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Abstract—Telecommunications networks, and in particular
optical WDM networks, are vulnerable to large-scale failures
of their physical infrastructure, resulting from physical attacks
(such as an Electromagnetic Pulse attack) or natural disasters
(such as solar flares, earthquakes, and floods). Such events
happen at specific geographical locations and disrupt specific
parts of the network but their effects are not deterministic.
Therefore, we provide a unified framework to model the network
vulnerability when the event has a probabilistic nature, defined
by an arbitrary probability density function. Our framework
captures scenarios with a number of simultaneous attacks, in
which network components consist of several dependent sub-
components, and in which either a 1+1 or a 1:1 protection
plan is in place. We use computational geometric tools to
provide efficient algorithms to identify vulnerable points within
the network under various metrics. Then, we obtain numerical
results for specific backbone networks, thereby demonstrating the
applicability of our algorithms to real-world scenarios. Our novel
approach allows for identifying locations which require additional
protection efforts (e.g., equipment shielding). Overall, the paper
demonstrates that using computational geometric techniques
can significantly contribute to our understanding of network
resilience.

Index Terms—Network survivability, geographic networks,
network protection, computational geometry, optical networks.

I. INTRODUCTION

Telecommunication networks are crucial for the normal

operation of all sectors of our society. During a crisis, telecom-

munication is essential to facilitate the control of physically re-

mote agents, provide connections between emergency response

personnel, and eventually enable reconstitution of societal

functions. However, telecommunication networks rely heavily

on physical infrastructure (such as optical fibers, amplifiers,

routers, and switches), making them vulnerable to physical

attacks, such as Electromagnetic Pulse (EMP) attacks, as

well as natural disasters, such as solar flares, earthquakes,

hurricanes, and floods [8], [13], [14], [36], [37]. Physical

attacks or disasters affect a specific geographical area and will

result in failures of neighboring components. Therefore, it is

crucial to consider the effect of disasters on the physical (fiber)

layer as well as on the (logical) network layer.

∗This work was done while David Hay was with Columbia University.

Fig. 1. The fiber backbone operated by a major U.S. network provider
[30] and an example of two attacks with probabilistic effects (the link colors
represent their failure probabilities).

Although there has been a significant amount of work on

network survivability, most previous works consider a small

number of isolated failures or focus on shared risk groups (e.g.,

[6], [22], [27] and references therein). On the other hand, work

on large-scale attacks focused mostly on cyber-attacks (viruses

and worms). In contrast, we consider events that cause a large

number of failures in a specific geographical region.

This emerging field of geographically correlated failures

has started gaining attention only recently [2], [17], [24]–

[26], [31], [32], [37]. However, unlike most of the recent

work in this field, we focus on probabilistic attacks and on a

number of simultaneous attacks. Physical attacks rarely have

a deterministic nature. The probability that a component is

affected by the attacks depends on various factors, such as

the distance from the attack’s epicenter to the component,

the topography of the surrounding area, the component’s

specifications, and even its location within a building or a

system.1 We consider arbitrary probability functions (with

constant description complexity) and develop algorithms that

obtain the expected vulnerability of the network. Furthermore,

while [17], [24]–[26], [31], [32], [37] consider only a single

event, our algorithms allow the assessment of the effects of

several simultaneous events.

In particular, we focus on wavelength-routed WDM optical

1Characterizing the failure probability function of each component is
orthogonal to this research, and we assume it is given as an input.



networks, especially at the backbone [27]. We model the

network as a graph, embedded in the plane, in which each node

corresponds to an optical cross-connect (OXC) and each link

corresponds to an optical fiber (which are usually hundreds

or thousands of kilometers long). Along each link there are

amplifiers, which are spaced-out approximately equally and

are crucial to traffic delivery on the fiber. Data is transmitted

on this graph on lightpaths, which are circuits between nodes.

While lightpaths can be established by the network dynam-

ically, lightpath-provisioning is a resource-intensive process

which is usually slow. If many links fail simultaneously (as in

the case of a physical attack or large-scale disaster), current

technology will not be able to handle very large-scale re-

provisioning (see for example, the CORONET project [10]).

Therefore, we assume that lightpaths are static, implying that

if a lightpath is destroyed, all the data that it carries is lost.

Our goal is to identify the most vulnerable location in the

network, where vulnerability is measured either by expected

number of failed components or by the expected total data

loss. In order to do this, our model allows the consideration

of failure probabilities of compound components by evaluating

the effect of the event on their sub-components (e.g., the

failure probability of a fiber, due to failure of some amplifiers).

Under this model, we develop algorithms that identify the most

vulnerable locations with a tradeoff between accuracy and effi-

ciency. Namely, we can provide arbitrarily small errors, albeit

high running time. Note that although these algorithms have

to be executed offline in preparation for disasters, they have

to consider numerous options and topologies, and therefore,

efficiency is important. Moreover, our algorithms also work for

the deterministic case, with superior performance compared to

previous suggestions [25].

For the case of k simultaneous attacks, we are interested

in the k-tuple of the most vulnerable locations. In the si-

multaneous attack case, the problem is hard not only due

to its probabilistic nature but also due to the combinatorial

hardness of the deterministic problem. Hence, we develop

approximation algorithms for various cases.

