c2
1;j0+1/2 = 0 and c2

2;j0+1/2 =
λ2/λ1 − 1 = 1. The reservoirs and the solution are updated according to⎛

⎜⎝
Ṽ 2

1;j0+1/2

c2
1;j0+1/2

R2
1;j0+1/2

⎞
⎟⎠ =

(
R1

1;j0+1/2 − �t2

�x

(
F

(
V 1

R

(
V 1

j0
,V 1

j0+1

)) − F
(
V 0

R

(
V 1

j0
,V 1

j0+1

)))
,0,0

)T

= (
(α1 − β1)r1,0,0

)T

and ⎛
⎜⎝

Ṽ 2
2;j0+1/2

c2
2;j0+1/2

R2
2;j0+1/2

⎞
⎟⎠ =

(
0 − �t2

�x

(
F

(
V 2

R

(
V 1

j0
,V 1

j0+1

)) − F
(
V 1

R

(
V 1

j0
,V 1

j0+1

)))
,0,0

)T

= (0,0,0)T .

This leads to V 2
j0+1 = α1r1 + α2r2 which is the exact solution at time t2.

Time steps are chosen such that the waves are exactly located at the mesh interfaces, in the (x, t)-space (see Fig. 3).
Such a strategy avoids the creation of numerical diffusion.

3. Nonlinear scalar equation

In this section, we generalize our approach to handle nonlinear effects. We therefore consider a nonlinear scalar
conservation law{

ut + f (u)x = 0, x ∈ R, t � 0,

u(x,0) = u0(x) ∈ BV(R), x ∈ R

with f a regular convex function such that f (0) = 0. We discretize the solution on a uniform mesh with space step
�x. As usual we search for an approximation un of the solution u(tn, j�x).
j
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Fig. 3. Intersection of characteristic curves and interfacial vertical lines in the (x, t)-space. A high velocity characteristic field often generates events
of updating and reservoir filling.

Remark 3.1. It is well known that nonconvex fluxes lead to much more complex Riemann problems and the extension
of the reservoir method in that case, although still doable, is much more complicated and is skipped in this paper.

The initial data is given by: u0
j = u0(j�x), j ∈ Z. In this case, the classical upwind scheme writes:

un+1
j = un

j − �tn

�x

(
f n

j+1/2 − f n
j−1/2

)
, j ∈ Z, n � 1,

where f n
j−1/2 is the interfacial upwinded flux:

f n
j−1/2 = f (un

j ) + f (un
j−1)

2
− 1

2
sgn(f ′(un

j−1/2))(f (un
j ) − f (un

j−1)),

with �tn = tn+1 − tn and un
j−1/2 is an approximate value of the solution at the interface. In the framework of one-

dimensional nonlinear scalar equations only two kinds of waves can occur: rarefaction and shock waves. Due to a
classical entropy criterion at each interface j − 1/2 between cells j − 1 and j , the Lax entropy conditions state that
f ′(un

j−1) > f ′(un
j ) for an entropy shock wave while f ′(un

j ) > f ′(un
j−1) generates a rarefaction wave. Let us also

recall that from the Rankine–Hugoniot condition, a shock wave at the interface j − 1/2 has a speed equal to:

σn
j−1/2 = f (un

j ) − f (un
j−1)

un
j − un

j−1
.

Using this, we propose a method to update reservoirs and counters, upwinding at each interface depending on the
sign of σn

j−1/2. Let us denote by λn− = f ′(un
j−1) and by λn+ = f ′(un

j ) the left and right characteristic speeds. The idea
is to constrain the time step according to the largest wave speed. For shock waves, it is given by Rankine–Hugoniot
conditions whereas for rarefaction fans, it is given by the largest speed λn− or λn+. Moreover, in the case of sonic points
(λn− � 0 � λn+), waves are splitted in two parts, one going to the left and the other one going to the right. We present,
the case of waves located at j − 1/2. Recall here, that we do not consider wave interactions.

