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Abstract (200 words) 

The current design practice in the UK for estimating the soil pressure on a buried pipe under 

traffic loads is based on a simple equation derived using a Boussinesq solution. In order to test 

and verify this equation, and study the effect of pipe diameter and backfill height for rigid 

(concrete) and flexible (PVC) pipes, a study has been conducted using three-dimensional finite 

element modelling. It was found that increasing the diameter of the concrete pipe nonlinearly 

decreases the maximum vertical displacement, while the relationship between the concrete pipe 

diameter and the maximum thrust force was found to be dependent on the backfill height. 

Increasing the diameter of the PVC pipe linearly increases the displacement and the maximum 

thrust force. The effect of traffic live load on the maximum thrust force becomes insignificant for 

a cover depth larger than 2 m and 3 m for the concrete and PVC pipes, respectively. The results 

indicate that there are significant issues with the maximum soil pressure equation used in the 

British Standard. A new equation has been developed using numerical modelling results and 

using a regression analysis to predict the maximum soil pressure on a buried pipe based on 

backfill height. 

 

Keywords: Pipes & pipelines; design methods & aids; research & development; codes of 

practice and standards 

 
List of notation  
F is the field test 

3DFE is the three-dimensional finite element analysis 

2DFE is the two-dimensional finite element analysis 

L (1-g) is the laboratory test 

L(C)  is the length of the laboratory centrifuge test 

PE is the polyethylene  

PP is the polypropylene  

UPVC is the unplasticized polyvinyl chloride  

HDPE is the high density polyethylene  

PVC       is the polyvinyl chloride  

AL          is the aluminium  

ST         is the steel  

CON       is the concrete 

RC    is the reinforced concrete 

C is the calculated maximum soil pressure under traffic live load 

H             is the backfill height 

E             is the modulus of elasticity  

υ             is the Poisson ratio 
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γ            is the unit weight of the soil 

c′          is the cohesion of the soil 

φ′          is the angle of internal friction of the soil 

K, n, and Rf          is the hyperbolic soil model parameter 

D             is the diameter of the pipe 

Wt           is the trench width 

USCS          is the unified soil classification system 

CR        is the predicted maximum soil pressure due to the traffic live load using the 
regression equation 
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1. Introduction 

Buried pipelines are widely used for drainage and sanitary applications as well as transporting 

products such as gas and water. These pipelines are usually buried beneath the highways. 

During their service life, pipelines should resist the external forces from soil overburden 

pressure and traffic live load if buried at a shallow depth (≤3 m). For these reasons, and to 

achieve a safe and economical design of pipelines, it is very important to correctly estimate the 

stresses and strains developed under external forces.  

In order to fully understand the extent of previous studies in the area of buried pipes, a thorough 

literature review was conducted. The behaviour of pipes during installation (Arockiasamy et al., 

2006; Kawabata et al., 2008; and Elshimi and Moore, 2013), under soil overburden pressure 

(Rogers, 1999; Dhar et al., 2004; Sargand et al., 2005; Chapman et al., 2007; Abolmaali and 

Kararam, 2010; and Gallage et al., 2012), and traffic live load has received significant attention 

from researchers in the literature. A lot of numerical, laboratory, and full-scale studies on the 

response of the pipes under these effects are available in literature.  The traffic live load in 

these studies has been considered in a number of ways, e.g. as a uniform pressure (Yoo et al., 

1999; Trickey and Moore, 2007; Bryden et al., 2014; and Kraus et al., 2014), single axle load 

(Fleming et al., 1997; Kang et al., 2013a; Kang et al., 2014; Lay and Brachman, 2014; Mai et 

al., 2014a; and García and Moore, 2015), and multiple axle loads (McGrath et al., 2002; 

Arockiasamy et al., 2006; Wong et al., 2006; Kraus et al., 2014; Rakitin and Xu, 2014; Chaallal 

et al., 2014a; Chaallal et al., 2014b; Sheldon et al., 2014; and García and Moore, 2015). The 

details of the studies on the pipes with a single axle load or multiple axle loads are shown in 

Table 1. Most of these studies simulated the load configuration and the maximum tyre pressure 

of American Association of State Highway and Transportation Officials (AASHTO) standard 

design trucks (H-20, H-25, HS-20, and HS-25) (AASHTO, 1998) and a Canadian standard 

design truck (CL-625) (CSA, 2006). However, a review on the design guidelines for buried 

pipelines showed that the loading configuration recommended in the BS 9295 (2010) (two axles 

with a maximum axle load of 450 kN) is different from that of the H-20 and H-25 (one axle with a 

maximum nominal axle load of 178 kN) and CL-625 (one axle load with a nominal maximum 

axle load of 175 kN or a tandem axle with maximum nominal axle load of 240 kN). In addition, 

the current design practice in the UK for the maximum soil pressure on a pipe under traffic load 

is based on a simple equation derived using a Boussinesq solution as shown in Equation 1 (BS 

9295 2010). 

