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ABSTRACT

An aerodynamic model is constructed for the application

of the properties of dynamic stall of airfoils to the calculation

of the airloads and blade motion of helicopter rotor blades.

Dynamic stall occurs on an airfoil undergoing pitching motion at

high angle of attack, and is characterized by peak section lift

and moment much larger than the corresponding static stall loads.

A method is developed for the solution of the equations of motion

of a rotor blade by means of harmonic analysis. The effect of

dynamic stall on the blade torsional motion at high advance ratio

is examined, and comparison is made with the limited experimental

data available. An increase in the dynamic stall angle is shown

to significantly decrease the amplitude of the pitch motions.
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NOMENCLATURE

a0  lift curve slope

b blade semichord

Cd section drag coefficient

cI  section lift coefficient

! cm  section moment coefficient

D Drag

i angle between tip path plane and the forward velocity;

positive for rearward tilt of the thrust

*1i imaginary number: V-T

L Lift

M Momefnt

r blade spanwise variable

R Rotor radius

a section angle of attack
&(S)c/V nondimensional rate of change of angle of attack, at

] the instant of stall1

ii blade flapping angle

8 blade pitch angle

rotor advance ratio: forward speed dividead by QR

p fluid density

rotor azimuthal variable

Qrotor rotational speed
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SECTION 1

INTRODUCTION

The large transient contro2 loads encountered at high

forward speeds or high blade loadings remain a significant problem

in the operation and design of helicopters. A primary source of

these loads is the aerodynamic moment due to blade stall. Results
of an investigation into the nature and effects of stall in the

aerodynamic environment characteristic of helicopter blades

(References 1 to 4) indicate that the stall phenomenon exhibited

by an airfoil undergoing a rapidly changing angle of attack,

known as dynamic stall, differs substantially from the familiar

static stall at constant angle of attack. Such a situation of

rapidly increasing angle of attack characterizes a helicopter

rotor blade as it traverses the rotor disc, particularly on the

retreating side of the disc at high advance ratios. This report

presents a method which was developed to calculate the aerodynamic

loading and resulting blade motion of a rotor blade, particularly

the aerodynamic moment and resulting blade torsional motion due

to dynamic stall. The aerodynamic model developed was specifically

designed for high forward speeds (p > 0.25), where a simple wake
geometry model is accurate. Moreover, due ;o the lack of symmetry

over the rotor disk at high forward speed, recurrent entry to and

exit from stall (stall flutter) is not likely to occur, and the

very complicated and detailed wake and aerodynamics due to such

a motion need not be considered.

In what follows all quantities are nondimensional, based

on the fluid density, the rotor radius, and the rotor rotational

speed (p, R, Q). The section lift, moment, and drag coefficients

are conventionally defined.
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SECTION 2

THE AIRLOADS AND BLADE MOTION CALCULATION

The calculation procedure used to determine the airloads
and blade motion of a helicopter rotor blade follows a reference

blade around the azimuth in discrete steps AY of the order of ten

degrees. The downwash at several blade stations, the section

loading at several blade stations, the blade motion, and the wake

geometry changes are calculated successively; then the blade is

moved to the next azimuth station. This procedure is illustrated

in Figure 1. The use of a variable inflow calculated on the basis

of a wake of trailed and shed vorticity precludes any closed form

solution. The calculations are therefore performed iteratively

until they converge to the steady state solution. The solution

is determined by the physical properties of the blade (the semi-

chord to span ratio b, the Lock number L.N., and others), and

by the root collective pitch e 0) the tip path plane inclination

angle i, the advance ration p, and t:e tip Mach number D1.090.

2.1 The Aerodynamic Loading

The section lift, moment, and drag -- L, M, D -- are

determined from the appropriate aerodynamic theory based on the

state of the flow and the blade motion. The state of the flow

(attached or nonattached) at a certain blade station is determined

by the past history of the flow and by the angle of attack a:

1A p

where

LA 'A +

2



(with the convention that a positive angle of attack in the

reverse flow region corresponds to a downward acting lift). The

state of the flow is determined as follows:

(a) For Jai less than a defined stall angle, the flow is

considered attached. The loads are determined using

lifting line and lifting surface theories.

