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1 Introduction

Black Holes are thermodynamic objects and can be described in terms of thermodynamic

quantities like temperature and entropy. These properties are difficult to understand at the

microscopic level using statistical mechanics as we need a fundamental theory of quantum

gravity to give the microscopic description of black holes. String theory, the most promising

candidate of quantum gravity, has made a lot of progress in this regard. The observation

that the thermodynamical properties of black holes can be studied and quantitatively

computed with statistical methods in string theory has brought upon an overwhelming

amount of research in the field. Supergravity theory, a low energy limit of string theory, has

black holes as classical solutions. Hence, by linking the black holes solutions of supergravity

to the states in string theory (carrying the same charges), one can hope to relate the

(macroscopic) entropy of a black hole to the logarithm of the degeneracies of its (stringy)

microstates.

The initial perfect laboratory on which this link was studied was that of BPS black

holes and BPS saturated stringy states. In fact, the computation of statistical or micro-

scopic black hole entropy in string theory makes use of the supersymmetry invariance of

the background, which highly restricts the possible interactions between the constituent

strings and branes, and it also protects certain quantities from the effect of couplings, thus

allowing the entropy computed at zero coupling to be valid even in the presence of strong

couplings. Therefore, the entropy of BPS black holes has been studied quite extensively
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using the statistical counting approach. Although the results obtained for the entropy of

BPS black holes are highly satisfactory and have led to a deeper understanding of both

black hole physics and statistical string theory, it would be much more insightful to have the

equivalence between the two systems worked out in the more general context of non-BPS

black holes and non-BPS stringy states. Unfortunately, on the string side of this equiva-

lence, not many advancements have been made in a general non-supersymmetric context.

Nevertheless, precise results exist for certain specific cases, and in this paper we will focus

on one of them. We shall study the subleading corrections to the macroscopic entropy of

extremal non-supersymmetric black holes in N = 2 supergravity in four dimensions and

show its relation with the microscopic result.

The thermodynamical or macroscopic entropy of black holes can be worked out irre-

spective of any special symmetry. It is well known that the classical entropy of a black hole,

given by Bekenstein-Hawking (BH) area law, corresponds to the area of the black hole’s

event horizon. Subleading corrections to BH formula, in the semiclassical “thermodynam-

ical limit” of large charges, can be obtained by a method engineered by Wald [2] long ago.

In this paper we use another, different but equivalent, method, known as the “entropy

function formalism”, given by Sen [3], which is well-suited to compute the macroscopic

entropy of extremal black holes, and sub-leading corrections thereof.

The computation of semiclassical microscopic entropy of black holes, which is the

logarithm of the degeneracy of states in string theory in the limit of large black hole charges,

hinges strongly on supersymmetry of the theory. This entropy coincides at leading order

to the statistical entropy, which we will compute using the partition function of AdS3
spacetimes.1 The final result is given by the Cardy formula

SBH = 2π

(

√

cL hL
6

+

√

cR hR
6

)

, (1.1)

where cL and cR are the left and right-handed central charges respectively in conformal

field theory, and hL and hR are the left and right-handed zero modes of Virasoro gener-

ators respectively. Note that, since the goal is to compare the statistical result with the

macroscopic one, the stringy states must correspond to a black hole configuration.

There are specific examples of string configurations which allow an exact counting of

states even in the absence of supersymmetry [4–6]. Their approach is based on a more

basic/primitive form of the AdS/CFT correspondence [7] as we will explain later on.

The final result for the microscopic entropy of a large class of five dimensional non-

supersymmetric black holes in N = 2 supergravity with subleading corrections as obtained

in [4–6] is given by

Smicro
non−BPS = 2π

√

q0(dABC pA pB pC + 128 dA pA) (1.2)

where q0 is the electric charge of the black hole, pA’s are the magnetic charges, and dABC

and dA are constant factors appearing in the prepotential of the Lagrangian of the black hole

1We will refer henceforth, abusing the terminology, to microscopic and statistical entropy interchange-

ably, although strictly speaking the two entropies are computed in opposite regimes and using very different

methods.
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solution.2 The computation of the macroscopic counterpart of the statistically calculated

entropy (1.1) was attempted in [8] and the following result was obtained:

Smacro
non−BPS = 2π

√

q0(dABC pA pB pC)

(

1 +
40 dA p

A

dABC pA pB pC

)

. (1.3)

Evidently, this does not correspond to a first order expansion of (1.2) in the limit of large

charges. The most likely reason behind this mismatch, as proposed in [8], is connected

to the form of the higher derivative interaction terms. To be precise, the Weyl squared

invariant of superconformal gravity, that was considered in [8], might not be enough to

describe all the subleading contributions for a non-BPS solution. This directed us towards

the possibility of certain (supersymmetric) higher derivative invariants missing in the four

dimensional Lagrangian, that could be connected to five dimensional theories considered

in [5, 6], and hence readily affect the macroscopic results.

Recently, a new class of higher derivative invariants was built in the context of four

dimensional superconformal gravity [1]. The most important property of this new class of

invariants is its connection to the five dimensional supersymmetrization of the Weyl squared

Lagrangian, which contains the gauge gravitational Chern-Simons term considered in [5, 6].

This higher derivative invariant has also been shown to not contribute to the entropy of

BPS black holes [9]. This was expected because the micro- and macroscopic entropy results

for BPS black holes already matched [10–12] without considering these corrections. In this

paper, we consider this new higher derivative invariant to compute its contribution to the

entropy of the non-BPS black hole solutions. The final entropy we obtain is given as,

Smacro
non−BPS = 2π

√

q0(dABC pA pB pC)

(

1 +
64 dA p

A

dABC pA pB pC

)

, (1.4)

and it exactly matches the first order expansion of statistical entropy in the limit of large

charges (1.2), as predicted in [5, 6]! Hence, we have successfully moved one step further in

describing black hole thermodynamics in the context of string theory via the more general

case of non-BPS black holes in supergravity.

In the following we will closely follow [8], focusing on a general class of theories, the

STU models. The paper is organized as follows: in section 2 we present the 4D theory

in its prepotential formulation and add a new class of supersymmetric higher derivative

invariants, recently discovered and analyzed in [1, 9]. The new higher derivative invariant

was the missing ingredient in the previous calculation worked out in [8] and it is the key

to the resolution of the puzzle. In section 3 we give an outline of the microscopic entropy

computation for a specific class of black holes, and make contact with the lower dimensional

theory and solutions in four dimensions. Finally in section 4 we conclude with the results

and open questions. Our conventions and the details of the 4D N =2 superconformal

theory are presented in the two appendices at the end of this paper.

2Their physical interpretation will be given in section 3.1.
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2 N = 2 superconformal gravity in 4D setting

We want to study the subleading correction to the entropy of non-BPS black holes in four

dimensional N = 2 supergravity. The theory we use describes the dynamics of four vector

multiplets XI (I, J = 0, . . . , 3) coupled to conformal supergravity and a chiral background

multiplet A, which will soon be identified with a particular linear combination of the Weyl

squared multiplet [13] and the TLog multiplet [1]. This, as shown in [14] and proven in [9],

corresponds exactly to the dimensional reduction of the 5D higher derivative invariant

containing the Weyl squared term and the gravitational Chern-Simons term A∧R∧R [15].

The Lagrangian can be written in terms of a homogeneous function of degree 2, F

(A,B = 1, 2, 3):

F (XI ,A) = − dABC
XAXB XC

X0
− dA

XA

X0
A , (2.1)

where XI and A are the lowest components of the vector and chiral multiplets of N = 2

theory respectively:

X I = (XI ,ΩI
i ,W

I
µ , Y

I
ij) , A = (A,ψi,Bij ,F

−
ab,Λi,C) . (2.2)

We refer to appendix B for a more detailed discussion on the supersymmetry transformation

rules of these multiplets. For now it suffices to say that they are representations of the

full superconformal algebra SU(2, 2|2), which, in this particular example, corresponds to

the algebra of the symmetries of the Lagrangian.3 For simplicity, we will focus only on

the bosonic sector of the action, which reads4 (refer to the appendices A and B for the

definitions of the fields and derivatives used in the following):

8πL = i
(

XI F̄I − X̄IFI

)

(

1

6
R−D

)

+

[

iDaFID
aX̄I

+
i

4
FIJ

(

F−I
ab −

1

4
X̄IT−

ab

)(

F−Jab −
1

4
X̄JT−ab

)

+
i

8
F̄I

(

F−I
ab −

1

4
X̄IT−

ab

)

T− ab −
i

8
FIJY

I
ijY

Jij +
i

32
F̄
(

T−
ab

)2

+
i

2
FAC −

i

8
FAA

(

BijB
ij − 2F−

abF
−ab
)

+
i

2
F− abFAI

(

F−I
ab −

1

4
X̄IT−

ab

)

−
i

4
BijFAIY

Iij + h.c.