– Right shock wave (0 � λn+ � λn− and σn
j−1/2 > 0)

⎛
⎜⎝

un+1
j

cn+1
j−1/2

Rn+1
j−1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
un

j , c
n
j−1/2 + |σn

j−1/2|�tn

�x
,Rn

j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1))

)T

,

if cn
j−1/2 + |σn

j−1/2|�tn

�x
< 1,

(
un

j + Rn
j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1)),0,0

)T

, if cn
j−1/2 + |σn

j−1/2|�tn

�x
= 1.
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– Left shock wave (λn+ � λn− � 0 and σn
j−1/2 < 0)

⎛
⎜⎝

un+1
j−1

cn+1
j−1/2

Rn+1
j−1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
un

j−1, c
n
j−1/2 + |σn

j−1/2|�tn

�x
,Rn

j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1))

)T

,

if cn
j−1/2 + |σn

j−1/2|�tn

�x
< 1,

(
un

j−1 + Rn
j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1)),0,0

)T

, if cn
j−1/2 + |σn

j−1/2|�tn

�x
= 1.

– Right rarefaction wave (λn+ � λn− � 0)

⎛
⎜⎝

un+1
j

cn+1
j−1/2

Rn+1
j−1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
un

j , c
n
j−1/2 + |λn+|�tn

�x
,Rn

j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1))

)T

, if cn
j−1/2 + |λn+|�tn

�x
< 1,

(
un

j + Rn
j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1)),0,0

)T

, if cn
j−1/2 + |λn+|�tn

�x
= 1.

– Left rarefaction wave (0 � λn+ � λn−)

⎛
⎜⎝

un+1
j−1

cn+1
j−1/2

Rn+1
j−1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
un

j−1, c
n
j−1/2 + |λn−|�tn

�x
,Rn

j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1))

)T

, if cn
j−1/2 + |λn−|�tn

�x
< 1,

(
un

j−1 + Rn
j−1/2 − �tn

�x
(f (un

j ) − f (un
j−1)),0,0

)T

, if cn
j−1/2 + |λn−|�tn

�x
= 1.

– Rarefaction wave with sonic point (λn− � 0 � λn+). In this very specific situation we have to introduce 2 reservoirs
and counters (indices +, −) at j − 1/2, one associated to j − 1 and the other one to j such that

⎛
⎜⎝

un+1
j

cn+1
j−1/2,+

Rn+1
j−1/2,+

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
un

j , c
n
j−1/2,+ + |λn+|�tn

�x
,Rn

j−1/2,+ − �tn

�x
(f (un

j ) − f (ū))

)T

,

if cn
j−1/2,+ + |λn+|�tn

�x
< 1,

(
un

j + Rn
j−1/2,+ − �tn

�x
(f (un

j ) − f (ū)),0,0

)T

, if cn
j−1/2,+ + |λn+|�tn

�x
= 1,

and then in the cell j − 1

⎛
⎜⎝

un+1
j−1

cn+1
j−1/2,−

Rn+1
j−1/2,−

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
un

j−1, c
n
j−1/2,− + |λn−|�tn

�x
,Rn

j−1/2,− + �tn

�x
(f (ū) − f (un

j−1))

)T

,

if cn
j−1/2,− + |λn−|�tn

�x
< 1,

(
un

j−1 + Rn
j−1/2,− + �tn

�x
(f (ū) − f (un

j−1)),0,0

)T

, if cn
j−1/2,− + |λn−|�tn

�x
= 1,

where ū denotes an average state between un
j and un

j−1 (a full description of this specific case will be given in a
forthcoming paper). A striking effect is that shock-waves and rarefaction waves are handled similarly. The main
difference compared to linear equations is that counters are updated differently and some dissipation is introduced
in the case of rarefaction waves. Time steps are chosen as usual to be the biggest number ensuring that each counter
remains smaller than or equal to 1.

Remark 3.2. In the above analysis, it is important to note that, excepted for sonic points, as we have considered right
(resp. left) shock (resp. rarefaction) waves, and as we do not consider wave interactions, waves are always propagated
in one single direction (left or right). So that the solution in a cell j is updated with only one single reservoir, Rj−1/2
for right waves and Rj+1/2 for left ones.
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Fig. 4. Reservoir (exact) solution at time T = 0.4.

