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Summary 

A gross Earth datum is a single measurable number describing some 
property of the whole Earth, such as mass, moment of interia, or the 
frequency of oscillation of some identified elastic-gravitational normal 
mode. We show how to determine whether a given finite set of gross 
Earth data can be used to specify an Earth structure uniquely except for 
fine-scale detail; and how to determine the shortest length scale which 
the given data can resolve at any particular depth. We apply the general 
theory to the linear problem of finding the depth-variation of a frequency- 
independent local Q from the observed quality factors Q of a finite number 
of normal modes. We also apply the theory to the non-linear problem 
of finding density vs depth from the total mass, moment, and normal-mode 
frequencies, in case the compressional and shear velocities are known. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1. Introduction 

In the present paper we describe and apply a method for finding the resolving 
power of a finite set of gross Earth data when these data are used to reconstruct 
the internal structure of the Earth. The discussion is a continuation of that begun 
in Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert (1967, hereafter called Inverse I) but the present paper is self- 
contained. We introduce one refinement of terminology, a distinction between gross 
Earth functionals and gross Earth data, described immediately below. 

2. The nature of the inverse problem 

An Earth model is a mathematical abstraction which suffices for some geophysical 
discussion. For example, in much of observational seismology an Earth model 
need consist only of four functions of position, the density p,  the bulk modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, 

the shear modulus p, and the local quality factor Q (assumed independent of fre- 
quency). In geochemistry an Earth model would have to include the concentrations 
of various elements or compounds as functions of position and time. In geomagnet- 
ism, an Earth model would include electrical conductivity as a function of position. 
We will consider only Earth models which consist of a finite number of functions 
of the position vector r, say ml(r), ..., mn(r). Such an ordered n-tuple of functions 
can be thought of as a single n-dimensional vector-valued function m(r); we will 
call it an n-dimensional Earth model. 

All the Earth models under consideration will constitute a subset of some linear 
space '$2. Certain members of this linear space will be clearly without geophysical 
interest. For example, if the space f132 consists of all seismological Earth models 
@, K, p, Q-'), then those models for which p or K or p or Q-' is negative at some 
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170 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge Backus and Freeman Gilbert 

locations are of no geophysical interest and are included only to make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92 a linear 
space. The members of 93 which are of geophysical interest will be defined by a 
collection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB of inequalities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC > 0, p 2 0, Q-' > 0 in the seismological 
example) and will constitute a subset of '9Jl which we denote by ('Jn, 3). We call 
the members of this subset ' reasonable ' Earth models. 

Any rule g which assigns to each reasonable Earth model m a real number g(m) 
will be called a gross Earth functional. Thus a gross Earth functional is simply a 
real valued function on (!I& a). If 1112 consists of seismological Earth models, 
examples of gross Earth functionals are total mass, moments of inertia, frequencies 
and decay rates of elastic-gravitational normal modes, rotational splitting parameters, 
and seismic travel times between particular sources and receivers. 

The value which a particular gross Earth functional is observed to have for the 
real Earth will be called a gross Earth datum. Suppose we have chosen for study 
some particular finite collection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 of gross Earth functionals g,, ..., g,, which 
may or may not be linear. We assume that their values have all been measured 
accurately for the real Earth. Errors in the measurements are an interesting and 
essential complication which we plan to treat in a later paper. Let yl, ..., 7, be 
the measured values which the functionals g,, ..., ghr in 9 are observed to take 
for the real Earth. We define a ' %acceptable ' Earth model to be any reasonable 
model m (i.e. any member of (%R, 9)) which exactly satisfies the N equations 
gl(m) = y,, ..., g,(m) = yN. The collection of all $-acceptable Earth models we 
denote by (%, W,$). Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 is necessarily finite, it is intuitively reasonable that 
(!)It, B,9) will be 'very' infinite. In Inverse I we showed that if % consists of 
all seismological Earth models ( p ,  K, p, Q-') and 9 is finite, then under very general 
assumptions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(gt, 9,B) is either empty or an infinite-dimensional (usually curved) 
submanifold of m. The argument is the same for other types of Earth models. 

As we accumulate measurements of more gross Earth data, the infinite-dimen- 
sional manifold of acceptable Earth models shrinks. If there are more data, the 
are fewer Earth models which can satisfy them all. Formally, if 9, c '?i2 (here c 
means set-theoretic inclusion) then ($Jn, B, 9J G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(g?, 2, 9'). But since the larger 
collection 9, of measured gross Earth functionals is still finite, the smaller manifold 
(%R, W , 9 , )  of acceptable Earth models is still infinite-dimensional. We can never 
evade the issue of studying infinite dimensional manifolds of acceptable Earth models. 

It follows that the 'inverse problem' for a given finite collection 9 of gross 
Earth functionals consists in describing the infinite-dimensional manifold (1112, 9, 93) 
of all ??-acceptable Earth models, i.e. all models m in (%TI, 9) to which the gross 
Earth functionals g,, ..., g, in 9 assign the observed values y,, ..., y,. In Inverse I 
we showed how this formulation of the inverse problem makes that problem well- 
posed from the point of view of a digital computer, and enables the computer to 
generate particular %acceptable Earth models. We also discussed briefly the problem 
of exploring the whole manifold (m, B, g), and pointed out that one of the most 
interesting questions to a geophysicist is whether the different members of ('9Jl, 9, 9) 
differ only in their fine-scale detail, i.e. whether the infinite-dimensionality of 
(%R, B, 9) arises simply from the fact that a finite number of measurements gives us 
only a finite resolving power. Obviously the answer to this question will depend on 
9. In Inverse I1 we gave some examples of qualitatively different Earth models which 
fit the normal mode data within the errors of observation. In the present paper we 
describe and apply a general method for discovering whether the observed values of 
a given finite set $9 of gross Earth functionals determine a ' reasonable ' Earth model 
m which is unique except for fine-scale resolution. When such a model is deter- 
mined, we show how to estimate the resolving length of the data at any depth in the 
Earth. 

As in Inverse I and 11, we consider only gross Earth functionals which are FrCchet 
differentiable (Dunford & Schwartz 1958) with respect to some convex norm on m, 
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The resolving power of gross Earth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA171 

and we assume that the Earth models are spherical. That is, the functions of position 
which are to be determined from the data depend only on the distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr from the 
centre of the Earth. The modifications required to treat non-spherical Earth models 
will become obvious as the discussion proceeds. Usually it will suffice to 'correct' 
the observed data for the effects of small asphericities (including rotation), as dis- 
cussed in Inverse I, Dahlen (1968) and Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert (1961). 

One of the main applications of the present discussion is to the question of the 
variation of density p with depth in the Earth. If the gross Earth functionals in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 
are frequencies of normal modes, and if we know the compressional velocity up(r) 
and the shear velocity vs(r), then we can use for the space of Earth models '3JI simply 
the space of functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(r) ,  while the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA92 of inequalities which define ' reasonable ' 
Earth models consists of the single inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 3 0. Most geophysicists would 
accept as a second member of W the inequality dpldr < 0, or even perhaps the 
adiabatic fluid stability condition 

where g(r)  is the local acceleration of gravity. These last two inequalities are by 
no means laws of nature. The mantle might permit dp/dr > 0 if it has finite strength 
or very high viscosity or a certain type of convective regime. 

If we want to use the normal mode data to determine u p  and us as well as p ,  then 
we can take for 91 the linear space of function triples (p, up,  us). The set 9 becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p 2 0, 0 < 2v, 6 3*vP,  and perhaps one of the inequalities on dpldr. 

The inequalities W that define reasonable Earth models play no role in the 
discussion until after all the gross Earth data have been used. Then those inequalities 
serve to eliminate certain otherwise %-acceptable Earth models. Therefore in what 
follows we will usually make no explicit mention of 92, and will write the manifold 
of %acceptable Earth models as (m, 9). 

3. Linear gross Earth functionals 

The simplest inverse problems are those for which all the gross Earth functionals 
in 9 are linear functionals on YJt. We may assume without loss of generality that 
the members of 9 are linearly independent, for if one of them is a linear combination 
of the others, say 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i= 1 

g N + l  = c aigi, 

then the observations must satisfy 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1=1 

YNt 1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.x al Yi* 

Otherwise there are no %-acceptable Earth models. But then obviously Y ~ + ~  gives 
no information about the Earth which is not already contained in yl, ..., yN, so 
we may delete g N + 1  from 9 with no loss of information. When the set 9 consists 
of N linearly independent linear functionals g,, ..., g, on '3JI, then the manifold 
(m, 9) of 9-acceptable Earth models is an affine hyperplane in '93 with codimension 
N (Kato 1966). 

