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Abstract

We investigate what happens to hours worked after a positive shock to technology, using the
aggregate technology series computed in Basu, Fernald and Kimball (1999). We conclude that
hours worked rise after such a shock.

1 Introduction

At least since the seminal contribution of Kydland and Prescott (1982), economists have struggled to

understand the role of technology shocks in aggregate fluctuations. Stimulated by the contribution

of Gali (1999), there is an important strand of the literature that uses time series techniques, coupled

with minimal identifying assumptions, to estimate the dynamic response of key macroeconomic

variables to these shocks. These estimates are useful for assessing the source of business cycle

fluctuations, and for constructing dynamic general equilibrium models.

A key issue is how to identify shocks to technology. One approach implemented by Gali (1999),

Kiley (1997) and others, proceeds indirectly by exploiting the assumption that innovations to

technology are the only shocks that have a long-run impact on labor productivity. This assumption

is satisfied by a large class of business cycle models.1 An alternative approach, pursued by Basu,

Fernald and Kimball (1999) (BFK), estimates an innovation to technology using direct measures

of technology.2 BFK’s measure is arguably the state-of-the-art in the literature that builds on

Solow-residual accounting.3 An important advantage of the BFK approach is that it does not

rely on the potentially questionable assumption that the only shocks with a permanent impact on

labor productivity are technology shocks. For example, the presence of persistent shocks to the

∗The first two authors are grateful for the financial support of grants from the NSF to the National Bureau of
Economic Research. The authors are also grateful to John Fernald for insightful discussions, and for the hours and
technology data from Basu, Fernald and Kimball (1999). The views in this paper are solely the responsibility of
the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve
System or of any person associated with the Federal Reserve System.

1See for example the real business cycle models in Christiano (1988), King, Plosser, Stock and Watson (1991) and
Christiano and Eichenbaum (1992) which assume that technology shocks are a difference stationary process.

2See also Shea (1998), who assesses technological change using data on patents.
3See also Burnside, Eichenbaum and Rebelo (1995) and Burnside and Eichenbaum (1996), who construct Solow

residual based measures of technology correcting for labor hoarding and capacity utilization, respectively.
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capital income tax rate may distort indirect estimates of the innovation to technology, but not

direct estimates.

The literature on long-run identification using labor productivity reaches conflicting conclusions

about whether hours worked rise or fall after a technology shock. This conflict stems from the fact

that inference is sensitive to modeling details, especially details about the treatment of the low fre-

quency component of hours worked. For example, quadratically detrending or first differencing log,

per capita hours worked typically leads to the conclusion that hours fall after a positive technology

shock. Quadratically detrending all variables, or modelling per capita hours as stationary in levels

typically leads to the conclusion that hours rise. Christiano, Eichenbaum and Vigfusson (2003)

(CEV) apply an encompassing approach for assessing the relative plausibility of these conflicting

conclusions. They find that, on balance, the evidence based on long-run identifying assumptions

favors the view that hours worked rise in response to a positive technology shock.

BFK develop a measure of aggregate technology based on industry-level data. They conclude

that hours worked fall after a positive technology shock. So, there is a conflict between the con-

clusions of BFK, and those reached in CEV (2003). The purpose of this paper is to resolve this

conflict.

The two key assumptions underlying BFK’s analysis are as follows. First, their measure of

technology is exogenous. Second, hours worked is difference stationary. We find evidence against

both these assumptions. When we replace the assumptions by alternatives that are easier to defend,

we find that hours worked rise after a positive technology shock. On this basis, we conclude that

the approach based on long-run identification with labor productivity and the approach based on

direct measures of technology shocks give rise to similar conclusions. In addition, the results help

mitigate concerns alluded to above about the possibility that long run identification based on labor

productivity is confounded by non-technology shocks.4

We now briefly summarize our argument in more detail. BFK’s exogeneity assumption implies

that the one-step-ahead innovation in their measure of technology coincides with the innovation to