As we can easily observe, the process presented above can become very algorithmically complex. At this stage
we do not specify precisely processes allowing to reduce this complexity. However, an optimization of the method is
possible based on adapted computations (using lists of time steps and of computed quantities from a cell to another,
in particular). This point will be presented in a forthcoming paper.

To illustrate the technique presented above, we propose now a simple numerical example based on the Burger’s
equation (f (u) = u2/2) and the following initial data.

u(x,0) =
{

1, if x < 1/2,

0, if x � 1/2.

The number of grid steps is N = 100 and the final time is 0.4. We here update the reservoir solution when CFL
counters have reached 0.99. As expected any spurious diffusion is created (see Fig. 4).

4. Nonlinear hyperbolic systems

We now turn to combine the effects of the two previous sections to describe the case of nonlinear hyperbolic
systems. Let Ω be an open subset of R

m and f : Ω → R
m be a sufficiently smooth Lipschitz function. We consider

the following nonlinear system of conservation laws:

∂tV + ∂xf (V ) = 0, x ∈ R, t > 0, (8)

where V = (V1, . . . , Vm)T and f (V ) = (f1(V ), . . . , fm(V ))T and we set

A(V ) =
(

∂fi

∂xj

(V )

)
1�i,j�m

the Jacobian matrix of f . We assume that the system is hyperbolic, that is A(V ) is diagonalizable in R. We denote by

λ1(V ) � λ2(V ) � · · · � λm(V )

the m eigenvalues of A(V ) and by rk(V ) (resp. lk(V )) the right (resp. left) eigenvectors of A(V ) associated to λk(V ).

4.1. Generalities on reservoirs for nonlinear hyperbolic systems

For such equations we need to define characteristic velocities αn
k;j−1/2, at each interface j − 1/2 and each charac-

teristic field k. This quantity denotes the velocity of the current wave. Typically, αn
k;j−1/2 will be computed using a

Riemann solver. We introduce again a temporary variable

Cn+1
k;j−1/2 := cn

k;j−1/2 + |αn
k;j−1/2|

�tn
.

�x
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Namely, we assume that a Riemann solver (exact or approximate) gives us m waves with related speeds, αk(V,W)

and m + 1 states (V k
R(V ,W))k from any left (resp. right) state V (resp. W ). More precisely, for αn

k;j+1/2 < 0 we have

⎛
⎜⎝

Ṽ n+1
k;j+1/2

cn+1
k;j+1/2

Rn+1
k;j+1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0

cn
k;j+1/2 + |αn

k;j+1/2|
�tn

�x

Rn
k;j+1/2 − �tn

�x

(
F

(
V k

R

(
V n

j ,V n
j+1

)) − F
(
V k−1

R

(
V n

j ,V n
j+1

)))
⎞
⎟⎟⎠ , if Cn+1

k;j+1/2 < 1,

⎛
⎜⎝Rn

k;j+1/2 − �tn

�x

(
F

(
V k

R

(
V n

j ,V n
j+1

)) − F
(
V k−1

R

(
V n

j ,V n
j+1

)))
0
0

⎞
⎟⎠ , if Cn+1

k;j+1/2 = 1,

(9)

while, for αn
k;j−1/2 > 0 we set

⎛
⎜⎝

Ṽ n+1
k;j−1/2

cn+1
k;j−1/2

Rn+1
k;j−1/2

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

0

cn
k;j−1/2 + |αn

k;j−1/2|
�tn

�x

Rn
k;j−1/2 − �tn

�x

(
F

(
V k

R

(
V n

j−1,V
n
j

)) − F
(
V k−1

R

(
V n

j−1,V
n
j

)))
⎞
⎟⎟⎠ , if Cn+1

k;j−1/2 < 1,

⎛
⎜⎝Rn

k;j−1/2 − �tn

�x

(
F

(
V k

R

(
V n

j−1,V
n
j

)) − F
(
V k−1

R

(
V n

j−1,V
n
j

)))
0
0

⎞
⎟⎠ , if Cn+1

k;j−1/2 = 1.