We also consider networks which are protected, by a dedi-

cated path protection plan (either 1+1 or 1:1 plan [27]). Under

such plans, every (primary) lightpath has a predefined backup

lightpath, on which data can be transmitted, if the primary

lightpath fails. These protection plans are pre-computed before

a failure event, and therefore, it is reasonable to assume that

they can be applied even after a large-scale set of failures.

For these networks, we provide approximation algorithms that

identify pairs of vulnerable locations that will have a high

effect on both the primary and the backup paths.

With the current technology, large-scale dynamic restoration

is mostly infeasible. However, this capability will emerge in

future optical networks [10]. For future networks with this

capability, network resilience can be measured as the maxi-

mum post-attack flow. However, we show that computing this

measure is in #P and hence cannot be found in any reasonable

time. We discuss options for mitigating this evaluation barrier.

Finally, we provide numerical results that demonstrate the

applicability of our algorithms to real backbone networks.

Among other things, we show that even when the approxima-

tion algorithms only guarantee low accuracy (thereby, having

low running time), the obtained results are very close to

optimal. This would allow checking various scenarios and

settings relatively fast.

The main contributions of this paper are fourfold. First, this

is the first paper to present a general probabilistic model for

geographically-correlated failures, as well as efficient approx-

imation algorithms for finding the most vulnerable locations

in the network. Second, we provide the first set of algorithms

that deal with simultaneous attacks. Third, we provide algo-

rithms that take into account pre-computed protection plans.

Finally, the paper demonstrates that computational geometric

techniques can significantly contribute to our understanding of

network resilience.

The rest of the paper is organized as follows. In Section

II, we review related work and in Section III, we present the

network model and formulate the problem. In Section IV, we

develop algorithms for failures centered at a single location

and extend them to multiple locations in Section V. We study

the effect of protection and restoration plans in Sections VI and

VII. We present experimental results in VIII and conclude and

discuss future work in Section IX. Due to space constraints,

the proofs are omitted and can be found in [3].

II. RELATED WORK

Network survivability and resilience is a well-established

research area (e.g., [6], [27] and references therein). However,

most of the previous work in this area and, in, particular in

the area of physical topology and fiber networks (e.g., [22])

focused on a small number of fiber failures (e.g., simultaneous

failures of links sharing a common physical resource, such

as a cable, conduit, etc.). Such correlated link failures are

often addressed systematically by the concept of Shared Risk

Link Group (SRLG) [19]. In addition, there exist works which

explore dependent failures but do not specifically make use of

the causes of dependence (e.g., [21], [34]).

In contrast with these works, we focus on failures within

a specific geographical region (e.g., [7], [14], [36]), implying

that the failed components do not necessarily share the same

physical resource. To the best of our knowledge, geograph-

ically correlated failures have been considered only in a

few papers and under very specific assumptions [17], [24]–

[26], [31], [37]. In most cases, the assumption is that the

failures of the components are deterministic and that there

is a single failure. Perhaps the closest to the concepts studied

in this paper are the problems studied in [7], [25], [32]. In

particular, [25] recently obtained results about the resilience

of fiber networks to geographically correlated failures where

disasters are modeled as circular areas in which the links

and nodes are affected. However, [25] considers only a single

disaster scenario where failures are deterministic.

Another closely related theoretical problem is the network

inhibition problem [28], [29], in which the objective is to

minimize the value of a maximum flow in the graph, where



there is a cost associated with destroying each edge, and a fixed

budget is given for an orchestrated attack (namely, removing

a set of edges whose total destruction cost is less than the

budget). However, previous works dealing with this setting

and its variants (e.g., [9], [29]) did not study the removal of

(geographically) neighboring links.

Notice that when the logical (i.e., IP) topology is considered,

wide-spread failures due to attacks by viruses and worms

rather than due to physical attacks have been extensively

studied (e.g., [15]).

III. PROBLEM STATEMENT

Let G = (V,E) be a graph representing the optical

network, where V is a finite set of nodes in the plane, and

E is a set of links. We assume each link is a straight line

segment, and if it is a curve, it can be approximated by a

piecewise-linear function. Let ce ≥ 0 be the capacity of link

e. A lightpath π consists of an ordered sequence of links

(where two consecutive links in the path share the same node

at one of their endpoints). Let tπ be the amount of data

transmitted over π per unit of time. Generally, we consider the

nodes and links as simple components, and the lightpaths as

compound components. Let Q = {q1, . . . , qm} be a given set

of network components. Let wq be the weight associated with

a component q, which indicates either the amount of traffic

along q or the capacity of the component. Each attack induces

a spatial probability distribution on the plane, specifying the

damage probability at each location. Taking the perspective of

a (simple) component q, given an attack location p ∈ R
2, let

f(q, p) be the probability that q is affected by p. For example,

in a deterministic setting, f(q, p) is either 0 or 1. Alternately,

one could use more sophisticated models, for example, where

f(q, p) depends on the distance from p to q or the length

of the portion of link q within the attack radius. In many

applications f(q, p) is given, or can be computed as a function

of the distance from p to q.

For simple components, we consider only probability func-

tions f(·, ·) with constant description complexity. Intuitively,

these are functions that can be expressed as a constant number

of polynomials of constant maximum degree, or simple distri-

butions like the Gaussian distribution. In particular, our results

hold for the following important classes of distributions: (i)

f is a function of the Euclidean distance, i.e., f(q, p) =
max{0, 1 − d(q, p)}, where d(q, p) is the Euclidean distance

between p and q (more generally, d could be any norm);

and (ii) Gaussian distribution, i.e., f(q, p) = βe−d(q,p)2α for

constants α, β > 0, chosen appropriately to normalize the

distribution.