𝐶𝐶 = �
54.5
𝐻𝐻

+
42

1.8𝐻𝐻
� 

1. 

Where C is the calculated maximum soil pressure under traffic load in kPa and H is the backfill 

height in m.  

A review of the literature has shown that using the Boussinesq solution for estimating the forces 

in the pipe due to a surface live load is not accurate (Yoo et al., 1999). Therefore, in order to 
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test, and potentially improve, this equation, rigorous numerical analysis results and/or field test 

results are required. However, due to the complex nature of the soil-pipe interaction under traffic 

live load and the nonlinearity of the soil, it is not possible to use the results and the 

recommendations from the previous studies to test and improve this equation.  This is because 

of the difference in the loading configuration and the maximum axle load used in these previous 

studies. Furthermore, the literature lacks clear conclusions for the effect of pipe diameter and 

backfill height on the behaviour of the pipe, where most of the studies have focused on certain 

pipe types, certain pipe diameters, and certain backfill heights (refer to Table 1). Therefore, the 

present study aims to assess the effect of pipe diameter and backfill height on rigid (concrete) 

and flexible (PVC) pipes under the live loading configuration specified in BS 9295 (2010) using 

a validated nonlinear three-dimensional finite element model. In addition, the results of the 

maximum soil pressure on the pipe obtained from these analyses have been compared with the 

current design equation (Equation 1) recommended by BS 9295 (2010). 

2. Model validation 

Model validation in numerical analyses is very important to gain confidence in the approaches 

and models used. Therefore, two pipe related tests that are available in the literature have been 

considered for validating the finite element modelling techniques used in the present study (one 

field and one laboratory based). MIDAS GTS NX 2015 (v1.1), a commercial three-dimensional 

finite element package, has been used to create the numerical models. The field test was 

chosen to validate the numerical modelling because it is comparable in terms of scale to the 

present study, while the laboratory test has been considered to test the validity of the modelling 

to predict the response of pipes in more controlled laboratory conditions. 

2.1 Validation Problem 1 

 
A field test involving a corrugated HDPE pipe with a nominal diameter of 0.90 m has been 

modelled to validate and evaluate the predictions of the proposed numerical model 

(Arockiasamy et al., 2006). The pipe was buried in a trench with a minimum width of 1.655 m. 

The backfill height was 0.45 m. Crushed limestone was used for the 0.152 m bedding layer and 

poorly graded sand with silt with a degree of compaction of 95 % of the Standard Proctor 

maximum dry density was used as the backfill material. The pipe was subjected to surface live 

loads from two axles of two trucks with a maximum axle load of 181 kN. The axle load value 

simulated an AASHTO HS-20 truck with an impact factor calculated using the equation from 

AASHTO (1998). The space between the two trucks was 0.91 m.  

A numerical model was developed for this problem, with a length, width, and height of 15 m, 12 

m, and 10 m, respectively. Four noded tetrahedron solid elements were used to model the 

surrounding soil and the trench, while three noded triangular shell elements were used to model 

the pipe. Sensitivity analyses were undertaken to evaluate the impact of the mesh size on the 
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results and the best agreement was achieved when the average element size was 0.15 m for 

the pipe, 0.15 m for the trench, 0.25 m for the bedding layer, and 0.5 m for the surrounding soil. 

The finite element mesh is shown in Figure 1. The truck live load for each tyre was modelled as 

a surface pressure over a tyre foot print area of approximately 0.23 x 0.31 m (Arockiasamy et 

al., 2006). A linear elastic model was used to model the pipe. The Duncan-Chang hyperbolic 

soil model (Duncan and Chang, 1970) was used to represent the behaviour of the soil. The 

Duncan-Chang hyperbolic soil model was chosen because it has the ability to model the effect 

of the stress level on the soil stiffness, which gives a better prediction for the behaviour of the 

pipe (Dhar et al., 2004; Kim and Yoo, 2005; Kang et al., 2007; Kang et al., 2013a; Kang et al., 

2013b; and Kang et al., 2014). The mechanical properties of the bedding soil, backfill soil, and 

natural soil were adopted from the literature (Boscardin et al., 1990) and are shown in Table 2. 

The modulus of elasticity (E) and the Poisson ratio (υ) of the pipe were taken equal to be 

760000 kPa and 0.4, respectively (Arockiasamy et al., 2006).  

As part of the modelling process, a full interface bond between the pipe and the soil has been 

assumed in the analysis as previous studies have shown that using a full bond gives a good 

prediction for the behaviour of the pipe (Taleb and Moore, 1999; Kim and Yoo, 2005; Kang et al. 

2007; Meguid and Kamel, 2014; and Mai et al., 2014b). The base of the model was restrained 

against movement in all directions, while the sides of the model were restrained against 

movement in the horizontal direction. Four steps were performed in the finite element analyses: 

Step 1: The initial earth pressures for the in situ soil were calculated. The coefficient of the 

lateral earth pressure of the natural soil was taken equal to 1. 

Step 2: The trench was excavated. 

