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The resource theory of dephasing estimation in multiqubit systems

Zishi Chen and Xueyuan Hu∗

School of Information Science and Engineering, Shandong University, Qingdao 266237, China

We present a resource theory to investigate the power of a multqubit system as a probe in
the task of dephasing estimation. Our approach employs the quantum Fisher information about
the dephasing parameter as the resource measure. Based on the monotonicity of quantum Fisher
information, we propose two sets of free operations in our resource theory, the Hamming distance
preserving operations and the selectively Hamming distance preserving operations. We derive a
necessary condition for the state transformation under these free operations and demonstrate that
uniform superposition states are the golden states in our resource theory. We further compare
our resource theory with the resource theory of coherence and thoroughly investigate the relation
between their free operations in both single-qubit and multiqubit cases. Additionally, for multiqubit
systems, we discover the incompatibility between the resource theory of dephasing estimation and
that of U(1) asymmetry, which is responsible for phase estimation. The condition for enhancing
the performance of a probe state in phase estimation while preserving its ability in dephasing
estimation is also discussed. Our results provide new insights into quantum parameter estimation
by the resource-theoretic approach.

PACS numbers: 03.65.Ta, 03.65.Yz, 03.67.Mn

I. INTRODUCTION

In quantum resource theories [1], certain quantum
properties of physical systems are treated as resources.
By the resource-theoretic approach, the advantages of
these quantum resources are quantified for various quan-
tum information processing tasks such as quantum tele-
portation [2], channel discrimination [3, 4] and quantum
key distribution [5]. Moreover, the quantum resource the-
ory provides a general framework to characterize laws for
state transformations under certain classes of restricted
operations called free operations, and thus sheds new
light on the research field of fundamental physics, in-
cluding thermodynamics [6].

Quantum parameter estimation is a task which em-
ploys quantum properties to make precise estimation of
given parameters [7–10]. For instance, in phase estima-
tion, maximally entangled probe states can improve the
error scaling of the estimator[8, 11]. This improvement
inspires researchers to investigate the role of quantum
properties in quantum parameter estimation [12]. It has
been found that there are quantum enhanced estima-
tion tasks without entanglement [9, 13], indicating that
entanglement is not the unique resource which under-
lies the quantum advantage in parameter estimation. In
particular, for the estimation of noise in teleportation-
covariant channels, including phase damping (PD) chan-
nels [14, 15], entanglement is not a necessary condition
for the optimal probe states [9, 16–18].

Recently, the notions of quantum parameter estima-
tion have been introduced to the framework of resource
theories and made significant progress. The quantum
Fisher information (QFI), which represents the preci-
sion limit of the probe states [19], can be used as a
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resource measure of coherence and asymmetry [20–23],
due to its nice mathematical properties such as convexity
and monotonicity [7, 24]. Furthermore, by the resource-
theoretic approach, an operational interpretation of the
QFI is proposed in quantum thermodynamics [25]. In
this work, we propose and give answers to the following
questions: what is the quantum resource which under-
lies the precision of dephasing estimation? How does
this resource relate to some well-known resources, such
as quantum coherence and U(1) asymmetry?

We establish a resource theory of dephasing estima-
tion in multiqubit systems. We first prove that incoher-
ent states are free states in this present resource theory.
Due to the monotonicity of QFI, we define two sets of
free operations in the resource theory of dephasing es-
timation, the Hamming distance preserving operations
(HDP) and the selectively Hamming distance preserv-
ing operations (SHP). Then we derive a necessary condi-
tion for the transformed states under HDP. Furthermore,
uniform superposition states can be transformed into any
state under SHP, that is, uniform superposition states are
golden probe states in the resource theory of dephasing
estimation. Moreover, by comparing our resource theory
and the resource theory of quantum coherence, we show
the relation between their free operations in both single-
qubit and multiqubit cases. Finally, we consider the re-
source theory of U(1) asymmetry. By employing SHP, it
is possible to improve the performance of the probe state
in phase estimation, while also preserving the ability of
phase estimation.

II. NOTIONS AND PRELIMINARIES

In this section, we review the definitions of the Fisher
information (FI), the QFI, and the PD channels [7, 14].
Before reviewing these definitions, let us briefly recapit-
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ulate some notions.
We denote the Hilbert space associated with the qubits

of our consideration by H. Let L(H) be the set of
liner operators on H. Any quantum operation on a
physical system can be mathematically represented by
a completely-positive and trace-preserving (CPTP) map
E : L(H) → L(H). In this paper, we focus on the situ-
ations where the input and output spaces are the same.
We use I as the identity matrix of the input (output)
space.

A. FISHER INFORMATION (FI) AND
QUANTUM FISHER INFORMATION (QFI)

In a general parameter estimation task, a probe sys-
tem, initially in the state ρ, is sent through a parame-
terized quantum channel Eθ. The output state ρ(θ) ≡
Eθ(ρ) is then measured by a positive-operator-valued
measurement (POVM) {Mx}, where Mx is the positive
semi-definite operator satisfying

∑

xMx = I, and each
measurement result x is obtained with the probability
p(x|θ) = tr(ρ(θ)Mx). Finally, the parameter θ is esti-
mated based on the probability distribution of measure-
ment results.

The Cramér-Rao bound provides a lower bound for the
variance of an unbiased estimator [7–9]

Var(θ) ≥ 1

F (θ)
≥ 1

F(ρ(θ))
. (1)

Here the Fisher information F (θ) is defined as [7, 9, 22]

F (θ) =
∑

x

(∂p(x|θ))2
p(x|θ) , (2)

where ∂ := ∂/∂θ. It depends on both the probe state ρ
and the measurement {Mx}. The QFI F(ρ(θ)) is defined
as [7–9, 22]

F(ρ(θ)) = tr(ρ(θ)L2), (3)

where L is the symmetric logarithmic derivative (SLD)
and defined by 1

2 (Lρ(θ) + ρ(θ)L) = ∂ρ(θ). The QFI
satisfies the following properties [7, 9].
(P1) Additivity. F(ρ(θ) ⊗ ρ′(θ)) = F(ρ(θ)) + F(ρ′(θ)).
It implies F(ρ(θ)⊗n) = nF(ρ(θ)).
(P2) Convexity. F(

∑

j pjρj(θ)) ≤
∑

j pjF(ρj(θ)).

(P3) Monotonicity. F(ρ(θ)) ≥ F(E(ρ(θ))), for any
CPTP map E which is independent of θ.

B. PHASE DAMPING CHANNELS

In this paper, we focus on the phase damping (PD)
channel for single-qubit and multiqubit states, which is
denoted by EPD

θ .

A single-qubit state σ = 1
2 (I + r cosφσx + r sinφσy +

zσz), where σx, σy and σz are two-dimensional
Pauli matrices, can be represented as a Bloch vector
(r cosφ, r sinφ, z), where −1 ≤ z ≤ 1, 0 ≤ r ≤ 1 and
0 ≤ φ < 2π. Then the density matrix of the state σ can
be written as

σ =
1

2

[

1 + z re−iφ

reiφ 1 − z

]

. (4)

After the action of a PD channel [14], the state becomes

EPD,1
θ (σ) =

1

2

[

1 + z re−θ−iφ

re−θ+iφ 1 − z

]

, (5)

where θ is the parameter of the PD channel.
Now consider a general n-qubit state ρ =

∑2n−1,2n−1
x=0,y=0 ρxy|xb〉〈yb|, where xb represents the binary

representation of the non-negative integer x. Let each

qubit transmit through a PD channel EPD,1
θ , and the out-

put n-qubit state reads

EPD
θ (ρ) =

2n−1,2n−1
∑

x=0,y=0

e−h(x,y)θρxy|x〉〈y|, n = 1, 2, ... (6)

where h(i, j) is the Hamming distance between two bi-
nary strings ib and jb. The mathematical definition of
the Hamming distance is h(i, j) =

∑n

x=1 i
x
b ⊕ jxb , where

ixb (jxb ) represents the xth bit of the string ib(jb). The
task, which is to estimate θ by a probe state, is called
dephasing estimation.