4This conclusion is reinforced by other evidence. One potentially important non-technology shock is a permanent
disturbance to the capital income tax rate. Gali (2003) shows that this tax rate is not highly correlated with estimates
of the innovation to technology based on long-run restrictions and labor productivity data. Moreover, estimates of
the response of macroeconomic variables to the latter shock conflict in key ways from what one would expect, if
these innovations were confounded in a significant way with innovations to capital income tax rates. Consider, for
example, a cut in the capital income tax rate in the simple growth model. This produces a steady state fall in the
rental rate of capital and a steady state rise in the wage rate. Assuming a small, or zero income effect on leisure, the
latter implies a steady state rise in labor while the former and latter together imply a rise in the capital stock. So,
the cut in the capital income tax rate initially leaves the economy below steady state capital. Transient dynamics in
standard models have the property that labor rises immediately, and converges to the new steady state from above.
This implies an initial fall in labor productivity. This conflicts with the one finding that is common across all analyses
of the response of the economy to a technology shock: labor productivity increases both in the short and the long
run after such a shock. In addition, consumption is expected to drop initially, to finance the increased investment
necessary to raise the capital stock to its new steady state. This is inconsistent with evidence in CEV (2003), which
suggests that consumption rises immediately. (For additional discussion of the role of capital income tax rate shocks
in equilibrium models, see Uhlig (2003).)
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true technology and that technology is not Granger-caused by other variables.5 We find evidence

that the level of hours worked helps forecast the growth rate of technology. There are two ways to

interpret this result. One is that while true technology is exogenous, BFK’s measure of technology is

confounded by measurement error. The presence of measurement error naturally induces Granger-

causality.6 We think it is also likely to confound the one-step-ahead forecast errors in technology.

The sort of measurement errors we have in mind are the transient, high-frequency discrepancies

between true and measured outputs and inputs that occur as a result of the way the economy

adjusts to shocks. Examples include labor hoarding, capacity utilization and cyclical movements

in the markup.

We adopt Vigfusson (2002)’s strategy for dealing with this measurement error problem. Specif-

ically, we replace the assumption that measured technology is exogenous with the assumption that,

in the long run, true innovations to technology are the only shock that affects BFK’s measure of

technology. In effect, we assume that the measurement distortions in the BFK technology series

are only transient. Under these circumstances, we can apply Gali (1999)’s long-run identification

strategy to recover an estimate of the shock to technology from BFK’s measure of technology.

The second interpretation of the Granger-causality finding is that there is a significant endoge-

nous component to technology. Under these circumstances, all economic shocks in principle have

an impact on technology. If this impact is permanent, then the estimated innovations to technology

produced by the Vigfusson (2002) strategy confound the effects of various economic shocks. More-

over, to the extent that endogeneity causes non-technology shocks to have an immediate impact

on technology, they also defeat the BFK strategy of uncovering innovations to technology from

the one-step-ahead forecast error in measured technology.7 In this paper we assume that the en-

dogenous components of technology are not important. Investigating the robustness of our results

to the presence of endogeneity in technology would be of interest, but is beyond the scope of this

paper.

We now turn to BFK’s second key assumption, namely, that hours worked are difference sta-

tionary. CEV (2003) report that for the sample period, 1959I-2001IV, there is evidence against this

assumption. They also reject the hypothesis that per capita hours worked is difference stationary.

Their evidence is based on Bruce Hansen (1995)’s covariates adjusted Dickey-Fuller test. In this

paper, we present additional, complementary, evidence based on an encompassing argument, in

support of the view that per capita hours should not be first differenced.

When we apply long-run identification to the BFK measure of technology and work with the

5We implicitly adopt the standard assumption that agents do not observe or react to advance signals on the
innovation to technology. If they did do so, then the variables that react to advance signals will Granger-cause true
technology. Pursuing the implications of this sort of possibility is of substantial interest, but beyond the scope of this
paper.

6That is, suppose the past of some variable, say xt, is sufficient for forecast purposes. If xt−l, l > 0, is in fact
measured with error, then past values of other variables might also be useful because of their correlation with xt−l.

7It may be that non-technology shocks affect technology only with a lag. If so, then BFK strategy would still be
appropriate, while Vigfusson (2002)’s would not. We thank John Fernald for this observation.
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level of hours worked, we find that an innovation to technology leads to a rise in hours worked.

This rise is comparable to the one obtained using the long-run identification strategy. Based on

these findings we conclude that inference about the response of hours worked to a technology shock

is robust incorporating direct measures of technology into the analysis.

The remainder of this paper is organized as follows. Section 2 describes the response of hours

to a technology shock under various assumptions. Section 3 displays evidence against the Granger-

causality property of the BFK model. Section 4 argues that per capita hours worked is best modeled

as a stationary process. Finally, we present concluding remarks.