For a compound component (e.g., a lightpath) π, denote

by Vπ the set of components that constitute the compound

component, and for each simple component v ∈ Vπ , let f(v, p)
be the probability that v is affected by p. Thus, the probability

that π is affected by an attack in p is

f(π, p) = 1−
∏

v∈Vπ

(1− f(v, p)). (1)

Fig. 2. Function f(q, ·), where q is a lightpath that consist on two fibers
[(−2, 0), (2, 0)] and [(−2, 0), (−2,−2)] and the attack is Gaussian.

Fig. 3. The function Φ(Q,P) where the set of components Q are the links
that belong to the fiber backbone of a major network service provider [30].
Also shown in red on the network is the location with the highest impact.

See Fig. 2 for an illustration when f is Gaussian. Notice

that we can also have a compound hierarchy: for example

in certain types of attacks (e.g., EMP attacks), fiber links

are not damaged directly. In such cases, we can treat each

link as a compound component which consists of several

amplifiers (which are simple components represented as points

in the plane). Destroying an amplifier along the fiber makes

it unusable2. Therefore, in such a setting a lightpath is a

compound of compound components.

Our goal is to find an attack location (or a set of loca-

tions) which has the highest expected impact on the net-

work, where the impact is measured either by the number

of failed components (amplifiers, OXCs, or fibers), by the

total capacity of failed fibers, or by the total traffic carried by

failed lightpaths. For a set of attack locations P , let Φ(Q,P)
denote the expected number (or alternatively, weighted sum)

of components of Q affected by the attacks in P (for an

example, see Fig. 3). By linearity of expectation, we get

Φ(Q,P) =
∑

q∈Q wq

(

1−∏

p∈P(1− f(q, p))
)

. When Q is

clear from the context, we use Φ(P). In case a protection plan

is in place (see Section VI), we assume that data is lost, if and

only if both the primary and backup lightpaths are affected.

The weight wq of each component enables us to define

2More generally, we can treat each link as comprised of a finite set of
sample points.



various measures in a unified manner: if Q is the set of

amplifiers and wq is set to 1 (for all q), then Φ(Q,P) is

the expected number of affected amplifiers had the attacks

occurred at P . Similarly, if Q is the set of fibers and for

any fiber q, wq = cq (q’s capacity), then Φ(Q,P) yields the

expected capacity loss of attacks in P . Finally, if Q is the set

of lightpaths and wq = tq , then Φ(Q,P) is the expected loss

in traffic, unless there is a protection (or restoration) plan in

place. It is important to notice that, by linearity of expectation,

Φ(Q,P) corresponds to the expected value of the measure

under consideration, regardless of any dependency between

the various components in Q. Therefore, even in the extreme

situations in which two components share the same physical

resource (e.g., lightpaths that share the same fiber, or fibers

that share the same conduit), one can evaluate Φ(Q,P) by

considering each component separately.

IV. THE SINGLE LOCATION SCHEME

In this section, we discuss a setting where there is only a

single attack. We first describe intuitively how our algorithms

find the location with the highest impact on the network.

Then, we provide a detailed description of an algorithm that

deals only with simple components, discuss its complexity, and

prove its correctness. Finally, we will show two extensions:

one is geared towards compound components and the other

improves the running time by sampling.

A. Outline of the Algorithm

We first assume that P is a singleton and will denote the

location of the (single) attack by p. Fix a network element q.

The super-level-set of a function f(q, ·) with respect to a real

value y is the set of points p ∈ R
2 such that f(q, p) ≥ y. Given

an accuracy parameter ε ∈ (0, 1), and a set of components

Q, our algorithm first determines a monotonically decreasing

vector Y of level values. For each level value in Y , and

each network element q, the super-level-sets of f(q, ·) are

constructed. Note that a point can be in multiple super-

level-sets. Next, each super-level-set is a geometric region

surrounding q. Note that the region corresponding to some

level value y contains all super-level-sets of values y′ < y.

Moreover, if f is monotonic with the distance from q, these

regions are contiguous in the plane. However, our algorithm

does not require this property. Intuitively, the number of level

values determines the accuracy and the running time of our

algorithm: the more level values we have, the more accurate

our results are but our algorithm will require additional time

to complete. Fig. 2 depicts an example of super-level-sets

induced by a Gaussian attack on a lightpath; each contour

defines the edge of a super-level-set.

The next step is to find a point which maximizes Φ (up

to some error). In the uniform case (all weights correspond

to 1), this is the point that belongs to the largest number of

super-level-sets, each might correspond to a different network

element (depending on the vector Y , we might count the

number of super-level-sets as a weighted sum). In the non-

uniform case, each region of component q can conceptually

Algorithm 1 MAXIMPACTLOCATION : Approximation algo-

rithm for computing the optimum location of a single attack.