To simplify this first discussion, we assume that the Earth models in '3JI are single 
functions m of radial distance r. In Section 4 we discuss the modifications required 
to handle n-dimensional Earth models m(r) = (ml(r),  . . ., m,(r)). 
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172 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackus and Freeman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FrCchet differentiability and linearity imply that each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

g , ,  . . . , g ,  in 9 has the form 
1 

gi(m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 Gi(r) m(r> dr 
0 

of the linear functionals 

(3 * 1) 

where Gi(r) is a known function of I because g i  is a known linear functional. (Here 
and throughout this paper we take the radius of the Earth to be 1.) We denote the 
measured values of g , ,  ..., g ,  for the real Earth by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy l ,  ..., yN. Thus the N equations 
which determine (W, 9), the set of 9-acceptable Earth models, are simply 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y i  = Gi(r)m(r)dr,  i = 1 ,  ..., N .  s 0 

The numbers g,(m) can be thought of as generalized moments of the function m. 
Our problem is, what can we say about a function m in llJz when all we know about 
it is that its N moments (3.1) have the values (3.2) (and that it satisfies the ' reason- 
able ' inequalities %'). 

A partial answer to this question was given in Inverse I. Let gl be the set 
functions f i  in 1132 such that gl(rE) = ... = g,(n?) = 0. Then %l is an infinite-dimen- 
sional linear subspace of %R. If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, is any $acceptable Earth model, then the manifold 
('iUl, 9) of %-acceptable Earth models consists precisely of the functions rno(r)+rE(r) 
where rE is any member of gl. Certain of these models will be eliminated by the 
inequalities 9. 

It is difficult to visualize an infinite-dimensional function space, like gL, so we 
seek some way of describing all the functions in (1132, 9) in terms of their appearance 
as functions of r. Given any particular point ro between 0 and 1, we try to compute 
from the observed data y l ,  ..., yN a number (m), ,  which is in some sense an average 
of the values of m in a short interval containing r0. If such a local average can be 
obtained from yl, ..., yN alone, it will be the same for all %-acceptable Earth models 
m, and its value is a positive statement about the Earth to which we can attach as 
much confidence as we attach to the observed data. From a finite number of moments 
of m the best average we can hope to obtain near ro will be a weighted average which 
(we hope) heavily emphasizes points close to r0 and gives very little weight to distant 
points. In principle we cannot hope to do better. The length of the interval around 
ro that contains the heavily weighted values of m can be thought of as the resolving 
length of the data near ro, or the resolving length of the average (m),,.  Clearly 
we seek that average, calculable from the moments gl(rn), ..., g&), which at ro 
has the shortest possible resolving length compatible with good suppression of 
contributions from distant r.  Our problem is to quantify this qualitative description 
of a desirable local averaging process. 

We consider only averages of m which depend linearly on m,  so that the root- 
mean-square, for example, is excluded. A linear average of m can always be written 
in the form 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(m>r, = 1 A(r07 r, m(r) dr 

0 

where the averaging kernel A is ' unimodular '; that is, 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ~ ( r ~ ,  r )dr  = I .  
0 

(3 3) 

(3.4) 
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The resolving power of gross Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA173 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The averaging kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA may be a distribution in r rather than an ordinary function. 
Ideally, we would like to evaluate equation (3.3) with A(ro, r) = d(r-ro) where 
6 is the Dirac delta distribution. With only a finite number of moments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gl(m), ..., gN(m) available for computing the local average of m near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro, we cannot 
hope to obtain weighting functions A which are so localized. 

We are assuming that our average (m),,, whatever it turns out to be, depends 
only on gl(m), ..., gN(m). Since (m),, and gl(m), ..., gN(m) all depend linearly on 
the function m, it follows rigorously (as proved in Appendix A) that (m),, must 
depend linearly on gl(m), .. ., gN(m). Therefore there exist constants ul(ro), .. ., aN(ro), 
depending on the fixed point ro, such that 

for any Earth model m, while for any %acceptable Earth model, including the real 
Earth, 

N 

i = l  
<m>r, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ai(r0) Yi. (3 * 6 )  

From equation (3.1) we see that ( n ~ ) , ~  has the form (3.3) with 

In short, the weighted averages of m which we can compute from the values of 
the moments g, (m), . . ., gN(m) consist precisely of the linear combinations (3.5); 
and the weight function or averaging kernel for any such average is equation (3.7). 
Then our problem is to choose the constants a, (ro), . . ., aN(rO) in equation (3.7) so 
that A(ro, r) satisfies equation (3.4) and resembles d(r-ro) as closely as possible. 
Among all unimodular linear combinations of the known kernels Gl(r), .. ., GN(r), 
which one is most nearly 6(r-ro)? 

If the kernels GI, ..., GN are unfortunately chosen, none of their unimodular 
linear combinations will resemble 6(r -ro).  An example is Gi(r) = sin n ir, 
i = 3,4,  . . ., N + 2. No linear combination of these kernels is a unimodular function 
A(ro, r)  which, when used in equation (3.3), gives a useful estimate of a local average 
value of m(r) = sin nr. However, if Gi(r) = sin n ir with i = 1, 2, ..., N, then the 
choice 

2 
ai(ro) = - sin n ir, 

gives for A(ro, r)  in equation (3.7) simply the Dirichlet kernel for the Fourier sine 
series : 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 

AN(rO, 4 = SN(r-ro)+SN(r+ro) 

sin n(2N + 1) x 
SN(2x) = 

2n sin n x  * 

Either simple inspection or the theory of Fourier sine series assures us that for 
large N the foregoing Dirichlet kernel is a good approximation to 6(r-ro). The 
width of the peak in AN(ro, r)  for r near r, is approximately 2N-' .  

In a real geophysical problem the kernels Gi(r) in equation (3.1) usually will be 
generated numerically. There will be no analogue of the theory of Fourier series 
available to suggest how we ought to pick the coefficients ai(ro) in equation (3.7) 
in order to make A(ro, r) a good unimodular approximation to 6(r-ro), that is to 
give A(ro, r)  a high, narrow peak near ro and very small values elsewhere (small 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
6
/2

/1
6
9
/6

2
3
6
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



174 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘ sidebands ’ in the terminology of filter theory). We need a real-valued functional 
which measures the ‘ 6-ness ’ of arbitrary unimodular functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(r). Many such 
‘ 6-ness criteria ’ are available, so we are free to choose one which facilitates numerical 
computation. 

We pick a function J(ro, r )  which vanishes when r = r ,  and increases monotonic- 
ally as r increases or decreases away from r,, but otherwise is arbitrary. Examples 
are 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
George Backus and Freeman Gilbert 

J(ro, r )  = (r-r0)’ 

Jo(ro, r )  = 2aZ{ 1 - exp [ - (r - ro)’/2a’]> (3.8) 

where 2g is a positive number which measures the width of the trough in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ, when 
r is near ro. Then for any function A(r)  we can define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

(3.9) 

Among all unimodular functions A,  those which have smaller values of A,(A) will 
be more concentrated toward ro, and will tend to have higher, narrower peaks at ro 
and smaller magnitudes away from r,. For the linear combinations of the form 
equation (3.7), that is, of the form 

N 

i = l  
A(r) = C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, Gi(r), 

Aj(A) is a positive-definite quadratic function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,, ..., a,. If we choose the 
constants a, so as to minimize Aj(A)  subject to the linear constraint (3.4), we obtain 
that unimodular linear combination of the known kernels G,(r),  . . ., GN(r) which 
most nearly resembles 6(r - ro)  when resemblance is measured by the 6-ness criterion 
(3.9) defined by our particular choice of the function J .  

The coefficients a,, ..., a, in equation (3.7) which minimize equation (3.9) 
subject to equation (3.4) clearly satisfy the N + 1 equations 

j =  1 

J 
(3.10) 

where the ( N +  1)’st unknown, A, is a Lagrange multiplier. 
Our numerical procedure is to evaluate the coefficients in (3.10) by numerical inte- 
gration and to solve equation (3.10) for a,, ..., a, and A. Then we substitute 
a,, ..., a, into equation (3.7) and inspect the A(r,, r) which results. If this A(r,  r )  
resembles d(r-ro)  in having a high, narrow peak near r ,  and being of very small 
magnitude elsewhere, then the integral (3.3) can be thought of as an average of 
the values of m near r,; and the value of that average for any %-acceptable Earth 
model is equation (3.6) with the same coefficients ai(r,) just used to compute 
A(r,, r) .  The width of the peak in A(r,, r )  measures the resolving power of the 
data, yl, ..., y N ,  near ro.  