Step 3: The bedding soil, pipe and backfill soil were added to the model. The coefficient of the 

lateral earth pressure of the compacted backfill was taken as equal to 1 (Brown and Selig, 

1991) 

Step 4: The traffic live load was applied using 25 equal loading increments. 

This field test has also been modelled in the literature using 2D and 3D elastic finite element 

(Arockiasamy et al., 2006) and 2D nonlinear finite element model (Kang et al., 2014).  

Figure 2 compares the maximum vertical and horizontal displacement of the pipe obtained from 

the field results (Arockiasamy et al., 2006), the present model, two- and three-dimensional finite 

element elastic models (Arockiasamy et al., 2006), and a two-dimensional analysis using the 

Duncan-Selig hyperbolic soil model (Kang et al., 2014). Figure 3 compares the results of the soil 

pressure around the pipe obtained from the field test and the same numerical studies. From 

Figure 2, it can be seen that the present model predicted the displacement of the pipe better 

than the previous models with a difference of 14.3 % for the vertical displacement (3.5 mm from 

the field test and 4 mm from the developed model) and 12 % for the horizontal displacement 

(1.5 mm from the field test and 1.32 mm from the developed model). Figure 3 shows that the 

present model predicted the soil pressure around the pipe reasonably well. It can be seen also 

that the two-dimensional model also predicted the soil pressure reasonably well. However, the 
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decision to use a nonlinear three-dimensional model in this study was made to avoid using the 

spreading factor, which is an empirical factor used in the two-dimensional modelling to take into 

account the three-dimensional effect of traffic loads on pipes. It is worth noting that Kang et al. 

(2014) did not report the value of the spread factor which has been used in their analysis. The 

difference between the actual and predicted results can be justified by the complexity and 

variability of soil density pattern around the pipe and the difference between the real and the 

assumed soils properties. However, it can be concluded that the model is able to represent the 

soil-pipe interaction with an acceptable accuracy when compared with field results and previous 

numerical studies. 

2.2 Validation Problem 2 

 

The displacement of a PVC pipe with an external diameter of 0.47 m and a thickness of 0.013 m 

has been reported by Kraus et al. (2014). This pipe was tested in a laboratory test box with a 

length, width, and height of 3.05 m, 2.44 m, and 2.59 m, respectively. A surface load of 107 kN 

was applied over a plate area of 0.9x0.9 m. The backfill height in this test was 0.46 m. A 

gravelly soil with a degree of compaction of 95% of the Standard Proctor maximum dry density 

was used as the bedding material, and a sandy soil with a degree of compaction of 95% of the 

Standard Proctor maximum dry density was used as the backfill and the natural soil.  

This test was modelled using 0.15 m size elements for the pipe and the soil. The same element 

types as for the Validation Problem 1 (section 2.1) were used. The length, width, and height of 

the numerical model were 3.05 m, 2.44 m, and 2.59 m, respectively. A linear elastic model has 

been used to model the pipe. The Duncan-Chang hyperbolic soil model (Duncan and Chang, 

1970) was used to represent the behaviour of the soil. The material properties of the soils were 

adopted from the literature (Boscardin et al., 1990) and are shown in Table 3. The modulus of 

elasticity (E) and the Poisson ratio (υ) of the pipe were taken as 689000 kPa and 0.35, 

respectively (Kraus et al., 2014).  A full bond between the pipe and the soil was assumed in this 

analysis. The base of the model was restrained against movement in all directions, while the 

sides of the model were restrained against movement in the horizontal direction only. Three 

steps were performed to model the installation of the pipe and the loading: 

Step 1: The initial earth pressures of the compacted soil beneath the pipe were calculated using 

a coefficient of lateral earth pressure of 1.0 (Brown and Selig, 1991). 

Step 2: The bedding soil, pipe, and soil above the pipe were added, and the initial earth 

pressures were calculated using a coefficient of lateral earth pressure of 1.0 (Brown and Selig, 

1991).  

Step 3: The surface load was applied in 25 equal loading increments. 

The predicted and recorded vertical displacement of the PVC pipe is shown in Figure 4. It can 

be seen that a good estimation is obtained from the numerical model, where the percentage 

difference between the maximum predicted and measured vertical displacement is equal to 7 
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%. It can be also be seen that the difference between the results is less than that for the field 

problem (Validation Problem 1), which is expected as the laboratory tests for small pipe 

diameters are usually more controlled, with less uncertainties regarding the compaction of the 

soil, the recorded results, and the uniformity of the support around the pipe.  This validation 

problem, together with Validation Problem 1, gives confidence in the modelling technique being 

used. 