1: point p procedure MAXIMPACTLOCATION(Q,W ,f ,ε)
2: wm← maxq∈Q,p∈R2 wqf(q, p)
3: for each q ∈ Q do
4: w′

q ← wq/wm

5: i← 0, Y ← ∅, Λ← ∅
6: while (1− ε)i ≥ 1/2|Q| do
7: Y ← Y ∪ {(1− ε)i}
8: i++
9: for each q ∈ Q do

10: Λq ← ∅
11: for each y ∈ Y do
12: λqy ← {p ∈ R

2 | f(p, q) ≥ y}
13: Λq ← Λq ∪ {λqy}

14: Λ← Λ
⋃

Λq

15: V ← Compute Vertices(Λ)
16: return argmaxp∈V Φ(Q, p)
17: end procedure

be viewed as wq coinciding regions. Thus, having essentially

the same problem. Finding a point which belongs to the largest

number of regions (usually, referred to as a point of maximum

depth) is a well-studied problem in computational geometry.

B. Detailed description of the simple component case

We first present an algorithm for simple components, and

then describe the modifications required to handle the case

of compound components. Our algorithm (see pseudo-code in

Algorithm 1) is similar to a recent algorithm by Vigneron [35]

and returns a point p such that Φ(p) ≥ (1 − ε)Φ(p∗), where

p∗ = argmaxp∈R2 Φ(p) (namely, the optimal attack location),

and 0 < ε < 1.3

The vector Y , which determines how the plane is divided,

is defined in an exponentially decreasing manner, such that its

i-th element (i ≥ 0) is (1− ε)i. The number of elements of Y
is the smallest integer s satisfying (1− ε)s < 1/(2m), where

m is the number of components. Note that s = O
(

logm
ε

)

.

Using the functions f(q, p), we find for each component

q, the value maxp∈R2 f(q, p). We then scale (linearly) the

weights associated with the network components, so that

maxq∈Q,p∈R2 wqf(q, p) is 1. We call this weight the normal-

ized weight of the component q and denote it by w′
q . The rest

of our calculations (e.g., Line 16 of Algorithm 1) are done

under this normalized weight function.

The next definitions capture formally the essence of levels

and how they divide the plane:

Definition 1. (i) For a value y and a component q, the super-

level-set λqy = {p ∈ R
2 | f(q, p) ≥ y} is the set of all points

with f(q, ·)-value of at least y;

(ii) For each component q, Λq = {λqy | y ∈ Y } is the set of

all component q’s super-level-sets;

(iii) Λ =
⋃

q Λq is the set of all super-level-sets;

3The algorithm of [35] returns a point p′ such that Φ(p∗) ≤ (1+ε)Φ(p′).
In addition, our analysis is slightly simpler, and, in certain cases, we show
how to achieve a better running time.
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Fig. 4. The arrangement which corresponds to probabilistic attacks of 3 links
ei1,j1 , ei2,j2 , and ei3j3 , such that each has 3 super-level-sets. The shaded
region is an example of one of the faces of the arrangement. All vertices of
the arrangement are marked with ’x’.

(iv) Λ(p) = {λqy ∈ Λ | p ∈ λqy} be the set of all super-level-

sets that contain p.

Using the set Λ, whose size is O(ms), we define the

arrangement A = A(Λ) of super-level-sets is the subdivi-

sion of the plane into vertices, arcs and faces. Under this

division: (i) vertices are the set of all intersection points of

the boundaries of the super-level-sets along with the set of

points where a vertical line is a tangent to the boundary

of a super-level-set; (ii) arcs are the maximally connected

portions of the boundaries between the vertices; and (iii) faces

are maximally connected regions bounded by arcs (for an

example, see Fig. 4). Notice that in Algorithm 1 the subroutine

Compute Vertices(Λ) returns all the vertices of A(Λ).
Our algorithm computes the arrangement A(Λ) of these

O(ms) super-level-sets. The algorithm then evaluates the

function Φ(·) for each vertex of the arrangement, and chooses

the best one. The arrangement can be computed in time

O(m log (m) + χ) [4], [33], where χ is the total number

of vertices, arcs, and faces in A(Λ). For simple network

components, one can evaluate the function Φ at each vertex

naı̈vely, implying a total complexity of O(mχ log (m)).
One can improve the running time by refining the faces

of the arrangement A(Λ) into cells of constant description

complexity (i.e., cells that can described by constant number

of polynomial inequalities each of constant maximum degree).

This ensures that, in order to compute the function Φ on each

cell, there are only a constant number of updates to perform

when moving from one cell to another. Thus, by traversing the

cells systematically, one can compute the value at each vertex

in a constant time, implying a total complexity of O(m logm+

χ) (see [35] for details). Notice that χ = O
(

m2

ε2
log2 m

)

,

when the super-level-sets themselves have constant description

complexity (i.e., as determined by the function f ).

Next, we prove the correctness of our algorithm. First, the

optimal point is contained within one of the faces of the

arrangement A(Λ), because its Φ-value is at least 1 (that is,

the maximum normalized weight). On the other hand, one can

verify that Φ’s value outside the arrangement is at most 1/2,

since the probability to hit any component is less than 1/(2m).
We prove our approximation ratio by fixing a specific network

element and looking at a specific face.

Lemma 1. If two points p1 and p2, such that f(q, p1) ≥

f(q, p2), are in the same face of A(Λ), then, for every

component q, w′
qf(q, p2) ≥ (1 − ε)w′

qf(q, p1), where w′
q is

the normalized weight of q.

Applying Lemma 1 over all the network elements q, we

get
∑

q w
′
qf(q, p2) ≥ (1 − ε)

∑

q w
′
qf(q, p1). Since, this

approximation is valid for any two points in any face of

A(Λ), it also holds for a vertex of the face of A(Λ) and

the optimal point. When the function f(q, p) is given by

f(q, p) = max{0, 1−d2(q, p)}, where q is either an amplifier

or a link, we can compute the point p∗ that maximizes Φ
exactly. The key observation is that after partitioning the plane

into faces, the gradient inside each face is linear function (see

the technical report [3] for details).