If the solution A(r,, r )  obtained from the foregoing calculation does not resemble 
a blurred delta function, and if J(r,, r )  does not become nearly constant as Ir-rol 
increases, then we can conclude that none of the linear combinations of G , ,  ..., GN 
resembles 6(r - ro )  and that from the given data it is not possible to obtain an 
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The resolving power of gross Earth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA175 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
approximation to an average of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm near ro. In the case of a pathological zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ,  one 
which is nearly constant except for a very narrow trough of width 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 1 at ro, 
this negative conclusion may not be valid. If G,, ..., GN have unimodular linear 
combinations which resemble d(r-ro)  but if all such linear combinations have a 
peak width considerably greater than 20, then ois a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcis the linear combinations of 
GI, ..., GN the pathological function J behaves almost as if it were constant. It does a 
very poor job of selecting &like unimodular linear combinations of G,, ..., GN. For 
such pathological J’s, failure of the calculation (3.10) to produce a good approximation 
to 6(r-ro)  from among the linear combinations of G,, ,.., GN does not mean that 
no such linear combination exists. 

4. Other criteria of 8-ness 

(3.4) and (3.7) we might try to minimize 
Many variations of the 8-ness criterion suggest themselves. Subject to equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

j J(r-0, r )  lA(i-11 dr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

or we might try to minimize 

A,@) = max{IA(r)[: 0 < r < y o - L  or ro+L< r < l} 
and then vary L so as to produce the narrowest peak in A compatible with an accept- 
able sideband level. Or, subject to equations (3.4), (3.7) and the constraint that 
A(r) 2 0 for all r, we might try to minimize 

i J(ro, r)  A(r) dr. 

In short, the whole technology of filter design is at our disposal, but the filter windows 
are unimodular linear combinations of the given kernels G,, ..., GN rather than 
Nth degree trigonometric polynomials. 

0 

If we have used a non-pathological J(ro, r), such as 

4 r 0 ,  r )  = (r-ro)’, (4.1) 

in our 6-ness criterion (3,9), and if the A(ro, r)  we obtain resembles 6(r-ro),  then 
we can take (m},,,, calculated from equation (3.3,  as an estimate of m(ro), with the 
understanding that (m},, is really an average, with resolving power given by the 
width of the peak in A(ro, r) .  Then as a function of r,  (m}, is an estimate of m(r). 
It may turn out that ( m ) ,  is very large for some r and very small for others. In that 
case, sideband contamination can very seriously affect the usefulness of (m) ,  as an 
estimate of m(ro) when the latter is small. To get a local average of m near a point 
ro where m is small we would prefer an averaging kernel A(ro,r)  which was very 
small at those r where m(r) is large, even at the expense of accepting a wider peak 
near ro. 

To deal with this question, suppose that m,(r) is an estimate of m(r), which may 
or may not be (m} ,  obtained from the 6-ness criterion (3.9) with a non-pathological 
J .  If Im,(r)l has very large variations, we can use 

1 

J @ O ,  r )  = (r-ro)’ /  m,(r)’dr+ [~1(r)-m1@-o)l2 (4.2) 
0 

or some similar function to generate a new d-ness criterion (3.9). This new criterion 
penalizes A(r) for being large where ml(r)  is large; it will give local averages ( m } ,  
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176 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which may be regarded as a second estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm2(r) for m(r). If m2(r) is very different 
from ml(r )  we can repeat the whole process with m2 instead of m ,  in equation (4.2). 

Different 6-ness criteria will produce different optimal unimodular linear combina- 
tions (3.7), but if somehow we manage to generate coefficients al, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., aN such that 

George Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Freeman Gilbert 

N 

C aiGi(r) 
i = l  

has a high, narrow peak at r, and very small magnitude elsewhere, then the procedure 
by which we obtained a,, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, is irrelevant to the fact that now we have a linear 
combination 

N 

C aiYi 
i = l  

of the observations yl, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy N  which is approximately an average of m in 
of known length about r,. And inspection of the averaging kernel 

N 

C ai Gi(r), 
i = l  

an interval 

without reference to any theory, will give us this resolution length or resolving 
power, as well as the height and weight of the sidebands. 

So far we have considered only one-dimensional Earth models. We are forced 
to modify our 8-ness criterion in discussing the resolving power of gross Earth 
functionals when the Earth models are n-dimensions). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArol now be a linear space 
of Earth models which are ordered n-tuples of real functions of the radius r,  say 
m(r) = (m,(r), ..., m,(r)). An example with n = 3 could be the seismological 
models (p(r), up(r), us(r)). In such spaces, a FrCchet differentiable, linear gross 
Earth functional gi has the form 

v = l 0  

where the kernels Giv(r) are known. Now the problem is to determine, for specified 
p and r,, an estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m)pro of the average value of m,(r) when r is near r,; and 
to use in this determination only the observed values yl, ..., yN of the linear gross 
Earth functionals g, ,  ..., gN in some finite set 9. 

As with one-dimensional Earth models, we restrict attention to local averages 
(m),,, which depend linearly on m. Since g,(m),  . . . , g N (  m)  also depend linearly 
on m and since (m},, is supposed to be calculated from gl(m), ..., gN(m) alone, 
it follows from Appendix A. that the local average must depend linearly on the 
values of the gross Earth functionals. That is, there must be constants 
ul,,(ro), . . ., aN,(r0) such that 

for any Earth model m in '9l. But then equations (4.3) and (4.4) imply that 

n 1  

where 
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The resolving power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross Earth data 177 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In equation (4.6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro are fixed, so we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn functions of r, namely 

For the given ASl(ro, r), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., AJr,, r), which we abbreviate as Al(r) ,  ..., An(r). 
fixed p and ro the abbreviated form of equation (4.5) is 

n l  

v = l b  

and the abbreviated form of equation (4.6) is 
N 

i = l  
Av(r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ai Giv(r), (4.8) 

where a, stands for aip(ro). In this abbreviated notation, if m is a 9-acceptable 
Earth model, we have 

N 

i = l  
<m>,ro = C a,  Y i *  (4 - 9) 

Equations (4.7), (4.8) and (4.9) show us that from the data, yl, ..., yN,  we can 
compute any weighted average of a 9-acceptable m in which the averaging kernals 
have the form (4.8), and Appendix A assures us that these are the only weighted 
averages of m which we can compute from yl, ..., 7, and which depend linearly on m. 
The problem is to find coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal ,  ..., a, which produce from the known kernels 
Civ(r) and equation (4.8) a set of averaging kernels Al(r) ,  ..., A,(r) such that 
equation (4.7) really does give a good estimate of the average value of m,(r) near ro. 
We see that the estimate (4.7) will be contaminated not only by sideband contribu- 
tions from m,(r) with r distant from ro, but also by contributions from the other 
components of m. Ideally, we would like to be able to choose the constants al ,  .. ., U, 

so that the Av(r) in equation (4.8) have the form 

Av(r) = a,, 8(r - ro), 

where 8,, is the Kronecker delta. With only finitely many data about m we cannot 
expect such good resolution. 

In order to generate a good n-tuple of averaging kernels A(r) = (Al(r),  . . ., A,(r)) 
in the form (4.8) we need a 8-ness criterion which tells us how closely an imperfect 
n-tuple of averaging kernels resembles the ideal n-tuple (0, ..., 0, 8(r-ro), 0, ..., 0) 
which has the Dirac delta distribution in the pth position and zeros in the other 
n - 1 positions. 

One example of such a criterion is 
1 n 1 

A J , W  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 J 6 - 0 ,  r",(rP d r + C  (1 -8,) J [Av(.>l2 dr, (4.10) 
0 v =  1 0 

where J(ro, r)  is a function of the sort used in equation (3.9). Then our numerical 
procedure for optimizing the coefficients a l ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, for a fixed p and ro is to substitute 
equation (4.8) into equation (4.10) and to minimize A,JA) as a positive-definite 
quadratic function of a, ,  ..., a,, subject to the constraint 

A,(r) dr = 1. i 0 
(4.11) 

All of the remarks about 8-ness criteria for averaging of one-dimensional Earth 
models, including equation (4.2), then generalize to the n-dimensional models. 
In particular, if the different components q ( r ) ,  . . ., m,(r) have different physical 

6 
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178 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackus and Freeman Gilbert 

dimensions, we want to make them dimensionless and of order unity so that all 
the terms in the sum on the right in equation (4.10) have roughly the same order 
of magnitude. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Mantle dissipation 