III. STRUCTURE OF THE RESOURCE
THEORY OF DEPHASING ESTIMATION

In the resource theory of dephasing estimation, we use
the QFI as a resource measure. Precisely, we define the
power of a probe state ρ in dephasing estimation as fol-
lows

FPD
θ (ρ) := F(EPD

θ (ρ)). (7)

The free states are those which do not have the abil-
ity of dephasing estimation, i.e., ρ is a free state if and
only if FPD

θ (ρ) = 0. Apparently, an incoherent state ρinc
on computational basis belongs to the set of free states,
because EPD

θ (ρinc) is independent of θ. In the following,
we prove that any state which is not incoherent is a re-
sourceful state.

Assume that there is at least one non-diagonal element
ρxy = |ρxy| e−iβ 6= 0 in the probe state ρcoh. After the ac-
tion of EPD

θ , one implements the following measurement

M1 = (|x〉〈x| + e−iβ |x〉〈y| + eiβ|y〉〈x| + |y〉〈y|)/2,
M2 = (|x〉〈x| − e−iβ |x〉〈y| − eiβ|y〉〈x| + |y〉〈y|)/2,
M3 = I− |x〉〈x| − |y〉〈y|,

(8)
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and obtains the outcome a ∈ {1, 2, 3} with probability
p(a|θ) = tr(EPD

θ (ρcoh)Ma). Direct calculation leads to

p(1|θ) =
1

2
(ρxx + ρyy + 2 |ρxy| e−h(x,y)θ),

p(2|θ) =
1

2
(ρxx + ρyy − 2 |ρxy| e−h(x,y)θ),

p(3|θ) = 1 − p(1|θ) − p(2|θ).

(9)

It follows that

F (θ) =
3

∑

a=1

(∂p(a|θ))2
p(a|θ)

=
[h(x, y) |ρxy| e−h(x,y)θ]2

p(1|θ)

+
[h(x, y) |ρxy| e−h(x,y)θ]2

p(2|θ) > 0.

(10)

Because the QFI is lower bounded by the FI, we have
FPD

θ (ρcoh) ≥ F (θ) > 0. Therefore, a free state in the re-
source theory of dephasing estimation is of the following
form

ρfree =

2n−1
∑

x=0

ρx|x〉〈x|. (11)

As for free operations, the minimum requirement is
that they do not increase the resource of states. Nev-
ertheless, considering the complexity in calculating the
QFI, defining the free operations to be the whole set of
FPD

θ -nonincreasing operations would cause difficulties in
analysing the properties of the present resource and gen-
eralizing the method of studying the resources in dephas-
ing estimation. With this in mind, we propose two sets
of free operations in the following.

The first set of free operations F1 is defined as the set
of all CPTP maps commutable with any PD channel,

E ◦ EPD
θ = EPD

θ ◦ E , ∀E ∈ F1, (12)

and will be thoroughly studied in Sec. III A. The second
set of free operations F2, studied in Sec. III B, is defined
as those with a Kraus decomposition E =

∑

j Kj (with

Kj(·) = Kj ·K†
j and Kj being the Kraus operators sat-

isfying
∑

jK
†
jKj = I), such that each Kraus branch Kj

can commute with PD channels, i.e.,

Kj ◦ EPD
θ = EPD

θ ◦ Kj , ∀j, ∀E ∈ F2. (13)

By definition, F2 ⊆ F1. The detailed comparison between
these two sets will be discussed in Sec. III C.

The monotonicity of FPD
θ under these free operations

can be proved by employing the monotonicity (P3) of the
QFI. Precisely, if E ∈ F1, we have

FPD
θ (E(ρ)) = F(E(EPD

θ (ρ))) ≤ F(EPD
θ (ρ)) = FPD

θ (ρ),
(14)

for any n-qubit state ρ.
Also, it is worth noting that, even for the single-qubit

case, F1 is a strict subset of the FPD
θ -nonincreasing op-

erations. See Appendix A for detailed discussion.

A. HAMMING DISTANCE PRESERVING
OPERATIONS (HDP)

In this subsetion, we first give the definition of Ham-
ming distance preserving operations (HDP) and then
prove that HDP is equivalent to F1 defined in Eq. (12).
Moreover, we derive a necessary condition for state trans-
formations under HDP.

Definition 1. A CPTP map EHDP : L(Hn) 7→ L(Hn)
belongs to the set of Hamming distance preserving oper-
ations (HDP) if and only if

〈i|EHDP(|x〉〈y|)|j〉 = 0, (15)

for all i, j, x, y ∈ {0, 1, 2, ..., 2n − 1} satisfying h(i, j) 6=
h(x, y).

The following proposition shows the equivalence be-
tween the Hamming distance preserving condition and
the condition of commutativity with PD channels for
completely positive maps.

Proposition 1. Let Ẽ be a completely positive (CP)
map. Then,

Ẽ ◦ EPD
θ = EPD

θ ◦ Ẽ , (16)

if and only if

〈i|Ẽ(|x〉〈y|)|j〉 = 0, (17)

for all i, j, x, y ∈ {0, 1, 2, ..., 2n − 1} satisfying h(i, j) 6=
h(x, y).

Proof. From Eq. (6), Eq. (16) can be rewritten as

(e−h(i,j)θ−e−h(x,y)θ)〈i|Ẽ(|x〉〈y|)|j〉 = 0 ∀i, j, x, y. (18)

Equivalently, 〈i|Ẽ(|x〉〈y|)|j〉 = 0 if h(x, y) 6= h(i, j).

By setting Ẽ in the above proposition to be a CPTP
map E , we directly have F1 = HDP. Therefore, we will
label the first set of free operations defined in Eq. (12)
as HDP.

The following proposition characterizes a necessary
condition of state transformations under HDP.

Proposition 2. For any n-qubit state ρ, it holds that

|〈i|EHDP(ρ)|j〉| ≤
∑

x,y

′
|ρxy|√pi|xpj|y, (19)

where EHDP ∈ HDP, ρxy = 〈x|ρ|y〉, pi|x =

〈i|EHDP(|x〉〈x|)|i〉, and
∑′

x,y stands for a summation over

all x, y which satisfy h(x, y) = h(i, j).

Proof. Based on Eq. (15), each element of the output
density matrix is given by

〈i|EHDP(ρ)|j〉 =
∑

x,y

′
ρxy〈i|EHDP(|x〉〈y|)|j〉. (20)
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Now write EHDP in a Kraus decomposition form

EHDP(·) =
∑

aDa(·)D†
a and define the vector ~Xxy =

(Xxy
1 , Xxy

2 , . . . ) with Xxy
a ≡ 〈x|Da|y〉. Then we have

〈i|EHDP(|x〉〈y|)|j〉 = ~X ix · ~Xjy∗, which implies pi|x =

| ~X ix|2. It follows from the Cauchy-Schwarz inequality
that

∣

∣〈i|EHDP(|x〉〈y|)|j〉
∣

∣ ≤ √
pi|xpj|y. (21)

The equality sign holds for one of the two cases: (1) either
pi|x or pj|y vanishes; (2) a parameter ξ exists such that
~X ix = ξ ~Xjy. Therefore,

∣

∣〈i|EHDP(ρ)|j〉
∣

∣ ≤
∑

x,y

′
|ρxy||〈i|EHDP(|x〉〈y|)|j〉|

≤
∑

x,y

′
|ρxy|√pi|xpj|y. (22)

The equality sign in the first line holds if the terms in
the summation of Eq. (20) have the same phase.