C. Extensions to the compound component case

For compound components, one can apply the algorithm

MAXIMPACTLOCATION using the function f(q, ·) for each

compound component q, as defined in (1). Function f takes

into account that a single component failure within the

compound component is enough to break down the entire

component. However, the description complexity of f may

not be a constant, thus computing the super-level-sets might

be difficult.

To circumvent this problem, we present an algorithm that

finds the (1 − ε)-approximated optimal location in two con-

ceptual steps:

1) Compute an arrangement A(Λ) on the f(v, ·) for the

simple components v ∈ Vq , as defined in Section IV-B.

This arrangement deals with the simple component

within each compound component directly, both the

arrangement size and its computation complexity is the

same as in Section IV-B.

2) For every vertex p of a face of A(Λ), we compute

the value of f(q, p) using (1). Each such computation

requires up to κ =
∑

q |Vq| updates to previously

obtained value, where κ is the sum of the sizes of all

compound components. Thus the total complexity of our

algorithm is O(m log (m) + χκ).

We now prove the correctness of the above algorithm. Let

p be a vertex in the face of the arrangement which contains an

optimal point p∗. From Lemma 1, for every simple component

v, we have f(v, p) ≥ (1 − ε)f(v, p∗), i.e., 1 − f(v, p) ≤
1− (1− ε)f(v, p∗) implying that, for a compound component

q, with Vq as components,

1−
∏

v∈Vq

(1− f(v, p)) ≥ 1−
∏

v∈Vq

(1− (1− ε)f(v, p∗)). (2)

We also have the following arithmetic lemma:

Lemma 2. For every point p′ ∈ R
2, and a compound

component q comprised of simple components Vq ,

1−
∏

v∈Vq

(1− (1− ε)f(v, p′)) ≥ (1− ε)f(q, p′).

Using (2) and applying Lemma 2 for p∗, we get that

f(q, p) ≥ (1 − ε)f(q, p∗). The correctness of the algorithm



follows by multiplying by w′
q and summing over all compound

components.

D. Improving running time by sampling

Our algorithm MAXIMPACTLOCATION computes all the

vertices of the arrangement of super-level-sets, which can be

quite large. We present a sampling based algorithm which

is significantly faster when the number of vertices that ap-

pear on the boundary of the union of super-level-sets Λ is

O(|Λ|) = O(m), a condition that is true in most practical

applications.

Up until now, the errors introduced by our algorithms are

a result of a discretization of function f , as captured by the

different super-level-sets and the corresponding arrangement.

Once this discretization is done, we find an optimal solution

with respect to the discrete arrangement. In this section, we

relax the requirement of optimal solution within the arrange-

ment, and require only (1−δ)–approximation. Specifically, we

show that by carefully choosing the values of Y and δ, we can

obtain a (1−ε) overall approximation with significantly faster

algorithm. Our (1 − δ)–approximation of the second stage is

conceptually equivalent to finding a point with approximately

maximum depth within the specific arrangement. This problem

was solved by Aronov and Har-Peled [5] through sampling,

and therefore, we will build on their technique.

Specifically, fix a level value vector Y , such that the

approximation obtained by running the algorithm MAXIM-

PACTLOCATION is 1−ε′. Let yi denote the i-th value in Y , for

1 ≤ i ≤ s. We associate weights αqyi
to each super-level-set

λqyi
as follows. We associate to αqys

the weight wq(1−ε′)ys ,

and for i < s we set αqyi
= wq(1−ε′)i−αqyi+1

Furthermore,

for each p ∈ R
2, let ∆α(p) =

∑

λqyi
∈Λ(p) αqyi

. We call this

value the weighted depth of p with respect to weights α. By

the choice of αqyi
, we get ∆α(p) ≥ (1 − ε′)Φ(p). Thus, the

problem of finding a point that approximately maximizes Φ(·)
reduces to finding a point of maximum weighted depth in

A(Λ).
Let αmax = maxq∈Q,yi∈Y αqyi

. We scale the weights

of the super-level-sets so that the new weights are, ζqyi
=

αqyi

αmax

|Λ|
ε′

. This ensures that ∆ζ(p
∗) ≥ |Λ|/ε′, where p∗ is a

point that maximizes Φ(·). We round the weights by setting

βqyi
= ⌊ζqyi

⌋. Therefore, for any point p, whose depth with

respect to weights ζ is at least |Λ|/ε′, we have ∆β(p) ≥
∆ζ(p) − ε′|Λ|/ε′ ≥ ∆ζ(p) − ε′∆ζ(p) = (1 − ε′)∆ζ(p).
Thus, we can assume that the weights of the super-level-sets