(b) When jai becomes greater than some aDS, the section

is considered to stall dynamically. The loads are

determined by the parameter &c/V at the instant of

stall. The dynamic stall state lasts until the

section angle of attack begins to decrease (but at

least for an intervalAAr), and then the flow is

considered separated. During the separated state the

loads decay from the dynamic stall values to static

stall values. When lal next goes below some a the

flow becomes attached again.

(c) When lal becomes greater than some aF the flow is

called feathered (typically aF =60 degrees). When

jai next goes below aF the flow is considered

statically stalled, until lal goes below aSS and the

flow reattaches.

The only feature of the reverse flow region which is

considered is the direction of the component of the velocity uT

normal to the span direction. This determines the double sign:

which will occur frequently below. Several additional points

must be considered:

(a) For points too near the reverse flow boundary (uT = 0)

the loading is set to zero.

3



(b) For radial stations which at the last azimuth station

were on the other side of the reverse flow boundary,

so that the past history of the flow is not well

defined by the, above model, the flow is considered

to have been attached at the last azimuth station.

Whatever the state of the flow is near the reverse

flow boundary, the loading will be small because of

the low dynamic pressure of the velocity normal to

the span.

(c) If the angle of attack changes sign in the separated

region, so that a more detailed calculation along

the azimuth would show the section flow reattaching

and then restalling as the angle of attack goes

through zero, the section is considered to be stati-

cally stalled.

The logic described above is shown in Figure 2. This

model is designed to show the effects of a rather impulsive load-

ing (due to dynamic stall) on the torsional motion of a blade

under high loading conditions and high advance ratio. It is not

appropriate for handling several successive excursions in and out

of stall unless an impractically small azimuth step &Pis used.

The convention for the positive directions of the loads is

as follows:

lift, L upward

moment, M nose up, about the quarter chord (the

feathering axis)

drag, D opposing the blade rotation

pressure, -Ap upward

circulation, r directed outward along the blade

I7



2.1.1 Attached Flow

For the blade section in attached flow, the loading is

calculated using lifting line theory; that is, the flow is con-

sidered locally two-dimensional, with the influence of the rest

of the blade and the rotor wake represented by just a downwash

Velocity at the blade section. The aerodynamic loading is due

to the blade motion and the wake induced downwash. The downwash

is calculated from the trailed and shed vorticity in the wake of

each blade of the rotor. In early calculations, only the downwash

due to the trailed vorticity was calculated in this manner; the

effect of the shed vorticity behind the reference blade was

accounted for by the use of Theodorsen's lift deficiency function.

The two methods of handling the shed vorticity showed little

difference as far as stall loads and blade motion were concerned.

As a first order correction for compressibility effects,

the Prandtl-Glauert factor is used, based on the Mach number of

the flow normal to the span of the blade. Thus

I- = - )incompressible lifting

line theory

A (4---g)incompressible lifting

line theory

where

- Mach number of tip (r = rT)

Djq o at *=90 degrees

5



2.1.2 Nonattached Flow

The aerodynamics of the flow when it is stalled, separated,

or feathered give the section load coefficients -- C1 , CmI cd --

for lift positive upward, moment (about the feathering axis)

positive nose upward, and drag positive in the direction opposing

the relative velocity. The lift and drag, L* and D*, are respec-

tively perpendicular to and in the direction of the actual section

relative velocity (see Figure 3). Converting these coefficients

to loads based on Q and R gives

Referring again to Figure 3, the loads can be converted to lift

and drag in the no feathering plane using

z ZL4+(AZ

L - L

V 7

These expressions are necessary because of the large angles which

may be involved in nonattached flow. The circulation is given by

A--

and the actual loads by a /2w times L and M (for use in the

equations for the blade motion however, the lift curve slope

correction factor is already included in the Lock number).