As an example of the analysis of linear gross Earth data for one-dimensional 
Earth models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm(r), we consider the problem of determining the dissipation at various 
depths in the mantle when the normal modes of elastic-gravitational oscillation of 
the Earth are excited. We take as gross Earth data the reciprocals Q-' of the 
observed quality factors of some finite collection of normal modes. We assume 
that the Earth is isotropic and spherical and that its density p, bulk modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK, and 
shear modulus p are known functions of the radial distance r.  We also assume that 
the dissipation is a small perturbation (Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% 1) confined to the mantle, and that at 
each depth r the dissipation is described by a frequency-independent local Q,  Q(r). 
This means that the energy per gram dissipated in any local cycle of strain is inde- 
pendent of the speed with which the cycle is executed and is proportional to the 
square of the local strain amplitude. Then an Earth model is m(r) = [Q(r)]-' and 
a gross Earth datum is y t  = Qi-' for some particular normal mode, which we will 
call the ith mode. When Q-' = 0, let the computed vector displacement field in a 
normal mode be s(r, 9, A) eiW', where r is radius, 9 is colatitude, and A is longitude. 
Let 2a = V~+(Vs)~where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT means transpose. Let D(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, A) = a-(tr o)I/3 where 
I is the three-dimensional identity tensor and tr means trace. Define 

n 2 n  
1 

9 ( r ) ' =  -1dBsinB JdAtr(D.D*) 
4n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

where * means complex conjugate and the dot product of two second-order tensors 
is defined as in Gibbs & Wilson (1901). Define 

n 2 n  

Then for the ith normal mode thegross Earth functional Qi-' has the form 
1 

where (Anderson & Archambeau 1964) 

OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 r2 p(r) Y i ( r ) 2  dr  

0 

In our numerical calculation of the kernels (5.2) we used the shear modulus 
and normal-mode wave functions obtained from model 5821 described in Appendix C .  
We considered sets '3 of 15 to 25 gross Earth functionals (values of Q-' for normal 
modes). Our S-ness criterion was equation (3.9) with J given by equation (3.8). 
We tried various trough-widths 20 in equation (3.8), ranging from 21s' = 1 to 
202 = As expected from the number of functionals available, the optimal 
averaging kernel A(ro, r)  depended only slightly on B as long as < 2a2 < 1, 
but when 20' became less than the resemblance of A(ro, r )  to S(r-ro) began 
to disappear. 
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The resolving power of gross Earth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA179 

From our kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.2) we tried to obtain linear combinations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(ro, r)  which were 
good approximations to 8(r-ro)  for ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.55, 0.65. 0.75, 0.85, 0.94 and 0.98. 
We used five different sets of gross Earth functionals, described and labelled in 
Table 1. In Table 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,T, denotes a toroidal mode with angular order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and radial 

Table 1 

Modes whose Q-' constitute 9 

OsO, ls0, Zs0, 3s0, Z s l ,  O s 2 ,  l S Z ,  ZS2, O s 3 ,  

lS3 ,  Zs3, OS4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlS4, Zs4, 4s47 OsS, lS5, 2 s 5 ,  

4ss9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS6, os7, OS8, 1S8, 0% I s l o  

,,T2, n = 0, 1, 2, ..., 14 

,,SZ, n = 0, 1,2, ..., 14 

,Tl, n = 1, 2, ..., 8 and ,,T2, n = 0, 1, 2, ..., 8 

,,S1, n = 1, 2, ..., 8 and J2, n = 0, 1, 2, ..., 8 

order n, while ,,S, refers to the corresponding spheroidal mode. The gross Earth 
functionals in $9: were chosen as representative of data likely to become available 
for the real Earth. The other sets of gross Earth functionals were chosen to test 
the relative effectiveness of spheroidal and toroidal Q's in giving resolving power 
at depth, and to test whether kernels Gi  with only one angular order 1 had linear 
combinations resembling 6 functions, or whether kernels for two values of I were 
required. 

For ,,312s and ,,g?, Fig. 1 shows how the optimal averaging kernel A(ro, r)  at 
ro = 0.75 varies with the trough width 20 in the 8-ness criterion ( 3 . Q  (3.9). When 
20' > lo-', clearly the kernel is not heavily dependent on 0. 

Figs 2, 3 and 4 show the kernels A(ro, r) obtained for various ro and for the five 
sets of gross Earth data listed in Table 1. The b-ness criterion was equations (3.9) 
and (4.1). From these figures we see that ,,g:, ,,gZs, ,,glZT and ,,ql2' produce 
averaging kernels A(ro, r)  which do resemble b(r-ro),  but that the optimal A(ro, r)  
obtained from ,,gZT can hardly be regarded as an approximation to a delta function. 
It follows that if we know Q-' for the normal modes described in any of ,,3:, .gZs, 
,,g12 or ,,glZs we can obtain rather good estimates of the local average of Q-'(r) 
near various depths ro, simply as linear combinations of the values of Q-' in $9'. 
But if we know only the values of Q-' for the normal modes described in ,,gZT we 
cannot obtain good averages of Q-'(r) near any depth other than ro = 0.80. (We 
believe we understand why this particular depth is exceptional, but the discussion 
is both complicated and speculative, so we omit it. However, see Appendix B 
and Fig. 10.) 

For reasons given in Section 7 we conjecture that if Q-' is known for all the 
toroidal modes with two different fixed angular orders 1, or for all the spheroidal 
modes with a single angular order I ,  then Q-'(r) is uniquely determined; but that 
if Q-' is known only for all toroidal modes with a single fixed angular order I then 
Q -  ' (r)  is not determined. 

From our numerical calculations, summarized in Fig. 4, we conclude that if 
values of Q-' are available for normal modes with low radial orders but for many 
angular orders then we can obtain averages of Q-'(r) at various depths, but the 
thickness of the layer over which we average tends to increase with depth. This is 
the generally accepted view, but we believe that it has not previously received quantita- 
tive treatment. We note also that it is subject to one very important exception. 
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180 George zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABackus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

€ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - I  L 

t 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

€=-3 

I , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E =-4 

I,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R 

FIG. 1. The optimal averaging kernel A(ro, R) for Q-'(R)  at ro = 0.75 ( h e  
vertical line) as a function of 2 d  = loE. The 8-ness criterion is equations (3.8) 
and (3.9) and the gross Earth data are nS,zS on the left and on the right. 
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The resolving power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross Earth data 181 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 2. The optimal averaging kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(ro, R)  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ- '(R) at various ro (the iine 
vertical lines). The h e s s  criterion is equations (3.9) and (4.1) and the gross 

Earth data are .gZT on the left and ,,B12T on the right, 
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P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.00 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

ro = 0.60 

B 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro 0.70 

-" 
ro = 0.00 

I I 

h 

ro = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.90 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I 

ro = 0.94 

I I I 1 -  

0 R 10 R I 

FIG. 3. The same as Fig. 2 except that the gross Earth data are n92S on the left 
and nQ,zS on the right. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
6
/2

/1
6
9
/6

2
3
6
3
1
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I '  
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ro = 0.55 

I I 
I I 1 8 I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I t 1 
R I 

FIG. 4. The same as Fig. 2 except that the gross Earth data are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.StS. 

For reasons which we do not now understand it is possible to get higher resolving 
power at the bottom of the mantle than at shallower depths. 

A very interesting mathematical question is exactly which infinite sets of normal 
mode Q's are needed to determine Q-'(r). We emphasize, however, that infinite 
sets of experimental data are never available. The geophysical problem will always 
involve only finitely many gross Earth data, and we will never have infinite resolving 
power. From a practical point of view, what we need is a method of finding the 
resolving power of a given finite set of data. It seems most unlikely that this practical 
question will ever be answered analytically for arbitrary sets of gross Earth data; 
numerical calculations of some sort probably always will be required. 

Throughout the discussion of Q in this section we have assumed that the local 
Q(r) was independent of frequency. This assumption is not essential. The separately 
observable normal modes cover only about one decade of frequencies. In that 
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184 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACeorge Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
restricted frequency range the local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ might be well represented as a polynomial 
of low order in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo or Inw, say 

Q(r, 0)-' = ml(r )+wm2(r )+02m3(r )  

Q(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo)-l = ml(r)+ (In o) m2(r)+ (In 0)' m3(r). 

Then the space YJl of Earth models would consist of n-tuples m(r) = (m,(r), ..., m,(r)) 
where n -  1 is the degree of the polynomial used to represent the frequency dependence 
of the local Q .  The techniques outlined at the end of Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 would become 
appropriate. 

