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THE RESOLVENT OF SINGULAR INTEGRAL EQUATIONS*
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1. Introduction. Many two-dimensional mixed boundary-value problems in
mathematical physics lead to the singular integral equation:

:F K(t — x)¢(t) dt = w(x) 1)

for a function ¢(z) which is integrable over the interval [0, 1]. The inhomogeneous term
w(z) is specified on [0, 1], while the function K(z), called the “kernel”, is specified on
(= «, ®). The kernel is assumed here to be bounded everywhere except at the origin,
where it has a generalized Cauchy singularity:

K(z) ~ C/x |zlf, 0<u<1l as z—0. 2)

The integral in (1) is interpreted as a Cauchy principal value. Integral equations of the
above type have been discussed extensively in (1, 2], principally for kernels with simple
poles, u = 0.

Because the kernel has a strong singularity at the origin, Eq. (1) possesses a nontrivial,
integrable homogeneous solution. That is, there exists a function, h(z), for which
fo! h(z) dx exists, such that:

1
f K@t - Dh@ydt =0 forall z€ (0, 1). ®)
It may be shown, by a local expansion about the end points, that this eigensolution
behaves like:
h(z) ~%"" as =2 or 1 —2—0 4)

where v = 1 4+ u/2. Thus the solution ¢(z) of (1) is indeterminate within the addition
of an arbitrary multiple of i(x).
To make the solution of (1) unique we shall impose the constraint:

¢(1) = 0. (5)

In aerodynamics this is referred to as the Kutta condition (cf. [3, 4]). It will be noted
that if ¢(z) satisfies (5), then, in general, ¢(z) will be singular at 2 = 0, behaving like z"~".
The particular solution of (1) determined by (5) can, in principle, be written in the
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form:
8@ = F 10t Du) o ®)

where T'(¢, z), which does not depend on w, is called the ‘“‘resolvent’’ of the kernel K.
The general solution of (1) is, of course, obtained by adding an arbitrary multiple
of h(x) to (6).

The purpose of the investigation described herein is the construction of the resolvent
for any given kernel function. When w(x) is smooth, however, the solution of (1) can
usually be found quite simply by any one of numerous direct numerical techniques
(e.g. collocation or least squares, or other methods described in [5]). But when w(z) is
discontinuous or otherwise ill-behaved—as, for instance, in the aerodynamic problem
of flow over a flapped airfoil—such direct numerical methods become very difficult. Thus
the practical application of the solution by resolvent described below is to problems with
ill-behaved inhomogeneous terms.

2. Solution of the adjoint equation for polynomial w(x). We begin by constructing
a sequence of solution pairs (g.(x), £.(¢)) of the adjoint equation:

f KC= D@z = 0;  a@ =0, n=01, - @

where the £,(t) are nth-order polynomials. To do this we suppose that ¢,(x) and the
homogeneous solution ky(x) are known and defined by:

f kG- Da@ir =1, a0 =0, ®

1 1
f K(t — 2)ho(z) dz = 0; f ho(zx) dx = 1. 9)
0 o
Note that A(t) = ho(1 — t) satisfies (3), i.e., it is the homogeneous solution of the original
equation (1). Moreover we note that %o(z) may be constructed from g,(x) and its ‘“‘con-

A

jugate” §o(x) defined by:

f; Kt — x)§o(x) dx = 1; §o(1) = 0. (10)

In terms of ¢, and §, the homogeneous solution is:
M@ = @@ ~ 6@ /[ Lo — o) ds ay
For the important special case of antisymmetric kernel functions §o(z) = —go(1 — ),

and therefore:

ho(2) = (qo(2) + ¢o(1 — 7)) /2 /01 @) dt,  K(—x) = —K(x). (12)

Normally the functions g,(z) and k,(z) must be constructed numerically. This presents
no intrinsic difficulty, however, since the ‘‘forcing” terms involved are smooth functions.