(10)

The reservoir method simply consists in computing the values αn
l;j−1/2 according to the corresponding wave speed

given by the Riemann solver and the corresponding eigenvalue of the Jacobian matrix of the physical flux on left and
right states. This is done in the spirit of Section 3 for each wave separately. Namely, denoting by λn

l;j = λl(V
n
j ), we

define αn
l;j−1/2 by

∀l ∈ {1, . . . ,m}, ∀j ∈ Z

⎧⎪⎪⎨
⎪⎪⎩

αn
l;j−1/2 = λn

l;j−1 if 0 � λn
l;j−1 � λn

l;j , for right-rarefaction waves,

αn
l;j−1/2 = λn

l;j if λn
l;j−1 � λn

l;j � 0, for left-rarefaction waves,

αn
l;j−1/2 = σn

l;j−1/2, for shock waves (λn
l;j−1 > σn

l;j−1/2 > λn
l;j ),

For sonic points, see Remark 4.2.

(11)

Again, the solution is updated the following manner

V n+1
j = V n

j +
m∑

k=1

[
Ṽ n+1

k;j+1/2 + Ṽ n+1
k;j−1/2

]
,

with Ṽ the intermediate sequence defined above.

Remark 4.1. Note that for m = 1, the reservoir scheme degenerates into the scheme presented in Section 3.

Remark 4.2. In the case of a rarefaction wave with sonic points, that is λn
l;j−1 � 0 � λn

l;j for a particular l ∈
{1, . . . ,m}, we follow the procedure detailed in Section 3.

4.2. Application of the reservoir technique to flux schemes

A reservoir technique is presented for a general class of finite volume schemes called flux schemes [19].

Remark 4.3. Roe scheme [20], VFFC (Volumes Finis à Flux Caractéristiques) scheme [21] are flux schemes based
on approximate Riemann solvers.

Flux schemes [22] approximate equation (8) by:

V n+1
j = V n

j − �t (
g
(
V n

j ,V n
j+1

) − g
(
V n

j−1,V
n
j

))

�x
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Fig. 5. Results at t = 0.4 s of VFFC scheme on Sod tube.

where the numerical flux g is usually given by

g(u, v) = 1

2

(
f (u) + f (v)

) − 1

2
Λ(u,v)

(
f (v) − f (u)

)
,

and Λ is a sign matrix (see [21] or [19]). The reservoir version of flux schemes is straightforward. Consider the cell j

at time t = tn such that Rn
l;j−1/2 = 0 and cn

l;j−1/2 = 0.
The specificity is that we use at each interface a linearized Riemann solver. For the sake of simplicity we suppose

that the system is strictly hyperbolic:

λ1(u) < λ2(u) < · · · < λm(u).

At each interface (j − 1/2)�x, we decompose the flux difference f (V n
j ) − f (V n

j−1) in the right-eigenbasis of the
Jacobian matrix associated to the interfacial state Vj−1/2 (for instance the average between V n

j and V n
j−1). That is:

f
(
V n

j

) − f
(
V n

j−1

) =
m∑

k=1

λn
k;j−1/2γ

n
k;j−1/2rn

k;j−1/2.

The flux scheme consists in considering the propagation speeds as λn
k;j−1/2, and the flux difference between neigh-

boring states of the Riemann problem is approximated by:

f
(
V k+1

R

(
V n

j−1,V
n
j

)) − f
(
V k

R

(
V n

j−1,V
n
j

)) = λn
k;j−1/2γ

n
k;j−1/2rn

k;j−1/2, ∀k ∈ {1, . . . ,m}. (12)

The reservoir version of flux schemes and consists for shock waves of taking αn
l;j−1/2 = λn

l;j−1/2 in (11) and the
aforementioned approximation (12) in (9), (10). In Figs. 5 and 6, we show the results obtained with VFFC at CFL
close to one and with VFFC coupled with the reservoir technique. The benchmark we consider here is the Sod tube.
Results show a slight improvement (see the rarefaction wave) but nothing spectacular. This is due to the linearized
Riemann solver giving a nonaccurate enough wave decomposition. In the sequel we implement the Colella–Glaz
Riemann solver [18] in order to remedy to that point.
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Fig. 6. Results at t = 0.4 s on Sod tube with VFFC plus reservoirs.

4.3. Colella–Glaz solver for gas dynamics

The aim of this section is to give a general description of the Colella–Glaz scheme for hyperbolic system of
conservation laws (8).