]

+ i
(

XI F̄I − X̄IFI

)

(

DaVa −
1

2
V aVa −

1

4
|Mij |

2

+

(

∂µΦi
α +

1

2
V iµ

jΦ
j
α

)(

∂µΦ
α
i +

1

2
V k
iµΦ

α
k

))

, (2.3)

3R-symmetry is not necessarily a symmetry of the action.
4Our conventions differ from [8] by a minus sign in the Riemann tensor and we write down the explicit

dependence on D in the action.
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where the following definitions have been used:

F I
µν = 2 ∂[µW

I
ν] , T−

ab = Tab
ij εij , T+

ab = Tab ij ε
ij .

FI = ∂XIF , FA = ∂AF , . . . . (2.4)

In Lagrangian (2.3), Va is a vector field, Mij is an SU(2) triplet scalar field and Φα
i is an

SU(2) matrix valued scalar field. The indices i, j (= 1, 2) and α (= 1, 2) used here, label

the fundamental representation of gauged and global SU(2) respectively.

We couple the theory to a non-linear multiplet whose gauge field Vµ is subject to the

constraint:

Da Va −
1

2
V a Va −

1

4
|Mij |

2 +

(

∂µΦi
α +

1

2
V i µ

j Φj
α

)(

∂µΦ
α
i +

1

2
V k
i µΦ

α
k

)

− 3D = 0 , (2.5)

which reduces the number of its independent degrees of freedom from four to three, bal-

ancing the number of independent bosonic and fermionic fields. More importantly it allows

to fix the value of the auxiliary field D in terms of the Ricci scalar R. Note that Vµ trans-

forms under K-boosts, so its covariant derivative can be written as DaV
a = DaV

a−2 fa
a =

DaV
a − 1

3 R+ 2D.

We are now ready to identify the chiral background with the two higher derivative

invariants that come from the dimensional reduction of the R2 term in 5D N = 2 super-

gravity, the Weyl squared invariant and the TLog multiplet, i.e [9]

A = (T−
ab)

2 −
32

3
A|

T(ln X̄0) . (2.6)

Although the Weyl squared invariant depends only on conformal supergravity curvatures

and auxiliary fields, the TLog multiplet, as it comes from the dimensional reduction from

5D, depends explicitly on the compensating vector multiplet X 0. Of course, it would seem

logical (but nevertheless incorrect) to consider the dependence ofA on X 0 , while taking the

derivatives of the prepotential w.r.t. the scalar fields XI . The multiplets at this stage must

be considered elementary (independent). This means, for instance, that the derivative of

the prepotential w.r.t. to X0 is simply given by F0 = dA
XA

X2

0

A. Once the supersymmetric

Lagrangian has been obtained, the components of A can be traded with their composite

expressions. Neglecting all the fermions, these components read (the indices a, b = 0, . . . , 3

are flat or tangent space indices)

A =(T−
ab)

2 −
32

3

(

− 2
✷cX

0

X̄0
−

1

4

F− 0
ab T− ab

X̄0
+

1

4 (X̄0)2

(

Y 0 ij Y 0
ij − 2F+0

ab F+0 ab
)

)

,

Bij =− 16 εk(iR(V)
k
j)ab T

− ab +
64

3

(

✷c + 3D
)Y ij

X̄0
+

64

3

F+0
ab

X̄0
R(V)ab ki εjk ,

F−
ab =− 16R(M)cd

ab T−cd −
32

3
✷c log X̄

0 T−
ab +

32

3
R(V)−ab

i
k
Y 0 jk

X̄0
εij −

2

3
T−
ab T

+
cd

F+0 cd

X̄0

+
32

3

(

δa
[cδb

d] −
1

2
εab

cd

)[

4DcD
eF

+0
ed

X̄0
+ (De log X̄0DcT

−
de +Dc log X̄

0DeT−
ed)

− wDcD
eT−

ed

]

,
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C =64R(M)−cd
abR(M)−cd

ab + 32R(V)−ab k
l R(V)

−
ab
l
k − 16T− abDaD

cT+
cb

−
128

3
(✷c + 3D)✷c log X̄

0 − 64(DaD)Da log X̄0 +
512

3
Da
(

R(D)+abD
b log X̄0

)

+
16

3
Da(T+

ab T
− cbDc log X̄

0) +
8

3
Da(T+

ab T
− cb)Dc log X̄

0

−
16

3
DaD

a

(

T+
bc

F+0 bc

X̄0

)

−
64

3
Da

(

DbT+
bc

F+0 ac

X̄0
+DbF

+0
bc

X̄0
T+ ac

)

−
2

3
(T+

ab)
2A|

T(log X̄0) −
32

3
w

{

−R(V)+ab
i
jR(V)

ab+j
i − 8R(D)+abR(D)ab+

−
1

2
DaT+

abDcT
− cb −

1

2
Da(T+

abDcT
− cb)

}

, (2.7)

where F− 0
ab = F− 0

ab − 1
4 X̄

0 T−
ab and we made use of the constraints relating the components

of a chiral multiplet to those of a vector multiplet (see (B.13)). Since we have fixed the

TLog multiplet to be a composite function of the vector multiplet X 0, the parameter w

above is fixed to one [1].

2.1 The background and the auxiliary field

We want to study the entropy of extremal, non-BPS black holes. The near horizon geometry

of an extremal black hole in four dimensions is described by AdS2 × S2 metric, given by

ds2 = v1

(

− r2 dt2 +
dr2

r2

)

+ v2 ( dθ
2 + sin2 θ dφ2 ) . (2.8)

Here v1 and v2 are the scaling parameters of the AdS2 and S2 spaces respectively. The

invariance under the symmetry group SO(2, 1) × SO(3) of the AdS2 × S2 metric must be

satisfied by all field configurations. As an example, in flat space indices, the field strengths

will have only two non-zero components, one along (0, 1) direction and the other along

(2, 3) direction as,

F I
01 = −

eI

v1
, F I

23 =
pI

v2
, (2.9)

where eI ’s are the generalized electric fields, pI ’s are the magnetic charges of the black

hole. The electric charges are defined via the dual field strength:

G−
I ab = (−2 i)

∂(8πL)

∂F− I ab
(2.10)

and are given by:
qI
v2

= GI 23 . (2.11)

Analogously the auxiliary T±
ab tensor will have only two non-zero components, one on the

subspace (0, 1) and the other in the subspace (2, 3),

T−
01 = iT−

23 = −z , (2.12)

with z complex constant. Another important quantity, which is completely fixed by the

symmetries of the background, is the modified Lorentz curvature R(M)ab
cd. Here we

– 6 –
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present the non-zero components (from here onwards we take R(A) = 0 for reasons that

will be explained shortly),

R(M)ab
cd =

(

D + 1
3R
)

δab
cd ,

R(M)
âb̂

ĉd̂ =
(

D + 1
3R
)

δ
âb̂

ĉd̂ ,

R(M)
ab̂

cd̂ = 1
2

(

D − 1
6R
)

δa
c δ

b̂
d̂ , (2.13)

where the underlined and hatted indices span the (t, r) and (θ, φ) subspaces respectively.

Now, by using the definition of R(M)ab
cd in terms of the Weyl tensor Cab

cd,

R(M)ab
cd = Cab

cd +D δc[a δ
d
b] , (2.14)

we obtain

R(M)± ab
ab =

1

2
R(M)ab

ab = 3D . (2.15)

There are many other (non-)dynamical fields attracted on the horizon, and in principle

one would need to solve their equations of motion to find their constant values explicitly.

For simplicity, we will consider the consistent truncation of the full field configuration,

satisfying the near-horizon symmetries and describing (non-)BPS black holes in N = 2

supergravity, presented in [8]. In the following we shall sketch the truncation procedure,

proving its consistency. Although for the purpose of this paper we need consistent solutions

of the two derivative theory only, the truncation remains consistent even after the addition

of higher derivative invariants.