 

 

3. Load configuration and critical load condition 

As stated in the introduction, the aim of this study was to investigate the behaviour of buried 

pipes under the live load configuration recommended by BS 9295 (2010). In this standard, three 

loading configurations are recommended, eight tyres with a tyre load of 112.5 kN for ‘main 

roads’ (main highways), two tyres with a tyre load of 105 kN for ‘light trafficked roads’ (lightly 

trafficked highways) and two tyres with a tyre load of 60 kN for ‘fields’ (agricultural unpaved 

roads). In this study, the loading configuration for main highways (hereafter referred to as the 

MR-BSI live load) is considered since it represents the worst case scenario. This loading 

configuration is comprised of two axles with four wheels in each axle. The centre to centre 

spacing between the wheels is 1.0 m and the centre to centre spacing between the axles is 1.8 

m. The total load of each wheel is 112.5 kN including a dynamic allowance factor of 1.3. This 

load is modelled as a surface pressure in the present analysis with a wheel foot print area of 

0.5*0.25 m (Petersen et al., 2010; Kang et al., 2013a; and Kang et al., 2014). To find the critical 

loading condition, the effect of the truck position with respect to the pipe has been investigated. 

The cases of a truck travelling parallel and perpendicular to the pipeline axis were investigated 

at different S values, where S is the horizontal distance between the centreline of the pipe and 

the first set of wheels for the truck travelling parallel to the pipe (Figure 5(a)) or the distance 

between the centreline of the pipe and the right hand truck axle for the case of truck travelling 

perpendicular to the pipe (Figure 5 (b)). 

The material properties of the surrounding soil, bedding soil, backfill soil, and pipe, which are 

mentioned in the Validation Problem 1, are used in this analysis with a backfill height of 0.45 m. 

For each case the maximum thrust and maximum horizontal and vertical displacement of the 

pipe have been recorded.  

Figure 6 shows the maximum horizontal and vertical displacement and maximum thrust of the 

pipe for different S values for the case of a truck moving parallel to the pipeline axis (Figure 

5(a)). It can be seen that the maximum horizontal and vertical displacement are equal to 2.18 

mm and 6.78 mm when S = 0 m, however the maximum thrust was obtained when S = 1.25 m 

and is equal to 45.76 kN/m. 

 Figure 7 shows the maximum horizontal and vertical displacement and the maximum thrust of 

the pipe for different S values for the case of a truck moving perpendicular to the pipeline axis. 
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From these Figures it can be seen that the maximum vertical displacement and thrust in the 

pipe were obtained when the centre of the right hand axle was above the crown (S = 0 m) and 

are equal to 10.1 mm and 47.5 kN/m respectively. However, the maximum horizontal 

displacement of 3.9 mm was recorded when the centre of the right hand axle was 0.25 m away 

from the crown of the pipe (S = 0.25 m).  

It can be concluded from these Figures that the highest vertical and horizontal displacements in 

the pipe are obtained when the truck is moving perpendicular to the pipeline axis and the critical 

case is obtained when the centre of the right hand axle is above the crown of the pipe. This is 

because of the dependency of the pipe behaviour on the surrounding soil stiffness (Fleming et 

al., 1997; Brachman and Krushelnitzky 2005; and Saadeldin et al., 2015) and the dependency 

of the soil stiffness on the stress level. The confining pressure in the soil adjacent to the sides of 

the pipe is larger for the cases where the pipe is between the two axle loads because of an 

increase in the stress level, which increases the stiffness of the soil adjacent to the sides of the 

pipe. Increasing the soil stiffness increases the side support on the pipe, and hence the 

settlement and the thrust forces will be smaller. However, for the case where one axle is directly 

above the pipe, the stress level will not distribute equally around the pipe and the soil stiffness 

will be smaller. Furthermore, the stress level on the crown of the pipe will be larger when the 

axle load is directly above the pipe.  

These results are in agreement with the findings from Chaallal et al. (2014a), who observed 

from a field test involving a flexible pipe under two axle loads that the worst case for the pipe 

was when one of the axles was directly above the pipe. 

Comparing the results of the critical case of the MR-BSI live load and the case of the two axles 

of the two HS-20 design trucks (from the validation section) shows that the MR-BSI live load is 

much more stringent with the calculated horizontal and vertical displacements under the MR-

BSI live load being 195% and 153% higher respectively.  

4. Parametric study 

A parametric study has been carried out to examine the performance of concrete and PVC 

pipes under the critical condition of the MR-BSI live load. The diameters and thicknesses of 

these pipes are adopted from the literature (Petersen et al., 2010) and are shown in Table 4. 

The study investigated the effect of the pipe diameter and backfill height (0.5 m to 4.5 m) on the 

maximum soil pressure, the maximum vertical displacement of the pipe, and the maximum 

thrust force in the pipe. The boundary conditions, the elements types, the constitutive models 

for the soil and the pipe, and the elements sizes were the same as for the validation problems. 