If we focus on the diagonal elements of the output
state, the condition h(x, y) = h(i, i) = 0 leads to x = y,
and Eq. (20) reduces to

〈i|EHDP(ρ)|i〉 =
∑

x

ρxxpi|x. (23)

It means that the diagonal elements of the output state
are independent of the off-diagonal elements of the input
state.

Moreover, an n-qubit state ρ can be written as

ρ =

n
∑

h=0

ρ(h), ρ(h) ≡
∑

x,y:h(x,y)=h

ρxy|x〉〈y|. (24)

We call ρ(h) a Hamming mode of ρ. Then, Proposition

2 indicates that each Hamming mode of the input state
is independently mapped by HDP to the corresponding
Hamming mode of the output state, namely,

EHDP(ρ(h)) = [EHDP(ρ)](h). (25)

It follows that, if ρ(h) = 0 for some h, then [EHDP(ρ)](h) =
0. For example, the state |ψ1〉 = 1√

2
(|0〉 + |1〉) cannot

be transformed by HDP to state |ψ2〉 = 1√
2
(|0〉 + |3〉),

because (|ψ1〉〈ψ1|)(2) = 0 but (|ψ2〉〈ψ2|)(2) = 1
2 (|0〉〈3| +

|3〉〈0|) 6= 0. This sets the essential difference between
the present resource theory and the resource theory of
coherence, because |ψ1〉 and |ψ2〉 can be transformed to
each other by incoherent unitary operators. More details
of the comparison between the two resource theories are
to be illustrated in Sec. IV.

An immediate problem is then whether the bound in
Eq. (19) can be reached. We will prove the attainability
for single-qubit case, and show that it cannot be reached
for general n-qubit input states. Further, we will charac-
terize a set of n-qubit input states, for which the bound
in Eq. (19) can be reached.

The set of states, which can be obtained from a given
state ρ by HDP, is called the HDP cone of ρ. By Pro-

postion 2, the HDP cone can be obtained for any single-
qubit state.

Corollary 1. For two single-qubit states
with Bloch vectors ~r = (r cosφ, r sinφ, z) and
~r′ = (r′ cosφ′, r′ sinφ′, z′), ~r can be transformed to
~r′ via HDP if and only if

r′ ≤







r

√

1 − z′2

1 − z2
, |z′| ≥ |z|

r, |z′| < |z|.
(26)

Proof. If ~r′ can be obtained from ~r via HDP, Eq. (19)
gives

r′ ≤ r(
√
p0|0p1|1 +

√
p0|1p1|0)

= r cos(θ0 − θ1), (27)

where we set p0|0 = cos2 θ0, p1|1 = cos2 θ1, and θ0, θ1 ∈
[0, π2 ]. Furthermore, from Eq. (23), we have

1 + z′

2
= cos2 θ0

1 + z

2
+ (1 − cos2 θ1)

1 − z

2
. (28)

It follows that

z′2 = [
1

2
cos 2θ0(1 + z) − 1

2
cos 2θ1(1 − z)]2

=
1

4
(Re[e2iθ0(1 + z) − e2iθ1(1 − z)])2

≤ 1

4
|e2iθ0(1 + z) − e2iθ1(1 − z)|2

= 1 − (1 − z2) cos2(θ0 − θ1),

(29)

or equivalently,

cos2(θ0 − θ1) ≤ min{1,
1 − z′2

1 − z2
}. (30)

By combining Eqs. (27) and (30), we conclude that Eq.
(26) is a necessary condition for the transformation from
~r to ~r′.

The sufficiency of Eq. (26) is proved by constructing
a channel EHDP

∗ ∈ HDP such that the boundary states
satisfying the equality sign in Eq. (26) can be reached.

Precisely, we have EHDP
∗ (·) = K1 ·K†

1 +K2 ·K†
2 with

K1 =

(

cos θ0 0

0 ei(φ−φ′) cos θ1

)

,

K2 =

(

0 ei(φ−φ′) sin θ1
sin θ0 0

)

, (31)

where θ0, θ1 ∈ [0, π2 ] are determined by the parameters in
the input and output states as follows.

If |z′| < |z|, we choose sin 2θ0 = sin 2θ1 = z′

z
. It can

be checked that the channel EHDP
∗ transforms the state ~r

to ~r′ with r′ = r and z′ = z sin 2θ0.
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FIG. 1. The colored region is the projection of the SHP cone
in the x-z plane, when the initial Bloch vector is (0.6, 0, 0.6).
The initial state is marked by the star. The area bounded by
the dotted line contains all single-qubit states.

If |z′| ≥ |z|, the equality sign in Eq.(29) holds when

sin 2θ0(1 + z) − sin 2θ1(1 − z) = 0. (32)

Combining this equation with Eq. (28), we obtain

cos 2θ0 =
z + z′2

z′(1 + z)
, cos 2θ1 =

z − z′2

z′(1 − z)
. (33)

The channel EHDP
∗ with the above parameters gives an

output state with z′ =
√

1 − (1 − z2) cos2(θ0 − θ1) and
r′ = r cos(θ0 − θ1).

The unitary operator U(φ) = diag(1, e−iφ) belongs to
HDP. Based on these unitary operations, the HDP cone
is rotationally symmetric about the z axis. That is, the
Bloch vector (r′, 0, z′) can be transformed to Bloch vector
(r′ cosφ′, r′ sinφ′, z′). In FIG.1, we plot the projection of
the SHP cone in the x-z plane for a given initial state,
whose Bloch vector is (0.6, 0, 0.6).

In the above proof, we show that the bound in Eq.
(19) can be reached for single-qubit input states. Nev-
ertheless, we will show in the following that this bound
cannot be reached in general. A counterexample goes as
follows. Consider a 2-qubit state in the following form

ρ =
1

4











1 1√
2

1√
2

0
1√
2

1 0 0
1√
2

0 1 0

0 0 0 1











. (34)

For E ∈ HDP, the bound in Eq. (19) gives

|〈0|E(ρ)|1〉| ≤ √
p0|0p1|1|ρ01| +

√
p0|1p1|0|ρ10|

+
√
p0|0p1|2|ρ02| +

√
p0|2p1|0|ρ20| (35)

We aim to maximise |〈0|E(ρ)|1〉| for E ∈ HDP. The
bound in Eq. (19) gives

|〈0|E(ρ)|1〉| ≤ √
p0|0p1|1|ρ01| +

√
p0|1p1|0|ρ10|

+
√
p0|0p1|2|ρ02| +

√
p0|2p1|0|ρ20|

≤ |ρ01| + |ρ02|. (36)

The second equality sign holds if and only if p0|0 = p1|1 =

p1|2 ≡ cos2 φ and p1|0 = p0|1 = p0|2 ≡ sin2 φ.