Let us start from the auxiliary fields of the vector multiplet, in particular Y I
ij . The (full)

equations of motion for these four triplets are quadratic in the Y I ’s, so a simple consistent

solution of the dynamical equations is Y I
ij = 0. Next, we analyze the auxiliary gauge fields,

the R-symmetry connections of the Weyl multiplet Aµ and V i
µ j (see appendix B). We

first note that, if Aµ is constant, its curvature R(A) = 0. This means that locally Aµ

can be taken to be vanishing. Furthermore, the vanishing of the U(1)R curvature implies

R(D) = 0 (eq. (B.8)) which implies that also the dilatational gauge bµ can also be taken to

be locally vanishing. On the other hand when the SU(2)R connection V i
µ j is constant, the

curvature R(V) i
µν j ∼ Vµ Vν . It is easy to check by inspection that the (higher derivative)

equations of motion for V i
µ j are quadratic or quartic in it, so they also admit the solution

V i
µ j = 0. The fields of the compensating non-linear multiplet can be trivially fixed through

their equations of motion. The SU(2) triplet Mij can be fixed to zero, and the field Φi
α,

obeying the constraints Φ†Φ = 1 and detΦ = 1, can be fixed to the constant δiα. The

vector Vµ is constrained by eq. (2.5), and admits the simple solution Vµ = 0. This in turn

leads to a constraint on the auxiliary field D, i.e. D + 1
3 R = 0.

The full near-horizon configuration at the two derivative level is then:

T−
01 = −z , Aµ = V i

µ j = bµ = Vµ =Mij = 0 ,

Φi
α = δiα , D = −

1

3
R . (2.16)

– 7 –



J
H
E
P
0
5
(
2
0
1
6
)
1
4
2

We want to point out that on this background all the fields are covariantly constant because

the symmetries of the geometry allow for spin connections orthogonal to the field configu-

rations. For e.g., one can check explicitly that DµT
±
ab = 0. Note that the addition of the

TLog multiplet brings about terms linear in the SU(2)R connection through the covariant

derivative of the auxiliary field Y 0
ij of the vector multiplet X 0. As we pointed out before,

however, the auxiliary fields Y I
ij = 0, and so the linear dependence on V i

µ j is removed. An

equivalent approach would have been to assume all the fields to be covariantly constant

and find, as a solution, Aµ = bµ = V i
µ j = 0.

Finally we note that the auxiliary real scalar D does not appear in the Lagrangian at

the two derivative level, so in principle, it cannot be fixed. However, since it enters the non-

linear multiplet constraint, its most general consistent configuration is indeed D = −1
3 R

even after the higher derivative corrections are considered. But, as will become clear shortly,

we will not need the near-horizon field configurations beyond the leading two derivative

order, to compute the first order subleading corrections to the entropy of the (non)-BPS

black hole solutions.

2.2 The entropy function

In this section we set up the computation of the moduli and the entropy of a class of black

holes with near-horizon geometry (2.8). We will use Sen’s entropy function formalism for

this purpose. The entropy function is given as

E(v1, v2, z,X
I , eI , qI , p

I) = 2π

(

−
1

2
eIqI −

∫

dθdφ
√

− det gL

)

. (2.17)

This function need to be evaluated for the background described by (2.16). Hence E will

be a function of the charges and various near horizon parameters. The entropy function

formalism requires the entropy function to be extremized with respect to the near horizon

parameters, i.e. obey the following extremization equations:

∂E

∂v1,2
=

∂E

∂XI
=

∂E

∂eI
=
∂E

∂z
= 0 . (2.18)

The values of the moduli will either remain unfixed , as is the case for the auxiliary field D

at the two derivative level, or will get fixed in terms of the electric and magnetic charges qI
and pI . The extremum value of E by definition gives us the entropy of the black hole, i.e.

SBH = E|v1,2,z,XI ,eI . (2.19)

Before we proceed to adapt the entropy function formalism for our purpose, we want to

show how it simplifies the computations while treating the higher derivative Lagrangians

perturbatively. Consider the higher derivative perturbative effective actions to be specified

by a small parameter δ. In their presence, various near horizon parameters will get correc-

tions proportional to δ. To be precise, let Φ denotes all possible near horizon parameters

(v1, v2, z,X
I , eI , . . . .). In presence of perturbative higher derivative interactions, the en-

tropy function can be schematically written as E = E0+ δE1 and the perturbative solutions

of the near horizon parameters as Φ = Φ0 + δ · Φ1. Here E0 is the entropy function for

– 8 –
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two derivative theory and Φ0 is the solution of the corresponding extremization equations.

Finally, the value of the extremized entropy function to first order in δ looks like,

E(Φ) = E0(Φ0 + δΦ1) + δ · E1(Φ0) = E0(Φ0) + δ · E1(Φ0) . (2.20)

The dependence on Φ1 will vanish identically by the leading order extremization condition.

This means, to compute the first subleading correction to the entropy of black holes, using

the entropy function formalism, we will need only the two derivative solutions for the near

horizon parameters. Hence, as hinted above, for computing non-BPS black holes entropy

accurate up to the first order in δ, i.e. due to the first order effective corrections of the theory,

we will only need the consistent solutions for near horizon parameters presented in (2.16).

Now, plugging the near horizon configuration of section 2.1 into the entropy function

for our case, we obtain:

E ≡ − π qI e
I − πg(v1, v2, z,X

I , eI , pI)

=− π qI e
I − π

{

i (v2 − v1)
(

XI F̄I − X̄I FI

)

−

[

i

4
v2 v

−1
1 FIJ

(

eI − i
v1
v2
pI −

1

2
X̄I z v1

)(

eJ − i
v1
v2
pJ −

1

2
X̄J z v1

)

+ h.c.

]

−

[

i

4
F̄I z v2

(

eI − i
v1
v2
pI −

1

2
X̄I z v1

)

+ h.c.

]

+

[

i

8
F z̄2 v1 v2 + h.c.

]

+

[

32 iFA

(

8

3

v1
v2

+
8

3

v2
v1

− 4 +
7

192
v1 v2 |z|

4 −
1

3
|z|2 (v1 + v2)

)

+ h.c.

]

+

[

4 i

3
FA v1 v2 z̄

2A|
T(ln X̄0) + h.c.

]

−

[

16 z

3 v1
(v1−v2)FA I

(

eI−i
v1
v2
pI−

1

2
v1 z X̄

I

)

+ h.c.

]

−

[

32

3

1

X̄0

v2
v1
FA I

(

eI − i
v1
v2
pI −

1

2
v1 z X̄

I

)(

e0 + i
v1
v2
p0 −

1

2
v1 z̄ X

0

)

×

(

−
1

v1
−

1

v2
+

1

4
|z|2
)

+ h.c.

]}

. (2.21)

In the next section we will focus on two particular classes of solutions: fully BPS

and non-BPS black holes, and we will compute their entropy by extremizing the entropy

function E . Before doing so, we will review the microscopic/statistical entropy results,

based on anomalies.

3 Entropy of 5D/4D (non-)BPS black holes

As mentioned earlier, although the computation of non-supersymmetric indices is still not

well understood, it is possbile to obtain quantitative results for the statistical entropy of

non-BPS black holes in very specific cases. In the following we will give a short summary

of the results obtained by [4–6] for five-dimensional supergravity black holes, stressing the

crucial ingredients. It is worth stressing that identical results were already presented in [10],

but there the interest was focused on BPS solutions. We will also discuss the connection

to four-dimensional black hole solutions of N = 2 supergravity, relevant to this work.
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3.1 Statistical entropy of (non-)BPS black holes in 5D: a sketch

Consider a near-horizon black brane configuration of the form AdS3 × S2 × X, where X

is a Calabi-Yau three-fold, that arises from M-theory.5 After compactifying on X, we get

the near-horizon solution of a five dimensional black hole, which, depending on the near-

horizon values of the matter and gravity fields, may or may not preserve supersymmetries.

The theory can be further reduced over a two-sphere to obtain a solution of three dimen-

sional supergravity, which includes the dimensionally reduced Chern-Simons form A∧ dA.