are integers between 0 and ⌊|Λ|/ε′⌋. Let Λc be the multiset

of super-level-sets obtained by making βqyi
copies for each

super-level-set λqyi
. The (unweighted) depth of a point p in

A(Λc), which we call ∆(p), is the number of copies that

contain p. We can now use the algorithm of Aronov and Har-

Peled [5], which works with unweighted depth, to compute

a point p such that ∆(p) ≥ (1 − δ)∆(p∗). This implies,

∆ζ(p) ≥ ∆(p) ≥ (1 − δ)∆(p∗) ≥ (1 − δ)(1 − ε′)∆ζ(p
∗),

and after rescaling we get ∆α(p) ≥ (1− δ)(1− ε′)∆α(p
∗) ≥

(1 − δ)(1 − ε′)2Φ(p∗). We choose δ = ε′ = ε/8, to get

the desired (1− ε)-approximation. Note that if the copies are

stored explicitly, we would need Ω(|Λ2|/ε) copies in the worst

case. Therefore, we show that the copies can be maintained

implicitly to achieve a faster expected running time. Namely,

near-linear in |Λ|.
Conceptually, the algorithm of Aronov and Har-Peled works

by first generating a random sample Rc ⊆ Λc, i.e., by choosing

each copy of a super-level-set in Λc with probability ρ. A

decision procedure is then invoked to check if the maximum

(unweighted) depth in the arrangement of A(Rc) is at least

a threshold τ = O(ε−2 log |Λ|
ε
). If the depth is less than the

threshold, ρ is doubled and we repeat this process until either

the depth is more than τ or the entire arrangement A(Λc)
is computed, in which case, a point of maximum depth is

returned. Thus, the number of iterations is O(log |Λ|
ε
), and the

total running time is O(TD log |Λ|
ε
), where TD is the expected

time to choose the random sample and execute the decision

procedure to see if the maximum depth is at least τ . We

now show that one can maintain the copies implicitly, and

execute the decision procedure so that, TD = O( |Λ|
ε2

log2 |Λ|
ε
).

We use the fact that the number of copies of any super-level-

set λqyi
chosen in the random sample Rc follows a binomial

distribution, B(βqyi
, ρ), with parameters βqyi

and ρ. So, for

each super-level-set λqyi
we generate a binomial random

variate νqyi
∼ B(βqyi

, ρ) in O(log βqyi
) expected time [12],

and associate νqyi
, as the weight of the super-level-set λqyi

.

Repeating this for each super-level-set, we can generate a set

R = {λqyi
| νqyi

> 0}, of distinct super-level-sets in expected

time O(|Λ| log |Λ|
ε
). We then use a randomized divide-and-

conquer algorithm to check if the maximum weighted depth

(with respect to weights ν) in the arrangement A(R) is at most

τ . For example, the algorithm of Agarwal et al. [1] can be

adopted for this purpose. Since the number of distinct super-

level-sets in R is at most |Λ|, the expected running time of

this procedure is O( |Λ|
ε2

log2 |Λ|
ε
). Thus, the overall running

time to determine a point p, such that Φ(p) ≥ (1 − ε)Φ(p∗),

is O( |Λ|
ε2

log3 |Λ|
ε
).

V. SIMULTANEOUS ATTACKS

We now consider scenarios in which k attacks may happen

simultaneously. Our goal is therefore to identify the set P of

k locations, for which Φ(Q,P) is maximized over all possible

choices of k locations. In general, finding this set P is NP-

hard, since maximizing the value of Φ is a generalization of the

well-known maximum set cover problem [18]. Nevertheless,

we show that the function Φ satisfies certain interesting

properties (namely, monotonicity and submodularity). We then

present a fast approximation algorithm with a constant approx-

imation ratio, relying on these properties.

A. Algorithm definition

In this section, we formally define the ε-greedy algorithm

that selects the locations one by one, so as to maximize the

gain in Φ (given all past selections).

Specifically, the algorithm works iteratively. Let Pk′ =
{p1, . . . , pk′} be the set of locations that were chosen in the

first k′ iterations. Let p∗ /∈ Pk′ be the location that maximizes



ϕ(p,Pk′) = Φ(Q,Pk′ ∪ {p}) − Φ(Q,Pk′) over all points

p ∈ R
2. Namely, the location that maximized the revenue in

terms of Φ. The ε-greedy algorithm chooses at iteration k′+1,

a location p such that ϕ(p,Pk′) ≥ (1− ε)ϕ(p∗,Pk′).
Notice that ϕ(p,Pk′) =

∑

q∈Q µ(q,Pk′)f(q, p), where

µ(q,Pk′) = wq

∏

p′∈Pk′
(1 − f(q, p′)). This implies that

finding the location that maximizes ϕ(p,Pk′) within factor

(1− ε) can be done by applying the algorithms of Section IV

after modifying the weights of the components to µ(q,Pk′)
(instead of wq).

B. Performance evaluation

As mentioned previously, computing Φ exactly is NP-

hard. However, the function Φ(Q, ·) has two key properties,

monotonicity and submodularity, which are used to develop

an approximation algorithm. Intuitively, the expected number

of failures only increases with the number of attacks. Hence,

Φ(Q, ·) is monotonically non-decreasing, i.e., Φ(Q,P1) ≤
Φ(Q,P2), for any set P2 ⊇ P1 (formally, this property stems

from the fact that µ(q,P2) ≤ µ(q,P1), for any q ∈ Q). The

function Φ(Q, ·) also exhibits the “law of diminishing returns”

property or submodularity: for a given attack p and two sets

of attacks P1 and P2 such that P2 ⊇ P1, the incremental gain

of p is lower if it happens after P2 than if it happens after P1.

The following lemma captures this property.