The main idea in [18] is to enforce solutions of a Riemann problem to be a succession of shock waves (or contact
discontinuities). Since shock curves (in particular for nonentropic shocks) are close to rarefaction curves, this pro-
cedure turns out to be very precise to find accurate intermediate states, with a cost much less than a full nonlinear
entropic Riemann solver [23].

Remark 4.4. The approximate Riemann solver involved in this method is also known as the shock curve intersection
method. Mehlman [24] has reinterpreted the Colella–Glaz scheme as a particular Roe scheme.

The flux difference is decomposed as:

f
(
V n

j

) − f
(
V n

j+1

) =
m∑

k=1

(
f

(
V k−1

R

(
V n

j ,V n
j+1

)) − f
(
V k

R

(
V n

j ,V n
j+1

)))
. (13)

Since all the waves are shock waves then (13) can be rewritten as

f
(
V n

j

) − f
(
V n

j+1

) =
k=m∑
k=1

sn
k;j+1/2

(
V k−1

R

(
V n

j ,V n
j+1

) − V k
R

(
V n

j ,V n
j+1

))
. (14)

In (14) sn
1;j+1/2 < · · · < sn

m;j+1/2 are defined as shock velocities given by the Rankine–Hugoniot equations. Let

us again denote by V k
R(V n

j ,V n
j+1) the kth state, with, by convention, V 0

R(V n
j ,V n

j+1) = V n
j . Since all the states

V k
R(V n

j ,V n
j+1) and speeds sn

k;j+1/2 are (2m − 1) unknowns, the problem turns out to solve the nonlinear Rankine–
Hugoniot equations (2m − 1 equations):
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Fig. 7. Colella–Glaz solver.

Fig. 8. Time step choice.

sn
k;j+1/2

(
V k

R

(
V n

j ,V n
j+1

) − V k−1
R

(
V n

j ,V n
j+1

)) = f
(
V k

R

(
V n

j ,V n
j+1

)) − f
(
V k−1

R

(
V n

j ,V n
j+1

))
.

In [18] a numerical process is given to solve this system for Euler equations and weak shocks (see Figs. 7, 8).

Remark 4.5. For classical compressible Euler equations the second wave is a contact discontinuity, so that the non-
linear system can be simplified.

At this point we can now extend the reservoir technique to the Colella–Glaz scheme by taking σn
l;j−1/2 = sn

l;j−1/2
in (11) and the aforementioned approximation (12) in (9), (10). This is summarized in Fig. 8.
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Table 1
Initial data

Benchmark ρl ul pl ρr ur pr Tmax γ N

Sod tube 1 0.75 1 0.125 0 0.1 0.4 1.4 100
Noh 1 1 10−6 1 −1 10−6 0.4 5/3 100
Montagne, Vinokur, Yee 0.01 2200 573 0.14 0 22300 0.2 1.4 100
Wendroff benchmark 1 1 1e − 6 2 −1 1e − 6 1 5/3 100
3a benchmark 1 −19.59745 1000 1 −19.59745 0.01 0.012 1.4 100
Sod Wendroff tube 1 0.75 1 0.125 0 0.1 0.2 1.4 100

5. Numerical results

We now present some numerical experiments to validate the reservoir technique coupled with the Colella–Glaz
solver. We consider Euler equations, since it represents a classical nonlinear hyperbolic system of conservation laws
with a large literature and many referenced benchmarks.⎧⎪⎨

⎪⎩
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P)x = 0,

(ρE)t + (ρuH)x = 0, E = 1

2
u2 + 1

γ − 1

p

ρ
, H = E + p

ρ
, γ = 1.4.