2 The Response of Hours Worked to a Technology Shock Under
Various Assumptions

In this section we define two models and explore their implications for the response of hours

worked to a technology shock. In both cases, we work with the following bivariate, two lag vector

autoregression (VAR):

Yt = B1Yt−1 +B2Yt−2 + Cet, CC 0 = V, Eete0t = I,

where et denote the fundamental economic shocks:

et =

·
e1t
e2t

¸
=

·
innovation to technologyt

other shock

¸
The matrices, B1, B2, are estimated by ordinary least squares, while V is the variance-covariance

matrix of the associated regression residuals. To determine the dynamic response of the macroeco-

nomic variables in Yt to e1t requires knowing the elements in the first column of C. At the same time,

we do not have enough information to recover C. While C has four unknown elements, CC 0 = V

represents only three independent equations. Additional restrictions (‘identification assumptions’)

are required.

The data we use are the annual hours worked and technology series covering the period 1950

to 1989, analyzed in BFK (1999). The data are for the non-farm, private-business sector. The

hours worked data are converted to per capita terms by dividing by a measure of the population.8

Throughout, the first element of Yt is ∆st = st − st−1, where st denotes log of technology.
The BFK model is defined by two assumptions. First, the second element of Yt is ∆ht, where

ht denotes per capita hours. This corresponds to the assumption that per capita hours worked is

difference stationary. Second, we impose the assumption that st is exogenous with respect to hours

worked. This implies that the 1,2 elements of B1 and B2 are zero (i.e., ∆ht does not Granger-cause

technology) and the 1, 2 element of C is set to zero (i.e., the one-step-ahead forecast error in ∆st

is proportional to e1t).

8The population data are from the DRI Basic Economics database with mnemonic P16.
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The CEV model differs from the BFK model in two ways. First, it drops the assumption that ht

is difference stationary and defines the second element of Yt as ht. Second, it drops the assumption

that ∆st is exogenous. In particular, we do not restrict any element of B1 and B2 to be zero, and

we allow the 1, 2 element of C to be non-zero. We replace the assumption of exogeneity with the

restriction that e2t does not have a long-run impact on st :

lim
j→∞

Etst+j −Et−1st+j = f(e1t). (1)

In the CEV model, e1t is estimated using the instrumental variables approach in Shapiro and

Watson (1988). Then, the first column of C is estimated by regressing the VAR disturbances, Cet,

on e1t.

Figure 1 reports the response of hours to a technology shock in the two models. In each case,

the gray area represents a 95 percent confidence interval.9 Panel A displays the response implied

by the BFK model. Note that hours worked drops by a little over 1 percent in the year of the shock.

Hours are still down in the second year, and they hover around zero in the years after that. This

pattern generally reproduces the findings in BFK, even though they work with the first difference

of actual hours, while we work with per capita hours. Panel B displays the response implied by

the CEV model. Note that here, hours jumps by 0.5 percent in the year of the shock and the point

estimates remain positive for several years thereafter. Although there is evidence of considerable

sampling uncertainty in the estimated impulse response function, note that the confidence interval

clearly excludes the kind of drop implied by the BFK model.

3 BFK Technology is Granger-Caused by Hours Worked

When we test the null hypothesis that the 1, 2 elements in B1 and B2 are zero in the BFK VAR,

we obtain an F−statistic of F∆h = 2.39. Using conventional sampling theory, this has a p−value of
10 percent, indicating little evidence against the null hypothesis. However, when the test this null

hypothesis in the CEV VAR, we obtain an F statistic of Fh = 4.66. Conventional sampling theory

implies a p−value of 1.6 percent, so that the null hypothesis is rejected.
Which test should we believe? If we believe the one based on the first difference of hours worked,

we fail to reject the no-Granger-causality null hypothesis. If we believe the one based on the level

of hours worked, we reject the hypothesis. Here, we use an encompassing approach similar to the

one in CEV (2003) to assess the relative plausibility of the two specifications underlying the two

inferences. As in CEV (2003), we conclude that the most plausible result is the one based on the

level of hours worked.

There are at least four ways to interpret the observation, Fh = 4.66 and F∆h = 2.39. One

is that the BFK VAR is specified correctly, so that the low test statistic, F∆h =2.39, is the one
9The confidence intervals were computed by first simulating 1000 artificial impulse response functions. Each was

obtained by fitting a VAR to artificial data obtained by bootstrap simulation of the relevant VAR. The reported
reported intervals are plus and minus two standard deviation intervals.
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sending the ‘correct’ signal. A necessary condition for this conclusion to be appealing is that

the BFK VAR ‘explains’ the low p value associated with Fh as reflecting some sort of distortion,

perhaps the inappropriate application of conventional sampling theory. Another interpretation is

that the CEV VAR is correctly specified, so that it is the large test statistic, Fh = 4.66, that is

sending the ‘correct’ signal. For this interpretation to be appealing, the CEV VAR must be able

to explain the low value of F∆h as reflecting some sort of distortion, perhaps distortions due to

first differencing. Logically, there are two other possible interpretations: the BFK VAR estimated

without the restriction that the 1,2 elements of B1 and B2 are zero, and the CEV VAR with that

same restriction imposed.