6



2.1.3 Dynamic Stall

The loss of lift and circulation and the shift of center

of pressure an airfoil at an angle of attack above the static

stall angle aSS (generally about 8 to 12 degrees) are familiar

aerodynamic phenomena. The operation of a helicopter rotor blade

in an environment of high loading and changing angle of attack

makes it necessary to consider stall as a dynamic rather than a

static phenomenon. The unsteady aerodynamics involved in dynamic

stall are not yet completely understood (see References 1 to 4)
but fundamental to characterizing the problem is the time scale

of the airfoil motion, as represented by the parameter &c/V. The

primary characteristics of dynamic stall are its occurrence at an

angle of attack greater than the static stall angle, followed by

the shedding of vorticity from the leading and trailing edges.

The unsteady aerodynamic forces due to the vorticity passing over

the upper surface of the airfoil produce a lift and nose down

moment, with peak values much greater than the corresponding

static stall loads. Experimental and theoretical work (Reference I)

has shown that the primary parameter of dynamic stall is the rate

of change of angle of attack at the instant of stall, in the non-

dimensional form

with little dependence on the actual an~gle of dynamic stall.

Figure 4 shows the results of both theory and experiment for the

variation with 0 QS/V of the peak lift and moment coefficients,

and cm . Although still requiring experimental verifica-Clmax  max

tion, the theory of Reference 4 implies that the peak coefficients

approach limits of the order of 3.0 for cI  and -0.8 for cmax " max

for high stall rates.



As a model for dynamic stall, it is assumed that above a

given angle of attack, aDS, as long as the angle of attack is

increasing, the lift and moment coefficients are maintained at

constant values. These coefficients are taken as equal to the

peak coefficients as given by the experimental and theoretical

results cited aobve, and are therefore dependent on the stall

rate parameter &9C/V. The empirical representation used is also

shown in Figure 4. Data (Reference 4) indicate that the dynamic

stall angle is about 14 to 20 degrees; typically the value of

,= 15 degrees is used. Thus the value of ;C/ at the instant

of stall gives

The use of this mod'l (Reference 5) has shown that typically

the large nose down moment generated by dynamic stall quickly

causes the angle of attack to begin to decrease (due to elastic

pitch motion of the blade) and thus the flow to enter the separa-

tion model. The dynamic stall region extends only for about

= 15 degrees. The resultant elastic pitch excitation is

characteristically very impulsive. At high advance ratios the

model is only weakly dependent on the stall angle aDS" The

possibility of self-excited elastic torsional motions (stall

flutter) is likely only at very low advance ratio, with a great

deal of symmetry around the rotor disk. At very high advance

ratios (N > 0.5), the value of k /Vis frequently larger than

the range shown in Figure 4, and so the dynamic stall loads are

very large.

The use of harmonic analysis to represent the load data,

which is calculated only at discrete azimuth points, as a smooth

8



distribution around the disk actually replaces the instantaneous

rise of the stall loads to the peak dynamic stall values by a

gradual increase, wi-th the rise time determined by the azimuth

increment in the harmonic analysis (see Section 2.5.2), For a

very sm-all azimuth increment in the calculation process, some limit

must be placed on the rate of increase of the stall loads. Using

a linear rise,, the lift and moment coefficients are

for A4+ z

and for > + .

where c and c are the coefficients for the attached flow at

a ma

the dynamic stall angle and Aplis the azimuth increment since the

dynamic stall angle was reached. The experimental and theoretical

data (Reference 4) suggest that the rise time A'wshould be

approximately 10 degrees, which is also confirmed by a comparison

of the results of this calculation model and experimental data.

2.1.4 Separation

Experimental results (Reference 6) show that the flow over

an airfoil oscillating at high angle of attack separates at the

peak angle of attack for values of the reduced frequency, k = wb/V,

greater than 0.3. It is also shown there that the Theodorsen

theory of oscillating airfoils is equivalent to a first order

differential equation for the moment coefficient of the form

oC

"7t-



where the subscript i refers to the initial conditions, and the

Theodorsen theory gives A and the time constant Tm as functions

of k and C(k) (the lift deficiency function). A similar expression

may be derived for the lift coefficient, with a time constant T1 .