To construct higher-order pairs of the sequence (g, , £,) we employ the following
two properties:
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) %K(t ) = —j—x K(t — ), (13)

(ii) df,.,/dt is a linear combination of (¢; , 7 = 0, n). (14)

We shall choose the polynomials £, in such a way that dg,.,/dz is a linear combination
of the (¢; ,7 = 0, n) and h, . There are many ways of doing this, the simplest being to set:

E"(t) = (tn/n!) + En(o) - 6n0 ) (15)
where §,, is a Kronecker delta, so that:
dEnH/dt = En(t) + 6n0 - En(o) (16)

The constants §,(0) will be determined later.
Differentiating (7), we find (using (13) and a formal integration by parts):

F K = 2)dgu/s) de = K@ = Dauns®) + @rer/d0). a7

This is a formal step since in general ¢,.,(1) is infinite. Clearly, though, to obtain the
desired recursion relation between the ¢; we must impose the additional constraint:

q»+1(1) = 0; n = Oa 1) te (18)

on all pairs above the lowest order. If this condition is met then the general solution
of (17) is (by (7), (16) and (9)):

Agas1/dz = qu(x) + [800 — £(0)]go(x) — Chsrho(z) (19)

for an arbitrary constant C,., . But, since ¢,.;(0) = ¢..,(1) = 0, the solution of this
equation is:

Gni@ = [ 00 dt+ (50— 5O) [ e = Coos [ n @t @0

where
Conn = [ 0.0 dt + (8 = 5O [ 0000 . 21)
0 o
The constants £,(0) are determined by the defining relation (7):
£0) = fo K(—2)g,(zx) dz. (22)

Now, with g, , & , and h, known, ¢, (2) is fully defined by (20-21). Thus £,(0), in turn,
is determined by (22) and &,(f) by (15). Clearly this process can be continued indefinitely,
thereby defining the entire sequence (g, , £.).

That the sequence so defined is, in fact, a sequence of solution pairs can be proved by
a simple induction argument, without recourse to the differentiation used to obtain the
result. We presume that the pair (g, , £,) satisfies (7), and write, for brevity:

4@ = [ B0 a1 23)
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where
Bn(t) = qn(t) + [6n0 - En(o)]qﬁ(t) - Cn+1h0(t)' (24)

The constants C,., and £,(0) are defined by (21) and (22).
Now we apply the kernel to the function (23), inverting the order of integration:

f K(t — 2)guni(z) dz = fo dx f ds K(t — 2)B,(s)

= [ as [ dr kG- 2B, (25)
But it may easily be shown that:
1 a3 1 1
[Ke—aiz= [ Ka-9dr+ [ Kenan— [ Kwar, o)
by which (25) becomes:
1 t 1
:/: K(t — 2)q,.,(2) dz = f dxf K(x — s)B,(s) ds
o 0 0
1 1 ol 1
+ [ B [[anK(=n) = [ Kmar [ Bods. @D
Each of the three terms on the right-hand side of (27) may be evaluated. Thus:

(1) /;l B.(s) ds = ¢..:(1) = 0 by definition ((23)-(24)).

G) [ @B [ dnK=m = f K000 = 0), by (25
and the definition of £,., .
(iii) fo K(n — )B.(s) ds = fo K(n — 5)(qu(8) + [820 — £.0)]go(s) — Crsiho(s)) ds

= En(n) + 6!10 - En(O)
since (g, , £,) is a solution. Thus the first term in (27) is (by (16)):

[ 16 + 60— 601an = [ B=tan = 60,0 - 60010,
Combining (i)-(iii), then, (27) becomes:

F KC = 900@ dz = Eers) = 5] + Eon©)] = 0 = b,

Thus, if (g, , £,) is a solution of (7), then (g,., , £x+1,) is also, which is the desired proof.

For the simplest Cauchy kernel, K(z) = —(1/7z), the sequence defined here is
closely related to the set of Chebyshev polynomials of the first and second kind, familiar
from the aerodynamic theory of subsonic airfoils (see [3, 4]). The reduction of the general
results presented in this paper to the classical solution of the airfoil equation is demon-
strated in Appendix 1.
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3. Simplification of the recursion relations. The definition of the sequence (g, , £,)

given in the preceeding section is somewhat cumbersome. It may be considerably simpli-
fied by the use of the following two properties:

Q) fmmﬂ—om=aomm1m (28)

(i) fM@M=fmmﬂ—@MfMMn. (29)
0 0
These relations are obtained by multiplying (7) by h(1 — ) (for (1)) or ¢.(1 — ¢),

(for (ii)) and integrating.
By the definition (15) of £,(t), (28) and (29) may be written as:

80) = 260 — o [ PR = 0t (30)

1 1 1 \ 1
[ a@ar =3 [ ra0 - 0d+ 6o - 60 [ aoad (1)
0 !
Thus the constants C,,, defined in (21) are:
1
Covv = 2 [ a1 = 0 d. (32)
nt Jo
Egs. (30) and (32) relate the constants £,(0) and C,,, directly to the known functions
¢o and h, , thereby making (20) a simple one-step recursion relation between ¢, and ¢, -

This recursion will now be solved.