For each of the four data generating mechanisms, we simulated 1000 data sets by sampling

randomly from the estimated VAR residuals, Cet. In each artificial data set we computed (Fh, F∆h)

using the same method used in the actual data. For the two data generating mechanisms that

involve∆ht, we obtain artificial time series on ht by setting an initial condition on ht and cumulating

subsequent values of ∆ht. We find that the percent of times that Fh > 4.66 is only 2.3 percent.

Thus, the level F statistic is too large to be consistent with the null hypothesis under the maintained

hypothesis of the BFK VAR. Its magnitude is grounds for rejecting that VAR. We also reject the

version of the BFK VAR which allows for Granger-causality. Using this VAR, we found that Fh is

greater than 4.66, only 2.0 percent of the time.

Now consider the VAR involving the level of hours, estimated subject to the constraint that

ht does not Granger-cause ∆st. That VAR is also rejected because the percent of times that Fh

exceeds 4.66 is only 1.7. The only model that can account for the observed (Fh, F∆h) is the CEV

VAR. When we simulated that model, we found that the observed (Fh, F∆h) lies close to the

center of their distribution implied by the CEV VAR. We interpret these results as indicating that

there is valuable information in the level of hours, over and above what is in the first differences,

for forecasting technology growth. These results reject, at conventional significance levels, the

Granger-causality assumption in the BFK model.

4 Hours Worked Should Not Be Differenced

Based on the results of the previous section, we drop the restriction in the BFK model that hours

do not Granger-cause technology growth. In addition, we identify the innovation to technology

using the identification condition, (1). We call the resulting model, B1, B2 and C, the ‘difference

VAR’. We refer to the CEV model as the ‘level VAR’. The only difference between the difference

and level VAR’s has to do with the treatment of hours worked.

To see what these models imply for the response of hours worked to a technology shock, consider

Figure 2. The first graph in that figure displays results for the levels case. This reproduces, for

convenience, the results in Panel A of Figure 1. Panel B of Figure 2 displays results for the first

difference model. Note how the drop in hours worked in the difference model is even greater than
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it was in BFK (see Panel B, Figure 1). The drop in the second year is now statistically significant

and the point estimates indicate that hours remain low for all the years displayed. Clearly, whether

one works with first differences or levels of hours has a substantial impact on the outcome of the

analysis.

We now apply the encompassing analysis proposed in CEV (2003), to argue that the results

based on the level of hours worked are more plausible. Before turning to the quantitative analysis,

we sketch some of the relevant a priori considerations (for a more detailed discussion, see CEV,

2003).

4.1 A Priori Considerations

Specification error considerations suggest that the results based on the level VAR are more plausible.

However, once sampling issues are taken into account it is less clear on a priori grounds alone which

result is more likely.

If the level VAR is right, then the analysis based on first differencing hours worked entails

specification error.10 For example, suppose ht = ρht−1 + εt. Then, ∆ht = ρ∆ht−1 + εt − εt−1,

and ∆ht does not have a finite-ordered (or even infinite-ordered!) autoregressive representation.

The conventional practice of working with finite-ordered VAR’s would be misspecified in this case.

Now suppose the difference VAR is correct. In this case, there is no specification error in working

with levels since that simply fails to impose a true restriction. Specification error considerations

alone suggest an asymmetry in the assessment of the two models. If the results based on levels

and difference specifications had been similar, one should be roughly indifferent between the two

specifications. But, given that the results are very different, this is consistent with the notion that

the difference specification is misspecified and the level specification is closer to the truth. Although

this simple specification error analysis correctly anticipates the conclusion we eventually reach, it

oversimplifies.