A crucial point is that the left and right central charges of the CFT that lives at the bound-

ary of AdS3 can now be computed from the anomalous terms that are connected to the

Chern-Simons terms of the reduced 5D supergravity Lagrangian. The procedure requires

supersymmetry of the theory, but not necessarily of the background. Hence we will obtain

a result for non-BPS configurations as well. In this section we want to sketch the main

results of the anomaly analysis, referring to [4–6, 10, 16, 17] and the references therein for

more detailed discussions.

The first goal of this section is to obtain the Cardy formula for the entropy of black

holes whose near-horizon configuration contains an AdS3 factor [7]. Note that there are

certain advantages in considering an AdS3 near-horizon configuration instead of AdS2,

since the spacetime symmetries of the former close into the infinite dimensional Virasoro

algebra.

One way to compute the black hole entropy is to consider the Euclidean continuation

of the solution. One then obtains the thermodynamics potential from which it is straight-

forward to compute the entropy. In Euclidean signature, the BTZ black hole is a solid

torus having one contractible and one non-contractible cycle. We denote the coordinates

along these cycles respectively as tC and tNC . There is an entire family of solutions that

can be derived from the Euclidean one by choosing to identify the time coordinate with a

certain combination of tNC and tC . For our purpose it is enough to consider just the two

cases, tNC → −i t and tC → −i t. In the former case, one obtains the geometry of global

AdS3 with compact imaginary time corresponding to thermal AdS. The latter choice leads

instead to the BTZ black hole. Note that the coordinates tNC and tC are related by a

simple modular transformation of the boundary torus, τ → − 1
τ
. Hence if we obtain the

partition function for one such solution, it is immediate to obtain the partition function

for the other one.

For a generic asymptotically AdS3 solution, the conserved quantities are the energy

H and the angular momentum J , which corresponds to the momentum in the CFT at the

boundary. The partition function then reads:

Z(β, µ) = e−SE = Tr e−β H−µJ = Tr e2π i τ hL e−2π i τ̄ hR , (3.1)

where the following definitions have been used for the modular parameter of the torus, τ ,

5A well-known example of such a compactification is the case when X = K3 × T
2. An M5-brane on

such a manifold is dual to heterotic string theory, which has both a susy and a non-susy sector. Our results,

as we shall see, are sensitive to all the excitations independent of their supersymmetries.
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and the zero modes of the Virasoro algebra:

τ = i
β − µ

2π
, τ̄ = −i

β + µ

2π
,

hL = L0 −
cL
24

=
H − J

2
, hR = L̃0 −

cR
24

=
H + J

2
. (3.2)

Note that in Euclidean signature the modular parameter τ becomes complex, and µ is

purely imaginary. Furthermore, from the knowledge of the partition function, the zero

modes of Virasoro generators can be simply obtained as:

hL =
i

2π

∂SE
∂τ

, hR =
−i

2π

∂SE
∂τ̄

. (3.3)

From these generic considerations it is quite easy to obtain the thermal partition function

for AdS3. Since global AdS3 corresponds to the NS-NS vacuum for which L0 = L̃0 = 0,

we get:

SE =
iπ

12
(cL τ − cR τ̄) . (3.4)

This is the result for the local part of the partition functions, where non-local contributions

given by excitations of massless particles can be neglected in the low temperature (large

β) limit. By using the modular transformation τ → − 1
τ
, one gets the partition function

for BTZ black holes:

SE,BTZ(τ, τ̄) = SE

(

−
1

τ
,−

1

τ̄

)

= −
iπ

12

(

cL
τ

−
cR
τ̄

)

, (3.5)

and, from (3.3), hL = − cL
24 τ2

and hR = − cR
24 τ̄2

. Note now that the Helmholtz free energy

corresponds to the Euclidean action, SE = β H + µJ − S, so it is easy to get the Cardy

formula:

SBTZ = 2π

(

√

cL hL
6

+

√

cR hR
6

)

, (3.6)

which is the expected result and can be obtained without relying on AdS/CFT correspon-

dence. Since the entropy depends on cL,R (with hL,R fixed by (3.2)), we would like to

compute the central charges directly in gravity description which, in our context, includes

higher derivative corrections. This can be done by exploiting the anomalies of the system;

the gravity side suffers from anomalies arising from Chern-Simons couplings, and so does

the CFT theory. The important observation here is that the conformal anomalies are pro-

portional to the central charges. It is important to point out that we are not aiming at

canceling the anomalies of either theory. We want to obtain the anomalies on both the

gravity and the CFT side, and by comparison, a formula for the central charges of the

CFT in terms of the charges and coefficients characterizing the theory of gravity, including

the higher derivative sector. There are many different but equivalent approaches to this

problem [4, 5, 10, 16]. Here we outline the line of reasoning and the main results, referring

to the previous references for a detailed discussion.

The five dimensional AdS3 × S2 supergravity background, which is of interest to us,

arises as a near-horizon limit of extremal BTZ black holes. The theory arises by reducing
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M-theory on a Calabi-Yau three-fold X. From the perspective of M-theory, we wrap Q5

M5-branes with unity charge (or equivalently one M5-brane, with charge Q5) over the

four-cycles of a Calabi-Yau three-fold X, hence reducing the six-dimensional world-volume

of the M5-branes to a 1+1 dimensional world-sheet spanned by a string in 5-dimensions.

At low energies, this string is described by a chiral (4,0) supersymmetric CFT2. The

anomalous gravitational Chern-Simons term in the five dimensional theory arises from the

dimensional reduction of the M-theory coupling between the three-form potential C3 and

an eight-form term, proportional to the Riemann curvature to the fourth power. Each

M5-brane is magnetically charged under the three-form potential with unity charge. Now

if we call {θA},6 an integral basis for the cohomolgy group H2(X,Z) of the Calabi-Yau

three-fold, and {σA} the dual basis of the homology group H4(X,Z), then the three-form

potential reduces to a set of U(1) connection as C3 = AA
1 ∧ θA. In the following, we will

indicate by A1 the linear combination of abelian gauge fields obtained from the element of

H2 dual to a smooth cycle P0 = PA
0 σA of H4, i.e.

A1 = aAA
A
1 aA · PB

0 = δBA .

By wrapping the Q5 five-branes on the smooth cycles P0, one obtains a string in five-

dimensional space, charged under the U(1) connections with charges PA
0 . In our case we

are wrapping pA unity charge M5-branes over the A-th four-cycle of CY3.

We will come back shortly to the microscopic stringy picture, but first, it is instructive

to understand the supergravity picture. We are considering a smooth near-horizon config-

uration AdS3×S2×X of a higher derivative theory including the anomalous Chern-Simons

couplings

Sanml =
1

48
c2 · P0

∫

M5

A1 ∧ p1 , (3.7)

where p1 = − 1
2(2π)2

Tr(R∧R) is the first Pontryagin class of the 2-form curvature R. Note

that in this low-energy limit, the branes are interpreted as fluxes. Specifically, the magnetic

charges of this solution are given by:

PA
0 = −

1

2π

∫

S2

FA , Q5 = −
1

2π

∫

S2

F1 , (3.8)

where FA = dAA and F1 = dA1 and we are assuming that the field strength has compo-

nents only on the two-sphere. These are the same charges of the string configuration. Now

the coupling (3.7) suffers from two anomalies connected to diffeomorphism transformations

on the tangent bundle and the normal bundle. Practically speaking, these anomalies cor-

respond respectively to the anomalous transformations mapping the boundary onto the

boundary and acting on the vectors normal to the boundary. In the stringy perspective,

the former corresponds to the tangent bundle anomaly on the string world-sheet, and is

connected to the gravitational anomalies of the CFT2. Specifically, if one uses Christoffel

connections to define the curvature R, then the anomaly in the gravity side corresponds

to the non-conservation of the stress-energy tensor. If instead, the spin connection is used,

6The index A runs from 1 to b
2 = b4, where b is the Betty number of the three-fold X.
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then the anomaly corresponds to the antisymmetric part of the stress-energy tensor. The

normal bundle anomaly is interpreted as anomalous Lorentz transformation acting on the

directions normal to the string world-sheet. Since we are in five dimensions, this group is

SO(3), and is associated to the R-symmetry group SU(2)L acting on the left-mover degrees

of freedom of the (4,0) CFT.