Now suppose cos2 φ 6= 0. It follows that the first

equality sign in Eq. (36) holds only if ~X00 = eiη1 ~X11 =

eiη2 ~X12, which in turn gives cos2 φ = | ~X11 · ~X12∗| =
|〈1|E(|1〉〈2|)|1〉|. However, the rhs of the above equation
equals zero from the Hamming distance preserving con-
dition. This violates the assumption that cos2 φ 6= 0.
Therefore, we have sin2 φ = 1. Then the first equality

sign in Eq. (36) holds only if ~X10 = eiξ1 ~X01 = eiξ2 ~X02,

which in turn gives sin2 φ = | ~X01· ~X02∗| = 〈0|E(|1〉〈2|)|0〉,
but again the rhs equals zero because of the Hamming
distance preserving condition. Therefore, it is impossible
to transform ρ into

ρ′ =
1

4









1
√

2 0 0√
2 2 0 0

0 0 0 0
0 0 0 1









, (37)

while this transformation is allowed by the condition as
Eq. (19).

However, for n-qubit states satisfying the following two
conditions, we construct a quantum operation E ∈ HDP
such that the equality sign in Eq. (19) is reached. Let
{|x〉} be the computational basis of the n-qubit Hilbert
space and ρxy ≡ 〈x|ρ|y〉. The two condition can be stated
as follows.
(C1) ∃c ∈ Z+, if h(x, y) 6= c, then ρxy = 0.
(C2) ∀ρxy, ρx′y′ 6= 0, where x 6= x′, span{|x〉, |y〉} is or-
thogonal to span{|x′〉, |y′〉}.
Condition (C1) means that the Hamming distance be-
tween the supports of each non-zero off-diagonal element
equals to a constant. Condition (C2) means that the
supports of any two off-diagonal elements do not have
overlap. Therefore, for any non-zero off-diagonal element
ρxy, y uniquely depends on x, and hence we write y as
y(x).

Assume the above two conditions are satisfied by the
input state. Let i, j be n-bit strings satisfying h(i, j) =

h(x, y(x)). We construct E ∈ HDP as E(·) = K0(·)K†
0 +

∑

xKx,1(·)K†
x,1 +Kx,2(·)K†

x,2 with

Kx,1 =
√
pi|xe

−iφx |i〉〈x| +
√
pj|y(x)|j〉〈y(x)|,

Kx,2 =
√
pj|xe

−iφx |j〉〈x| +
√
pi|y(x)|i〉〈y(x)|,

K0 = [I−
∑

x

(K†
x,1Kx,1 +K†

x,2Kx,2)]
1
2 , (38)
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where x is the n-bit string such that ρxy 6= 0 and x <
y(x), and φx is the phase of ρxy. It follows that

〈i|E(ρ)|j〉 =
∑

x

(
√
pi|xpj|y(x) +

√
pj|xpi|y(x))|ρxy|, (39)

which means that the bound in Eq. (19) is reached by
the channel E . Furthermore, if one aims to maximize
〈i|E(ρ)|j〉 over all HDP, we choose pi|x = pj|y(x) and
pj|x = pi|y(x) = 1 − pi|x, and obtain

〈i|E(ρ)|j〉max =
∑

x

|ρxy|. (40)

It means that, if conditions (C1) and (C2) are satisfied
by input state, then the off-diagonal elements of the same
Hamming mode can be merged together by HDP.

B. SELECTIVELY HAMMING DISTANCE
PRESERVING OPERATIONS (SHP)

We give the definition of selectively Hamming distance
preserving opertions (SHP) as follows.

Definition 2. Let ESHP : L(Hn) 7→ L(Hn) be a CPTP
map. Then ESHP belongs to selectively Hamming dis-
tance preserving operations (SHP) if it has a Kraus de-

composition ESHP(·) =
∑

lKl ·K†
l such that

〈i|Kl|x〉〈y|K†
l |j〉 = 0, ∀l, (41)

if h(i, j) 6= h(x, y).

By Proposition 1, SHP is equivalent to the second
set of free operations F2 defined in Eq. (13). Hence, we
denote F2 as SHP here and after.

The following proposition gives the explicit form of the
Kraus operators of a selectively Hamming distance pre-
serving operation.

Proposition 3. If ESHP ∈ SHP, then ESHP has a

Kraus decomposition ESHP =
∑

lKl(·)K†
l such that ev-

ery Kraus operator can be written as

Kl =

2n−1
∑

x=0

clx|πn
l (x)〉〈x|, (42)

where
∑

l |clx|2 = 1, and πn
l : {1, ..., 2n−1} 7→ {1, ..., 2n−

1} is a one-to-one map such that

h(x, y) = h(πn
l (x), πn

l (y)), ∀x, y. (43)

We define {πn
j } as Hamming distance preserving func-

tions and discuss them in Appendix B.

Proof. For x = y, Eq. (41) reduces to

〈i|Kl|x〉〈x|K†
l |j〉 = δij |〈i|Kl|x〉|2. (44)

Similarly, we have

〈i|Kl|x〉〈y|K†
l |i〉 = δxy|〈i|Kl|x〉|2. (45)

Hence, there is at most one non-zero element in each row
and each column of Kl. The Kraus operators can then
be written as

Kl =

2n−1
∑

x=0

clx|fl(x)〉〈x|, (46)

where fl : {1, ..., 2n − 1} 7→ {1, ..., 2n − 1} is a one-to-one

map and the completion identity
∑

lK
†
lKl = I demands

∑

l |clk|2 = 1.
In order to prove that fl(x) is a Hamming distance

preserving function, we substitute the above form of Kl

in Eq. (41). It follows that the necessary condition for

〈i|fl(x)〉〈fl(y)|j〉clxc∗ly 6= 0 (47)

is that fl(x) = i, fl(y) = j, and h(x, y) = h(i, j). In
other words, for any two coefficients clx, cly 6= 0, it holds
that

h(x, y) = h(fl(x), fl(y)), (48)

or equivalently, fl(x) is a Hamming distance preserving
function.

For a resource theory, the states, which can be trans-
formed to any state of the same dimension under free
operations, are called golden states. To explore the exis-
tence of golden states is one of the most notable problems
for a resource theory. The golden states of the present re-
source theory are the optimal probe states for dephasing
estimation. This resource-theoretic way can convert the
calculation of the QFI into a state transformation prob-
lem. Here we will prove that the uniform superposition
states, denoted as

|+(n)〉 =
1√
2n

2n−1
∑

x=0

e−iηx |x〉, ηx ∈ [0, 2π), (49)

are golden states in the present resource theory.

Proposition 4. An n-qubit uniform superposition state
can be transformed to any n-qubit state by SHP.

Proof. By definition, SHP is convex. Hence it is sufficient
to prove that any n-qubit pure state can be obtained from
|+(n)〉 by SHP. The general form of an n-qubit pure state

reads |ψ(n)〉 =
∑2n−1

x=0 e−iφx

√
ψx|x〉, where φx ∈ [0, 2π)

and ψx ≥ 0 satisfying
∑

x ψx = 1.
Here we design a selectively Hamming distance pre-

serving operation S =
∑2n−1

z=0 Kz ·K†
z , which transforms

|+(n)〉 to |ψ(n)〉. Each Kraus operator is in the following
form

Kz =

2n−1
∑

x=0

e−i(φx−ηq(z,x))
√

ψx|x〉〈q(z, x)|, (50)
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where q(z, x) is an n-bit string with the mth bit defined
as

(q(z, x))mb = zmb ⊕ xmb . (51)

Therefore, {|q(z, x)〉}z is a basis of n-qubit Hilbert space

for any x, or equivalently,
∑2n−1

z=0 |q(z, x)〉〈q(z, x)| = I. It
is directly checked that

∑

zK
†
zKz = I, which ensures that

S is a CPTP map. Besides, h(x, x′) = h(q(z, x), q(z, x′)),
which ensures that S ∈ SHP.