There are sampling issues to consider too. For example, suppose the level VAR encompassed

the results from the difference VAR, but at the cost of predicting large serial correlation in the

fitted residuals in that VAR. This would deflate our confidence in the level VAR because the fitted

difference VAR, in fact, displays very little serial correlation in its residuals. There are also sampling

concerns related to the difference VAR. As explained in CEV (2003), if the difference specification

is true, then the Shapiro and Watson (1988) instrumental variables procedure we use for estimating

the innovation to technology has a weak instrument problem. Suppose the difference VAR managed

to encompass the level results, but at the cost of predicting that the analyst using the level VAR

should have failed to reject the weak instrument null hypothesis. This would deflate our confidence

in the difference VAR. This is because a conventional statistic for detecting weak instruments in

10By specification error we mean that the true parameter values are not contained in the econometrician’s parameter
space.
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the level data in fact rejects the weak instruments hypothesis.

4.2 Quantitative Results

We begin by asking whether the level VAR can encompass the hours response estimated for the

difference VAR, and vice versa. Figure 3 displays the results. Each panel reproduces the estimated

response of hours worked to a technology shock. In addition, there is a mean response predicted

by the indicated DGP. The gray area indicates the associated 95 percent confidence region. DGP’s

were simulated using a standard bootstrap procedure, by drawing randomly with replacement from

the underlying fitted VAR disturbances.

Note from Panel A in Figure 3 that the level VAR easily predicts the estimated impulse response

function corresponding to the difference VAR. According to the level VAR, the true sign of the

response of hours worked is positive and the negative sign estimated in the difference VAR is

a consequence of specification error due to first differencing. Now consider Panel B. Note the

difference VAR’s counterfactual prediction that the hours response in the level VAR is negative.

That is, in terms of the mean, the difference VAR does not encompass the level VAR results. This

is not surprising in view of the a priori considerations discussed above. At the same time, note from

the width of the gray area that the difference VAR’s prediction for the level VAR’s hours response

is very noisy. Indeed, there is so much noise that, technically, any results including the level VAR

estimates are encompassed.

We quantify the implications of the results in Figure 3 as follows. Let Q denote the event

that hours rise on average in the first six periods after a shock in the level VAR, and that hours

fall on average over the same period in the difference VAR. Then, bootstrap simulation implies

P (Q|level VAR) = 0.84 and P (Q|difference VAR) = 0.41. This implies that, under a uniform prior

distribution, the posterior odds in favor of the level VAR are 2.1 to one.11

The reason the difference VAR does not do worse is because of the noisiness of its prediction for

the results in the level VAR. This prediction reflects the implication of the difference model that

the level analysis has a weak instrument problem.12 When we apply a standard test to determine

whether the lag log, level of hours is a good instrument for the first difference of log hours, the

resulting test statistic is F = 11.50, which exceeds the Staiger and Stock (1997) recommended

11The posterior odds used here the ratio of P(Q|level VAR) to P(Q|difference VAR) and hence, the ratio 0.84/0.41
equals 2.1, after rounding. Note that these conditional probabilities further condition on the respective model’s
estimated coefficients B1 and B2 as being the true values. A full Bayesian analysis would require the following
calculation

P (level VAR|Q)
P (difference Model|Q) =

P (level Var)
R
P (Q|level VAR,B)P (B|level VAR)dB

P (difference Var)
R
P (Q|difference VAR,B)P (B|difference VAR)dB

where B denotes B1 and B2.
12In particular, in applying the Shapiro-Watson method to recover the innovation to technology, the growth in hours

worked is instrumented by its level. When hours worked has a unit root, the lagged level is a ‘weak instrument’. To
see this, note that under the unit root hypothesis the level of hours worked is heavily influenced by shocks occuring
in the distant past, while the first difference of hours worked is not. As a result, there is relatively little overlap in the
shocks driving the first difference of hours and the shocks driving its level. See CEV (2003) for a detailed discussion.
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value of 10. Thus, the null hypothesis that lagged hours is a weak instrument is rejected. Interest-

ingly, this corresponds to Bruce Hansen (1995)’s covariates adjusted Dickey Fuller test for the null

hypothesis that hours worked has a unit root. This weak-intrument test in effect rejects the unit

root specification on classical grounds.

To integrate the weak instrument consideration into the analysis, we add the result of the weak

instrument test to the event, Q, discussed above. In particular, we add the event that the weak

instrument test statistic is inside the interval defined by the actual test statistic, plus and minus

unity.

The weak instrument issue raises a concern about the plausibility of the difference specification.