Let us start analyzing the tangent bundle anomaly. On the supergravity side, under an

infinitesimal diffeomorphism transformation of the form xµ → xµ−ξµ,7 the transformations

rules are as follows (see [18, 19] for a pedagogical discussion):

δξgµν = 2 ξ(µν) , δξΓ = dξ + [Γ, ξ] , δξR = [R, ξ] , (3.9)

where ξµν =
∂ξµ
∂xν . Now the anomalous term (3.7) can be written as:

Sanml = −
1

(2π)2
1

96
c2 · P0

∫

M5

A ∧Tr(R ∧R) =
1

(2π)2
1

96
c2 · P0

∫

M5

F1 ∧Tr(Ω3) , (3.10)

where, we defined Ω3 = Tr(Γ dΓ + 2
3 Γ

3). The above equality represents the first step of

the descent procedure, i.e. Tr(R ∧R) = dΩ3; the integrand proportional to the gauge field

strength can be made well-defined by partially integrating it, as the linear combination of

gauge fields A1 is ill-defined in the presence of magnetic charges. Next, we exploit the fact

that the field strength F1 has components only over the sphere, to work out the integral

and get:

Sanml = −
1

(2π)

1

96
c2 · p

∫

AdS3

Tr(Ω3) . (3.11)

Now, we just need to apply the second step of the descent procedure, i.e. we consider

a symmetry variation and write it in terms of an exact form. Since δξΩ3 = dTr(v dΓ),

we have:

δξSanml = −
1

(2π)

1

96
c2 · p

∫

∂AdS3

Tr(v dΓ) . (3.12)

This shows that the diffeomorphism invariance of the bulk theory is preserved while the

invariance of the boundary theory is anomalous. But this anomaly can be equaled to

the gravitational anomaly of the CFT2, which can also be computed through the descent

procedure, from the four form I4 = − (cL−cR)p1
24 . We finally have:

δξSCFT =
cR − cL
48 (2π)

∫

∂AdS3

Tr(v dΓ) . (3.13)

By simple comparison we find the identity:

cL − cR =
1

2
c2 · p . (3.14)

This is not enough to constrain both the central charges, but we do have another anomaly to

take into account, the normal bundle anomaly, which corresponds to R-symmetry anomaly

in the (4, 0) CFT side. In fact, since our theory is chiral, it will be anomalous only in

7Note that diffeomorphism anomalies are possible only in even dimensions, so in this context, these

anomalies arise as boundary symmetries that are broken in the quantum theory.
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the supersymmetric sector (leftmovers in our conventions). The analysis for the normal

bundle anomaly turns out to be more involved than its tangent bundle counterpart. We

note here that, since the gravity theory we are considering is supersymmetric, the two

anomalies must necessarily fit in the same multiplet, i.e. be connected by supersymmetry

transformations. Furthermore, as was pointed out in [6] the Chern-Simons term treats the

left and right central charges oppositely (we refer also to [20], where a crucial result for

the analysis of [6] is found). Here we follow the reasoning of [4]; as we said before, the

normal bundle anomaly for a string in 5 dimensions is connected to the subgroup SO(3)

of the Lorentz group, which leaves the string invariant (hence acting on its transverse

directions). Specifically, the left-movers superalgebra is an SO(3) Kac-Moody algebra with

level k, which is connected, by the AdS/CFT correspondence, to the coefficients of the

Chern-Simons terms. Furthermore, the superconformal algebra constrains the (left, in this

case) central charge to be equal to cL = 6 k. All that is left is for us to compute the

level k. We refrain from giving the details of the calculation; the interested reader should

carefully read [4]. The final result, which also includes the contribution from the gauge

Chern-Simons coupling A ∧ F ∧ F , reads:

k = D0 +
1

12
c2 · p , (3.15)

where D0 = 1
6 DABC p

A pB pC and DABC are the intersection numbers of X. Using (3.14)

and (3.15) we finally find the values of the central charges

cL = DABC p
A pB pC +

1

2
c2 · p , cR = DABC p

A pB pC + c2 · p . (3.16)

The result (3.16) depends only on the Chern-Simons terms of the five (or three) dimensional

theory, which are anomalous and contribute to both the left (BPS) and the right (non-BPS)

central charges of the boundary CFT theory. Hence, since no other anomalous terms should

exists in 5D, the above results should be correct at any order in the effective pertubative

expansion of the theory.

Now, to obtain an explicit result for the entropy, it is just a matter of finding the value

of hL,R for the classes of (non-)BPS AdS3 × S2 background.

3.2 5D vs 4D theories and solutions

We are interested in computing the subleading corrections to the entropy of four-

dimensional black hole solutions in N = 2 supergravity, with the near-horizon geometry

AdS2 × S2. Hence we need to justify the connection between the results obtained for five

dimensional black holes in the previous section and the results we aim to obtain. First

of all, as already emphasized, the statistical entropy computation of the five dimensional

black holes is sensitive only to the anomalous terms, which do not exist in the four dimen-

sional theory. Secondly, the BTZ background analyzed is obtained as the compatification

of an M-theory solution over a Calabi-Yau three-fold and hence as the (non-)BPS solution

of a supersymmetric theory. On the other hand, the macroscopic methods available to

compute the entropy of supergravity black holes are based on the knowledge of the full
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Lagrangian, and no supersymmetry is required. If we wish to exploit the five-dimensional

entropy results for the four-dimensional backgrounds of interest in this work, we need to

find the connection between the two theories and the two corresponding backgrounds. The

latter is quite obvious; the five dimensional AdS3 × S2 background is related to the four

dimensional AdS2 × S2 background via a simple circle reduction. Analogously, the five

dimensional supergravity theory, with Weyl squared higher-derivative corrections [15] can

be reduced over a circle and the reduction procedure has been worked out in great detail

in [14]. The results showed the presence of some new higher-derivative terms, belonging

to no known four derivatives invariant in four dimensions. In retrospect, it is very easy to

guess that the five-dimensional gravitational Chern-Simons term A5 ∧ R5 ∧ R5, with R5

being the Riemann tensor in 5D, will reduce to terms proportional to X0
4 R4 ∧ R4 in 4D,

which is squared in the curvatures, but not proportional to the squared Weyl tensor.

Shortly after, these curvature squared terms were found in the purely four-dimensional

context, as part of the bosonic sector of a new class of higher derivative invariants, TLog

invariants, built out of a non-linear chiral multiplet [1]. Contrary to the Weyl squared

invariant, which depends only on superconformal gravity fields, the new class of invariants

depends explicitly on matter (or gauge) multiplets. Furthermore, by combining the TLog

invariant, for a constant compensating multiplet configuration, and the Weyl squared La-

grangian, one obtains the Gauss-Bonnet density, which is a topological invariant of four

dimensional gravity theory.

We want to stress that it is of utmost importance for the four-dimensional theory under

consideration to be the exact reduction of the supersymmetrization of the five-dimensional

gravitational Chern-Simons terms. Even though the entropy computation depends only on

the two Chern-Simons terms, supersymmetry of the full action plays a crucial role. This

is the result presented in (2.6). We refer the reader to the last section of [9] for further

details.

At this point, it should be clear that the results obtained in the previous section can

also be used in the four-dimensional context without any modification. This would require

only the identification of the reduced background and the reduced theories correctly [9, 14].

We are now ready to present the details of the entropy computation for a class of BPS and

non-BPS black hole solutions, and show the exact agreement with the entropy results (3.6)

and (3.16).

3.3 Entropy of (non-)BPS black holes

The classes of black holes of interest to this work are obtained as solutions of superconformal

gravity coupled to three vector multiplets, labelled by the indices A, B and C. However

the number of vector multiplets in our solution is by no means constrained, i.e. the results

we obtain in this section can be generalized to any number of vector multiplets. Doing

so would slightly change the physical interpretation, as then we would be considering an

effective low energy description of M-theory compactified over a Calabi-Yau manifold [10]

(see also [8]).

We start with BPS black hole solutions, which were first analyzed in [11, 12]. On im-

posing full supersymmetry of the background, sufficient conditions extremizing the entropy
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function can be found. They are:

v1 = v2 =
16

z z̄
, F− I

01 = eI − i
v1
v2
pI −

1

2
X̄I v1 z = 0 ,

F̄I

z̄
−
FI

z
= −

i

4
qI . (3.17)

The first two conditions are sufficient to make the whole TLog invariant collapse to zero [9].