4. Solution of the recursion relation (20). We write (20) in the form:

qn+1 =I'Qn+['Pﬂ) (33)

where

Iy = [y, (39)

0
P.(t) = [8.0 — £.(0)]go(t) — C.irho(D). (35)
Repeated application of (33) implies that:
Guar(@) = " go + 217 Py (36)
i=0
We now define the functions:

+ 1 [ n
@m=rh%=ﬁ£@-o%mw @37)
mw:rﬂm=$f@—o%mm. 38)

+Jo

Thus, by (30) and (32), we may write P,(?) as:
P,(t) = (H,(1) — 820)q0(t) — Qu(1)ho(D), (39)
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and, therefore:
I*VP, ;= (Hpi(1) = 8, )Qi(x) — Qu-;(1)H (2). (40)
Substituting (40) into (36), we find that:

Gon@ = 3 s (0Q@) = H(@@u (D). (41)

But, from the definitions (37-38) of Q; and H, , it is clear that this sum can be per-
formed, using the binomial theorem, with the result that:

%M@=$I}U[@R@Qﬂ+x—t—®" (42)

where R(s, 1) = go()ho(t) — go(t)ho(s).

Finally, we note that the integrand in (42) is antisymmetric in the interchange of
s and ¢, so that the integral over the square of side x vanishes. The general element in
the sequence, therefore, can be written in the form:

1 1 T "
Gor(2) = rﬁf, dtfo dsR(s, (1 + z — ¢ — s)

n+1

_ x 1 ! n+l
where R(s, 1) = go(8)ho(t) — go(t)ho(s).

We now show how this set of functions can be used to construct the resolvent of
the kernel.

5. Construction of the resolvent. We suppose that the right-hand side of (1) can
be expanded in the polynomials £, :

w(x) = i at.(1 — x). (44)

n=0

The solution ¢ which satisfies (5), then, must be:
#0) = 3 ag(l — o) (45)
Now we note that g, and £, are related by:
g.(x) = j:dt fotdsR(s, HE/(1 + 2 — t — s), n=1,2 - (46)

which follows from (43). Thus the relation between ¢ and w expressed by (44-45) can
clearly be written as:

80— 2) = age@) — [t [ dsRGs, 0wGs + 1 = ) 7)

where, by the orthogonality property (28),

a, = f 1 ho(2)w(z) dz. (48)
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Eq. (47) constitutes the principal result of this investigation. From it, however, may
be derived several alternative forms, including the canonical form (6).

For instance, by a double application of Leibnitz's role, the differentiation may be
taken outside the integrals, giving the expression:

ol — 2) = (;iz f Lt fo " ds Ris, Ouls + ¢ — 2) + ho(2) fo Ceu) . (49)

It will be noted that since the double integral vanishes at both end points, this equation
implies that:

'/: o(2) dx = _/: go(Hw(t) dt, (50)

which is a generalization of (29), and the first in an infinite series of moment relations
to be discussed below.
A third form of the solution (47) is obtained by making the transformation:

n=8+1t— 2 E=(t_3)/2’

under which (47) becomes:

aw=mw—@+£dwwmm@ (51)

where

mmw=—£&R@1—x+n—9=—L_@R@l—z+n—a (52)

The equality of the two forms in (52) follows from the antisymmetry of R(s, t) which
implies that

[R@z—9&=a (53)

The canonical form (6) of the solution is obtained by an integration by parts in (51).
Thus:

¢u)=j“MwaMz)
where
0, 2) = ho(Oa(l — 2) = 2 G, 2). (54)

In deriving (54) the properties G(1, ) = G(0, x) = 0, which follow from (52) and (53),
were used. It will be noted that G(», 1) = G(5,0) = 0 also and, therefore, that I'(¢,1) = 0.
This, of course, is necessary for ¢(z) to satisfy the presumed boundary condition,
¢(1) = 0. Note, however, that ¢(0) is bounded if and only if w is orthogonal to the
homogeneous solution.