The foregoing discussion shows what can be learned about local mantle dissipation 
from good data on the Q's of normal modes. According to Slichter (1967), ' The 
determination of the Q values of the free vibrations is still in an unsatisfactory state '. 
Slichter estimates that determinations of Q are probably in error by as much as 
20-30 per cent. On the basis of the spin gaps (Gilbert & Backus 1965) and ellipticity 
gaps (Dahlen 1968) for the degenerate modes, we believe that even Slichter's error 
estimate is optimistic. Therefore in the present paper we do not propose any list of 
' observed ' Q's from which Q-'(r) can be estimated. 

or 

6. Non-linear gross Earth functionals 

When the gross Earth functionals g , ,  ..., gN in 9 are non-linear functionals on 
the linear space YJl of Earth models, estimating the resolving power of the data is 
more complicated than for linear functionals. As in Section 3, we begin by consider- 
ing spaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9Jl of one-dimensional spherical Earth models, single real-valued functions 
m(r) of radial distance r.  We suppose that somehow, for example as in Inverse I, 
we have found in YJl a 9-acceptable Earth model m,. FrCchet differentiability of the 
gross Earth functional g i  at m, implies that there is a function Gi(r), depending on 
m,, such that if rn, is any other Earth model then 

1 

g,(ml)-gi(mO> = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ~ i ( r > [ m l ( r ) - m o ( r ) ~ + ~ ~ ( m , - m o ) ~ l .  (6.1) 
0 

Thus if m, -mo is sufficiently small then g i (ml )  -g i (mo)  depends almost linearly 
on m, -mo. Now we define f i  as this linear approximation to 6gi at m,. That is, 
for any m in %R, 

1 

f i (m) = j ~ , ( r )  m(r) dr. (6.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

Then f i  depends on which 9-acceptable model m,  we are using, and if mo is fixed 
then f,, . . . , f N  are well-defined linear gross Earth functionals. Therefore we can 
proceed exactly as in Section 3. 

We pick a particular point ro between 0 and 1, and a non-pathological 6-ness 
criterion (3.9), and we find the most 6-like averaging kernel (3.7), that is, the uni- 
modular linear combination A(ro, r)  of Gl(r), ..., GN(r) which most nearly resembles 
d(r-r,) when the resemblance is measured by our chosen 6-ness criterion. In a 
certain limited sense the averaging kernel A(ro, r)  shows us what we can say about 
the behaviour of a %-acceptable Earth model m(r) when r is near r,  if our only 
information about m is its %-acceptability. Suppose that m, and m, are both 
%-acceptable Earth models (g i (ml )  = gi(mo) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy i ,  i = 1, ..., N )  and that m ,  differs 
only slightly from m, (that is, for i = 1, ..., N the quadratic remainder term in 
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185 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Then to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe resolving power of gross Earth data 

equation (6.1) is much smaller than the term which is linear in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-no). 
first order in m l - m ,  we have 

1 

G,(r)[m,(r)-mo(r)]dr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, i = 1, ..., N s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
(6.3) 

But if we multiply the ith of equations (6.3) by ai(ro) and sum over i from 1 to N 
we obtain 

1 1 

with an error of second order in m l - m o .  
In other words, if we define the average (m), ,  by equation ( 3 . 3 )  with the averaging 

kernel (3.7) then all 9-acceptable Earth models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm which differ only slightly from 
mo have the same average value near ro. The resolving length (peak width) ot the 
optimal averaging kernel (6.2) can be thought of as the resolving power of the data 
for depths r near ro when we are examining the %’-acceptable Earth models which in 
the linear space 

If mor(r) is another 9-acceptable Earth model which differs so much from mo(r) 
that we cannot neglect the quadratic term in the expression (6.1) for gi(mo’) -gi(mo), 
then m,’ will generate another set of kernels G,’(r), describing the FrCchet derivatives 
of the non-linear functionals gi at mo’. From these new kernels Gi’(r) we will obtain 
as a unimodular linear combination a new optimal averaging kernel A’(ro, r). The 
average (m‘)ro obtained from A’(ro, r)  and m,’ will generally differ from the (m), ,  
obtained from A(ro, r), and the resolving lengths of A(ro, r)  and A’(ro, r)  will usually 
be different. These consequences of the non-linearity of the gross Earth functionals 
g , ,  . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg, are inherent in the problem. 

When the Earth models m in 9Jl are n-tuples of functions of r and the gross Earth 
functionals in 9 are non-linear, the foregoing discussion can be generalized in an 
obvious way, using Section 4‘s linear theory for n-dimensional models instead of 
Section 3’s linear theory for one-dimensional models. 

lie close to m,. 

7. The density structure in the Earth 
As an illustration of the discussion in Section 6, we use the normal mode fre- 

quencies to infer the density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as a function of radial distance r, assuming that a&) 
and vs(r), the compressional and shear velocities, are known. (As remarked at the 
end of Section 6, we could let p, u p  and us all be unknown, but we confine ourselves 
here to - the simpler case.) We use five sets of gross Earth functionals, “g:, n$lT, 

,gZs, n%’12T and ,,glZs. The notation refers to Table 1 and any one of the foregoing 
sets of gross Earth functionals consists of the squared angular frequencies of the 
normal modes listed in Table 1, together with the Earth‘s total mass (Gutenberg 1959) 
and total moment of inertia (Jeffreys 1963; King-Hele et al. 1964). 

When gi is w2 for the ith normal mode, then Gi(r) is the kernel which gives the 
first-order change 6wz produced by a change 6p in the density model when up and 
us are kept fixed. This kernel is obtained immediately from equation (49) of Inverse I. 
In the notation of that paper it is 

where 

47cr2[Rir+vS2 Mi’+ ( u p 2 - $ ~ s 2 )  K,‘] 
Gi(r) = 

Ti 
(7.1) 

x 2 x  1 

Ti = sinode dA rz p(r ) s iZdr  s 0 0 0  s s  
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186 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge Backus and Freeman Gilbert 

and where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARE', Mi',  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK i  are calculated from the displacement field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi of the ith normal 
mode. 

In our numerical calculations the functions up(r), us(r) and the po(r)  which defines 
the $-acceptable Earth model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm, were taken from model 5821, described in 
Appendix C. The 6-ness criterion was equations (3.9) and (4.1), as in 
Section 5. Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 and 6 give the optimal averaging - kernels A(ro, r)  for several 
values of ro, which are obtained from ,,qzT, ,,giZT, ,,gZs and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"gI2'. Fig. 7 gives 
the optimal averaging kernels A(ro, r )  obtained from ,,g: for ro = 0.1, 0.2, 0.3, 0.4, 
0.5, 0.54, 0.55, 0.6, 0.7, 0.8, 0.94, 0.98 together with estimates of the resolving 
length L(ro), defined as 

1 

for each of the depths ro = 0.05, 0.10, 0.15, ..., 0.85, 0.90 and 0.94 and 0.98. 
The model po(r) fits all the available spheroidal normal mode frequencies within 

experimental error. As pointed out in Inverse I, there are many, such models, so 
we cannot say the real Earth must look like po(r). We can say, however, that if 
the data are correct and if the real Earth's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp( r )  differs from po(r) by an amount 
small enough to permit neglecting the quadratic term in equation (6-1), and if uP(r), 
vs(r) of model 5821 are correct, then the averages (7.3) computed from the real 
Earth's p ( r )  must agree with the averages (7.3) computed from the model po(r), 
at least correct to first order in (p -po ) /po ,  because these averages are the same for 
all acceptable Earth models close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo in 9Jt. The decrease in the weighted averages 
(p) , ,  for ro = 0.05, 0.10 and 0.15 is obviously a result of the increasingly poor 
resolution as ro approaches 0 (see Fig. 7) and not a property of the function p(r ) .  

We note one very important characteristic of A(ro, r). When ro is close to the 
core-mantle boundary, r,, the resolution is very high indeed. The integral (3.3) 
is very nearly 

A r c  - 1 P-  (ro) + p(rc + ) p+ (ro) 

where 

0 

1 

re 

By giving ro two different values near r, we obtain two different linear combinations 
of p(rc -) and p(rc -I-). the densities of core and mantle at the core mantle boundary. 
We can solve these equations for the two densities separately. If we use ro = 0.54 
and ro = 0.55 we obtain 

p(r , - )  = 10~04+0~05 g/cm3. 

p(r ,+)  = 5.72+0-03 g/cm3. 
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The resolving power of gross Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA187 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 R 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 

I 
I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

I I 1 I 
I 

0 R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  The optimal averaging kernel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(rO, R) for p(R) at various ro (the line 
vertical lines). The u-ness criterion is equations_(3.9) and (4.1) and the gross 

Earth data are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"gZT on the left and n912T on the right. 
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188 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.20 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 
ro ~ 0 . 4 0  

ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-0.60 

ro =0.80 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.90 

ro r0.94 

R I 

I ro = 0.20 

ro ~0.40 

ro -0.60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

ro =040 

I 
I I I 

ro -0.90 

1 I 
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

ro z0.94 

I I I I 

I 
R 

FIG. 6. The same as Fig. 5 except that the gross Earth data are "g2' on tho left 
and ,gZ2" on the right. 
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The resolving power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross Earth data 189 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0,30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ro '0.40 

ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.50 

, 

ro = 0.54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R 

ro = 0.55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 

ro 060 

ro = 0.70 

I 
I 

F 
- 

ro = 0.80 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b 

ro = 0.94 I 

I I I I 

I R 

FIG. 7. The same as Fig. 5 except that the gross Earth data are ,,gls. The lengths 
of the fine horizontal bars are the resolving lengths L(r& 
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190 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

t I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 

FIG. 8. The solid curve is the density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo(R) in model 5821 and the dots are its 
local averages at certain R, computed with the averaging kernels shown in Fig. 7. 