Then we calculate

Kz|+(n)〉 =
1√
2n

2n−1
∑

x=0

e−i(φx−ηq(z,x))
√

ψx|x〉〈q(z, x)|
2n−1
∑

y=0

e−iηy |y〉

=
1√
2n

2n−1
∑

x=0

e−iφx

√

ψx|x〉

=
1√
2n

|ψ(n)〉.

(52)

Consequently, S(|+(n)〉〈+(n)|) = |ψ(n)〉〈ψ(n)|.

The set of golden states contains n-qubit product
states. For such states, the resource of entanglement
does not provide any advantage in dephasing estima-
tion. In fact, FPD

θ (|+(n)〉〈+(n)|) = nFPD
θ (|+(1)〉〈+(1)|).

This is consistent with the results in [16–18], where it is
found that dephasing estimation cannot beat the stan-
dard quantum limit.

It is interesting to notice that the set of golden states
also contains maximally entangled states, e.g., the two-
qubit state 1

2 (|00〉 + |01〉 + |10〉 − |11〉). For such states,
the local coherence of each qubit vanishes but the entan-
glement reaches maximum.

To end this subsection, we introduce the concept of
Hamming distance preserving unitary operations, which
are free unitary operations in the resource theory of de-
phasing estimation.

Definition 3. Let U(·) = Uj ·U †
j be a unitary operation,

where Uj is a unitary operator. Then U is said to be
a Hamming distance preserving unitary operation if and
only if

EPD
θ (UjρUj

†) = UjEPD
θ (ρ)Uj

†, ∀ρ. (53)

Because a Hamming distance preserving unitary oper-
ation belongs to SHP, from Proposition 3, we arrive at
following structure of these unitary operators.

Corollary 2. Any n-qubit unitary operator satisfies
Eq. (53) if and only if it can be written as the form

Uj =

2n−1
∑

x=0

e−iωx |πn
j (x)〉〈x| ∀j, ρ, (54)

where πn
j (·) is a Hamming distance preserving function.

It is worth noticing that the inverse of Uj still belongs
to free unitary operations for dephasing estimation. It

means that the probe state preserves the ability of de-
phasing estimation under Hamming distance preserving
unitary operations.

C. THE RELATION BETWEEN SHP AND HDP

In this subsection, we investigate the relation of SHP
and HDP for single-qubit and multiqubit states.

Proposition 5. HDP is equivalent to SHP in the single-
qubit case.

Proof. Let D(·) =
∑

aDa(·)D†
a be a single-qubit CPTP

map which belongs to HDP. The Choi-Jamio lkowski ma-
trix of the d-dimension operation E is defined as [26, 27]

JE =

















E(|0〉〈0|) · · · E(|0〉〈j|) · · · E(|0〉〈d|)
...

. . .
...

. . .
...

E(|i〉〈0|) · · · E(|i〉〈j|) · · · E(|i〉〈d|)
...

. . .
...

. . .
...

E(|d〉〈0|) · · · E(|d〉〈j|) · · · E(|d〉〈d|)

















. (55)

When the operation D belongs to HDP, the correspond-
ing Choi-Jamio lkowski matrix is written as

JD =







p0|0 0 0 γ0
0 p1|0 γ1 0
0 γ∗1 p0|1 0
γ∗0 0 0 p1|1






, (56)

where γ0 =
∑

a〈0|Da|0〉〈1|D†
a|1〉, γ1 =

∑

a〈1|Da|0〉〈1|D†
a|0〉, and px|y =

∑

a〈x|Da|y〉〈y|D†
a|x〉

with x, y = 0, 1.
Now consider an operation S ∈ SHP, which is related

to D as S(·) =
∑

a Sa(·)S†
a +

∑

a Ta(·)T †
a with

Sa =

[

〈0|Da|0〉 0
0 〈1|Da|1〉

]

,

Ta =

[

0 〈0|Da|1〉
〈1|Da|0〉 0

]

.

(57)
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It is directly checked that the Choi-Jamio lkowski matrix
of S is also Eq. (56), and therefore, S = D.

Furthermore, in Appendix A we prove that, for
single-qubit states, HDP does not represent all the oper-
ations, which cannot increase the QFI of dephasing esti-
mation.

Proposition 6. In the multiqubit case, SHP ( HDP.

SHP is subset to HDP by their definitions. Then we
give a channel which belongs to HDP but not to SHP.

The channel can be written as W(·) =
∑4

i=0Wi(·)W †
i ,

where

W0 =
1

2
|0〉〈1| +

1

2
√

2
(|1〉〈0| + |2〉〈0|),

W1 =
1

2
|1〉〈1| +

1

2
√

2
(|0〉〈0| + |3〉〈0|),

W2 =
1

2
|2〉〈1| +

1

2
√

2
(|0〉〈0| − |3〉〈0|),

W3 =
1

2
|3〉〈1| +

1

2
√

2
(|1〉〈0| − |2〉〈0|),

W4 = I− |0〉〈0| − |1〉〈1|.

(58)

By the definition of HDP Eq. (15), this channel W is a
Hamming distance preserving operation. The following
lemma is used to prove that W does not belong to SHP.

Lemma 1 (Theorem 8.2 of [14]). Consider two given

quantum channels E(·) =
∑m

i=1 Ei · E†
i and F(·) =

∑n

j=1 Fj · F †
j . Then E = F if and only if there is a

m× n linear isometry u such that Ei =
∑

j uijFj .

We find that the linear combination of {Wi} cannot be
expressed as Eq. (42). Based on Lemma 1., W is not a
selective Hamming distance preserving operation.

IV. THE COMPARISON BETWEEN THE
RESOURCE THEORIES OF DEPHASING

ESTIMATION AND QUANTUM COHERENCE

Although some similarities can be found between the
resource theories of quantum coherence and dephasing
estimation, e.g., they share the same set of free states,
there are essential differences between these two resource
theories. Take two states |ψ1〉 = (|0〉+|1〉)/

√
2 and |ψ2〉 =

(|0〉 + |3〉)/
√

2 as an example. They have same amount
of quantum coherence, but are different in the ability of
dephasing estimation. In fact, we have FPD

θ (|ψ1〉〈ψ1|) =
e−2θ/(1 − e−2θ) but FPD

θ (|ψ2〉〈ψ2|) = 4e−4θ/(1 − e−4θ).
The origin of the difference between these two resource
theories lies in the sets of free operations. In this section,
we compare their free operations in both single-qubit and
multiqubit cases.

A. A BRIEF REVIEW OF THE RESOURCE
THEORY OF QUANTUM COHERENCE

In the resource theory of quantum coherence [28], a

computational basis {|i〉}2n−1
i=0 is prefixed. The com-

pletely dephasing (CD) channel is defined as

∆(·) =

2n−1
∑

i=0

|i〉〈i| · |i〉〈i|. (59)

Then a state ρ is free if and only if ∆(ρ) = ρ. These free
states are called incoherent states.

In the following, we briefly review two sets of free op-
erations. The first set is called dephasing-covariant in-
coherent operations (DIO) [29, 30], defined as quantum
operations which commute with the CD channel, i.e.,

E ∈ DIO ⇔ ∆ ◦ E = E ◦ ∆. (60)

The second set is called strictly incoherently operations
(SIO) [29, 31], defined as

E ∈ SIO ⇔ ∆ ◦ Ej = Ej ◦ ∆, ∀j, (61)

where E =
∑

j Ej , Ej(·) = Ej · E†
j , and Ej are Kraus

operators satisfying
∑

j E
†
jEj = I. It is worth noting

that, the form of every Kraus operator Ej can be written
as

Ej =

2n−1
∑

x=0

cjx|ej(x)〉〈x|, (62)

where ej : {1, ..., 2n − 1} 7→ {1, ..., 2n − 1} is one-to-one
and

∑

j |cjx|2 = 1.