Lemma 3. Φ(Q, ·) is a submodular function. Namely, for any

two set of points P1 and P2, such that P2 ⊇ P1, and any

point p ∈ R
2, Φ(Q,P1∪{p})−Φ(Q,P1) ≥ Φ(Q,P2∪{p})−

Φ(Q,P2), i.e., ϕ(p,P1) ≥ ϕ(p,P2).

These two properties immediately imply that a perfect

greedy algorithm (that is, ε-greedy algorithm with ε = 0)

achieves a (1− 1/e)-approximation [23]. Since our selection

at each step is approximate, the overall approximation ratio of

ε-greedy is (1− 1
e1−ε ) [16], for any 0 < ε < 1. Note that our

proof holds for both types of components.

VI. NETWORKS WITH A PROTECTION PLAN

When building a resilient network, a common paradigm

is to provide a protection plan for significant lightpaths to

ensure their continuous service in the face of network failures.

Common approaches include 1+1 dedicated protection where,

conceptually, the data is sent twice along primary and backup

lightpaths, implying that data is lost only when both lightpaths

fail simultaneously. A 1:1 dedicated protection, on the other

hand, allows using a backup lightpath for low-priority traffic.

Once the primary lightpath fails, traffic is shifted to the backup

lightpath, and the low-priority traffic is disregarded.

When designing a protection plan, geographical correlation

is often taken into account. The primary and backup lightpaths

tend to be fiber-disjoint or even to be part of different Shared

Risk Link Groups (SRLGs). For example, the fibers should

not be close physically. Thus, it is likely that a reasonable

protection plan will cope with a single attack. In this section,

we are evaluating the resilience of a protection plan to two

simultaneous attacks.

Formally, we are given pairs of lightpaths (πi, π
′
i), where

πi is the primary path and π′
i is the backup path. Let Ti and

ti be, respectively, the high-priority and low-priority traffic on

these lightpaths (for 1+1 protection, ti is always 0). Thus, one

loses ti when either πi or π′
i fails, and Ti + ti if both fail at

once. Hence, given two locations p1 and p2, the expected loss

on the i-th pair (obtained by case analysis) is

Φi(p1, p2) = ti[1− g(πi, p1)g(πi, p2)g(π
′
i, p1)g(π

′
i, p2)]

+Ti[f(πi, p1)f(π
′
i, p1) + f(πi, p2)f(π

′
i, p2)

−f(πi, p1)f(π
′
i, p1)f(πi, p2)f(π

′
i, p2)

+g(πi, p1)f(π
′
i, p1)f(πi, p2)g(π

′
i, p2)

+f(πi, p1)g(π
′
i, p1)g(πi, p2)f(π

′
i, p2)] ,

(3)

where g(π, p) denotes 1− f(π, p). For the entire network, we

get Φ(p1, p2) =
∑

i Φi(p1, p2). We next show how to compute

the pair of attacks p1, p2 that maximizes Φ(p1, p2). Notice

that one can also measure the worst-case vulnerability of the

protection plan by the value of Φ(p1, p2) and use this value

to compare the resilience of alternative plans.

The algorithm is a generalization of MAXIMPACTLOCA-

TION with the following modification: Instead of computing

the value of Φ for each vertex of a face of the arrangement,

we consider all possible pairs of vertices and compute the

value of Φ as though the attacks happened in these locations.

This implies that the running time is quadratic in the size

of the arrangement. Moreover, the approximation ratio can

degrade up to a factor of (1− ε)4, as we multiply four terms

in (3). This can be solved by a refined arrangement defined

with ε′ = 1 − 4
√
1− ε = Θ(ε), with no extra complexity

penalty.

VII. NETWORKS WITH RESTORATION ALGORITHMS

An alternative approach to network survivability is to devise

a dynamic restoration scheme, which, upon a network failure,

is able to re-route the traffic so as to avoid data loss. In gen-

eral, devising efficient restoration algorithms, especially when

required to handle large-scale failures, is a challenging task.

Dynamic restoration schemes are more efficient in utilizing

network capacity, but have slower recovery time and often

cannot guarantee quality of restoration.

Clearly, the optimal quality of restoration (in terms of post-

attack traffic carried by the network between predetermined

source nodes and target nodes) is the maximum flow of the

residual network and, therefore, finding the most vulnerable

location in such setting is equivalent to finding the location

whose corresponding attack minimizes the expected maximum

flow. However, under a probabilistic setting, finding the ex-

pected maximum flow of a graph is #P -complete. This is

true even if all edges have unit weight (that is, a connectivity

problem), and even if the graphs are planar. It is important to

notice that although one is not directly required to compute

the exact value of the expected maximum flow in order to

find the most vulnerable location, and, in some cases, one can

compare the effects of two locations without such computation



(e.g., when the failure probability of one location dominates

the other), in the general case, such computation is necessary

(e.g., two locations affecting disjoint sets of links and there is

no third location that can be used for comparison). Thus, we

obtain the following result.

Theorem 1. Computing the most vulnerable location in term

of expected maximum flow is #P -complete.

Essentially, this hardness result implies that finding the most

vulnerable location requires an exponential-time algorithm in

the number of affected links. Such algorithms might be feasible

to implement when the number of these links is bounded by a

small constant s. The most intuitive approach is by a complete

state enumeration. Such an algorithm considers one candidate

location at a time (obtained by the corresponding arrangement,

as in Section IV); each location defines a probabilistic graph

G = (V,E) where every edge e ∈ E has a failure probability

Pre. Let E1 denote the edges with zero failure probability, and

E2 the rest of the edges. The algorithm will enumerate all sub-

sets of E2 and for each such subset S, compute the probability

for such a failure pattern PrS =
∏

e∈S Pre
∏

e∈E2\S
(1−Pre).