A gravelly sand with a degree of compaction of 90% measured according to the maximum 

Standard Proctor dry density (SW in the unified soil classification system (USCS) (Das, 2010) 

(hereafter referred to as SW90)), and a sandy silt with a degree of compaction of 90% (ML in 

the USCS (hereafter referred to as ML90)) have been used in the analyses. The study focused 

on these soils because they are the most common soils to be used as a backfill material in 
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practice (Chaallal et al., 2014b). The thickness of the bedding layer is taken as equal to 0.10 m 

and modelled using a SW90 soil. The natural surrounding soil is assumed to be stiffer than the 

trench soil. The material properties of the soils used are shown in Table 5, and the material 

properties of the pipes are shown in Table 6. The trench width (Wt) has been calculated using 

Equation 2 (Arockiasamy et al., 2006). The results of the parametric study are discussed in the 

next subsections.  

 

𝑊𝑊𝑡𝑡 = 1.5 𝐷𝐷 + 0.3                                                                                                                              

2. 

4.1 Maximum soil pressure on pipes 

In this section, the effect of backfill height on the maximum soil pressure acting on the pipes is 

discussed for concrete and PVC pipes. Figure 8 (a) and (b) shows the maximum soil pressure 

at the crown of the pipe due to the MR-BSI live load only for the case of the PVC pipes 

embedded in SW90 and ML90 soils, respectively. The predicted maximum soil pressure from 

the BS equation (Equation 1) is also shown in this figure. It can be seen that the maximum soil 

pressure due to the effect of traffic live load decreases nonlinearly as the backfill height 

increases for both soils. For the SW90 soil, the percentage decrease in the tyre stress (i.e. 900 

kPa) for a backfill height of 1m is equal to 91%, 89%, and 88% for pipe diameters of 0.37 m, 

0.76 m, and 1.47 m, respectively. This reveals that approximately 90% of the tyre stress is 

reduced at a backfill height of 1.0 m. For a backfill height of 3 m, the percentage decrease is 

equal to 99%, 98%, and 97% for pipe diameters of 0.37 m, 0.76 m, and 1.47 m, respectively. It 

can also be seen that increasing the diameter of the pipe increases the maximum soil pressure, 

which indicates that negative arching increases as the diameter of the pipe increases. The 

same trend in behaviour is also noticed for the ML soil.  

Comparing the results of the SW and the ML soils shows that the maximum soil pressure for the 

models with the SW backfill is larger than that with the ML backfill for all of the considered 

diameters. This indicates that positive arching increases as the type of the backfill soil changes 

from SW90 to ML90. This is probably due to the fact that the SW soil is stiffer than the ML soil, 

which makes the ML backfill soil experience larger settlement under the same loading condition.  

This increases the positive arching effect as larger shearing forces are develop on the sides of 

the trench (Kang et al., 2007, Kang et al., 2013b). 

Comparing the results of the SW90 and ML90 soils with Equation 1 shows, in general, that the 

equation underestimates the soil pressure at backfill heights of 0.5 m and 1.0 m, and 

overestimates the soil pressure at a backfill height equal to or greater than 2.0 m. The ratio 

between the soil pressure predicted from the numerical modelling (P) and the soil pressure 

calculated from Equation 1 (C) varies between 1.82 and 0.039 for the 0.37 m diameter pipe, 

2.85 and 0.096 for the 0.76 m diameter pipe, and 2.9 and 0.19 for the 1.47 m diameter pipe.  
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Figure 9 (a) and (b) shows the predicted and calculated maximum soil pressure for the concrete 

pipes. It can be seen that the same behaviour as for the PVC pipes is recorded, where 

approximately 88% and 98% of the tyre stress is reduced at backfill heights of 1.0 m and 3.0 m, 

respectively. Similar observations were also found by Bian et al. (2012) from a full scale study 

on the effect of truck loads on an arch concrete culvert (width of 3.5 m and height of 2.5 m) 

buried in a poorly graded gravel with a backfill height ranging from 0.5 m to 3.5 m. Bian et al. 

(2012) noticed that the tyre stress decreased by 91 % at a depth of 1.0 m below the ground 

surface.  

Comparing the results of the SW90 and ML90 soils with Equation 1 shows that in general the 

equation underestimates the maximum soil pressure at backfill heights ranging from 0.5 m to 

2.5 m for the SW90 soil and from 0.5 m to 2.0 m for the ML90 soil. However, Equation 1 

overestimates the soil pressure at a backfill height equal to or greater than 3.0 m for the SW90 

soil and 2.5 m for the ML90 soil. The ratio between the predicted and calculated maximum soil 

pressure (P/C) varies between 2.29 and 0.05 for the 0.41 m diameter pipe, 2.84 and 0.08 for the 

0.76 m diameter pipe, 2.91 and 0.33 for the 1.47 m diameter pipe, and 3.64 and 0.47 for the 

2.89 m diameter pipe. 

4.2 Pipe thrust 

Figures 10 and 11 present the effect of PVC and concrete pipe diameter and backfill height on 

the maximum thrust force developed in the pipe under the MR-BSI live load only and buried in a 

SW90 soil. In Figure 10, it can be seen that increasing the diameter of the PVC pipe from 0.37 

m to 1.47 m increases the maximum thrust force. As expected, increasing the backfill height 

decreases the maximum thrust force developed in the pipe under the live load effect.  