The only non-vanishing terms in the higher derivative sector come from the highest com-

ponent of the Weyl squared invariant. The conditions above are steadily solved by:

eI = 4

(

X̄I

z̄
+
XI

z

)

, pI = 4 i

(

X̄I

z̄
−
XI

z

)

, (3.18)

from which we derive a general formula for the entropy, given by:

SBH = 2π

[

−
1

2
eIqI − 16 i

(

F

z2
−
F̄

z̄2

)]

. (3.19)

Note that the entropy still depends on the electric fields eI , the vector multiplet scalars

XI and the T-tensor component z. To fix those we exploit the invariance of the equations

of motion, derived from the Lagrangian (2.3) with the prepotential (2.1), under SO(2, 2) =

SL(2,Z) × SL(2,Z) T-duality. This means that we can choose a representative set of

charges and electric fields, to simplify the computation. In this case, we can choose as

representative satisfying the Z2 symmetry that the four dimensional theory inherits from

M-theory, i.e.:

pi → pA , p0 → −p0 , eA → −eA , e0 → e0 , XA → −X̄A , X0 → X̄0 , z → z̄ .

(3.20)

Thus we can choose a gauge (or exploit Z2 invariance) to fix the charges and the moduli as:

p0 = 0 , eA = 0 , XA = i yA , X0 = y0 , (3.21)

with z, yi ∈ R. Note that this also implies qA = 0.

For the higher derivative theory (2.3), the supersymmetric attractors conditions (3.17)

are satisfied by:

w = 1 , v1 = v2 = 16 , xA =
1

8
i pA , eA = 0,

x0 =
1

8

√

dABC pA pB pC + 256 dA pA

−q0
, e0 =

√

dABC pA pB pC + 256 dA pA

−q0
, (3.22)

for q0 < 0 and dABC p
A pB pC + 256 dA p

A > 0. Note at this point that the KK-charge q0
in four dimensions is identified with the angular momentum J of the BTZ×S2 solution in

5D, for which, in the extremal limit, H = |J |. The class of BPS solutions analyzed satisfies

H = −J , so from eq. (3.2) we get hL = 0 and hR = −J = −q0 > 0. This indeed leads to

the result of [11], i.e.,

SBH = 2π
√

−q0(dABC pA pB pC + 256 dA pA) . (3.23)
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We point out that the constraints imposed by the BPS attractors are very stringent and

allow for an analytical solution for all the fields, even when the higher derivative sector is

considered. That is why the final result is already in the form expected from the analogous

statistical computation, i.e. the Cardy formula. As we stressed before, the situation will

not be quite as simple for the non-BPS solutions, as a closed form analytical solution will,

in general, be missing.

Next, we procede with the computation of the entropy of non-BPS solutions, studied

in [21, 22]. This class of solutions exists for the two derivative theory, dA = 0, and has the

same charge configuration as the BPS solution above except for one difference, residing in

a simple sign change for the electric field e0, consistent with the Z2 duality symmetry of

the two derivative action. The auxiliary field z cannot be fixed by this procedure and we

need to solve for it via the extremization equations. The results hence read:

w =
1

2
, v1 = v2 = 16 , xA =

1

8
i pA , eA = 0 ,

x0 =
1

8

√

dABC pA pB pC

q0
, e0 = −

√

dABC pA pB pC

q0
, (3.24)

for q0 > 0 and dABC p
A pB pC > 0. The leading order entropy reads:

SBH = 2π
√

q0(dABC pA pB pC) . (3.25)

To compute the first order corrections in dA we just need to plug this leading order solution

into the full entropy function, as explained before. Note that, if we would have used Wald

formalism, we would have needed the full near-horizon solution for the parameters, so

we could not have used the solution presented here, which was found from an N = 2

two derivative theory [22]. Note again that, since we are flipping the sign of q0 = J , the

condition of extremality H = J forces hR = 0 and hL = J = q0 > 0. So the first subleading

order correction to the entropy of this class of black holes is now given by:

SBH = 2π
√

q0(dABC pA pB pC)

(

1 +
64 dA p

A

dABC pA pB pC

)

, (3.26)

which corresponds, as we announced before, to the correct expansion up to the first order of

Cardy formula (eq. (3.6)). Hence we have resolved the puzzle concerning the macroscopic

entropy of non-BPS black holes in 5D/4D.

4 Results and conclusions

In this work we have resolved an entropy puzzle for four dimensional non-BPS black holes

of N = 2 supergravity. We find perfect agreement, in the thermodynamic limit of large

charges, between our macroscopic entropy results and the expected statistical entropy com-

puted in [5], even for non-supersymmetric black holes. The key to obtain this result is the

knowledge of the exact connection between the five and four-dimensional theories. Specif-

ically, the five-dimensional result is obtained from the anomaly calculations in 5D, where
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the anomalous terms contributing to the entropy are the Chern-Simons interactions. To

match this result in 4D, the need for the full reduction of the supersymmetric gravitational

Chern-Simons term was imperative [14], and the relevant results in [1, 9] have been used

extensively in this work. Based on the results of [4–6], it would surely seem that no other

higher order invariant would contribute to the entropy of (non-)BPS black holes in four

dimensions, simply because the statistical 5D results that hinge on anomalies, cannot be

corrected further, as no more anomalous terms are supposed to play a role at any order

in the perturbative expansion of the 5D theory. There might exist, however, other N = 2

higher derivative invariants in 4D that contribute non-trivially to the entropy of the class

of black hole analyzed: this would signal the presence in the 5D theory of new, so far un-

known and unexpected, anomalous higher derivative interaction term(s), or equivalently,

the breaking of the validity of the Cardy formula.8 In the context analyzed in this paper,

however, the microscopic counting and the macroscopic degeneracies are exactly linked by

the Cardy formula as we explained at length in section 3.1 (see also [5, 23]). The com-

putation is solid and little doubt exists about its validity. In fact, even though in the

previous sections we restricted ourselves to first order corrections to the entropy,9 one can

push the computation forward, by iteratively computing the higher order corrections to

the near-horizon parameter and entropy. It turns out that the series expansion of entropy

coincides exactly with the series expansion of the square root, i.e.

SBH = 2π
√

q0(dABC pA pB pC)
(

1 + 64u− 2048u2 + 131072u3 − 10485760u4

+ 939524096u5 + . . .
)

= 2π
√

q0(dABC pA pB pC + 128dA pA) , (4.1)

with u = dA pA

dABC pA pB pC
being the smallness parameter. Hence, as consistency dictates,

the statistical entropy computed from anomalies matches exactly the macroscopic entropy

obtained from the knowledge of the full effective action containing the anomalous terms.

Of course, this proves that, for the class on large black holes considered herein, the anomaly

result is reliable also in the non-supersymmetric sector. Nevertheless, there exist indications

that the anomaly results might not work for every class of black holes. In fact, although the

supersymmetric gravitational Chern-Simons term is the most analyzed higher derivative

invariant in 5D, other invariants were recently constructed [24]. These invariants also

include the Gauss-Bonnet density in 5D, which was analyzed in the context of black hole

entropy computations many years before [25]. As it turns out [26], small black holes seem to

escape the description in terms of the Chern-Simons terms, and instead receive corrections

from the disconnected Gauss-Bonnet sector. This means that there might be some hidden

caveat in the reasoning of [5] which is evidently contradicted in the presence of small black

holes. If the 5D theory possesses many sectors, each of which is connected to special classes

8For instance, in [23], the proper matching between the microscopic and macroscopic entropy is obtained

through the use of indices, while the Cardy formula fails to capture important subleties.
9This is, in principle, the maximal accuracy we can reach by considering the lowest order higher derivative

action.
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of black holes, then it is obvious to assume that something similar would also happen in

4D theory, i.e. other higher derivative invariants, of the first order in the perturbative

expansion in dA might exist in N = 2 theory. Furthermore, it would be important to

understand how exactly the anomaly procedure that led to the correct entropy results for

the classes of black holes analyzed, fails to capture information about different classes, and

its exact range of applicability. We plan on addressing these issues in the near-future.
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A Conventions and useful identities

We use the Pauli-Källén convention. Spacetime indices are denoted µ, ν, . . ., Lorentz indices

are denoted a, b, . . ., and SU(2) indices are denoted i, j, . . .. The Lorentz metric is ηab =

diag(−1, 1, 1, 1) and the anti-symmetric tensor εabcd is imaginary, with ε0123 = −i = − ε0123.