B. SINGLE QUBIT OPERATIONS

We first explore the relation between the sets of free
operations for single-qubit case.

Proposition 7. In the single-qubit case, SHP, HDP,
SIO, and DIO are equivalent to each other.

Proof. It has been proved in Ref. [29] that DIO=SIO
for single-qubit case. In Proposition 5, we proved that
SHP = HDP. Therefore, here we only need to prove the
equivalence between SIO and SHP.

According to [32], the general form of a single-qubit

strictly incoherent operation is ESIO(·) =
∑4

l=1Kl ·K†
l ,

where

K1 =

[

a1 0
0 b1

]

,K2 =

[

0 b2
a2 0

]

,

K3 =

[

a3 0
0 0

]

,K4 =

[

0 0
a4 0

]

,

(63)

where ai is real for i = 1, 2, 3, 4 and
∑4

i=1 a
2
i =

∑2
j=1 |bj |

2
= 1. These Kraus operators satisfy Eq. (41),
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FIG. 2. The relation between SHP, HDP, SIO and DIO in
the multiqubit case. The boundary between SHP and the
intersection of SIO and HDP is marked with the chain line.
This boundary is unclear in the 2-qubit case but clear in the
m-qubit case, where m ≥ 3.

so SIO ⊂ SHP for single-qubit states. Moreover, Propo-

sition 3 implies SHP is a subset of SIO because Ham-
ming distance preserving functions are one-to-one. Hence
SHP=SIO. This completes the proof.

In fact, the HDP cone Eq. (26) is also the SIO cone
[32, 33], which reveals the equivalence of SIO and HDP
for single-qubit states.

C. MULTIQUBIT OPERATIONS

In this subsection, we explore the relation between
SHP, HDP, SIO, and DIO in the multiqubit case. The hi-
erarchy of these sets of operations is shown in Fig. 2. It is
inferred by the definitions that SIO ⊆ DIO, HDP ⊆ DIO
and SHP ⊆ SIO ∩ HDP.

In the following, we will first show that neither SIO nor
HDP contains the other quantum operations belonging to
SIO \HDP and HDP \SIO. Consider an n-qubit (n ≥ 2)
unitary operator

U = I− |2〉〈2| + |2〉〈3| + |3〉〈2| − |3〉〈3|. (64)

The corresponding unitary operation belongs to SIO be-
cause it satisfies Eq. (62). However, because U |0〉〈2|U † =
|0〉〈3| and h(0, 2) = 1 6= 2 = h(0, 3), this unitary opera-
tion does not belong to HDP.

Next consider the n-qubit (n ≥ 2) operation W in
Eq. (58). It belongs to HDP. It can be checked that any
linear combination of the five Kraus operators of W is
not of the form as Eq. (62). Based on Lemma 1, W ∈
HDP \ SIO.

Now we will show that SHP is strictly subset to SIO∩
HDP in the m-qubit case, where m ≥ 3. This is achieved
by constructing the following channel R(·) =

∑4
i=0Ri ·

R†
i , where

R0 =
1√
2
|0〉〈0| +

1

2
|2〉〈1| +

1

2
|3〉〈6|,

R1 =
1√
2
|6〉〈0| +

1

2
|2〉〈1| − 1

2
|3〉〈6|,

R2 =
1

2
|1〉〈1| +

1

2
|6〉〈6| +

1√
2
|7〉〈7|,

R3 =
1

2
|4〉〈1| − 1

2
|3〉〈6| +

1√
2
|7〉〈7|,

R4 = I− |0〉〈0| − |1〉〈1| − |6〉〈6| − |7〉〈7|.

(65)

The channel R ∈ SIO ∩ HDP belongs to the intersection
of SIO and HDP but not to SHP by lemma 1, that is,
R ∈ SIO∩HDP for m-qubit states. However, it is unclear
whether SHP = SIO ∩ HDP in the 2-qubit case.

We conclude this subsection by showing that SIO ∪
HDP is the strictly subset to DIO. As proved in Ref.

[34], the quantum operation N (·) =
∑4

i=0Ni(·)N †
i with

N0 =
1

2
|0〉〈1| +

1

2
√

3
|1〉〈0| − 1

2
√

3
|2〉〈0| +

1

2
√

3
|3〉〈0|,

N1 =
1

2
√

3
|0〉〈0| +

1√
2
|0〉〈2| +

1√
6
|0〉〈3| +

1

2
|1〉〈1|

+
1

2
√

3
|2〉〈0| +

1

2
√

3
|3〉〈0|,

N2 =
1

2
√

3
|0〉〈0| − 1√

2
|0〉〈2| +

1√
6
|0〉〈3| +

1

2
√

3
|1〉〈0|

+
1

2
|2〉〈1| − 1

2
√

3
|3〉〈0|,

N3 =
1

2
√

3
|0〉〈0| −

√
6

3
|0〉〈3| − 1

2
√

3
|1〉〈0| − 1

2
√

3
|2〉〈0|

+
1

2
|3〉〈1|,

N4 = I− (|0〉〈0| + |1〉〈1| + |2〉〈2| + |3〉〈3|),
(66)

belongs to DIO\SIO. Because N (|1〉〈2|) =
1

2
√

2
(|1〉〈0|−

|2〉〈0|), and h(1, 2) 6= h(0, 1) (or h(1, 2) 6= h(0, 2)), N is
not in HDP.

V. THE COMPARISON BETWEEN THE
RESOURCE THEORIES OF DEPHASING
ESTIMATION AND U(1) ASYMMETRY

The QFI of phase estimation is a resource measure of
U(1) asymmetry [21, 25, 35]. It has been shown that
there is a probe incompatibility between phase estima-
tion and dephasing estimation, namely, no optimal probe
states exist for detecting phase and dephasing parameters
simultaneously [15, 36]. This motivates us to compare
the resource theories of U(1) asymmetry and dephasing
estimation.
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A. A BRIEF REVIEW OF QUANTUM FISHER
INFORMATION OF PHASE ESTIMATION

In this subsection, we briefly review the QFI of phase
estimation. Given Hamiltonian H and the probe state ρ,
ρ(t) ≡ e−iHtρeiHt represents the state of system at time
t. The task of phase estimation is to estimate the param-
eter t by quantum measurement. Let ρ =

∑

i pi|ψi〉〈ψi|
be the spectral decomposition of the probe state ρ. The
QFI of phase estimation can be calculated as [8, 19, 37]

FPE
H (ρ) = 2

∑

i,k

(pi − pk)2

pi + pk
|〈ψi|H |ψk〉|2 . (67)

Furthermore, when the probe is in a pure state |ψ〉〈ψ|,
the QFI reduces to

FPE
H (|ψ〉〈ψ|) = 4∆H2, (68)

where ∆H2 := 〈ψ|H2|ψ〉 − 〈ψ|H |ψ〉2 is the variance of
Hamiltonian H .

In this section, we consider the setting of n qubits with
no interaction. For each qubit, the ground state energy
is zero and the excited state energy is h. The form of
n-qubit Hamiltonian is given by

H =

2n−1
∑

i=0

N i
1h|i〉〈i|, (69)

where N i
1 represents the number of 1’s in the binary

string ib.