 

Figure 11 shows that for backfill heights of 0.5 m and 1 m, there is a sharp increase in the thrust 

force when the diameter of the pipe changed from 0.41 m to 0.76 m. However, beyond 0.76 m 

diameter the thrust developed decreases as the diameter increases. For a backfill height of 1.5 

m and 2 m, the thrust force continues to increase after the 0.76 m diameter, however the 

increase is small. This behaviour was due to the dependency of the developed thrust on 

the surrounding soil stiffness (which depends on the backfill height) and also on the 

change in the zone of maximum thrust from the invert to a region bounded by the 

crown and shoulder of the pipe as the diameter and the backfill height changes. It 
should be noted here that the effect of the traffic live load did not produce an increase in the 

maximum thrust forces in the PVC pipes after a backfill height of 3 m, and for the concrete pipes 

after a backfill height equal to or greater than 2.5 m. This is due to the significant reduction of 

the soil pressure due the effect of the backfill height as discussed in section 4.1. In addition, the 

small amount of stress which did reach the pipes after these backfill heights added additional 

support to the sides of the pipe, which in turn reduced the maximum thrust in the springline 

instead of increasing it. This happened in the concrete pipes at a depth smaller than for the 
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PVC pipes because of the tendency of the concrete pipes to attract more load than the PVC 

pipes due to their higher stiffness. 

 

The trend in the behaviour of the PVC and concrete pipes is noticeably different. This is 

because of the changing maximum thrust zone for the concrete pipes, which depends on the 

pipe diameter and the backfill height. The maximum thrust zone changed from the invert to a 

region bounded by the crown and shoulder of the pipe. This is because of the stiffness of the 

pipe, which changed for each case due to the difference in the wall thickness and the diameter 

of the pipe, and the effect of the arching as the stiffness, diameter, and the backfill height 

changed. Peterson et al. (2010) also noticed that the maximum thrust changes as the backfill 

height and the diameter changes. However, for the PVC pipes, the maximum thrust force 

occurred in the shoulder zone for all of the cases, giving the trend in the results shown in Figure 

10. 

4.3 Pipe displacement 

Figure 12 presents the effect of varying diameter and backfill height on the maximum vertical 

displacements of PVC pipes under the MR-BSI live load and buried in a SW90 soil. It can be 

seen that the maximum vertical displacement of the PVC pipe increases approximately linearly 

as the diameter of the pipe increases for all of the backfill heights. Furthermore, the 

displacement significantly decreases as the backfill height increases. This finding is consistent 

with the findings of past studies by Tricky and Moore (2007), Chaallal et al. (2014a), and 

Chaallal et al. (2014b), which also concluded that increasing backfill height significantly 

decreases the vertical displacement of pipes.  

Figure 13 presents the effect of diameter and backfill height on the maximum vertical 

displacement of concrete pipes under the MR-BSI live load with a SW90 backfill. It can be seen 

that increasing the diameter of the concrete pipe causes the maximum vertical displacement to 

decrease nonlinearly for all of the backfill heights.  

It should be noted that a direct comparison between the PVC and concrete pipe response 

cannot be made because of the differences in the modulus of elasticity and the wall thicknesses 

of the pipes being modelled.  

 Additional controlled experimental studies are required to support the findings from the present 

study as very limited field studies were found in the literature on the effect of pipe diameter on 

the soil pressure, thrust, and displacement developed in the pipe under live load. Wong et al. 

(2006) investigated the short and long term behaviour of concrete pipes under the effect of soil 

weight and traffic loads with a diameter range of 0.60-0.90 m. However, the burial depth, the 

trench geometry, the surrounding soil and the backfill soil were different for each pipe, which 

does not help in drawing a direct conclusion to support the findings from the current study. 

Sheldon et al. (2014) reported the vertical and horizontal displacement of corrugated metal and 

concrete pipes with two different diameters, however the backfill height was different for each 
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diameter and hence no direct conclusion can be drawn to support the findings from the present 

study. 

5. Practical implication 

As shown in section 4.1, there are significant issues with Equation 1 as adopted in the British 

Standard for estimating the maximum soil pressure on the pipe under traffic live load. Therefore 

in this section, a new equation has been developed using regression analysis. Several trials 

have been made to find the best fit equation using linear and non-linear regression analyses. 

The best equation was chosen based on the maximum coefficient of determination. The 

maximum soil pressure from 112 data points obtained from the numerical modelling for the PVC 

and concrete pipes with backfill heights ranging from 1 m to 4.5 m were used in the derivation of 

the regression equation. The backfill height of 0.5 m was excluded from the regression analysis 

as from a practical point of view, the minimum allowed cover in the United Kingdom for the 

pipes under the main road loading requirement is approximately 1m (DTHT, 2001). The 

equation obtained from the regression analysis has a coefficient of correlation of 0.93 and is 

given by Equation 3. It should be noted here that this equation is valid for a backfill height of 1.0 

m or higher. 

 

CR = 900(1 − (−0.01 H2 + 0.0833 H + 0.8243)) 

3. 