When this equation was assumed to hold in the stalled region also,

moment variation with angle of attack was calculated which was

in goad agreement with the experimental results. Since a first

order equation would be expected to give a reasonable approxima-

tion to the decay of the dynamic stall loads (see Reference 3 for

experimental data for this decay) this agreement primarily indicates

that the time constants g~ven by the Theodorsen theory may also

be used when the airfoil is stalled.

Therefore as a model for' separated flow, it is assumed that

after the section angle of attack reaches its maximum value, the

lift and moment coefficients decay exponentially to static stall

values. Thus the lift and moment coefficients are

(C~c6 +

C,.,= + o-c.,-

where c1  and c are the coefficients at the peak angle of attack

(dynamic stall coefficients) and c and c are the static stall

coefficients (based on the same sign(a) and sign(uT ) as are c

andCm0 ); ' is the azimuth angle at which the separation region

was entered. The time constants are given by the Theodorsen theory

as approximately TL = 1.0 and TM = 2.5. Calculations with these

values show that the time constants used for the transient stall

of th o ht he should be several times these values, which

were derived and experimentally confirmed for a highly periodic

stalling motion.

10



Dynamic stall as described above is a phenomenon rather

independent of the airfoil motion after its initiation at the

dynamic stall angle. Thus the dynamic stall state should exist

for a definite period, regardless of the subsequent blade motion.

Therefore the separation state is assumed not to start until at

least r.after the dynamic stall angle is reached; if the angle

of attack is still increasing after this point, the separation

state begins when the angle of attack starts to decrease.

It is assumed that the flow reattaches at the static stall

angle aSS. However, reattachment is also delayed if necessary

until A.Te.,after the initiation of dynamic stall.

2.1.5 Static Stall
The model used for static stall assumes that the lift and

moment coefficients are maintained at the constant static stall

values, cs and cms. Then the coefficients are

Typical values used are cl = 1.0 and cm = -0.15, and for the
I S

static stall angle aS = 12 degrees.

2.1.6 Feathered Flow

The experimental results of Reference 7 show that the stall

model is reasonably accurate up to angles cf attack of around 60

degrees. These experiments were static measurements on a MACA

0012 airfoil section. A good approximation to the experimental

coefficients above the feathered angle is given by

~~II
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for IaI > a.F The experiments give the parameters:Cl = Cl = 1.0;

cmf = -0.40; and aF = 60 degrees.

2.1.7 The Drag

The experimental data of Reference 7 also give the drag

coefficient for the NACA 0012 airfoil section. Unlike for attached

flow, for nonattached flow the drag may have a significant component

in the rotor thrust direction because of the large local angle of

attack. For nonattached flow., the data is approximated quite well

by:

2.2 The Rotor Wake and Downwash

The wake of a helicopter rotor blade in forward flight

consists of trailed and shed vorticity in a distorted, skewed,

helix. In order to calculate the downwash induced at the rotor

blade by this wake, it is represented by a net of finite strength,

finite length line vortices behind each blade. The distribution

of the blade bound circulation over the rotor disk, r(r, P), is

sufficient to establish, by continuity of vortex lines, the

strength of each line element in the net. A semi-rigid wake

geometry model is used to give the position of each line element;

that is, each point of the wake is assumed to travel downward

always at a velocity equal to the downwash at the point on the

disk from which it was trailed or shed. From its strength and

position, the downwash induced by each line element may be calcu-

lated; the downwash at the rotor blade is then the sum of the

contributions from all elements in the wake.

2.3 The Reverse Flow Region

It is shown in Reference 7 that an airfoil in reverse flow

has almost the same lift and moment variation with angle of attack

12



as for conventional flow, as would be expected with nin airfoils.

Therefore the only change in the model is in the positive direc-

tions of the loads. As far as the blade torsional motion is

concerned, the most important feature of the reverse flow region

is that the aerodynamic center is then at the three-quarter chord,

so the lift gives a large moment about the blade feathering axis,

normally located at. the quarter chord.