B. SINGLE QUBIT CASE

For n = 1, the Hamiltonian reads H = h|1〉〈1|.
For a single-qubit probe state σ, whose Bloch vector is
(r cosφ, r sinφ, z), its spectral decomposition is

σ =
1

2
[(1+

√

z2 + r2)|+r〉〈+r|+(1−
√

z2 + r2)|−r〉〈−r|],
(70)

where eigenstates are given by

| + r〉 =
(z +

√
z2 + r2)|0〉 + reiφ|1〉

√

r2 + (z +
√
z2 + r2)2

,

| − r〉 =
−r|0〉 + (z +

√
z2 + r2)eiφ|1〉

√

r2 + (z +
√
z2 + r2)2

. (71)

Then the phase estimation QFI of σ is calculated as

FPE
H (σ) = r2h2. (72)

Therefore, in the single-qubit case, FPD
θ cannot be in-

creased under HDP because Eq. (26) shows that r is
non-increasing under HDP.

Nevertheless, by comparing Eqs. (72) and (A1), we
find that FPE

H and FPD
θ give different ordering of states

even in the single-qubit case. It means that even though
both FPE

H and FPD
θ reaches maximum for uniform su-

perposition states, there is a possibility that for two
single-qubit states σ1 and σ2, FPE

H (σ1) > FPE
H (σ2) but

FPD
θ (σ1) < FPD

θ (σ2).

C. MULTIQUBIT CASE

In the multiqubit case, the golden states in the resource
theory of dephasing estimation are uniform superposition
states |+(n)〉, while FPE

H reaches its maximum for GHZ

states defined as |GHZ〉 = (|0〉+ e−iη0 |2n − 1〉)/
√

2 [11].
This discordance in the maximally resourceful states is a
possible origin of the probe incompatibility, which stands
for the absence of an optimal probe state for detecting
phase and dephase parameters simultaneously [15, 36].
It is then natural to ask the following question: in what
circumstances, can one increase FPE

H of a probe state, and
meanwhile preserve its ability of dephasing estimation?

An illustrative example is as follows. Consider a two-
qubit pure state |ψ1〉 = 1√

2
(|1〉 + |2〉). Because it is an

eigenstate of the Hamiltonian, we have FPE
H (|ψ1〉〈ψ1|) =

0. However, by applying a Hamming distance preserving
unitary

V =







0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0






, (73)

|ψ1〉 is converted to |ψ2〉 = V |ψ1〉 = (|0〉+ |3〉)/
√

2, which
is one of the optimal probe states for phase estimation.
It means that a free unitary operation in the resource
theory of dephasing estimation can transform a free state
in the resource theory of U(1) asymmetry to a maximally
resourceful state in the latter resource theory. This shows
the incompatibility of the two resource theories.

This example is generalized to general two-qubit pure
states as follows.

Proposition 8. Let |ψ(2)〉 =
∑3

x=0 e
−iφx

√
ψx|x〉 be a

two-qubit pure state. Hamming distance preserving uni-
tary operations can increase the QFI of |ψ(2)〉 in phase
estimation, if and only if g(ψ1, ψ2) > g(ψ0, ψ3), where
g(x, y) ≡ x+ y − (x− y)2.

Proof. The QFI of the state |ψ(2)〉 in phase estimation is
calculated as

FPE
H (|ψ(2)〉〈ψ(2)|) = g(ψ0, ψ3)h2. (74)

After the action of the unitary V , the QFI of phase esti-
mation becomes

FPE
H (V |ψ(2)〉〈ψ(2)|V †) = g(ψ1, ψ2)h2, (75)

which is larger than Eq. (74) if g(ψ1, ψ2) > g(ψ0, ψ3).
Moreover, when other Hamming preserving distance

unitary operations are performed on the state |ψ(2)〉, the
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resulted FPE
H is either in the form of Eq. (74) or Eq. (75).

Therefore, the QFI of |ψ(2)〉 in phase estimation can be
increased only if g(ψ1, ψ2) > g(ψ0, ψ3).

Interestingly, some nonunitary operations in SHP also
have the ability in improving FPE

H while preserving FPD
θ .

Consider an n-qubit mixed state in the following form

ρ =
∑

x:x<x̄

px|ψ(x)〉〈ψ(x)|, (76)

where |ψ(x)〉 = cos ζ|x〉 + sin ζeiφx |x̄〉, x̄ stands for the
bitwise bit flip of x, and ζ is independent of x. It satis-
fies conditions (C1) and (C2) for coherence merge in the
same Hamming mode. Therefore, we apply the merging
operation defined in Eq. (38) with i = 0, j = 2n − 1,
y(x) = x̄, pi|x = pj|x̄ = 1 and pj|x = pi|x̄ = 0. This
results in a pure state of the form

ρ′ = |ψ(0)〉〈ψ(0)|. (77)

By the convexity of QFI, we have FPE
H (ρ′) >

∑

x pxFPE
H (|ψ(x)〉〈ψ(x)|) ≥ FPE

H (ρ). This means that
FPE

H is increased. Meanwhile, FPD
θ (ρ) = FPD

θ (ρ′). The
reason is as follows. On the one hand, from the mono-
tonicity of FPD

θ under SHP, we have FPD
θ (ρ) ≥ FPD

θ (ρ′).
On the other hand, from the convexity of QFI, we have
FPD

θ (ρ′) =
∑

x pxFPD
θ (|ψ(x)〉〈ψ(x)|) ≥ FPD

θ (ρ).
To sum up, one can use coherence merge in the same

Hamming mode to increase the ability of a probe state
in phase estimation, and meanwhile, preserve its ability
of dephasing estimation.

VI. CONCLUSION

In this work, we study the resource theory of dephas-
ing estimation in multiqubit systems. Due to the mono-
tonicity of QFI, we define two sets of free operations
in the resource theory of dephasing estimation, HDP
and SHP. Under these free operations, the problem of
finding optimal probes can be converted to the prob-
lem of state transformations. This resource-theoretic ap-
proach reduces the complexity to calculate the QFI. In
the present resource theory, the uniform superposition
states are golden states, that is, the uniform superpo-
sition states are optimal probe states for dephasing es-
timation. This implies that there exists the connection
between our resource theory and the resource theory of
quantum coherence. Therefore, we investigate the rela-
tion between free operations of these two resource theo-
ries. In the single-qubit case, SIO and DIO, which are
free operations of the resource theory of quantum coher-
ence, are equivalent to SHP (or HDP). Furthermore, for
multiqubit states, the relation of these operations is de-
picted in FIG.2. Finally, we also compare the resource
theories of U(1) asymmetry and dephasing estimation.
By employing SHP, it is possible to enhance the perfor-
mance of a probe state in phase estimation, while pre-

serving its ability of dephasing estimation, which implies
the incompatibility of these two resource theories.
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Appendix A: SINGLE-QUBIT HDP DOES NOT
REPRESENT ALL SINGLE-QUBIT

OPERATIONS THAT CANNOT INCREASE THE
QFI OF DEPHASING ESTIMATION

For a single-qubit state σ = (r cosφ, r sinφ, z), the QFI
of dephasing estimation is independent on the phase φ
due to the rotational symmetry. Therefore, we only con-
sider the case φ = 0 in the following discussion. For a
single-qubit state σ0 = (r, 0, z), the QFI of dephasing
estimation is

FPD
θ (σ0) =

r2e−2θ(1 − z2)

1 − z2 − r2e−2θ
. (A1)

In the following, we will show a channel Z /∈ HDP, which
does not increase the QFI of phase estimation. The Choi
matrix of the channel Z is given by

JZ =









1
2 0 1

4
1
4

0 1
2

1
4 − 1

4
1
4

1
4

1
2 0

1
4 − 1

4 0 1
2









. (A2)

Its Kraus operators are given by

Z0 =
1

2

[

1 0
0 1

]

, Z1 =
1

2

[

0 1
1 0

]

,

Z2 =
1

2

[

1 1
0 0

]

, Z3 =
1

2

[

0 0
1 −1

]

.