Where, CR is the predicted maximum soil pressure from the regression equation in kPa. H is 

the backfill height in m. 

6. Conclusions 

A validated three-dimensional finite element model has been developed and used to find the 

critical loading conditions for the British Standard traffic live load configuration for a buried pipe 

and a study of the behaviour of PVC (0.37-1.47 m) and concrete pipes (0.41 -2.89 m) under this 

critical loading condition has been conducted. A cover depth range of 0.5-4.5 m has been 

modelled in this study for both the PVC and concrete pipes. The following conclusions can be 

drawn from the present study: 

1- The MR-BSI loading configuration imposes a higher stress and displacement on the 

pipe compared with two AASHTO HS-20 trucks, where the predicted horizontal and 

vertical displacements under the critical MR-BSI live load configuration are 195% and 

153% higher than that predicted under two HS-20 design trucks with two axles. 

2- The equation recommended by the British Standard (BS 9295, 2010) for estimating the 

maximum soil pressure on a buried pipe has been shown not to be accurate. A new 

regression equation has been proposed based on the results of an extensive numerical 

study. The proposed equation has a coefficient of determination of 0.93. This new 
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equation can be used to predict the maximum soil pressure under traffic live loads for a 

backfill height equal to or greater than 1.0 m. 
3- The effect of traffic load on the maximum thrust force is negligible for a backfill height 

greater than 3 m for the PVC pipes and a backfill height of 2.5 m or higher for the 

concrete pipes analysed in this study. Greater backfill heights only cause redistribution 

of the thrust forces around the pipe without increasing the maximum thrust developed. 

4- Increasing the diameter of the PVC pipe approximately linearly increases the maximum 

thrust forces in the pipe for all of the backfill heights considered. However, for the 

concrete pipes with backfill heights of 0.5 m and 1 m, the maximum thrust force 

increases when the diameter changes from 0.41 m to 0.76 m, following by a small 

decrease as the diameter increases from 0.76 m to 2.89 m. However, for a backfill 

height of 1.5 m and 2 m, increasing the diameter of the pipe continuously increases the 

maximum thrust force, but the increase is small. 

5- Increasing the diameter of the pipe approximately linearly increases the vertical 

displacement in the PVC pipes and nonlinearly decreases the vertical displacement for 

the concrete pipe type.  
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Figure captions 

Figure 1 Finite element model of the selected problem 

Figure 2 Comparison of the vertical and horizontal displacement of the HDPE pipe under live 

load  

Figure 3 Comparison of the soil pressure around the HDPE pipe under live load  

Figure 4 Predicted and measured vertical displacement of the PVC pipe 

Figure 5 The load cases considered in the analysis (a) axles perpendicular to pipe, but the truck 

moving parallel to the pipe (b) axles parallel to the pipe, but truck moving perpendicular to the 

pipe  

Figure 6 Results from the analysis of the pipe for the case of the MR-BSI live load travelling 

parallel to the pipeline axis with different S values (a) maximum vertical and horizontal 

displacement (b) maximum thrust. (Note: S = 0 when the first set of wheels are directly above 

the pipeline axis, as shown in Figure 5(a).)  

Figure 7 Results from the analysis of the pipe for the case of the MR-BSI live load travelling 

perpendicular to the pipeline axis with different S values (a) maximum vertical and horizontal 

displacement (b) maximum thrust. (Note: As shown in Figure 5(b), S = -1 m when the right hand 

axle is 1 m to the left of the pipeline axis, S = 0 when the right hand truck axle is directly above 

the pipeline axis and the other axle is 1.8 m to the left of the pipeline axis, S = 1.8 m means the 

left hand truck axle is directly above the pipeline axis and the other axle is 1.8 m to the right of 

the pipeline axis.) 

Figure 8 Calculated and predicted maximum soil pressure on PVC pipes under live load only (a) 

SW90 backfill (b) ML90 backfill 

Figure 9 Calculated and predicted maximum soil pressure on concrete pipes under live load 

only (a) SW90 backfill (b) ML90 backfill 

Figure 10 Maximum thrust developed in the PVC pipes under the MR-BSI live load only  

Figure 11 Maximum thrust developed in the concrete pipes under the MR-BSI live load only 

Figure 12 Maximum vertical displacement of PVC pipes developed under the MR-BSI live load 

only 

Figure 13 Maximum vertical displacement of concrete pipes developed under the MR-BSI live 

load only
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Table 1 Summary of previous studies on buried pipes behaviour under live load effect 

No. Reference Type of 
study 

Pipe 
material 

Nominal Pipe 
diameter (m) 

Backfill 
height (m) Truck type Number 

of trucks 

Number of 
axles per 
truck 

Max. axle 
load (kN) 

Max. Tyre 
pressure 
(kPa) 

1 Fleming et al. (1997) F PE, PP, and 
UPVC 0.60 1.00 ---* 1 1 108 --- 

2 McGrath et al. 
(2002) F PE, ST, and 

RC 1.50 0.30 and 
0.60 ---* 1 5 107 --- 

 
 