Then, it computes the maximum flow FS in GS = (V,E1∪S).
The expected maximum flow is

∑

S⊆E2
PrS ·FS , and its com-

putation requires 2|E2| ≤ 2s maximum-flow computations.4

Alternative techniques, such as graph simplification, graph

factoring, and inclusion-exclusion based approaches were also

studied in the past [11]. However, all the suggested algorithms

still require exponential running time.

VIII. NUMERICAL RESULTS

We have run the algorithms of Section IV on three different

networks within the continental USA: Level 3’s network of

230 links [20], Qwest’s fiber-optic network of 181 links [30],

and XO Communications’ long-haul network of 71 links

[38]. We obtained lightpath information for the last two. In

addition, for Qwest’s network, we have the transmission rates

of individual lightpaths, which were used to determine the

values of tπ .

We conducted simulations with five different accuracy val-

ues ε for simple components: 0.1, 0.2, . . . , 0.5. For compound

components, we used three values of ε′ (recall Section IV-C):

0.1, 0.2 and 0.3; roughly 0.8-, 0.65-, and 0.5−approximations.

In addition, we considered five different attack radii, ranging

between 60 and 300 miles. Finally, two f functions were used:

a function that decreases linearly with the distance, and a

function that follows a Gaussian distribution (see Section III).

We first compared the values of Φ for different accuracy

values ε of our algorithms. Table I shows the results for

simple and compound components when the attack radius

(resp., standard deviation of radius) is 180 miles for the linear

(resp., gaussian) f -function. Here, ΦL and ΦG respectively

denote Φ under linear and Gaussian probability functions. Our

results show no perceptible change in Φ when ε is changed,

4Note that the arrangement of Section IV induces only an approximate
solution. In this case, we need to scale the error parameter ε inversely with
s to avoid accumulating errors in the computation.

TABLE I
VALUES OF Φ FOR SIMPLE AND COMPOUND COMPONENTS UNDER LINEAR

f -FUNCTION (ΦL) AND GAUSSIAN f -FUNCTION (ΦG ).

Level3 Qwest XO

ΦL ΦG ΦL ΦG ΦL ΦG

Simple comp. 20.5 69.4 14.1 37.2 6.1 15.6
Compound comp. - - 475.7 615.1 11.1 15.8
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Fig. 5. Variation of Φ, normalized by the sum over the entire network, with
the attack radius for a linear failure probability function.

neither for links nor for lightpaths. This conclusion holds

for all three networks, for both f -functions and for various

attack radii. This may be explained by the fact that, in these

networks, the location found by MAXIMPACTLOCATION lies

on, or extremely close to a fiber link, thus avoiding the worst-

case (in terms of approximation ratio). While cases where Φ
varies significantly with ε do exist, our results show that, in

practice, the dependence on ε is very limited. This implies

that for realistic fiber-optic networks, the much faster 0.5-

approximation algorithms obtain very close to optimal results.

To validate our algorithm, we also computed Φ for all three

networks when attack locations are restricted to a fine grid of

cell size 0.6× 0.6 miles. Fig. 3 shows the effects on Qwest’s

network, of attacks of radius 180 miles centered at locations on

this grid. The point corresponding to the maximum value of Φ
lies less than 0.5 miles from MAXIMPACTLOCATION’s output

(shown in red in Fig. 3) and the values of Φ are also almost

the same. These results further reinforce the conclusion that

MAXIMPACTLOCATION is, in practice, very close to optimal.

Finally, Fig. 5 shows the change in Φ with the attack

radius for a linear f -function for both simple and compound

components. We normalized the value of Φ, so that 100%
implies the sum of the weights of all network components. As

can be seen, the marginal gain in increasing the attack radius

is limited, and even small attacks with radius of 60 miles can

cause large damage if they are placed in vulnerable locations.

IX. CONCLUSIONS

In this paper, we provided a unified framework to identify

vulnerable point(s), given a WDM network embedded in the

Euclidean plane. A unique feature of our framework is its

ability to cope with a wide range of probabilistic attack and

failure models.

The basic building block of our framework is the algo-

rithm MAXIMPACTLOCATION, which locates efficiently a

point in the plane that causes arbitrarily close to maximum



impact on a network comprised of simple components. By

its tolerance factor ε, MAXIMPACTLOCATION trades accu-

racy with running time. We further extended and improved

MAXIMPACTLOCATION in various ways that allow it to deal

with compound components, simultaneous attacks, networks

equipped with a protection plan and to deal faster with simpler

networks or probabilities. We also evaluated its performance

by simulation on three real WDM networks. Our numerical

results show, quite surprisingly, that MAXIMPACTLOCATION

finds a location very close to optimal, even when taking

a high tolerance factor ε (e.g., when it runs very fast but

with a loose guarantee on the quality of its output). This

makes MAXIMPACTLOCATION an even more attractive tool

for assessing network resilience.

Future research directions include developing efficient plan-

ning methods for geographically-resilient networks and in-

vestigating the effect of adding minimal infrastructure (e.g.,

lighting-up dark fibers) on network resilience. Finally, we

plan to determine how to use low-cost shielding for existing

components to mitigate large-scale physical attacks.
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