Fdl scale is 16.551 g/cm3. 

0 

The error estimates were obtained simply by using other values of ro near 0-55 and 
are meaningful only if +(r)  and us(r) describe the real Earth. 

No scientific measurement is complete without a statement about its uncertainties 
We believe that in geophysical inverse problems where an Earth model is constructed 
from gross Earth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9, one proper description of the uncertainties is by means of 
figures like Figs 7 and 8. The %-acceptable model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmo, the optimal averaging kernels 
A(ro, r),  and the result (m>,, of averaging rno with these kernels are all items of 
information which are essential to any assessment of the relation between the pro- 
posed model mo and the real Earth. It is only the local averages (m),, which are in 
any sense determined by the data, and the resolving power of the averages is best made 
clear by inspection of the averaging kernels A(ro, r), aIthough a single number like 
the L(ro) defined in equation (7.2) does give a rough idea of the local resolving 
power. 

We think it important to emphasize that many different sets of gross Earth 
functionals will produce essentially the same averaging kernels obtained in this 
section. In Appendix D we give the averaging kernels obtained with a set of 26 
gross Earth functionals which have only 17 members in common with the set ,,g:. 

8. Speculative discussion of Borg's theroem 

Suppose the space 1131 of Earth models is the Hilbert space of all square-integrable 
functions on 0 < r < 1, and that g,, g,, ... is an infinite set of linear gross Earth 
functionals. If the kernels Gl(r),  G,(r), ... which generate g,, g,, ... constitute a 
complete set of functions in '%N then the values of g,(m), g,(m), .. . uniquely deter- 
mine the function m. (Strictly speaking, nz is determined except on a set of Lebesgue 
measure 0, but if m is piece-wise continuous it is uniquely determined except at the 
single isolated points of discontinuity where its value is without physical meaning.) 
Suppose we denote by ))31, the linear space consisting of all functions which are linear 
combinations of G,, G,, ..., G,. Then, as N increases, '%N, will contain better and 
better approximations to delta functions. If the converse is formulated carefully 
it is also true, but this is not the place for such a discussion. In any event, for 
infinite sets of kernels, completeness is essentially equivalent to the possibility of 
constructing &like unimodular linear combinations. 
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The resolving power of gross Earth data 191 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Of course, it is geophysically unrealistic to discuss infinite sets of gross Earth 

data; we will never have such an infinite set of observations. Nevertheless, it is of 
some mathematical interest to learn which infinite sets of gross Earth data do 
uniquely determine the Earth‘s structure. Our results for finite sets of gross Earth 
functionals can only suggest conjectures about the mathematical problem, but they 
do suggest a definite conjecture. Suppose we know zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvp(r)  and us(r) and are trying 
to determine zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(r) from the total mass and moment of inertia and the frequencies of 
some infinite set of normal modes. If the set of normal modes we use consists of 
all the spheroidal modes .SI belonging to one fixed angular order 1, Fig. 6 suggests 
that p ( r )  will be uniquely determined. If our normal modes consist of all the toroidal 
modes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.T, for one fixed 1, Fig. 5 suggests that p ( r )  will not be uniquely determined; 
but p will be determined if we have all the modes ,,T, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo different values of 1. 

In Inverse I we made a conjecture based on an unproved extension of Borg’s 
(1945) theorem: given the total mass, moment, up(r), and us@), then all the eigen- 
frequencies of ,,T, for two different 1 would determine p(r)  uniquely, but all for one 1 
would not. Spheroidal modes were conjectured to behave like toroidal modes in 
this respect. The evidence from Figs 5 and 6 supports our conjecture for toroidal 
but not for spheroidal modes. Perhaps the difference is connected with the fact 
that Borg’s theorem was proved only for Sturm-Liouville equations of second order, 
and only the toroidal modes are governed by such an equation. Very crudely, 
Borg’s theorem may be phrased thus: if the spectra of a single Schrodinger equation 
are known for two different sets of homogeneous boundary conditions then the 
potential function in the Schrodinger equation is uniquely determined. Our conjec- 
ture in Inverse I was based on the idea that perhaps the two spectra could be obtained 
in other ways than from two different sets of boundary conditions. When the fre- 
quencies of all ,,T, for two different 1 are known, we have only one set of boundary 
conditions, but we have the spectrum for two different potential functions whose 
difference is known. 

The evidence of Figs 5 and 6 suggests that if this conjectural extension of Borg’s 
theorem is correct, then the eigenfrequencies of ,,S, for a single I should be regarded 
as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo spectra. Such a suggestion is not completely ridiculous. In a uniform slab 
the analogue of the spheroidal modes is obtained by coupling P and S-V waves; 
for a given horizontal wave number, as the vertical wave number increases this set 
of modes decouples into two separate sets of organ-pipe modes, one corresponding 
to vertically travelling P waves and the other to vertically travelling S waves (Ewing, 
Jardetsky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Press 1957). In any case, it is evidently dangerous to conjecture exten- 
sions of Borg’s second-order theorem to systems of fourth and sixth order in the 
naive manner of Inverse I. 

9. Geographical Earth structure 

All the detailed discussion so far has been directed at spherical Earth models, 
n-tuples of functions of radial distance r. The method for calculating local averages 
generalizes in an obvious way to aspherical Earth models, n-tuples of functions of 
the position vector r. For simplicity of exposition we restrict the discussion to the 
case n = 1 ,  in which the Earth models are single real-valued functions rn(r). We 
denote by E the region in three-space occupied by the Earth. First we consider 
linear gross Earth functionals. 

If gi is a linear FrCchet-differentiable gross Earth functional, then in direct 
analogy with equation (3.1) we have for any Earth model rn 

g,(m) = G,(r) rn(r)dV s E 
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192 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGi is a known function of position r and dVis the volume element in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE.  The 
measured gross Earth data yl, . . ., y N  are three-dimensional generalized moments of 
the unknown Earth model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm: 

George Backus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Freeman Gilbert 

yi = G,(r) m(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdV. (9.2) J E 

We try to calculate from the measured values of yl, ..., y N  some estimate of a local 
average of m(r) in some neighbourhood of a given point ro. We consider only 
linear averages, 

where 

(any function satisfying equation (9.4) we call unimodular). Ideally we would like 
to have A(ro, r) = b(r-ro), the three-dimensional Dirac delta function. 

Since (m), ,  is supposed to depend only on gl(m), .. ., gN(m) and to be linear in 
m y  Appendix A shows that it must be linear in gl(m), ..., gN(m). Hence there exist 
constants ul(r0), ..., aN(ro) such that for any Earth model m 

while for any %-acceptable Earth model 

N 

<m>r, = C ai(r0) Y i *  
i = l  

From equation (9.1) we see that (m), has the form (9.3) with 

For a given r,,, the problem is to choose that unimodular linear combination of 
Gl(r), ..., GN(r) which most nearly approximates d(r-ro). To do so we need a 
three-dimensional b-ness criterion. We choose any function .7(ro, r) which vanishes 
when r = ro and increases monotonically as Ir-rol increases away from zero. 
Examples are 

and 
J(roy r) = Ir-ro12 

Ja(roy r) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2a2{1 -exp [-lr-ro12/202]}. (9.8) 

Then for any function A(r) we can define 

Then just as in Section 3 we insert equation (9.7) into equation (9.9) and minimize 
the resulting positive-definite quadratic form in alY ...) a, subject to the side- 
condition (9.4). 

If the resulting optimal kernel A(ro, r) does not have a high peak for r near ro, 
with small magnitude elsewhere, we conclude that the given gross Earth data do not 
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permit calculation of a local average of m near ro. (In drawing this conclusion 
we must be careful to avoid pathologically small values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT in equation (9.8).) 
If the optimal A(ro, r) does resemble a blurred 6(r-ro), then (m),, is given by 
equation (9.6). 

The generalization to non-linear gross Earth functionals proceeds exactly as in 
Section 6. 

Now we note an extremely important fact. The deviations of density and seismic 
velocities from sphericity and the deviations of the local stress-strain relation from 
isotropy are all probably small enough to be treated by first-order perturbation 
theory. But in that case, their contributions to the measured gross Earth data are 
linear gross Earth functionals. As we have seen, there is at present no technique 
which we are sure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori will establish uniqueness of the local averages when the 
measured gross Earth data are non-linear. But when they are linear this uniqueness 
is automatic. In other words, if we can somehow establish that the real Earth 
differs only slightly from a certain isotropic spherical Earth model, then the local 
averages of that difference, if they exist, are uniquely determined by the data, even 
if they represent aspherical deviations, anhydrostatic stresses, or anisotropies in the 
stress-strain relation. 