An anti-symmetric two-form Fab satisfies the following identities:

F±
ab =

1

2
(Fab ± F̃ab) , F̃ab =

1

2
εabcdF

cd , F̃±
ab = ±F±

ab . (A.1)

We always apply symmetrization and anti-symmetrization with unit strength, so that

F[ab] = Fab and F(αβ) = Fαβ . Furthermore, the following useful identities for products

of (anti-)selfdual tensors are noted,

G±
[a[cH

±
d]b] = ± 1

8G
±
ef H

±ef εabcd −
1
4(G

±
abH

±
cd +G±

cdH
±
ab) ,

G±
abH

∓cd +G±cdH∓
ab =4δ

[c
[aG

±
b]eH

∓d]e ,

1
2ε

abcdG±
[c
eH±

d]e = ±G±[a
eH

±b]e ,

G±acH±
c
b +G±bcH±

c
a = − 1

2η
abG±cdH±

cd ,

G±acH∓
c
b =G±bcH∓

c
a ,

G±abH∓
ab =0 . (A.2)

Finally, we remind the reader that SU(2) indices are swapped by complex conjugation,

(Tabij)
∗ = Tab

ij , and we make use of the invariant SU(2) tensor εij and εij defined as

ε12 = ε12 = 1 with εijεkj = δik.
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Weyl Multiplet Components Parameters

field eµ
a ψµ

i bµ Aµ Vµ
i
j Tab

ij χi D ωab
µ fµ

a φµ
i ǫi ηi

w −1 −1
2 0 0 0 1 3

2 2 0 1 1
2 −1

2
1
2

c 0 −1
2 0 0 0 −1 −1

2 0 0 0 −1
2 −1

2 −1
2

γ5 + + − + −

Table 1. Weyl and chiral weights (w and c) and fermion chirality (γ5) of the Weyl multiplet

component fields and the supersymmetry transformation parameters.

B Superconformal mutiplets — (covariant) Weyl, chiral, vector multi-

plets

Recall that the superconformal algebra comprises the generators of the general-coordinate,

local Lorentz, dilatation, special conformal, chiral SU(2) and U(1), supersymmetry (Q)

and special supersymmetry (S) transformations. The gauge fields associated with general-

coordinate transformations (eµ
a), dilatations (bµ), R-symmetry (Vµ

i
j and Aµ) and Q-

supersymmetry (ψµ
i) are independent fields. The remaining gauge fields associated with

the Lorentz (ωµ
ab), special conformal (fµ

a) and S-supersymmetry transformations (φµ
i) are

composite objects. The multiplet also contains three other fields: a Majorana spinor dou-

blet χi, a scalar D, and a selfdual Lorentz tensor Tabij , which is anti-symmetric in [ab] and

[ij]. The Weyl and chiral weights have been collected in table 1. Under Q-supersymmetry,

S-supersymmetry and special conformal transformations, the Weyl multiplet fields trans-

form as

δeµ
a = ǭi γaψµi + ǭi γ

aψµ
i ,

δψµ
i = 2Dµǫ

i −
1

8
Tab

ijγabγµǫj − γµη
i

δbµ =
1

2
ǭiφµi −

3

4
ǭiγµχi −

1

2
η̄iψµi + h.c. + Λa

Keµa ,

δAµ =
1

2
iǭiφµi +

3

4
iǭiγµ χi +

1

2
iη̄iψµi + h.c. ,

δVµ
i
j = 2 ǭjφµ

i − 3ǭjγµ χ
i + 2η̄j ψµ

i − (h.c.; traceless) ,

δTab
ij = 8 ǭ[iR(Q)ab

j] ,

δχi = −
1

12
γab /DTab

ij ǫj +
1

6
R(V)µν

i
jγ

µνǫj −
1

3
iRµν(A)γ

µνǫi +Dǫi +
1

12
γabT

abijηj ,

δD = ǭi /Dχi + ǭi /Dχ
i . (B.1)

Here ǫi and ǫi denote the spinorial parameters of Q-supersymmetry, ηi and ηi those of S-

supersymmetry, and ΛK
a is the transformation parameter for special conformal boosts. The

full superconformally covariant derivative is denoted by Dµ, while Dµ denotes a covariant

derivative with respect to Lorentz, dilatation, chiral U(1) and SU(2) transformations,

Dµǫ
i =

(

∂µ −
1

4
ωµ

cd γcd +
1

2
bµ +

1

2
iAµ

)

ǫi +
1

2
Vµ

i
j ǫ

j . (B.2)
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The covariant curvatures are given by

R(P )µν
a =2 ∂[µ eν]

a + 2 b[µ eν]
a − 2ω[µ

ab eν]b −
1

2
(ψ̄[µ

iγaψν]i + h.c.) ,

R(Q)µν
i =2D[µψν]

i − γ[µφν]
i −

1

8
T abij γab γ[µψν]j ,

R(A)µν =2 ∂[µAν] − i

(

1

2
ψ̄[µ

iφν]i +
3

4
ψ̄[µ

iγν]χi − h.c.

)

,

R(V)µν
i
j =2 ∂[µVν]

i
j + V[µ

i
k Vν]

k
j + 2(ψ̄[µ

i φν]j − ψ̄[µj φν]
i)− 3(ψ̄[µ

iγν]χj − ψ̄[µjγν]χ
i)

− δj
i(ψ̄[µ

k φν]k − ψ̄[µk φν]
k) +

3

2
δj

i(ψ̄[µ
kγν]χk − ψ̄[µkγν]χ

k) ,

R(M)µν
ab = 2 ∂[µων]

ab − 2ω[µ
acων]c

b − 4f[µ
[aeν]

b] +
1

2
(ψ̄[µ

i γab φν]i + h.c.)

+

(

1

4
ψ̄µ

i ψν
j T ab

ij −
3

4
ψ̄[µ

i γν] γ
abχi − ψ̄[µ

i γν]R(Q)abi + h.c.

)

,

R(D)µν =2 ∂[µbν] − 2f[µ
aeν]a −

1

2
ψ̄[µ

iφν]i +
3

4
ψ̄[µ

iγν]χi −
1

2
ψ̄[µiφν]

i +
3

4
ψ̄[µiγν]χ

i ,

R(S)µν
i =2D[µφν]

i − 2f[µ
aγaψν]

i − 1
8 /DTab

ijγabγ[µψν] j −
3

2
γaψ[µ

i ψ̄ν]
jγaχj

+ 1
4R(V)ab

i
jγ

abγ[µψν]
j + 1

2 iR(A)abγ
abγ[µψν]

i ,

R(K)µν
a =2D[µfν]

a − 1
4

(

φ̄[µ
iγaφν]i + φ̄[µiγ

aφν]
i
)

+
1

4

(

ψ̄µ
iDbT

ba
ijψν

j − 3 e[µ
aψν]

i /Dχi +
3
2D ψ̄[µ

iγaψν]j

− 4 ψ̄[µ
iγν]DbR(Q)bai + h.c.

)

. (B.3)

The connections ωµ
ab, φµ

i and fµ
a are algebraically determined by imposing the conven-

tional constraints

R(P )µν
a = 0 , γµR(Q)µν

i +
3

2
γνχ

i = 0 ,

eνbR(M)µνa
b − iR̃(A)µa +

1

8
TabijTµ

bij −
3

2
D eµa = 0 . (B.4)

Their solution is given by

ωµ
ab = − 2eν[a∂[µeν]

b] − eν[aeb]σeµc∂σeν
c − 2eµ

[aeb]νbν − 1
4(2ψ̄

i
µγ

[aψ
b]
i + ψ̄aiγµψ

b
i + h.c.) ,

φµ
i =

1

2

(

γρσγµ −
1

3
γµγ

ρσ

)(

Dρψσ
i −

1

16
T abijγabγρψσj +

1

4
γρσχ

i

)

, (B.5)

fµ
µ =

1

6
R(ω, e)−D −

(

1

12
e−1εµνρσψ̄µ

i γνDρψσi −
1

12
ψ̄µ

iψν
jTµν

ij −
1

4
ψ̄µ

iγµχi + h.c.

)

.