3 

Arockiasamy et al. 
(2006) 

F/3DFE HDPE, PVC, 
ST, and AL 0.90 0.45-1.80 HS-20 2 2 181 635 

F/3DFE HDPE 1.20 0.60-2.40 HS-20 
4 Wong et al. (2006) F CON 0.60-0.90 1.40-1.85 ---* --- --- 141 --- 

5 Kang et al. (2013a) 2DFE HDPE and 
PVC 0.30-1.50 0.10-2.80 HS-20 and 

H-25 2 1 178 712 

 
6 

Chaallal et al. 
(2014a) 

F HDPE, PVC, 
ST, and AL 0.90 0.45-1.80 HS-20 

2 2 181 635 
F HDPE 1.20 0.60-2.40 HS-20 

 
7 

Chaallal et al. 
(2014b) 

3DFE HDPE, PVC, 
ST, and AL 0.90 0.45-1.80 HS-20 

2 2 181 635 
3DFE HDPE 1.20 0.60-2.40 HS-20 

8 Kang et al. (2014) 2DFE HDPE and 
PVC 0.30-1.50 0.10-2.80 HS-20 and 

H-25 2 1 178 712 

 
9 Kraus et al. (2014) L(1-g) PVC 0.45 0.46 HS-30 --- --- --- 132 L(1-g) CON 0.50 0.46 HS-30 

 
9 Kraus et al. (2014) 

2DFE and 
3DFE PVC 0.45 0.46 ---* 

--- 3-19 445 448 2DFE and 
3DFE CON 0.50 0.46 ---* 

10 Lay and Brachman 
(2014) L(1-g) RC 0.60 0.30 HS-20 1 1 145 483 

10 Lay and Brachman 
(2014) L(1-g) RC 0.60 0.30-0.90 CL-625 1 1 400 1333 

11 Mai et al. (2014a) L(1-g) ST 1.80 0.60 and 
0.90 CL-625 1 1 224 747 



 

11 Mai et al. (2014a) L(1-g) ST 1.80 0.60 and 
0.90 HS-20 1 1 182 607 

12 Rakitin and Xu 
(2014) L(C) RC 1.40 1.00 and 

2.00 ---* 1** 3 95 283 

12 Rakitin and Xu 
(2014) L(C) RC 1.40 1.00-4.00 ---* 1** 2 567 468 

13 García and Moore 
(2015) L(1-g) ST 1.20 1.20 CL-625 1 1 203 677 

13 Becerril García and 
Moore (2015) L(1-g) ST 1.20 1.20 and 

2.10 CL-625 1 2 325 542 

14 Sheldon et al. (2014) F ST 0.90 and 
1.20 

0.54 and 
0.77 ---* 1 2 133 --- 

14 Sheldon et al. (2014) F CON 1.40 and 
2.10 

0.60 and 
1.40 ---* 1 2 127 --- 

F HDPE 0.90 1.40 ---* 
* Not a standard truck. 
** Half of the truck was simulated in the centrifuge model. 
 

 

  



 

Table 2 The material properties of the soil for Validation Problem 1 (Boscardin et al., 1990) 

 

Property Backfill Bedding Natural soil 

γ (kN/m3) 19.91 22.07 22.07 

υ 0.3 0.3 0.3 

c′ (kPa) 28 0 0 

φ′ (°) 34 48 48 

K 440 950 950 

Rf 0.95 0.7 0.7 

n 0.4 0.6 0.6 

 

 

Table 3 The material properties of the soil for Validation Problem 2 (Boscardin et al., 1990) 

 

Property 
Backfill, bedding and 

natural soil  

γ (kN/m3) 22.07 

υ 0.3 

c′ (kPa) 0 

φ′ (°) 48 

K 950 

Rf 0.7 

n 0.6 

 

 

Table 4 Pipes diameters and wall thicknesses (Petersen et al., 2010) 

Pipe type Nominal diameter (m) 
Outer diameter (D) 

(m) 
Wall thickness (m) 

Concrete 

0.3 0.41 0.051 

0.6 0.76 0.076 

1.2 1.47 0.127 

2.5 2.89 0.229 

PVC 

0.3 0.37 0.036 

0.6 0.76 0.061 

1.2 1.47 0.089 

 

 

 

 



 

Table 5 The material properties for the soils used in the parametric study  

 

Property ML90* SW90* Natural soil** 

γ (kN/m3) 18.84 20.99 21.00 

υ 0.30 0.30 0.30 

c′ (kPa) 24 0 30 

φ′(°) 32 42 36 

K 200 640 1500 

Rf 0.89 0.75 0.90 

n 0.26 0.43 0.65 

* adopted from Boscardin et al. (1990) 

** assumed values 

 

 

Table 6 Linear elastic properties of the concrete and PVC pipes (Petersen et al., 2010) 

Pipe type E (kPa) υ 

Concrete 24856000 0.20 

PVC 689000 0.35 
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