2.4 Compressibility effects

The only consideration of compressibility effects on the

loads is the use of the Prandtl-Glauert correction factor based

on the Mach number of the local velocity perpendicular to the

span, uT. The neglect of the effect of compressibility on the

stall loads is a serious defect, as it is well established that

this is a significant factor for airfoils stalling in the environ-

ment characteristic of helicopter blades. However, once experi-

mental and theoretical data on the effects of compressibility on

dynamic stall become available, it should be easy to incorporate

them into the aerodynamic model which has been described here.

2.5 The Blade Motion

The Vertical position of the blade is composed of the

feathering axis deflection, zo, and a chordwise rigid pitch

motion, 0:

rhe deflection of the elastic axis is represented as t) sum of

rigid flapping and first mode elastic bending; and 'The pitch

motion as ti-e sum of a rigid (spanwise) pitching mode and first

mode elastic pitching:

13



where (O) = 0. An approximate mode shape is used for elastic

bending, and the elastic mode is typically linear twist:

The equation of motion is most conveniently solved in the no

feathering plane, where the only control input is collective

pitch (the tip path inclination angle i also enters indirectly

through the downwash). Cyclic pitch can be varied arbitrarily

with the orientation of the shaft; the dynamics and aerodynamics

of the rotor determine the orientation of the no feathering plane

with respect to the tip path plane.

2.5.1 The Equations of Motion

The equations of motion for a constant chord (uniform

spanwise structural properties), coincident elastic axis and

inertial axis, articulated (no lag hinge, zero flapping hinge

offset) blade may be derived following Reference 8:

1.= L . r

Ire

a

14



where

blade section moment of inertia about

- - the feathering axis

L.N. Lock number

--- elastic bending frequency -- 2.7/REV

nonrotating natural pitch frequencies

-- collective pitch input

I - structural twist

The lift and moment, L and M, are based on the ideal lift curve

slope 27r; the Lock number includes the lift curve slope correc-

tion factor.

The pitching equations of motion are very sensitive to

impulsive moment excitation, and in order to obtain a convergent

solution by means of harmonic analysis, it is necessary to include

15



part of the aerodynamic damping on the left hand side of the

equations. Thus the nonharmonic (no dependence on T), incom-

pressible damping is extracted from the lifting line result for

the aerodynamic moment. To the total (compressible) moment,

M/4nb, is added the quantity:

or

for the equations of motion for i and G respectively. Corres-

pondingly to the left hand side of the equations are added the

terms:

and

where

(The damping terms given here are for the feathering axis at the

aerodynamic center only.)

2.5.2 Solution for the Blade Motion

The equations of motion are most conveniently solved by

harmonic analysis of the loads and blade motion. Thus writing

16



and similarly decompC3ing q, 0, r 0 0, and the integrals of

the lift and moment, the equations of motion become:

AmA

-IZ3 + 44-

All but the stead. components (n = 0) of the collective and twist

inputs, 80 and 0., are usually zero. These equations are easily

solved for the harmonics of the blade motion.

The right hand sides of these equations are the harmonics

of the integrals over the span of the aerodynamic forcing loads.

In the calculation of rotary wing airloads these integrals will

be evaluated only at a finite number of azimuth stations around

the disk. Calling any of these integrals F(t), its value F is

calculated at J azimuth stations. Then the harmonics of F are:

17



so that

D~

For N = J/2 this gives exactly F( = F,-; for N < J/2 this is an

approximation in the least squares sense.

Because of the smoothing nature of the harmonic representa-

tion, the rate of change of a function between two calculated

points will be several times the rate of change of a straight

line representation between the two points. This can introduce

convergence problems when large changes in the loads are involved,

as when stall occurs, because the effective rise time of the loads

is increased. Therefore all the harmonics, Fn, are multiplied by
In

the factor:

The harmonic representation is thereby converted to a function

connecting the calculated points, F at -, by straight lines.

The exact representation requires an infinite series, so truncat-

ing the series has a smoothing effect. More importantly, it can

be seen that this factor decreases the magnitude of the harmonics

of the least squares representation. Effectively, the rise time

of the function is now restricted to at least the azimuth incre-

ment, 2ir/J, in the harmonic representation.