One-dimensional shock tube problems allow to obtain any kind of wave (rarefaction, shock waves and contact discon-
tinuities). We here decide to reproduce some benchmarks presented in [25] that constitutes a very good framework
to test one-dimensional hyperbolic solvers. Initial data are given in Table 1. It is important to note that for particular
benchmarks a “CFL = 1” method is necessary to obtain correct solutions. For example Berthon in [26] shows that the
numerical diffusion created by classical schemes can lead to totally unphysical solutions and forbids the convergence
of the scheme. In the following we present the results obtained with the reservoir technique with 2 visualization strate-
gies. The first one is obtained by emptying the reservoirs at final time so that some mixing (and thus some moderated
numerical diffusion) appears through shock waves (see Figs. 9, 11, 13, 15, 17, 19) with discrete shock profiles spread
over one point at worst. We emphasize that the discrete solutions are conservative and totally consistent with the con-
tinuous problem. In the second visualization strategy we present the results without emptying the residual reservoirs
at final time, that is without numerical diffusion in the shock waves (Figs. 10, 12, 14, 16, 18, 20). The only difference
with the previous visualization comes from the fact that the displayed numerical solution is not fully consistent with
the continuous solution. The results obtained here are often far better from than those obtained by other standard
numerical methods (see [25] for a systematic comparison) even in theses simulations we have emptied the reservoirs
when local counters have reached 0.99 (and not 1). This then allowed to create very few diffusion necessary to remain
stable in time. For example the results obtained using the reservoir technique for the Noh test case are particularly
better than those obtained by usual high order schemes, like ENO or WENO schemes [27]. In general rarefaction
as well as shock waves are very accurately approximated (see [28]). In particular the “zero-point shock capturing”
feature is a outstanding behavior for a first order difference scheme. To our knowledge, only the Glimm scheme has a
similar behavior, unfortunately Glimm scheme does not capture shocks at the correct position because of its intrinsic
random process.

6. Conclusion

We have presented a new low/zero diffusive numerical technique for first order accurate finite volume schemes
by enforcing a local field-by-field “CFL one”-like condition on each cell and each characteristic field. The method
is based on the use of some cell-by-cell reservoirs and CFL counters that reduce the mixing of information or, in
other words, the production of spurious numerical diffusion. This general technique is particularly suited for the
Colella–Glaz solver and gives impressive results compared to other classical finite volume schemes even if high
order reconstructions (ENO, WENO) are used (see [27]). We also would like to emphasize the fact that the reservoir
approach can be more generally applied to any Godunov-type scheme or any flux scheme like VFFC [19]. In this case,
results are not that outstanding, but improve the resolution of rarefaction fans without high order reconstruction.
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Fig. 9. Sod tube with Colella–Glaz reservoir when residual reservoirs are emptied at final time (first visualization strategy).

Fig. 10. Sod tube with Colella–Glaz reservoir when residual reservoirs are not emptied at final time (second visualization strategy).
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Fig. 11. Noh benchmark with Colella–Glaz reservoir when residual reservoirs are emptied at final time.

Fig. 12. Noh benchmark with Colella–Glaz reservoir when residual reservoirs are not emptied at final time.
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Fig. 13. Montagne, Vinokur, Yee benchmark with Colella–Glaz reservoir when residual reservoirs are emptied at final time.

Fig. 14. Montagne, Vinokur, Yee benchmark with Colella–Glaz reservoir when residual reservoirs are not emptied at final time.



F. Alouges et al. / European Journal of Mechanics B/Fluids 27 (2008) 643–664 661
Fig. 15. (3a) benchmark with Colella–Glaz reservoir when residual reservoirs are emptied at final time.

Fig. 16. (3a) benchmark with Colella–Glaz reservoir when residual reservoirs are not emptied at final time.
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Fig. 17. Wendroff benchmark with Colella–Glaz reservoir when residual reservoirs are emptied at final time.

Fig. 18. Wendroff benchmark with Colella–Glaz reservoir when residual reservoirs are not emptied at final time.
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Fig. 19. Sod Wendroff tube with Colella–Glaz reservoir when residual reservoirs are emptied at final time.

Fig. 20. Sod Wendroff tube with Colella–Glaz reservoir when residual reservoirs are not emptied at final time.
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Practically, the reservoir approach can be seen as a finer integration process and can easily be integrated into an
existing computational code based on Godunov-type method.

The convergence of this method is presented in [28] and its extension to multidimensional equations is proposed
in [29].

At the current time it is still necessary to optimize the technique in term of algorithmic complexity and also to
extend it to implicit finite volume schemes. We also think that the Colella–Glaz solver could be extended to more
general systems than Euler equations, like two-phase or two-fluid systems (see the paper of Alouges and Merlet [30]).
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