The generalization of the 6-ness criterion for the aspherical case to n-dimensional 
Earth models is accomplished exactly as in Section 4 for the spherical case. 

10. Conclusions 

The principal result of our work is that it is possible to draw rigorous conclusions 
about the internal structure of the Earth from a finite set of gross Earth data, and 
that if the data are properly chosen the conclusions are not only rigorous but geo- 
physically interesting. 

The test of whether a set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY of gross Earth functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,, ..., g, is ‘properly 
chosen ’ is whether the corresponding kernels G, have unimodular linear combina- 
tions which are good approximations to Dirac delta functions. If the data are 
properly chosen, then among the weighted averages of real Earth structure which are 
computable directly from the data there appear averages which concentrate their 
weight in narrow intervals of depth. Thus local average values of the functions 
ml(r),  ..., m,(r) which define the Earth model (density, compressional and shear 
velocities, etc.) are calculable from the observed data. 

When the gross Earth functionals are linear, these local averages are determined 
completely by the observed values of the corresponding gross Earth functionals. 
When the gross Earth data are non-linear, the local averages of Earth structure are 
determined for all Earth models which resemble any particular acceptable model. 
However, for non-linear gross Earth functionals there remains the possibility that 
two widely different models will be acceptable. This paper does not deal with that 
problem. The only approach to it known to us is the one discussed in Section 3 
of Inverse I. 

There is one serious practical limitation to the ideas put forward in this paper. 
With the computing facilities presently available to us we cannot easily handle sets 
Y of gross Earth functionals with more than about 40 members. If we could handle 
more data, we would presumably get better resolution than that shown in Figs 2-7. 
We can never get infinite resolution, but with higher resolution the techniques 
described here and in Inverse I should be capable of giving rigorous answers to a 
number of qualitative questions about the interior of the Earth, such as whether 
there are low velocity zones or density inversions in the mantle. 
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APPENDIX A 

Linearity of auerages. We have a linear space 1111 of Earth models and a finite set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 of linearly independent linear gross Earth functionals g,, ..., g,. We also have 
an ' averaging operation ' which assigns to each m in 1111 a real number (m) which 
depends linearly on m and can be calculated from g,(m), ..., g,(m) alone. We 
want to prove that (m) depends linearly on gl(m), ..., g,(m). 

Let 6% denote the one-dimensional linear space of real numbers, while 6%' 
denotes the N-dimensional linear space of ordered N-tuples of real numbers. Then 
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The resolving power of gross Earth data 195 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
we may think of the whole collection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA59 of gross Earth functionals as a single function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 which assigns to each m in 'ill1 an ordered N-tuple in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$3,: 

4(m>' = (gl(m), * * * ,  gN(m))* (A. 1) 

Because each functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ,  is linear, 4 : 9X+ 
We are also given that the 'average', (m>, can be calculated from 

g,(m), ..., g,(m). That is, there is a function $: -+ % which assigns to each 
ordered N-tuple (xl, ..., x,) of real numbers a real number $(x,, ..., x,), and for 
any m in '93 we have 

is also linear. 

$(gdm)9 ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 g,W) = (m>. 

Combining equations (A. 1) and (A. 2) we see that 

(m> = $4(m), (A.3) 
so that the composite mapping $4 : '93- % is linear. 

Now we have the mappings 4 and $ shown in the following diagram: 

4 J i  9x + + 8 

and we know that 4 and the composite mapping $4 are linear. We want to conclude 
that $ is linear. First we observe that 4 maps '93 onto %,; that is, every member of 

is 4(m) for at least one m in '93. This follows from the linear independence of 
g,, ...,g,. The set 4(%N) of all members of 'illiN which are +(m) for some m in '93 
is a linear subspace of there is a 
non-zero member of %,, say (al, ..., aN), which is orthogonal to the space +('93). 
But then for every m in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcJJ1 

because 4 is linear. If 4(911) is not all of 

a,g,(m)+...+a,g,(m) = 0, 

contradicting our hypothesis that g,, ..., g, are linearly independent. 
Our conclusion that $ is linear now follows from a 
THEOREM: Suppose X ,  Z are linear spaces and 4 : X -r Y and $ : Y-r 2. 

Suppose that 4 and $4 are linear and that 4 is onto. Then $ is linear. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof. Let y, and y2 be any two vectors in Y, and let a, and a, be any two 

real numbers. By hypothesis, there are vectors x1 and x2 in X such that yi = 4(x i ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i =  1,2. Then 

4% Y1 +a2 Y2) = $(a1 4 W + a 2  4(x2)) 

= $4@l x1 +a, x2) 
because 4 is linear. But $4 is also linear, so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4% Y1 +a2 Y2) = a1($4)(Xl)+a2($4)(x,). 

$(a,Y,+azY2) = al$(Yl)+a2$(Y2) 

From the definition of a composite mapping, ($$)(xi) = $[+(xi)] = $(yi), so 

as asserted in the theorem. 

APPENDIX B 

Dirichlet kernels. Section 4 was a very brief discussion of different 6-ness criteria. 
In this Appendix we describe an entirely different approach to the attempt to con- 
struct &like linear combinations of a given finite set of functions or n-tuples of 
functions. 
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196 George Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
To motivate the present approach, first we apply our integral 6-ness criterion to 

the well-understood set of functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sin jar, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, ..., N, on the interval 
0 < r d 1. Fig. 9 shows the Dirichlet kernel for those functions, 

(A. 4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 N  
AD(ro, r )  = - C sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinro sin inr, 

71 i = l  

and also their most &like linear combination, selected according to the 6-ness 
criterion (3. S), (3.9) with 20 = 1. All kernels are plotted for N = 17 and ro = 0.5 
only. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 

FIG. 9. Averaging kernels A(ro, R)  on 0 < R < 1 computed at ro = 0.5 from 
sin w iR, i = 1, . . , 17. Above is the Dirichlet kernel and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbelow is the optimal 

kernel given by 8-ness criterion equations (3.9) and (4.1). 

We see from Fig. 9 that the averaging kernel produced from sin nr, sin 2nr, . . . , 
sin 17nr by the 6-ness criterion (3.8), (3.9) has a resolving length about twice as 
long as that of the Dirichlet kernel and sidebands much smaller than those of the 
Dirichlet kernel. In addition, for reasons unknown to us at this writing, our d-ness 
kernel in Fig. 9 is non-negative throughout 0 d r < 1. Considerable work by one 
of us (G.B.) over the past year on integral 8-ness criteria for generating averaging 
kernels on the sphere from spherical harmonics indicates empirically that kernels 
so generated usually have poorer resolution and smaller sidebands than the Dirichlet 
kernel. 

If this empirical indication generalizes to the much less regular kernels G,, . . ., GN 
considered here, it suggests that we might gain resolution at the expense of larger 
sidebands if we could find the analogue of the Dirichlet kernel for an arbitrary finite 
set of linearly independent functions G,(r),  ..., G,(r) on 0 d r < 1. To this end, 
we reformulate the problem of interpreting a finite number of linear gross Earth 
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The resolving power of gross Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata 197 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
data. Nothing is lost by discussing from the outset the general case, with n-dimen- 
sional Earth models. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?Bl be the Hilbert space of n-tuples of real functions square-integrable on 
0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 6 1. A typical member of ?Bl is 

m(r) = (mi(r>, -.-, mn(r))* 

The inner product of two members of %I is defined as 

n 1  

(m, m') = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 mv(r) m,,'(r) dr. 
v = l O  

Let g be a continuous linear functional on %TI. Then there is a member of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA91, 

G(r) = (Gi(rh ..., G"(r))? 

such that for any m in '93, 
n 1  

g(m) = (m, (3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 1 mv(r) GVW dr. 

Now suppose we are given N linearly independent linear functionals g,, ..., g N  

on '$I. We would like to say as much as we can about an unknown Earth model m 
in 91 simply from the known values of gl(m), ..., g,(m), that is, from the known 
inner products zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 
v = l  0 

n 1  

with i = 1, ..., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Let '%RN denote the N-dimensional linear subspace of ?Bl consisting 
of all linear combinations of G1, ..., GN. Let H1, ..., HN be any orthonormal basis 
for 9,". Then H1, ..., HN are linear combinations of G1, ..., GN and vice-versa, 
so the problem is to say what we can about m given only (m, HI), ..., (m, HN). 

We can always find an infinite orthonormal basis for 9Jl whose first N members 
are H1, ..., HN (Dunford & Schwartz 1958), and which therefore can be written 
HI, H2, .... Then any member of '93 can be expanded in the form 

03 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m = C (m, Hi) H i .  (A. 6) 

i = l  

The series (A.6) consists of two parts, 

and 
m, = 5 (m,Hi)Hi. 

i = N + 1  

As is well known (Dunford & Schwartz 1958), the two parts (m) and m, are deter- 
mined uniquely by m and %RN and do not depend on H1, ..., HN; (m) is the ortho- 
gonal projection of m onto 9XN and m, is the component of m orthogonal to 2RN. 
This decomposition of m is ideal for our purposes. If we know only (m, Hl), .. ., 
(m,HN), then we know <m) exactly and we know nothing whatever about m,. 