The use of harmonic analysis gives a smooth distribution

of the airloads, which are actually calculated only at discrete

points around the azimuth. This smoothed loading distribution

then gives the blade motion through the equations of motion. The

use of harmonic analysis has an important consequence in the stall

model however. In the stall model described above, the lift and

moment coefficients jump immediately to the stall values when che

section angle of attack exceeds the dynamic stall angle. The use

of harmonic analysis smooths this jump over the azimuth increment,

18



2ir/J, which becomes a lower bound on the rise time of the stall

loads. With a small azimuth increment, it is necessary to include

in the stall model itself a restriction on the rise time of the

stall loads (ae in Section 2.1.3).

2.5.3 The Solution for First Harmonic Flapping

Since the natural frequency of an articulated blade with

zero flapping hinge offset is exactly 1/REV, the equation of

rigid flapping motion is singular for the solution for 01. For

n = 1 the equation, with the integral replaced by a sum over the

blade span, reduces to:

5 Pom

which is to be solved for 0 The values of L over the disk are

known, calculated at each azimuth station using some 1 and o

The solution will be found for 01 assuming that the contributions

to L from all factors except those involving 0 1j and 0 oj will be

the same for the new values of 01 and 0o. That is, factors such

as changes in the loads due to the changes in the downwash associated

with the new values of 01 and 00 are considered as second order

effects. These and similar effects, such as changes in stall

region boundaries, and changes in the pitch motion, will show up

eventually of course, so that the solution for a new 01 and 00

must be obtained at each azimuth station as the calculation

procedure goes around the disk, until they converge to the correct

values.

These contributions to L that are assumed to be independent

of 01 and 00 are contained in the quantity

.4t
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where the subscript "present" means based on the old values of 0,

that is on 0li and 0oij This is the quantity usually used on the

right hand sides of the equations of motion in the solution for

the harmonics of the blade motion. From this must be subtracted

the contributions due to ij and 0o .j The direct dependence of

L on 0 enters only through the lifting line theory results, and

since this dependence is linear, may write

where , .,, S,, . * are functions of r and '; - ,

are given by the lifting line theory and includes all other

loads.

Thus the equation to be solved becomes:

A-i

where as before the subscript "tJ"I refers to the sum over the

azimuth (which enters in obtaining the first harmonic of

( X r(L/4b)Ar)). The solution of this equation is:

"Spa
-Z, t+ L (N±S+I

20



where

and

-7-
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and the solution for o is given as usual by

0N

Now 40 and are given by lifting line theory if the

flow is attached. Extracting the terms proportional to 01, 6_3 ,

and 00, including, the component of the downwash (-pO1c) due to

the tilt of the tip path plane with respect to the no feathering

plane, gives:

[A

" z

-3-

if the flow is attached, and

if the flow is nonattached.

With the straight line rather than the least squares

representation in the harmonic analysis, it is necessary to replace

the factor 1/J by the factor:

where it appears in the above.

22



SECTION 3

RESULTS

3.1 Effect of Dynamic Stall on the Blade Torsional Motion

Reference 5 reports the results of using the aerodynamic

model described in Section 2 to calculate the airloading and

blade torsional of a helicopter rotor at high advance ratio.

These results may be summarized as follows.

For 0.4 < v < 0.8, a stall region appears on the retreating

side of the disk, outside the reverse flow region. The blade

pitch motion is characterized by an initial nose-down impulse due

to dynamic stall, a decrease in pitch in the fourth quadrant as

Increasing dynamic pressure increases the moment due to separated

flow, and dynamic overshoot and damped oscillations in the first

quadrant after flow reattachment occurs. The pitch oscillations

are well damped by potential flow aerodynamic moments. For forward

disc inclination, the stall area appears initially at outboard

blade stations, resulting in larger stall moments and pitch motions.

For p > 0.8, the blade stalls before entering and after

leaving the reverse flow region, which occupies a large part of

the retreating side of the disk, For an articulated blade, stall

is not an important feature of the loads at extremely high advance

ratio, because the large collective pitch necessary to get signifi-

cant stall regions results in unusably small or even negative

rotor thrust.

For p > 0.6, the blade pitch motion is characterized by a

large pitch increase and decrease centered about '$ = 270 degrees,

caused by the downward lift force in the reverse flow region

acting at the three-quarter chord.