We will also need the bosonic part of the expression for the uncontracted connection fµ
a,

fµ
a =

1

2
R(ω, e)µ

a −
1

4

(

D +
1

3
R(ω, e)

)

eµ
a −

1

2
iR̃(A)µ

a +
1

16
Tµb

ijT ab
ij , (B.6)

where R(ω, e)µ
a = R(ω)µν

abeb
ν is the non-symmetric Ricci tensor, and R(ω, e) the cor-

responding Ricci scalar. The curvature R(ω)µν
ab is associated with the spin connection

field ωµ
ab.
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It is convenient to modify two of the curvatures by including suitable covariant terms,

R(M)ab
cd =R(M)ab

cd + 1
16

(

Tabij T
cdij + Tab

ij T cd
ij

)

,

R(S)ab
i =R(S)ab

i + 3
4Tab

ijχj , (B.7)

where we observe that γab
(

R(S)−R(S)
)

ab
i = 0. The modified curvature R(M)ab

cd satisfies

the following relations,

R(M)µν
ab eνb = iR̃(A)µνe

νa + 3
2D eµ

a ,
1
4εab

ef εcdghR(M)ef
gh =R(M)ab

cd ,

εcdeaR(M)cd eb = εbecdR(M)a
e cd = 2R̃(D)ab = 2iR(A)ab . (B.8)

The first of these relations corresponds to the third constraint given in (B.4), while the

remaining equations follow from combining the curvature constraints with the Bianchi

identities. Note that the modified curvature does not satisfy the pair exchange property;

instead we have,

R(M)ab
cd = R(M)cdab + 4iδ

[c
[a R̃(A)b]

d] . (B.9)

Now that the gauge fields of the superconformal agebra have been introduced, the matter

multiplets can be discussed. A covariant version of the Weyl multiplet will also be pre-

sented. We refer to the original paper [27] for detailed information about the non-linear

multiplet.

We start from the chiral multiplet which is typically obtained by imposing the lowest

component, the scalar A, to be a conformal primary (i.e. S-susy invariant) transforming

chirally under Q-susy. The superconformal algebra closes on the following chiral multiplet

representation:

Φ = (A,ψi, Bij , F
−
ab,Λi, C) , (B.10)

where A and C are complex scalars, ψi and Λi are SU(2) doublets of chiral fermions, Bij is

a complex SU(2) triplet and F−
ab is simply an anti-selfdual Lorentz tensor. Each component

of the chiral multiplet is characterized by two numbers, w and c, called the Weyl and the

chiral weight. For chiral multiplets these weights are related by c = −w. In that case the

Weyl weight of A equals w and the highest-θ component C has Weyl weight w+2 (the list

of all the weights assignments is given in table 2). The Q- and S- transformation rules of

a generic chiral multiplet read:

δA = ǭiΨi ,

δΨi =2 /DAǫi +Bij ǫ
j +

1

2
γabF−

ab εijǫ
j + 2wAηi ,

δBij =2 ǭ(i /DΨj) − 2 ǭkΛ(i εj)k + 2(1− w) η̄(iΨj) ,

δF−
ab =

1

2
εij ǭi /DγabΨj +

1

2
ǭiγabΛi −

1

2
(1 + w) εij η̄iγabΨj ,
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A ψi Bij F−
ab Λi C

w w w + 1
2 w + 1 w + 1 w + 3

2 w + 2

c −w −w + 1
2 −w + 1 −w + 1 −w + 3

2 −w + 2

γ5 + +

Table 2. Weyl (w) and chiral (c) weights of the chiral multiplet components. The chirality (γ5) of

the fermion fields is also indicated.

δΛi = −
1

2
γab /DF−

abǫi − /DBijε
jkǫk + Cεij ǫ

j +
1

4

(

/DAγabTabij + wA /DγabTabij
)

εjkǫk

− 3 γaε
jkǫk χ̄[iγ

aΨj] − (1 + w)Bijε
jk ηk +

1

2
(1− w) γab F−

abηi ,

δC = − 2 εij ǭi /DΛj − 6 ǭiχj ε
ikεjlBkl

−
1

4
εijεkl

(

(w − 1) ǭiγ
ab /DTabjkΨl + ǭiγ

abTabjk /DΨl

)

+ 2wεij η̄iΛj . (B.11)

In the above equations, the derivatives D are covariantized with respect to the gauge

transformations of the superconformal algebra appropriate for each field, as shown in (B.2).

The vector multiplet is an example of a reduced chiral multiplet, with components:

X = (X,Ωi,Wµ, Yij) , (B.12)

where X is a complex scalar, Ωi is an SU(2) doublet of chiral fermions, Yij is a real SU(2)

triplet, and Wµ is a physical gauge field.

This multiplet is obtained from the chiral multiplet by imposing a specific constraint

on the field representation. Specifically we impose a reality constraint on the complex

SU(2) triplet Bij , which alone fixes every component of the chiral multiplet in terms of the

vector multiplet components. The identifications are as follows:

A|vec = X ,

ψi|vec = Ωi ,

Bij |vec = Yij = εikεjl Y
kl ,

F−
ab|vec = F−

ab +
1

4
(ψ̄ρ

iγabγ
ρΩj + X̄ ψ̄ρ

iγρσγabψσ
j + c.c− X̄ Tab

ij)ǫij ,

Λi|vec = −εij /DΩj ,

C|vec = −2✷cX̄ −
1

4
F̂+
ab T

ab
ijǫ

ij − 3χ̄iΩ
i , (B.13)

where the symbol ✷c = DµDµ is the superconformal d’Alembertian and Fab is used to

indicate the abelian field strength Fab = 2 ea
[µ eb

ν] ∂µWν , which satisfies now a (supercon-

formal) Bianchi identity.

In table 3 we show the Weyl and chiral weight assignment for the vector multiplet

components. The Q- and S-supersymmetry transformation rules for the vector multiplet
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X Ωi Wµ Yij

w 1 3
2 0 2

c −1 −1
2 0 0

γ5 +

Table 3. Weyl (w) and chiral (c) weights of the vector multiplet components. The chirality (γ5)

of the fermion field Ωi is also indicated.

in a conformal background take the form,

δX = ǭiΩi ,

δΩi =2 /DXǫi +
1

2
εijF̂µνγ

µνǫj + Yijǫ
j + 2X ηi ,

δWµ = εij ǭi
(

γµΩj + 2ψµj X
)

+ εij ǭ
i
(

γµΩ
j + 2ψµ

j X̄
)

,

δYij =2 ǭ(i /DΩj) + 2 εikεjl ǭ
(k /DΩl) . (B.14)

The last multiplet we want to present is the covariant Weyl multiplet from which the

Weyl squared multiplet is obtained. This is another reduced chiral multiplet, and its

components read:

Aab|W = Tab
ij εij ,

ψabi|W = 8 εijR(Q)jab ,

Babij |W = −8 εk(iR(V)
− k
ab j) ,

(F−
ab)

cd|W = −8R(M)− cd
ab

Λabi|W = 8 (R(S)−abi +
3

4
γab /Dχi)

Cab|W = 4D[aD
cTb]cij ε

ij − dual . (B.15)

Note that the Weyl tensor is contained inside the highest independent component (F−
ab)

cd

through the R(M)− cd
ab curvature.

By squaring the covariant Weyl multiplet W a scalar chiral multiplet with w = 2 is

obtained,

A =(Tab
ijεij)

2 ,

Ψi =16 εijR(Q)jab T
klab εkl ,

Bij = − 16 εk(iR(V)
k
j)ab T

lmab εlm − 64 εikεjl R̄(Q)ab
k R(Q)l ab ,

F−ab = − 16R(M)cd
ab T klcd εkl − 16 εij R̄(Q)icdγ

abR(Q)cd j ,

Λi =32 εij γ
abR(Q)jcdR(M)cdab + 16 (R(S)ab i + 3γ[aDb]χi)T

klab εkl

− 64R(V)ab
k
i εklR(Q)ab l ,

C =64R(M)−cd
abR(M)−cd

ab + 32R(V)−ab k
l R(V)

−
ab
l
k

− 32T ab ij DaD
cTcb ij + 128 R̄(S)abiR(Q)ab

i + 384 R̄(Q)ab iγaDbχi . (B.16)
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Both the covariant Weyl multiplet W and its square are functions of the curvatures of the

local superconformal algebra. As expected from a reduced chiral multiplet, the highest

components of the Weyl multiplet are not independent.
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