Strictly speaking, since there is no general guarantee of the convergence of the series
(44) and (45), the above derivation shows only that the result (54) is valid for any finite
polynomial w(x). A rigorous demonstration that (54) is the correct resolvent for any
w(z) is given in Appendix 2.
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It should be noted here that the resolvent I'(¢, z), like the kernel K(t — z), will be
singular at { = z. Recalling the local singular behavior, (4), of the homogeneous solution
near the end points for a kernel which behaves like (2), it is possible to show that the
corresponding singularity in the resolvent is of the form:

I, z) ~ |nl*/n as n=t—xz—0.
Thus when . = 0, T, like K, has a simple pole. When 0 < u < 1 then T has only a weak
singularity. That the singularity in T should be weaker than that of K is not surprising
since these two functions represent mutually inverse operators.

6. Moments of ¢. In many applications the moments

M, =L f ' (@) da (55)

n!

are of particular importance. For instance, in aerodynamic theory, M, and M, are
proportional, respectively, to the total lift and pitching moment (about the leading edge)
of a two-dimensional airfoil.

These moments follow directly from the sequence (g, , £,) developed earlier. Multi-
plying (1) by ¢.(z) and integrating, we find that:

[ atue s = [ a0 . (56)
Clearly, then, the moments (55) are:
M, = [ g dx + Malso ~ £0). (57)
The first of these relations,
M, = [ " (D)) de, (58)
will be recognized as Eq. (50).

It is also worthy of note that the expression for M, becomes particularly simple for
antisymmetric kernels. In this case it is readily shown that:

£(0) = —1/2,
0@ =3 [ 1o - 0 = 01 a1,

and, therefore, that

1 1 ] 1-z
M, = 3 /; dz q,(z) j; w(t) dt + 1M, . (59)

7. Solution for a discontinuous forcing term. Let us suppose that w(z) has a finite
discontinuity of strength b at + = x, . Then w(xr) = w(x) + bH(x — x,), where H(¢) is
a unit step function and w(x) is continuous. The corresponding solution will be of the
form ¢(x) = &(z) + be.(x). The function ¢ corresponding to the continuous part of w
can usually be obtained most easily by direct numerical solution. We therefore consider
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here only the part ¢, , defined by:

f kG- oy dt = Ha — 2 61) = 0. (60)

Noting that the derivative of a step function is a delta function, we see at once from
Eq. (51) that the solution is:

8@ = alt = 2) [ W0 i+ Gao , 2 (61)

The moments of ¢,(z) are easily computed by the methods of the preceding section.
We note in particular that:

fn ' 6.(2) dz

[ 0@ dz, (62)

[ @iz = [ 0@ - 0@z, (63)

which, for an anti-symmetric kernel, becomes:

ﬂQM@M=%@a—xo—@m+%%m—Qmm, (64)

where Q,(z) is defined in (37).
The validity of the solution (61) of (60) is established in Appendix 2 as part of the
general demonstration of the result (54).

8. Conclusions. We have found that the general solution of the singular integral
equation [,' K(t — x)¢(f) dt = w(x) for an arbitrary w(z) can be written explicitly in
terms of two independent solutions for w(z) = 1. When w(zx) is sufficiently ill-behaved
that standard numerical methods cannot be used, or when solutions must be computed
for a large number of different forcing terms, the approach outlined here should be the
method of choice.

The method is particularly simple to apply when the basic functions ¢, , h, have been
approximated by linear series in some appropriately chosen set of mode functions y¢; :

0@ = 2 ai@@),  h@) = 2 biyi(@). (65)
When this is done the resolvent I'(s, £) becomes a bilinear series in the coefficients (a; , b;):
T(s,t) = 20 22 abTui(s, 1) (66)

where the T';;(s, t) are determined uniquely by the choice of mode functions. For a broad
class of kernel functions with simple pole singularities the modes ¢, may be taken to be
the Chebeshev polynomials of the second kind. For these modes the T,;(s, ) can be
evaluated once and for all and the construction of the resolvent function for any kernel
(within the class for which these modes are reasonable) reduces to simply finding the
constants a; , b; .

Appendix 1: The solution for K(x) = —1/7z. The airfoil equation:

}r f‘ xi’(_‘—)t dt = w(z), AQ)
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has the well-known general solution [1, 2]:

8(z) = aho(a) — 2= z) 0 q;(‘)_w(tt) dt A@)
where

g(@) = (—f—x) , AB)

O(I) (I(l _1 1,‘))175’ A(4)

and a is an arbitrary constant.