(A3)

Then the Bloch vector of Z(σ0) can be written as
(12r, 0,

1
2r). The corresponding QFI of dephasing esti-

mation is

FPD
θ (Z(σ0)) =

1
4r

2e−2θ(1 − 1
4r

2)

1 − 1
4r

2 − 1
4r

2e−2θ
(A4)

When r = 0 (or z2 = 1), we find FPD
θ (σ0) =

FPD
θ (Z(σ0)) = 0. Then we discuss the case r 6= 0. The

inequality, FPD
θ (σ0) ≥ FPD

θ (Z(σ0)), is equivalent to

3

r2e−2θ
− 4

4 − r2
+

1

1 − z2
≥ 0, ∀r, z. (A5)

When z2 = 0 and r2 = 1, the left side of the inequality
reaches its minimum 3e2θ − 1/3, which is always greater
than 0. Therefore, the channel Z cannot increase the QFI
of dephasing estimation and does not belong to HDP.
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Appendix B: HAMMING DISTANCE
PRESERVING FUNCTION

In this appendix, we first give the definition of a Ham-
ming distance preserving function and then derive the
explicit forms of these functions.

Definition 4. Let Sn be the set of n-bit strings. The
one-to-one function πn

i : Sn 7→ Sn is said to be a Ham-
ming distance preserving function if

h(x, y) = h(πn
i (x), πn

i (y)), ∀x, y ∈ Sn. (B1)

The set of n-bit Hamming distance preserving functions
is denoted as Mn.

Next we study the explicit form of Hamming distance
preserving functions. We start with the simplest case
where the input/output string consists of a single bit.
Obviously, M1 = {π1

0 , π
1
1} with

π1
0 :0 7→ 0, 1 7→ 1,

π1
1 :0 7→ 1, 1 7→ 0. (B2)

For two-bit case, there are eight elements in M2. Pre-
cisely, we denote by xm the m-th bit of string x, and
define two sets of two-bit functions, R2 = {r20, r21} with
r20(x1x0) = x1x0, r21(x1x0) = x0x1, and Q2 = {qz}3z=0

with (qz(x))l = zl ⊕ xl, l = 0, 1. Then the set of two-bit
Hamming distance preserving functions can be written
as

M2 = Q2 ◦R2. (B3)

Here by ◦ we mean A ◦ B = {m|m = ab, a ∈ A, b ∈ B}.
This two-bit case can be generalized to the n-bit case.

Proposition 9. The set of n-bit Hamming distance pre-
serving functions can be written as

Mn = Qn ◦Rn, (B4)

where Qn := {qz|qz : Sn 7→ Sn, (qz(x))l = zl ⊕ xl, l ∈
{0, . . . , n − 1}}2n−1

z=0 , and Rn represents the set of n-bit
functions which reorder the bits in an input string.

Proof. Firstly, both r ∈ Rn and q ∈ Qn are Hamming dis-
tance preserving functions, so their multiplications also
preserve Hamming distance, i.e., Qn ◦ Rn ⊆ Mn. In
order to prove Eq. (B4), we only need to prove that
|Mn| = |Qn ◦ Rn|, where |X | denotes the number of el-
ements in the set X . For this purpose, we check that
|Qn| = 2n, |Rn| = n!, and |Qn ◦Rn| = |Qn| · |Rn|. In the
following, we focus on proving that

|Mn| = 2nn!. (B5)

Let Mn
z := {m|m ∈ Mn,m : 0 7→ z} with z ∈ Sn be a

subset ofMn. Then |Mn
z | = |Mn

0 | for all z = 0, . . . , 2n−1,
because Mz = qnzM0. It follows that

|Mn| = 2n |Mn
0 | . (B6)

Next we consider a function m ∈ Mn
0 which satisfies

m : 20 7→ i. From the Hamming distance preserving
condition h(0, 1) = h(0, i), there is exactly one bit in
string i which equals to 1, and hence i = 2j with j =
0, . . . , n. Now we define Mn

0|j := {m|m ∈ Mn
0 ,m : 20 7→

2j}, which is a subset of Mn
0 . Then any element mj ∈

Mn
0|j is related to an element m0 ∈Mn

0|0 via mj = cnj0m0,

where cnj0 represents an n-bit function which exchanges
the position of the zeroth bit and j-th bit of its input
string. It follows that Mn

0|j = cj0M
n
0|0, and consequently,

|Mn
0 | = n

∣

∣

∣Mn
0|0

∣

∣

∣ . (B7)

Further, consider a function m ∈ Mn
0|0, which satisfies

m : 21 7→ i. The Hamming distance preserving condi-
tion requires that h(0, 2) = h(0, i) and h(1, 2) = h(1, i).
This is equivalent to say that there is exactly one bit
in string i which equals to 1, and moreover, i0 = 0.
Hence, we have i = 2j with j = 1, · · · , n − 1. Let
Mn

0|0j := {m|m ∈ Mn
0|0,m : 21 7→ 2j}, and then we

have |Mn
0|0| =

∑n−1
j=1 |Mn

0|0j |, and |Mn
0|0j | = |Mn

0|01|,
∀j = 1, · · · , n− 1, or equivalently,

∣

∣

∣Mn
0|0

∣

∣

∣ = (n− 1)
∣

∣

∣Mn
0|01

∣

∣

∣ . (B8)

We apply the above discussion n times and arrive at

|Mn
0 | = n!

∣

∣

∣Mn
0|0···n−1

∣

∣

∣ , (B9)

where Mn
0|0···n−1 = {m|m ∈ Mn,m : 2j 7→ 2j , ∀j =

0, · · · , n− 1}.

For m ∈ Mn
0|0···n−1, the Hamming distance preserving

condition requires that h(m(x), 0) = h(x, 0) and

h(m(x), 2j) =
{ h(x, 0), xj = 0,
h(x, 0) − 1, xj = 1,

(B10)

for all x ∈ Sn and j = 0, · · · , n − 1. This immediately
implies that m(x) = x. Therefore, the only function in
Mn

0|0···n−1 is identity, and

∣

∣

∣Mn
0|0···n−1

∣

∣

∣ = 1. (B11)

Putting eqs. (B6), (B9), and (B11) together, we arrive at
Eq. (B5).
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Appendix C: THE CHANNEL W BELONGS TO
HDP \ SIO

The channel W is defined as Eq. (58). Its Kraus oper-
ators are given by

W0 =
1

2
|0〉〈1| +

1

2
√

2
(|1〉〈0| + |2〉〈0|),

W1 =
1

2
|1〉〈1| +

1

2
√

2
(|0〉〈0| + |3〉〈0|),

W2 =
1

2
|2〉〈1| +

1

2
√

2
(|0〉〈0| − |3〉〈0|),

W3 =
1

2
|3〉〈1| +

1

2
√

2
(|1〉〈0| − |2〉〈0|),

W4 = I− |0〉〈0| − |1〉〈1|.

(C1)

We first introduce the definition of the l1 norm of co-

herence

Cl1(ρ) =
∑

i,j:i6=j

|ρi,j |. (C2)

The l1 norm of coherence is monotonic under SIO [38],
that is, Cl1(S(ρ)) ≥ Cl1(ρ), where S ∈ SIO. Let us take
the state ρ as follows,

ρ =
1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|). (C3)

We calculate Cl1(ρ) = 1 and Cl1(W(ρ)) =
√

2. There-
fore, the HDP channel W can increase the l1 norm of
coherence. It implies W ∈ HDP \ SIO.
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