The importance of the concept of dynamic stall for a rotor

operating at high advance ratio lies in the fact that the rotor

blade stalls at high values of the parameter c;(SC./V , resulting
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in lift and moment initially several times larger than the

corresponding static stall values. It should be noted also that

the dynamic overshoot due to flow reattachment following stall

often is the greatest blade motion due to stall, and the severity

of these oscillations is likely to be lessened only by an increase

in pitch damping, possibly by mechanical means.

A presentation of the airloads and pitch motion for a rotor

in various operating conditions may be found in Reference 5.

3.2 A Comparison with Experiment

Reference 9 presents limited experimental data on the

torsional motion of a rotor blade in several operating conditions.

The theoretical torsional motion was calculated for these cases

using the model described in Section 2.

Figure 5 shows the pitch motion for p = 0.68, i = 0, and

00 = 4.0 degrees with the blade center of gravity at the 30 percent

chord. This is a case of classical flutter due to center of

gravity-elastic axis offset. Figure 6 shows the pitch motion for

V = 1.h7, i = 0, and 0 = 2.0 degrees. This is a case with large

pitch motion due to the lift in the reverse flow region. For

both of these cases, no elastic pitch motion was allowed.

Figure 7 shows the pitch motion for V = C.294, i = 0, and

00 = 11.0 degrees. This is a case involving dynamic stall of the

blade on the retreating side of the disk. Two theoretical results

are shown: one for aDS = 14 degrees and no elastic pitch motion;
and one for %DS = 16 degrees, delayed by= 20 degrees (the

abscissa for this line Is actually 14P+200), with no rigid pitch

motion and an elastic pitch mode shape g = sin~N-

A discussion of these results may be found in Reference 10.

With so little eiperimental data it is not actually possible to

make an adequate evaluation of the dynamic stall model used here.
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3.3 The Effect of the Dynamic Stall Angle

The dynamic stall concept suggests a means to lessen the

effects of stall. An increase in the dynamic stall angle will

result in a significant reduction in the severity of the pitch

motions due to dynamic stall; indeed, for a given collective

pitch, a large enough dynamic stall angle could prevent the

occurrence of stall at all. The dynamic stall angle is dependent

on the parameter c./cV , on airfoil heaving motion, and on

airfoil shape (References 3 and 4), and thus airfoils may be

designed with the aim of minimizing stall effects.

In order to evaluate the effect of increasing the dynamic

stall angle, the blade pitch motion was calculated for the same

rotor used in the calculations of Reference 5, with several values

of aDS. The natural pitch frequency, wo, was 5.5/REV. Figures 8,

9, and 10 show the harmonics of the rigid pitch motion, 0n (for

simplicity, no elastic pitch motion was considered) for three

operating conditions: Figure 8 is for p = 0.5, i = 0, and 01 = 12

degrees; Figure 9 is for p = 0.5, i = 0, and 00 J.5 degrees; and

Figure 10 is for P = 0.3, i = 0, and 61 = 11 degrees. Figure 11

shows the actual pitch motion for the same case as in Figure 10.

The decrease in the amplitude of the pitch motion as the dynamic

stall angle is increased is quite substantial.

it
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SECTION 4

CONCLUSION

An aerodynamic and dynamic model has been constructed which

has proved useful in calculating the torsional motion of a heli-

copter rotor blade under operating conditions involving blade

stall. The concept of dynamic stall and the use of the experi-

mental and theoretical data on dynamic stall are important parts

of the aerodynamic model used here. It is clear that further work

should be done to determine the nature of dynamic stall, in order

that a refined, and therefore more widely applicable, model of

stall may be constructed; it should be relatively simple to

incorporate new data into the calculation procedure described

here. There is also a great need for more experimental data on

the torsional motion of rotor blades, in order that the model

constructed may be rationally evaluated. Calculations of the

harmonics of the pitch motion for varying dynamic stall angle

have shown that the amplitude of the torsional motion is significantly

decreased by an increase of the stall angle. This illustrates the

vlue of designing airfoils for good stall characteristics.
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