The particular solution satisfying ¢(1) = 01is given by A(2) witha = 0. We now show
that the solution (54) reduces to A(2) for this kernel.

From (43) and A(3-4) we have:

s — 1
R(S, t) = 1'_(8(1 . 8)1(1 _ t))l/z ) A(5)
and, therefore:
Re—t2+8 = = : A®)
' (@ — £)((1 - 2" = &)
Now by (52):
G0 = — [ &RE 1= 2+92-9
= —[ #Re-5:+9 AM)
where z = (1 — x + %)/2. Defining the new integration variable:
z2 _ Ez )1/2
u= ((1——_?)'2"—_52 ) A(8)
in A(7), we find, after some algebra, that:
Re—tz+9dt = —2 5% A®)
ru — 1

Furthermore, we note that:
u=0 at t=2  u=qm/qpk) at t=2z—n A(10y
Combining A(7, 9, 10), we find that

, 2 a0 (1) /a0 (z) d 1
(’(ﬂ’x)=;‘/; u2=1—rln

9o(n) + ¢(=)|,

qo(n) — qo(2) AQD

1 —u

It is then easily shown that:

0G(a, 5)/on = 130 1, AG2)
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which, by (54), implies that:
a
I, 2) = ho(Dal — 7) = 2 G, )

_ _1g1 — 2)go(t)
T r—t

This is identical to the classical result A(2), confirming the analysis. It follows that
the sequence (q, , £,) defined by (43) can be linearly combined to form the set of Chebeshev
polynomials (sin n cos™ (1 — 2x), cos ncos™* (1 — 2z)), commonly used in airfoil theory.

Appendix 2. Proof of Eq. (54). We shall demonstrate that the function defined in
(54) solves the original integral equation (1) for general w(z). This is so if K and T
satisfy the reciprocal relations:

fl At K(t — 2)TGs, &) = fl At K(s — OT(, 2) = 8(s — ), (B1)

which are obtained by the substitution of (54) into (1) and vice versa.
The proof of (B1) will be given in two parts:

i) that (61) is the solution of (60); ii), that (B1) follows from 1i).
i) Proof of (60) given (61). By definition (61):

6(z,8) = g1 — 2) f held) dt + G(s, 7). (B2)
Thus, for z in (0, 1),
fo CALK( = Dty 5) = [ Cdth(t) + I (B3)
where
I, = f CUK( — )66, 1), (B4)

Substituting the first of the forms (52) for G and changing variables, we find that
I;is:
s 1+8—¢
L=- dEfs AKQ1+s—z—§— ORE 1) (B5)
o .
But R vanishes, by definition, outside the unit square, so that the upper limit on the
¢ integration can be replaced by 1. Furthermore, the integrand in (B5) is antisymmetric

in the interchange of ¢ and ¢. Consequently I, may be written in either of the alternative
forms:

I, = —_‘/., dgf dtK(1+s—2—§t— R(E D) (B6a)
0 0

=fldgfoldtK(1+s—x—$—t)R(s,t). (B6b)

Now, by the definition of R(%, ) in (43) and the properties of g, , ho , it is easily shown
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that:
1
f Qi K(y — DRE, {) = —ho(® if yisin (0, 1). (B7)
0

Thus, since 1 + s — z — £isin (0, 1) when s < z in (B6a) and when s > 2 in (B6b),
we find that:

I,

[ h@a  s<a

—[W&Ma s> r. (BS)

Substituting this result into (B3) and recalling that h, is normalized, we find the desired
result:

[ ke = Do, 9 = HE - 9, (B9)

which is Eq. (60) in the text.
ii) Proof of (B1). From the definitions (B2) and (54) of ¢, and T, it is clear that

i)
F(S, 2?) = _g ¢1(.’b, S). (BIO)
Thus, by differentiating (B9) with respect to s we obtain:
1
[ at k@ — a1, o = a6 - 2, (B11)
0

which is the first of the relations (B1). The second relation follows immediately from
(B11) and the identity:
(1l —t,1—s) =TI, 0, (B12)

which can be shown to result from the definitions of I' and G. Substitution of (B12)
into (B11), with the transformations t —+1 — f,s > 1 — 2, x — 1 — s yields the desired
result.
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