Now (m) summarizes succinctly all the data we have about m. Can (m) be 
regarded in any sense as an estimate of m? To answer this question, we must calcu- 
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198 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
late (m) in some detail. First we note that in the notation of Gibbs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Wilson (1901) 
equation (A.7) can be written 

Gorge Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( m )  = m.1, 

where I N  is the second-order identity tensor on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmN: 
N 

juxtaposition here indicating a tensor product. But if G', ..., GN is the basis for 
91, dual to G 1 ,  ..., GN then 

N 

i = l  
I~ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc G ' G ~ ,  

so N 

( m )  = C (m, Gi )G , .  (A. 9) 
i = l  

To find the dual basis we proceed as usual. We denote the N x N matrix (Gi,  Gj )  
by g i j  and its inverse by g i j .  Then 

Therefore N 

( m )  = 2 gij(m, G ~ ) G ~ .  
i ,  j = 1  

(A. 10) 

(A . l l )  

Now we must interpret (A. 11) in terms of averaging kernels. We note that 
Then the pth component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m) is an n-tuple of functions of Y, say ( (m) , , ,  ..., 

of equation (A. 11) is 

(A. 12) 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 1  

Thus n 1  

(A. 13) 
v = l O  

where N 

Apv(r0, r> = El g" GFi(r0) Gvj(r)* (A. 14) 

Equation (A. 13) has exactly the form of equation (4.5). When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI = 1 (one- 
dimensional Earth models) and Gi(r) = sin inr, i = 1 ,  ..., N, then equation (A. 14) 
is exactly the Dirichlet kernel (A. 4), so we have here a generalization of the Dirichlet 
kernel to arbitrary sets of n-tuples of functions. 

To see whether equation (A. 13) can be interpreted as a local average of m,(r) 
near r = ro we must examine whether in equation (A. 14) A,,(ro, r) has a large peak 
near r = ro and small sidebands elsewhere, and whether Apv(rO, r) is very small 
for all r when v # p. If these desiderata are present, equation (A. 13) is indeed a 
local average of m,(r) with r near yo ,  contaminated by contributions from m,(r) 
at distant r and by contributions from m,(r) with v # p. We know of no better way 
to test for these desiderata of 8-ness than to examine the graphs Apv(rO, r) .  And there 
is no reason a priori to prefer equation (A. 14) to the averaging kernels (4.6) obtained 
from integral 8-ness criteria. We suspect, however, that if S-like averaging kernels are 
available at all, then equation (A. 14) will be such a kernel and will have better 
resolution but larger sidebands than (4.6). 

1, J =  
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The resolving power of gross Earth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdata 199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ro  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0-55 

ro = 0.70 I 
I I I 

ro = 0.90 I 

I R 0 R 10 

FIG. 10. Dirichlet kernels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA(ro, R)  for Q-'(R) at various ro (the fine vertical 
lines). The gross Earth data are ,gZT on the left and .gIzT on the right. 
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200 George Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 I 
1 I 

-4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ro 2: 0.70 

L 
I I 

ro = 0.80 

r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.90 

I I 
1 1 

I’ 
ro -0.94 

I I I I 
R I 

FIG. 11. The same as Fig. 10 except that the gross Earth data are “YPzS on the 
left and .Ylzs on the right. 
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The resolving power of gross zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEarth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R 0 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. The same as Fig. 10 except that the gross Earth data are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Sls. 

In Figs 10-12 we give the Dirichlet averaging kernels appropriate to the sets of 
linear gross Earth functionals discussed in Section 5 .  These figures are to be com- 
pared directly with Figs 2-4, which apply to the same underlying dissipationless 
Earth model and give the most &like averaging kernals for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ - l ( r )  obtained by the 
method of Section 3. In the present case, the Dirichlet averaging kernels do not 
have much better resolution and they have much higher sidebands than the kernels 
obtained from integral 6-ness criteria. The latter averaging kernels seem to be 
preferable. 

In Fig. 13 we give the Dirichlet kerneIs for p(r)  appropriate to the gross Earth 
data "qs used in Section 7, and referring to the same po(r),  +(r), us(r) as in Fig. 7. 
The kernels in Figs 7 and 13 are directly comparable, and again the Dirichlet kernels 
give not much better resolution but much higher sidebands. 

ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 0 . 9 6  

fo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.90 

I R 
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202 George Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I 

+ ‘  

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=0.4d 

T fo 0.50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 i- ro ~ 0 . 5 4  

, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R 

I 
I 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘0 =0.80 

ro ~ 0 9 4  -+++A 

I I 1 I 

R 

FIG. 13.  Dirichlet kernels A(ro, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR )  for p(R) at various values of ro (the fine 
vertical lines). The lengths of the fine horizontal bars are the resolving lengths 

L(ro). Gross Earth data are 
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The resolving power of gross Earth data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA203 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. .  

I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 R 

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. The same as Fig. 8 except that the averaging kernels in Fig. 13 are used 
instead of those in Fig. 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 14 gives the local averages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(po), ,  obtained by applying to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApo(r) the Dirichlet 
averaging kernels of Fig. 13 rather than the optimally &like kernels of Fig. 7. The 
differences between Figs 8 and 14 arise not from any errors of observation or inter- 
pretation but simply because the two figures represent local averages of the same 
function p,(r) taken with different averaging kernels. The sidebands of the Dirichlet 
kernels in Fig. 13 are so large that the ' local ' averages (Fig. 14) obtained from them 
would be much less interesting to most geophysicists than the local averages (Fig. 8) 
obtained from the kernels of Fig. 7. 

In any case, if up(r) and us(r) describe the real Earth, and if po(r) is close enough 
to the density of the real Earth to permit neglecting the second order terms in 
equation (6. l), then the averages of po(r) calculated with either the kernels of Fig. 7 
or the kernels of Fig. 13 are equal to the corresponding averages for the real Earth, 
with an error of second order in the deviation of the real Earth from po. 

I P 

------. I \ 

1 

I 0 R 

FIG. 15. Earth model 5821. Full scale is 16.551 g/cm3 for the density p, and 
20.551 km s- '  for compressional velocity up and shear velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUS. 
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204 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGeorge Backus and Freeman Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ro zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.10 

I I I 

ro =0.20 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ct 
L 
ro = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.30 

0 R 

FIG. 16. The same as Fig. 7 except thatthe gross Earth data are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-gtsr instead of 
3 1 S .  
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The resolving power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgross Earth data 

APPENDIX C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The densify model used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor averaging. Model 5821 is shown in Fig. 15. It is similar 

to model GM of Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Backus (1968). For 216 eigenfrequencies the relative r.m.s. 
error between the observed and computed values is 0.23 per cent and the maximum 
error is 0.77 per cent (oSs).  The observed eigenfrequencies were corrected foi perturba- 
tions due to rotation and ellipticity using Table I of Dahlen (1968). 

205 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

**.a 

APPENDIX D 

Stability of averaging kernels. As remarked at the end of Section 7, if we know 
vp(r) and us(r) and are trying to obtain local averages of the density p(r) ,  we seem 
to have considerable latitude in our choice of the set 9 of gross Earth data used in 
the computation. In this appendix we exhibit the averaging kernels for p ( r )  obtained 
from the set ,,@IST consisting of the Earth's mass and moment and the squared 
eigenfrequencies of the 24 normal modes oSo, 2So,  3S0, lS1, J , ,  oS2,  zSz, 

The 9-acceptable model po(r) from which we start is again model 5821. The aver- 
aging kernels A(ro, r) obtained from the 8-ness criterion (3.9), (4. l), together with 
their resolving lengths L(ro) (see equation (7.2)), are shown in Fig. 16, while the 
resulting local averages of po(r) are shown in Fig. 17. The set ,,qST has poorer 
resolution in the core and better resolution in the mantle than the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,g?. As a 
result, ,,@;T partly resolves the density inversion in the upper mantle. Therefore, 
if this inversion were real, and if up(r) and us(r) were correct for the real Earth, we 
would already have enough resolving power in the 26 gross Earth data of ng:T to 

l S 3 r  O S 4 ,  l S 4 ,  2s4 ,  4s49 OS7, ls8, OS25, OS49, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOS73, OS97, OT7, O T 1 4 ,  OT27, OT53, O T I O S *  

detect the 

FIG. 17. The same as Fig. 8 except that the averaging kernels in Fig. 16 are used 
instead of those in Fig. 7. 
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