As discussed above, there is an analogous concern related to the level specification. Recall that the

level specification’s ability to account for the difference specification is becaues of the level VAR’s

implication that the first difference specification is misspecified. One might expect this specification

error to manifest itself in the form of significant serial correlation in the bivariate, two-lag difference

VAR’s estimated in artificial data generated by the level VAR. If so, this would be a count against

the level VAR. This is because the Box-Pierce q statistic for testing the null hypothesis of no

serial correlation in the fitted disturbances of the difference specification is 10.73.13 The associated

p−value is 0.22 using conventional sampling theory, indicating little evidence of serial correlation.
To integrate this serial correlation concern into the analysis, we add the Box-Pierce q statistic

to the event, Q. We add the event that the Box-Pierce q statistic lies in an interval [9.73,11.73]

defined by the actual Box-Pierce statistic, plus or minus one.

Let the event of interest to our analysis be the four dimensional object, Q0. Here,

Q0 =


Q01
Q02
Q03
Q04

 =


average hours implied by level VAR positive
average hours implied by difference VAR negative
weak instrument test statistic, plus and minus one
serial correlation test statistic, plus and minus one


Table 1 displays prob(Q0i|level VAR) and prob(Q0i|difference VAR). It also displays the probabilities
of the joint events, prob(Q0i, Q

0
i+1|level VAR) and prob(Q0i,Q0i+1|difference VAR), for i = 1, 3, as

well as prob(Q0|level VAR) and prob(Q0|difference VAR). Finally, the last column provides the
posterior odds, under a uniform prior, in favor of the level specification.

Table 1: Probability of Different Events and Posterior Odds

prob(Q0i|level VAR) prob(Q0i|difference VAR) Posterior Odds

Q1 0.88 0.41 2.14
Q2 0.96 0.92 1.04
Q3 0.13 0.01 13.02
Q4 0.18 0.17 1.04
Q1 ∩Q2 0.84 0.37 2.29
Q3 ∩Q4 0.02 0.00 9.82
Q1 ∩Q3 0.11 0.01 14.56
Q0 0.02 0.00 13.00

13We do tests using the multivariate Ljung—Box portmanteau (or Q) test for white noise by Hosking (1980) that is
described in Johansen (1995, 22). We use four lags in the test. The resulting degrees of freedom are 8.
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There are several things worth noting in the table. First, prob(Q03|difference VAR) is very small.
This reflects, in results not displayed here, that the difference VAR substantially underpredicts the

weak instruments test statistic. At the same time, prob(Q03|level VAR) is relatively large. As a
consequence, the implied posterior odds favor the level model very strongly. Second, prob(Q04|level
VAR) and prob(Q04|difference VAR) are of similar magnitude, so that the posterior odds of the two
models relative to that statistic are near unity. This statistic does little to move confidence one way

or the other between the alternative specifications. In results not displayed here, we found that

the level VAR does not predict substantial serial correlation in the fitted residuals of the difference

VAR. (Of course, this result reflects the size of our data sample. We verified that if the sample had

been sufficiently large, the level VAR would have predicted a sizeable amount of serial correlation

in the fitted residuals.)

The bottom line in the table is the posterior probability in favor of the level VAR, given the

entire joint fact, Q0. This posterior probability is very large. We conclude that the level VAR is

more plausible than the difference VAR, and on these grounds we conclude that hours worked rise

in response to a positive technology shock.

5 Conclusion

In CEV (2003), we argued that long-run restrictions, in conjunction with data on labor productivity,

imply that hours rise in response to a technology shock. Here, we argue that the direct evidence

on technology constructed by BFK contains no reason to change that conclusion.

Although this paper emphasizes some points of difference with analyses such as those of Gali

(1999, 2003) and Gali, Lopez-Salido and Valles (2003), it is useful to also note the many points of

common ground. For example, Altig, Christiano, Eichenbaum and Linde (2002), and CEV (2003)

find that, as in Gali (1999), shocks to disembodied technical progress account for only a small

component of business fluctuations. In addition, Altig, Christiano, Eichenbaum and Linde (2002)

argue, as in Gali, Lopez-Salido and Valles (2002), that monetary policy has played an important

role in determining the nature of the transmission of technology shocks.
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Figure 1: Dynamic Response of Per Capita Hours Worked to Innovation in Technology
Panel A: BFK Model Panel B: CEV Model
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Figure 2: Response of Hours Worked to Technology: Long Run Restrictions
Panel A: Hours in Levels Panel B: Hours in First Differences
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Figure 3: Evaluating the Ability of each VAR to Encompass the Hours Response of the Other
Panel A: DGP - Level VAR Panel B: DGP - Difference VAR
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Notes to Figures: Solid line - estimated response in level VAR,
Triangles - estimated response in difference VAR,
Stars - mean response implied by indicated DGP,
Gray area - 95% confidence interval about mean.
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